JPS6312720A - Production of carbon fiber grown in gaseous phase - Google Patents

Production of carbon fiber grown in gaseous phase

Info

Publication number
JPS6312720A
JPS6312720A JP15083886A JP15083886A JPS6312720A JP S6312720 A JPS6312720 A JP S6312720A JP 15083886 A JP15083886 A JP 15083886A JP 15083886 A JP15083886 A JP 15083886A JP S6312720 A JPS6312720 A JP S6312720A
Authority
JP
Japan
Prior art keywords
gas
line
converter
carbon fiber
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15083886A
Other languages
Japanese (ja)
Inventor
Toshihiko Okada
敏彦 岡田
Toki Iemoto
勅 家本
Hidetoshi Morotomi
秀俊 諸富
Yutaka Kawahara
豊 河原
Kenji Matsubara
健次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15083886A priority Critical patent/JPS6312720A/en
Publication of JPS6312720A publication Critical patent/JPS6312720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable mass-production of a homogeneous and high-performance carbon fiber grown in gaseous phase, by using a converter gas as a heat source, utilizing reduced iron derived from iron oxide in the gas as a catalyst and using a converter gas recovery system as a fluidized bed. CONSTITUTION:An exhaust gas line 13 of a converter 1 is connected with a line 21 for introducing a hydrogen-containing gas (preferably coke oven gas), a line 14 for introducing carbon fiber raw material (preferably coal tar produced as a by-product from coke oven) and a line 15 for introducing cooling water and is provided with a gas-liquid separator 6. A decanter 7 is connected to a liquid channel 17 of the gas-liquid separator 6 and the water separated by the separator is introduced through the cooling water-introduction line 15 into the exhaust gas line 13. A separator 8 is connected to a channel 18 connected to the bottom of the decanter 7. A carbon fiber recovery line 19 and a dust recovery line 20 are connected to the separator 8.

Description

【発明の詳細な説明】 本発明は気相成長炭素Gi雑の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing vapor-grown carbon and Gi miscellaneous.

[従来の技術] 気相成長炭素繊維は、有数物!1ift(PAN系、ピ
ッチ系、レーヨン系等)を焼成して得られる炭素繊維に
比べ、機械的性質に優れている。特にこれを黒鉛化した
黒鉛化[は、引張強度として700KI/m2、引張弾
性率として70i/Nx2という極めて高い値を有して
いる。さらにこの気相成長炭素ti帷は、その高結晶性
および高配向性のため電気伝導性も高い。従ってその用
途は、構造材料を初めとして電気・電子材料、生体材料
など幅広く、注目すべき素材である。
[Conventional technology] Vapor-grown carbon fiber is a leading product! It has superior mechanical properties compared to carbon fiber obtained by firing 1ift (PAN-based, pitch-based, rayon-based, etc.). In particular, the graphitized material has extremely high tensile strength of 700 KI/m2 and tensile modulus of 70 i/Nx2. Furthermore, this vapor-grown carbon Ti film has high electrical conductivity due to its high crystallinity and high orientation. Therefore, its applications are wide-ranging, including structural materials, electrical/electronic materials, and biomaterials, making it a noteworthy material.

気相成長炭素繊維は、従来固定床方式と呼ばれる方法で
製造されていた。この方法は、炉内に設置したムライト
、黒鉛等の基板に、50〜200人の粒径をもつ超微細
鉄粒子をシーディングし、この上に1010〜1300
℃の温度で、ベンゼンなどの炭化水素ガス、水素及びキ
ャリヤガスからなる混合ガスを導入して、繊維を製造す
る技術である。しかしこの方法では基板表面の微妙な温
度ムラや、周囲のm維の密生度、さらにはガスが導入さ
れる反応管の入口への遠近などにより均一な糸径、uA
雑長、生成密度等を有する繊維を製造することは困難で
ある。しかも微細粒子の基板への分散、還元、繊維の成
長1次いで繊維の取出しという独立に実施を必要とする
プロセスを含むため、連続的な製造は不可能に近い。
Vapor-grown carbon fibers have traditionally been produced using a method called a fixed bed method. In this method, a substrate made of mullite, graphite, etc. placed in a furnace is seeded with ultrafine iron particles with a particle size of 50 to 200 particles, and then ultrafine iron particles with a particle size of 1010 to 1300
This is a technology for manufacturing fibers by introducing a mixed gas consisting of a hydrocarbon gas such as benzene, hydrogen, and a carrier gas at a temperature of ℃. However, with this method, a uniform thread diameter and a
It is difficult to produce fibers having irregular length, production density, etc. Moreover, continuous production is nearly impossible because it involves processes that must be carried out independently: dispersion of fine particles onto a substrate, reduction, fiber growth, and then fiber removal.

