JP2011034958A - Heat dissipating member for led light bulb - Google Patents

Heat dissipating member for led light bulb Download PDF

Info

Publication number
JP2011034958A
JP2011034958A JP2010116993A JP2010116993A JP2011034958A JP 2011034958 A JP2011034958 A JP 2011034958A JP 2010116993 A JP2010116993 A JP 2010116993A JP 2010116993 A JP2010116993 A JP 2010116993A JP 2011034958 A JP2011034958 A JP 2011034958A
Authority
JP
Japan
Prior art keywords
heat
coating film
resin
weight
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010116993A
Other languages
Japanese (ja)
Other versions
JP4637272B2 (en
Inventor
Keiichiro Hatsuno
圭一郎 初野
Nobuyuki Muto
伸之 武藤
Kenji Kato
健志 加藤
Mitsuhiro Tamaoki
充宏 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2010116993A priority Critical patent/JP4637272B2/en
Priority to CN201080030794.6A priority patent/CN102472445B/en
Priority to PCT/JP2010/061025 priority patent/WO2011004731A1/en
Priority to KR1020127003075A priority patent/KR101677470B1/en
Priority to TW099121995A priority patent/TWI425167B/en
Publication of JP2011034958A publication Critical patent/JP2011034958A/en
Application granted granted Critical
Publication of JP4637272B2 publication Critical patent/JP4637272B2/en
Priority to HK12108176.5A priority patent/HK1167446A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/87Organic material, e.g. filled polymer composites; Thermo-conductive additives or coatings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipating member for LED light bulbs, which has improved heat radiation performance, has simple structure, has improved productivity, and has low costs. <P>SOLUTION: Disclosed is the heat dissipating member 1 for the LED light bulb incorporating an LED element. The heat dissipating member 1 is formed by press-molding an aluminum alloy plate into a generally conical shape, and recessed and projecting parts 12 are formed on an outer circumferential surface 10. The aluminum alloy plate is a pre-coated aluminum alloy plate that is obtained by pre-coating both surfaces or one surface of a substrate with a synthetic resin-coating film. The synthetic resin-coating film applied to at least one surface preferably includes a heat-dissipating coating film which contains a heat-dissipating substance in a base resin that has a number-average molecular weight of 10,000-40,000 and is composed of one or more resins selected from among urethane resin, ionomer resin, polyethylene resin, epoxy resin, fluororesin, and polyester resin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LED(発光ダイオード)素子を内蔵してなるLED電球における放熱部材に関する。   The present invention relates to a heat dissipating member in an LED bulb including an LED (light emitting diode) element.

LEDの高性能化に伴い、LEDを光源としたランプ(LEDランプ)を次世代の照明装置として用いることが検討されている。LEDランプとしては、様々な形態が考えられるが、広く一般家庭に普及している白熱電球に置き換え可能な電球型のLEDランプ(以下、LED電球という)が特に注目されている。   As the performance of LEDs increases, it has been studied to use a lamp using an LED as a light source (LED lamp) as a next-generation lighting device. Various forms are conceivable as the LED lamp, and a bulb-type LED lamp (hereinafter referred to as an LED bulb) that can be replaced with an incandescent bulb that has been widely used in general households has attracted particular attention.

LED電球は、従来の白熱電球に比べ、消費電力が約1/8、寿命は約40倍の性能を発揮するため、今般の地球温暖化防止思想を背景とした省エネルギー要求に合致する優れた物品といえる。   LED bulbs have approximately 1/8 the power consumption and about 40 times the life of conventional incandescent bulbs, so they are excellent products that meet energy-saving requirements against the background of the global warming prevention philosophy. It can be said.

一方、LED素子は、一般に、温度上昇に従って光出力が低下し、また、環境温度が高い方が、低い場合よりも光出力の経時的低下が大きく寿命が短い。そのため、LED電球においては、そのボディに放熱部材を設け、LED素子から生じる熱の放熱を促進する試みがなされている。これまで提案されたものとしては、例えば、特許文献1〜5の構成がある。   On the other hand, the light output of the LED element generally decreases as the temperature rises, and the higher the environmental temperature, the lower the light output with time and the shorter the life than when the environmental temperature is low. Therefore, an attempt has been made to provide a heat dissipation member in the body of an LED bulb to promote heat dissipation from the LED element. As what was proposed so far, there exists a structure of patent documents 1-5, for example.