これらの欠点を補うため、特開昭60−54998号及
び同60−185811公報に記載された発明は、触媒
として有礪iff移金属化合物を使用する流動床方式に
よる製造方法を採用している。
In order to compensate for these drawbacks, the inventions described in JP-A-60-54998 and JP-A-60-185811 adopt a production method using a fluidized bed method using an IFFF transfer metal compound as a catalyst.

この方法は有Ri!移金属化合物を蒸発させて、気相中
で遷移金属触媒を1能させることが特徴となっている。
This method is useful! The feature is that the transition metal compound is evaporated to make the transition metal catalyst functional in the gas phase.

[発明が解決しようとする問題点] しかしこれらの方法は、大旦生産用の大規模な熱交換器
等の設備投資及び炉内を1010〜1300℃にするた
めの膨大な燃料に係る費用、並びに触媒として非常に高
価な有′e!1遷移金属化合物を用いることなどのため
、安価な製造方法とはいい罷い。
[Problems to be Solved by the Invention] However, these methods require large-scale equipment investment such as a heat exchanger for Daitan production, and the cost of a huge amount of fuel to heat the inside of the furnace to 1010 to 1300°C. Also, it is very expensive as a catalyst! Because it uses a single transition metal compound, it is not an inexpensive manufacturing method.

そこで本発明の目的は、気相酸二炭素llnを安価にか
つ大量に供給できる製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method that can supply gaseous dicarbonate lln at low cost and in large quantities.

[問題点を解決するための手段] 本発明においては、これまで製鉄業においてせいぜい燃
料として用いられているにすぎなかった転炉ガスに着目
して、これを炭素繊維の気相成長の熱源として用い、か
つその中にダストとして含まれている鉄酸化物を触媒源
として利用するとともに、転炉ガス回収系を流動床式反
応器として使用することによって上記問題点の解決を図
っている。
[Means for Solving the Problems] The present invention focuses on converter gas, which has so far been used only as a fuel in the steel industry, and uses it as a heat source for vapor phase growth of carbon fibers. The above-mentioned problems are solved by using the iron oxide contained in the iron oxide as a catalyst source as a catalyst source, and by using the converter gas recovery system as a fluidized bed reactor.

すなわち、この発明によれば、転炉に設置された転炉ガ
ス回収系内において転炉からの転炉ガスに水素含有ガス
を導入して該転炉ガス中にダストとして含まれている鉄
酸化物を順次金属鉄に還元し触媒を生成する。次いで転
炉ガス回収系内に炭素繊維原料を導入して金属鉄触媒と
接触させ炭素繊維を成長させる。
That is, according to the present invention, hydrogen-containing gas is introduced into the converter gas from the converter in the converter gas recovery system installed in the converter to remove iron oxidation contained in the converter gas as dust. A catalyst is produced by sequentially reducing substances to metallic iron. Next, the carbon fiber raw material is introduced into the converter gas recovery system and brought into contact with the metal iron catalyst to grow carbon fibers.

以下添附図面を参照して、本発明をさらに詳しく説明す
る。
The present invention will be described in more detail below with reference to the accompanying drawings.

添附図面は、本発明の方法を実施するために用いられる
転炉ガス回収系を示している。
The accompanying drawings show a converter gas recovery system used to carry out the method of the invention.

銑鉄の精練に用いる転炉1の転炉ガス排出口には排ガス
ライン13が取付けられている。ライン13の中途には
転炉側から順に水素含有ガス(還元ガス)導入管21及
び炭素繊維原料導入管14及び冷却水導入管15が設け
られている。ライン13の冷却水導入管15との接続箇
所からさらに進んだところに気水分離機6が設けられて
いる。
An exhaust gas line 13 is attached to a converter gas outlet of a converter 1 used for refining pig iron. In the middle of the line 13, a hydrogen-containing gas (reducing gas) introduction pipe 21, a carbon fiber raw material introduction pipe 14, and a cooling water introduction pipe 15 are provided in order from the converter side. A steam-water separator 6 is provided further from the connection point of the line 13 with the cooling water introduction pipe 15.

この分[16には気体成分の流路16が接続している。A gas component flow path 16 is connected to this portion [16].

この流路16はガスホルダー(図示せず)に通じており
、途中にフィルター21を介してブロア11が設置され
ている。他方気水分離機6に接続した液体成分の流路1
7はデカンタ−7に通じている。デカンタ−7には分離
された冷却水をライン13に導入する前記 導入管15の他端が接続している。デカンタ−7の底部
に接続したもう一つの流路18は分Mt’18に通じて
いる。この分111i18には炭素mNの回収路1つと
ダス[−の回収炉20が接続している。
This flow path 16 communicates with a gas holder (not shown), and a blower 11 is installed with a filter 21 interposed therebetween. On the other hand, the liquid component flow path 1 connected to the steam/water separator 6
7 leads to decanter 7. The other end of the introduction pipe 15 for introducing the separated cooling water into the line 13 is connected to the decanter 7. Another channel 18 connected to the bottom of the decanter 7 leads to the minute Mt'18. One carbon mN recovery path and a das[- recovery furnace 20 are connected to this portion 111i18.

転炉1において銑鉄の酸化精練時に発生する転炉ガスに
は、鉄酸化物を含む微細なダストが含有されている。通
常転炉ガス中には鉄酸化物が1.0〜1.5%の割合で
含まれている。この転炉ガスはブロア11の吸引により
排出口から排ガスライン13に導入される。転炉ガスは
、通常10〜15万Nrrt3の流量で吸引する。ライ
ン13の入口2においては転炉ガスの温度は1400℃
以上であり、転炉内に吹き込まれた酸素の濃度は4%以
下になっている。酸素の濃度が低いことは後に行うダス
ト中の鉄酸化物の還元に都合がよい。転炉ガスは、ライ
ン13内を進むにつれて冷却されていく。転炉ガスの温
度が1100〜1400℃になる箇所に水素含有ガス導
入管21を設けておき、これを通して0.5〜5.0N
TrL3の流量で水素含有ガス3を吹き込む。
Converter gas generated during oxidation and scouring of pig iron in the converter 1 contains fine dust containing iron oxides. Normally, iron oxide is contained in the converter gas at a rate of 1.0 to 1.5%. This converter gas is introduced into the exhaust gas line 13 from the discharge port by suction by the blower 11 . Converter gas is usually sucked in at a flow rate of 100,000 to 150,000 Nrrt3. At the inlet 2 of line 13, the temperature of the converter gas is 1400°C.
As above, the concentration of oxygen blown into the converter is 4% or less. A low concentration of oxygen is convenient for the later reduction of iron oxides in the dust. The converter gas is cooled as it travels through the line 13. A hydrogen-containing gas introduction pipe 21 is provided at a location where the temperature of the converter gas is 1100 to 1400°C, and a 0.5 to 5.0 N
Hydrogen-containing gas 3 is blown in at a flow rate of TrL3.