特許文献1は、ラッパ状金属放熱部を有するものである。特許文献2は、放射状に放熱フィンを形成した放熱部を有している。特許文献3、4は、軸方向に重ねた放熱フィン構造の放熱部を有している。特許文献5は、基体の外周囲を覆う放熱部を設けた構成が示されている。   Patent document 1 has a trumpet-shaped metal heat radiation part. Patent Document 2 has a heat radiating portion in which heat radiating fins are radially formed. Patent Documents 3 and 4 have a heat dissipating part with a heat dissipating fin structure that is stacked in the axial direction. Patent Document 5 shows a configuration in which a heat dissipating part that covers the outer periphery of a base is provided.

特開2001−243809号公報Japanese Patent Laid-Open No. 2001-243809 特開2005−93097号公報JP-A-2005-93097 特開2005−166578号公報JP 2005-166578 A 特開2008−186758号公報JP 2008-186758 A 特開2008−311002号公報JP 2008-311022 A

しかしながら、上述した特許文献1のラッパ状金属放熱部では必ずしも十分な放熱効果が得られない。また、特許文献2〜5に記載の放熱部は、複数の部品を組み合わせた複雑な構造であるか、あるいは、アルミニウム等の鋳物あるいはダイキャスト品を用いたものであって、生産性が低く、重量が重く、コストも高いものとなっている。
最近、実用化されたLED電球としては、放熱翼を持った形状のアルミニウムの鋳物を放熱部に用いたものがあるが、価格は従来の白熱電球の数十倍程度に設定されており、その低価格化が課題となっている。
However, the trumpet-shaped metal heat dissipating part of Patent Document 1 described above cannot always obtain a sufficient heat dissipating effect. Moreover, the heat radiating part described in Patent Documents 2 to 5 has a complicated structure in which a plurality of parts are combined, or uses a cast or die-cast product such as aluminum, and has low productivity. It is heavy and expensive.
Recently, LED bulbs that have been put to practical use include aluminum castings with heat dissipation blades used as heat dissipation parts, but the price is set to several tens of times that of conventional incandescent bulbs. Lowering the price is an issue.

本発明は、かかる問題点に鑑みてなされたものであり、放熱性能に優れ、構造が簡単で、生産性に優れ、コストの低いLED電球用放熱部材を提供し、ひいては、高性能で安価なLED電球の実現を図ることができるLED電球用放熱部材を提供しようとするものである。   The present invention has been made in view of such problems, and provides a heat dissipation member for an LED bulb that is excellent in heat dissipation performance, simple in structure, excellent in productivity, and low in cost. An object of the present invention is to provide an LED bulb heat dissipating member capable of realizing an LED bulb.

本発明は、LED素子を内蔵してなるLED電球における放熱部材であって、
該放熱部材は、アルミニウム合金板を略円錐形にプレス成形することによって形成されており、
かつ、上記外周側面には凹凸部が形成されていることを特徴とするLED電球用放熱部材にある(請求項1)。
The present invention is a heat dissipating member in an LED bulb having a built-in LED element,
The heat radiating member is formed by press-molding an aluminum alloy plate into a substantially conical shape,
And the uneven | corrugated | grooved part is formed in the said outer peripheral side surface, It exists in the thermal radiation member for LED bulbs (Claim 1).

本発明のLED電球用放熱部材は、上記のごとく、アルミニウム合金板を素材として構成されている。アルミニウム合金板は、鋳物やダイキャスト品と異なり、連続ラインを用いて大量に効率よく製造することができる。   As described above, the LED bulb heat dissipation member of the present invention is made of an aluminum alloy plate. Unlike castings and die-cast products, aluminum alloy plates can be efficiently produced in large quantities using a continuous line.

また、上記放熱部材は、上記アルミニウム合金板をプレス成形することによって略円錐形に成形することにより作製してある。アルミニウム合金板のプレス成形は容易に行うことができ、大量生産を前提にすれば、非常に効率よく安価に加工することができる。
また、上記放熱部材は、その外周側面に凹凸部を有している。これによって、外周側面の表面積増大を図ることができ、放熱特性のさらなる向上を図っている。
Moreover, the said heat radiating member is produced by shape | molding in the substantially cone shape by press-molding the said aluminum alloy plate. Press molding of an aluminum alloy plate can be easily performed, and if mass production is assumed, it can be processed very efficiently and inexpensively.
Moreover, the said heat radiating member has an uneven | corrugated | grooved part in the outer peripheral side surface. As a result, the surface area of the outer peripheral side surface can be increased, and the heat dissipation characteristics are further improved.

このように、本発明のLED電球用放熱部材は、放熱性能に優れ、構造が簡単で、生産性に優れ、コストの低いものとなる。それ故、本発明の放熱部材を用いれば、高性能で安価なLED電球の実現を図ることができる。   Thus, the LED bulb heat dissipation member of the present invention has excellent heat dissipation performance, a simple structure, excellent productivity, and low cost. Therefore, if the heat dissipating member of the present invention is used, a high-performance and inexpensive LED bulb can be realized.