水素含有ガス中の水素ガスの含有割合は20%以上、好
ましくは50%以上がよい。これにはコークス炉ガスを
用いると大量生産に都合がよい。この処理によって転炉
ガスにダストとして含まれている鉄酸化物(主にFeO
からなり、他にFe2O3を含む。)を金属鉄に還元し
、炭素繊維製造のための触媒として用いる。この場合鉄
酸化物の粒径は0.005〜1.0μmであるが、この
粒径は炭素t[の成長に適している。
The content of hydrogen gas in the hydrogen-containing gas is preferably 20% or more, preferably 50% or more. The use of coke oven gas is convenient for mass production. This treatment removes iron oxides (mainly FeO) contained in the converter gas as dust.
It also contains Fe2O3. ) is reduced to metallic iron and used as a catalyst for carbon fiber production. In this case, the particle size of the iron oxide is 0.005 to 1.0 μm, which is suitable for the growth of carbon t[.

次に炭素繊維原料導入管14を通じて炭素alN原料4
を5〜20t/hの流量で吹き込み、上記金属鉄触媒と
接触させ炭素繊維を気相成長させる。
Next, the carbon alN raw material 4 is passed through the carbon fiber raw material introduction pipe 14.
is blown at a flow rate of 5 to 20 t/h, and brought into contact with the metal iron catalyst to grow carbon fibers in a vapor phase.

炭素繊維の成長のためには、反応温度は1010〜12
00℃がよいので、導入管14の位置をそれに合せて設
定する。この結果はぼ瞬時に炭素繊維が成長する。
For carbon fiber growth, the reaction temperature is between 1010 and 12
Since a temperature of 00° C. is preferable, the position of the introduction tube 14 is set accordingly. As a result, carbon fibers grow almost instantly.

炭素繊維原料としては炭化水素その他あらゆる有礪化合
物が用いられるが、収率の観点から芳香族化合物が好ま
しい。特にコークス炉からの副産物である粗軽油類、ナ
フタリン、中油、アントラセン油、重油、ピッチ及びコ
ールタール並びにこれらの水素化物、及びこれらの混合
物は、ベンゼンに比べて非常に安価で、しかも大量に供
給することが可能である。ざらにヘテロ原子を含有する
ものも使用可能であり、特に硫黄を含有するチオフェン
類、チオール類及びチオフェノール類を用いると、生成
速度が速く有用である。
Although hydrocarbons and all other solid compounds can be used as carbon fiber raw materials, aromatic compounds are preferred from the viewpoint of yield. In particular, crude light oils, naphthalene, middle oil, anthracene oil, heavy oil, pitch and coal tar, their hydrides, and mixtures thereof, which are by-products from coke ovens, are much cheaper than benzene and can be supplied in large quantities. It is possible to do so. Those containing heteroatoms can also be used, and sulfur-containing thiophenes, thiols, and thiophenols are particularly useful because of their rapid production rate.

こうして成長した炭素繊維を含む転炉ガスを、デカンタ
−7からの冷却水5で100℃以下に冷却する。これに
より、微細な綿状の炭素!l維が、未反応鉄酸化物を含
むダストとともに冷却水によって補促される。
The converter gas containing the carbon fibers thus grown is cooled to 100° C. or lower with cooling water 5 from the decanter 7. This creates fine cotton-like carbon! The fibers are supplemented by cooling water along with dust containing unreacted iron oxides.

しかる後、転炉ガスと炭素繊維およびダストを含む冷却
水とを気水分離機6で分離し、転炉ガスはブロア11に
より流路16を通じフィルター22を介してガスホルダ
ーに移送される。他方、分離された冷却水は、デカンタ
−7により水とダストおよび炭素繊維の混合物とに分離
される。回収された水は冷却水導入管15から排ガスラ
イン13内に循環される。また、分離されたダストおよ
び炭素繊維の混合物は、流路18から分離]8に導入さ
れ、炭素繊維とダストとに分離される。
Thereafter, the converter gas and cooling water containing carbon fibers and dust are separated by a steam separator 6, and the converter gas is transferred by a blower 11 through a flow path 16 to a gas holder via a filter 22. On the other hand, the separated cooling water is separated into water, dust, and a mixture of carbon fibers by a decanter 7. The recovered water is circulated into the exhaust gas line 13 from the cooling water introduction pipe 15. Further, the separated mixture of dust and carbon fibers is introduced from the flow path 18 into the separation section 8, where it is separated into carbon fibers and dust.

分離された炭素繊維9は回収路19から回収され、また
ダスト10は回収路20から回収される。
The separated carbon fibers 9 are recovered from a recovery path 19, and the dust 10 is recovered from a recovery path 20.

[実施例コ 以下に図面に示した装置を用いた本発明の詳細な説明す
る。
[Embodiment] The present invention will be described in detail below using the apparatus shown in the drawings.

LUL二 250ト>転炉1から生ずる転炉ガスを、10万NTr
L3/hの流量で排ガス回収ライン13に導入した。こ
の際ライン13の入口2における温度は1450℃であ
り、酸素の濃度は3%に低下していた。転炉ガスはライ
ン13中を進むにつれて冷却されていった。排ガスの温
度が1300℃になったところで、転炉ガスに対して1
0容量%のコークス炉ガス(水素含有ガス)3を導入し
た。
LUL2250 > converter gas generated from converter 1 to 100,000 NTr
It was introduced into the exhaust gas recovery line 13 at a flow rate of L3/h. At this time, the temperature at the inlet 2 of the line 13 was 1450° C., and the oxygen concentration had decreased to 3%. The converter gas was cooled as it progressed through line 13. When the exhaust gas temperature reaches 1300℃, 1
0% by volume of coke oven gas (hydrogen-containing gas) 3 was introduced.

その直後、排ガスとの反応温度が1100℃程度になる
ように吹き込み位置と流量を調整しながら。
Immediately after that, while adjusting the blowing position and flow rate so that the reaction temperature with the exhaust gas is about 1100°C.

転炉ガス1NTrL3に対し1.77Kgの割合に相当
するコールタール4を吹き込んだ。この結果的0.1秒
で微細な綿状の炭素[11ffiが生成した。
Coal tar 4 corresponding to a ratio of 1.77 kg was blown into the converter gas 1 NTrL3. As a result, fine flocculent carbon [11ffi] was generated in 0.1 seconds.

炭素繊維を含む排ガスは、次に冷却水5で冷却し100
℃以下にした。次にこの炭素繊維、排ガス及びダストを
含んだ冷却水を気水分離機6で気水分離した。分離され
た炭素繊維とダストを含んだ冷却水はデカンタ−7に移
し、ここで炭素繊維9とダスト10からなる混合物を冷
却水から分離した。混合物を除いた冷却水5は、回収し
て再度使用した。混合物は分離818により、炭素m維
9とダスト10に分離し、炭素繊維を回収した。
The exhaust gas containing carbon fibers is then cooled with cooling water 5 and
below ℃. Next, the cooling water containing the carbon fibers, exhaust gas, and dust was separated into steam and water by a steam-water separator 6. The cooling water containing the separated carbon fibers and dust was transferred to a decanter 7, where a mixture of carbon fibers 9 and dust 10 was separated from the cooling water. The cooling water 5 from which the mixture was removed was collected and used again. The mixture was separated into carbon fibers 9 and dust 10 by separation 818, and the carbon fibers were recovered.

こうして1回の仕込みについて、原料のコールタールに
対して12%の収率で綿状の炭素l!帷が得られた。こ
の繊維を2800℃で黒鉛化したところ、糸径0.−3
μm、糸長500μmの黒鉛化繊維が得られた。また破
断面は同心円構造を有していた。この黒鉛化m雑の引張
強度は510に9/1、メ 実施例1と同様な設備並びに水素含有ガス及び炭素II
I!原料の吹き込み条件下において、コールタールの代
りに粗軽油0.85に9を吹き込んだ。
In this way, for one charge, the yield of 12% of the raw material coal tar is 1 flocculent carbon! A veil was obtained. When this fiber was graphitized at 2800°C, the yarn diameter was 0. -3
Graphitized fibers with a yarn length of 500 μm were obtained. Moreover, the fracture surface had a concentric structure. The tensile strength of this graphitized material was 510 to 9/1, using the same equipment as in Example 1, hydrogen-containing gas, and carbon II.
I! Under the raw material blowing conditions, 9 was blown into 0.85 of crude light oil instead of coal tar.