実施例1における、プレコートアルミニウム合金板の構造を示す説明図。Explanatory drawing which shows the structure of the precoat aluminum alloy plate in Example 1. FIG. 実施例1における、放熱部材の成形方法を示す説明図。Explanatory drawing which shows the shaping | molding method of the heat radiating member in Example 1. FIG. 実施例1における、放熱部材の側面図。The side view of the heat radiating member in Example 1. FIG. 実施例1における、放熱部材の底面図。The bottom view of the heat radiating member in Example 1. FIG. 実施例1における、放熱部材の横断面図(図3のA−A線矢視断面図)。The cross-sectional view of the heat radiating member in Example 1 (cross-sectional view taken along line AA in FIG. 3). 実施例1における、蓋体の断面図(図7のB−B線矢視断面図)。Sectional drawing of the cover body in Example 1 (BB sectional view taken on the line in FIG. 7). 実施例1における、蓋体の平面図。The top view of the cover body in Example 1. FIG. 実施例1における、LED電球を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施例3における、放熱部材の変形例を示す横断面図。FIG. 10 is a cross-sectional view illustrating a modification of the heat dissipation member in the third embodiment. 実施例3における、放熱部材の変形例を示す横断面図。FIG. 10 is a cross-sectional view illustrating a modification of the heat dissipation member in the third embodiment. 実施例3における、放熱部材の変形例を示す横断面図。FIG. 10 is a cross-sectional view illustrating a modification of the heat dissipation member in the third embodiment. 実施例3における、放熱部材の変形例を示す側面図。The side view which shows the modification of the heat radiating member in Example 3. FIG. 実施例3における、放熱部材の変形例を示す側面図。The side view which shows the modification of the heat radiating member in Example 3. FIG. 実施例3における、放熱部材の変形例を示す縦断面図。FIG. 10 is a longitudinal sectional view showing a modification of the heat dissipation member in the third embodiment.

本発明のLED電球用放熱部材は、略円錐形を呈し、その外周側面に凹凸部を設けてある。上記凹凸部は、外周側面に外方に突出する凸部を複数設けて全体として凹凸部とした形状と、外周側面に内方に凹む凹部を複数設けて全体として凹凸部とした形状と、外周側面に外方に突出する凸部と内方に凹む凹部の両方を複数設けて全体として凹凸部とした形状とがあるが、いずれでもよい。いずれの形状の凹凸部も、プレス成形によって形成可能である。   The heat-radiating member for an LED bulb of the present invention has a substantially conical shape, and has an uneven portion on the outer peripheral side surface. The concave-convex portion has a plurality of convex portions protruding outward on the outer peripheral side surface to form a concave-convex portion as a whole, a shape having a plurality of concave portions recessed inward on the outer peripheral side surface to form a concave-convex portion as a whole, and an outer periphery There is a shape in which a plurality of convex portions protruding outward and concave portions recessed inward are provided on the side surface to form an uneven portion as a whole. Irregularities of any shape can be formed by press molding.

また、上記LED電極用放熱部材用のアルミニウム合金板の材質としては、1000系、3000系、5000系、6000系など、成形加工に好適な材質を用いることができる。例えば、1050、8021、3003、3004、3104、5052、5182、5N01などがある。   Moreover, as a material of the said aluminum alloy plate for the heat radiating member for LED electrodes, the material suitable for shaping | molding processes, such as 1000 series, 3000 series, 5000 series, and 6000 series, can be used. For example, there are 1050, 8021, 3003, 3004, 3104, 5052, 5182, 5N01 and the like.

また、上記アルミニウム合金板は、該アルミニウム合金板よりなる基板の両面又は片面に合成樹脂塗膜をプレコートしてなるプレコートアルミニウム合金板であり、少なくとも一方の面にプレコートされた上記合成樹脂塗膜は、ウレタン樹脂、アイオノマー樹脂、ポリエチレン樹脂、エポキシ樹脂、フッ素樹脂、ポリエステル樹脂の1種あるいは2種以上からなる数平均分子量が10000〜40000のベース樹脂中に放熱性物質を含有してなる放熱性塗膜を備えていることが好ましい(請求項2)。   The aluminum alloy plate is a pre-coated aluminum alloy plate obtained by pre-coating a synthetic resin coating on both sides or one side of a substrate made of the aluminum alloy plate, and the synthetic resin coating pre-coated on at least one side is , Urethane resin, ionomer resin, polyethylene resin, epoxy resin, fluororesin, polyester resin, and a heat-dissipating coating containing a heat-dissipating substance in a base resin having a number average molecular weight of 10,000 to 40,000. A membrane is preferably provided (claim 2).