その結果原料の粗軽油に対して10%の収率で綿状の炭
素tfi維が得られた。この繊維を2800℃で黒鉛化
したところ、糸径0.2μm1糸長300μmの黒鉛化
繊維が(停られた。この黒鉛(ヒ繊帷の引張強度は51
0 Kl/ tnra2、引張弾性率は60t/HR2
であった。
As a result, flocculent carbon TFI fibers were obtained at a yield of 10% based on the crude light oil used as the raw material. When this fiber was graphitized at 2800°C, a graphitized fiber with a thread diameter of 0.2 μm and a thread length of 300 μm was obtained.The tensile strength of this graphite fiber was 51
0 Kl/tnra2, tensile modulus is 60t/HR2
Met.

友m 実施例1と同様な設備並びに水素含有ガス及び炭素!I
N原料の吹き込み条件下において、コールタールの代り
に水添アントラセン油1.9に9を吹き込んだ。その結
果原料の水添アントラセン油に対して13%の収率で綿
状の炭素1G維が得られた。
Friend m Same equipment as Example 1, hydrogen-containing gas and carbon! I
Under the conditions of N raw material blowing, 9 was blown into hydrogenated anthracene oil 1.9 instead of coal tar. As a result, cotton-like carbon 1G fibers were obtained at a yield of 13% based on the raw material hydrogenated anthracene oil.

このl!帷を2800℃で黒鉛化したところ、糸径0.
3μm、糸長600μmの黒鉛化4G維が得られた。こ
の黒鉛化m維の引張強度は700匈/s+2、引張弾性
率は70t/m2であった。
This l! When the cloth was graphitized at 2800°C, the yarn diameter was 0.
Graphitized 4G fibers of 3 μm and yarn length of 600 μm were obtained. The graphitized m-fiber had a tensile strength of 700/s+2 and a tensile modulus of 70 t/m2.

[発明の効果] 以上説明したように、本発明によれば、転炉ガス回収系
を流動床式反応器として利用し、転炉ガスの顕熱を炭素
tlallの熱源とに利用しているので、大量生産によ
って気相成長炭素uANを製造する際に新たに設備投資
をしたり、あらたに熱源を設置することが不要になる。
[Effects of the Invention] As explained above, according to the present invention, the converter gas recovery system is used as a fluidized bed reactor, and the sensible heat of the converter gas is used as a heat source for carbon tlall. , Mass production eliminates the need for new equipment investment or new heat source installation when manufacturing vapor-grown carbon uAN.

また、転炉ガス中にダストとして含まれる鉄酸化物を水
素を含有するガスで還元することにより安価な金属触媒
を得ることができる。したがって気相成長炭素を安価に
製造することが可能になる。
In addition, an inexpensive metal catalyst can be obtained by reducing iron oxides contained in converter gas as dust with a hydrogen-containing gas. Therefore, it becomes possible to manufacture vapor-grown carbon at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施する上で用いて好適な転炉ガス
回収系の概略図である。 1・・・・・・転炉、3・・・・・・水素含有ガス、4
・・・・・・炭素繊維原料、5・・・・・・冷却水、6
・・・・・・気水分離機、7・・・・・・デカンタ−1
8・・・・・・分離類、11・・・・・・ブロア。
The figure is a schematic diagram of a converter gas recovery system suitable for use in carrying out the method of the present invention. 1...Converter, 3...Hydrogen-containing gas, 4
...Carbon fiber raw material, 5...Cooling water, 6
...Sea water separator, 7 ... Decanter 1
8... Separation, 11... Blower.

Claims (3)

【特許請求の範囲】[Claims] (1)転炉に設置された転炉ガス回収系内において、該
転炉からの転炉ガスに水素含有ガスを導入して該転炉ガ
ス中にダストとして含まれている鉄酸化物を順次金属鉄
に還元し、しかる後該転炉ガス回収系内に炭素繊維原料
を導入して該金属鉄と接触させ炭素繊維を成長させるこ
とを特徴とする気相成長炭素繊維の製造方法。
(1) In the converter gas recovery system installed in the converter, hydrogen-containing gas is introduced into the converter gas from the converter to sequentially remove iron oxides contained in the converter gas as dust. A method for producing vapor-grown carbon fiber, which comprises reducing the carbon fiber to metallic iron, and then introducing a carbon fiber raw material into the converter gas recovery system and bringing it into contact with the metallic iron to grow carbon fiber.
(2)前記炭化水素がコークス炉からの副産物であるコ
ールタールである特許請求の範囲第1項記載の方法
(2) The method according to claim 1, wherein the hydrocarbon is coal tar, which is a byproduct from a coke oven.
(3)前記水素含有ガスがコークス炉ガスである特許請
求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the hydrogen-containing gas is coke oven gas.
JP15083886A 1986-06-27 1986-06-27 Production of carbon fiber grown in gaseous phase Pending JPS6312720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15083886A JPS6312720A (en) 1986-06-27 1986-06-27 Production of carbon fiber grown in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15083886A JPS6312720A (en) 1986-06-27 1986-06-27 Production of carbon fiber grown in gaseous phase

Publications (1)

Publication Number Publication Date
JPS6312720A true JPS6312720A (en) 1988-01-20

Family

ID=15505482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15083886A Pending JPS6312720A (en) 1986-06-27 1986-06-27 Production of carbon fiber grown in gaseous phase

Country Status (1)

Country Link
JP (1) JPS6312720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290570A (en) * 1988-05-18 1989-11-22 Showa Denko Kk Production of carbon-fiber formed heat insulating material
JPH0280619A (en) * 1988-09-12 1990-03-20 Nkk Corp Production of carbon fiber
JPH02165512A (en) * 1988-12-16 1990-06-26 Kitagawa Kogyo Kk Flat cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290570A (en) * 1988-05-18 1989-11-22 Showa Denko Kk Production of carbon-fiber formed heat insulating material
JPH0280619A (en) * 1988-09-12 1990-03-20 Nkk Corp Production of carbon fiber
JPH02165512A (en) * 1988-12-16 1990-06-26 Kitagawa Kogyo Kk Flat cable

Similar Documents

Publication Publication Date Title
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
US5064467A (en) Method and apparatus for the direct reduction of iron
US5782952A (en) Method for production of magnesium
US20080063582A1 (en) Process for removing tar-forming high molecular weight hydrocarbons from gas mixture
CA1147964A (en) Process for reducing spent gas generated in the production of sponge iron
JPS6312720A (en) Production of carbon fiber grown in gaseous phase
US3905806A (en) Method for the direct reduction of iron ores
JP2521982B2 (en) Method for producing vapor grown carbon fiber
JPH0257134B2 (en)
US4019724A (en) Apparatus for the direct reduction of iron ores
US2885267A (en) Method of producing hydrogen and carbon black
Kim et al. CaC2 production from CaO and coal or hydrocarbons in a rotating-arc reactor
JP4967191B2 (en) Method and apparatus for controlling carburization of DRI
JP2586054B2 (en) Method for producing vapor grown carbon fiber
EP0153419A1 (en) Process for treating coal tar or coal tar pitch
JPH026617A (en) Production of carbon fiber
JP2586055B2 (en) Method for producing vapor grown carbon fiber
CN113955742B (en) Process for preparing carbon nano tube by carbon dioxide-methane reforming technology
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPS6278217A (en) Vapor-phase production of carbon fiber
JP2003144906A (en) Method for removing carbonaceous substance bonded to wall surface
SU573446A1 (en) Method of preparing calcium carbide
JPS61162585A (en) Production of hydrogenation-treated pitch
US2709152A (en) Process for producing finely divided coke from bituminous fuels
JPH0680210B2 (en) Carbon fiber manufacturing method