上記プレコートアルミニウム合金板は、合成樹脂塗膜の塗装についても連続ラインを用いて大量に効率よく実施することができる。また。プレコートアルミニウム合金板のプレス成形は、これまでの確立した技術を組み合わせることによって、容易に行うことができ、大量生産を前提にすれば、非常に効率よく安価に加工することができる。   The pre-coated aluminum alloy plate can be efficiently applied in large quantities using a continuous line for the coating of synthetic resin coatings. Also. The press-forming of the precoated aluminum alloy plate can be easily performed by combining the techniques established so far, and can be processed very efficiently and inexpensively on the premise of mass production.

また、少なくとも一方の面の上記合成樹脂塗膜は、上記放熱性物質を含有した放熱性塗膜を備えている。そのため、プレコートアルミニウム合金板は、素材そのままの状態よりも放熱性を大きく向上させた表面を有するものとなっている。そして、放熱性塗膜を表面に備えたまま略円錐形に成形して得られた放熱部材は、さらに放熱特性の優れたものとなる。なお、上記略円錐形とは、幾何学上の円錐形に限るものではなく、軸方向に直交する断面形状が概略円形状であり、軸方向一端の外径が他端の外径よりも大きくなるように軸方向に沿って外径が変化している形状を含むものである。   The synthetic resin coating film on at least one surface includes a heat dissipating coating film containing the heat dissipating substance. Therefore, the pre-coated aluminum alloy plate has a surface with greatly improved heat dissipation compared with the raw material as it is. And the heat radiating member obtained by shape | molding in a substantially cone shape with the heat radiating coating film provided on the surface becomes further excellent in the heat radiating property. The substantially conical shape is not limited to a geometrical conical shape, the cross-sectional shape orthogonal to the axial direction is a substantially circular shape, and the outer diameter at one end in the axial direction is larger than the outer diameter at the other end. Thus, it includes a shape whose outer diameter changes along the axial direction.

また、上記基板の片面だけに合成樹脂塗膜を形成する場合には、その合成樹脂塗膜が上記放熱性塗膜を備えることが必要でなり、上記基板の両面に合成樹脂塗膜を形成する場合には、少なくとも一方の面に配置された合成樹脂塗膜に上記放熱性塗膜を備えればよい。もちろん、両面の合成樹脂塗膜に上記放熱性塗膜を備えてもよい。   Moreover, when forming a synthetic resin coating only on one side of the substrate, the synthetic resin coating must be provided with the heat-dissipating coating, and the synthetic resin coating is formed on both sides of the substrate. In such a case, the heat-dissipating coating film may be provided on a synthetic resin coating film disposed on at least one surface. Of course, you may equip the synthetic resin coating film of both surfaces with the said heat dissipation coating film.

また、上記プレコートアルミニウム合金板における上記放熱性塗膜は、所望の厚みに応じて一層塗り、多層塗りを選択できる。なお、上記放熱性塗膜は、上記のごとく、放熱性物質を含有すると共に数平均分子量が10000〜40000のベース樹脂を含有していることが必要である。   Moreover, the said heat-radiation coating film in the said precoat aluminum alloy plate can select single layer coating and multilayer coating according to desired thickness. In addition, as mentioned above, the heat-radiating coating film needs to contain a heat-radiating substance and a base resin having a number average molecular weight of 10,000 to 40,000.

すなわち、上記放熱性塗膜としては、そのベース樹脂として、数平均分子量が10000〜40000の合成樹脂を用いる。この合成樹脂の数平均分子量が10000未満の場合には、塗膜が硬くなり、凹凸部を設けた特徴的な形状を得るための成形性が悪くなるという問題があり、一方、40000を超える場合には、塗膜が軟らかすぎて耐疵付き性が低下するという問題がある。   That is, as the heat-radiating coating film, a synthetic resin having a number average molecular weight of 10,000 to 40,000 is used as the base resin. When the number average molecular weight of this synthetic resin is less than 10,000, there is a problem that the coating film becomes hard and the moldability for obtaining a characteristic shape provided with uneven portions is deteriorated. On the other hand, when it exceeds 40000 However, there is a problem that the coating film is too soft and the scratch resistance is lowered.

本発明のLED電球用放熱部材において、上記放熱性塗膜は、上記放熱性物質として、酸化チタン、カーボン、シリカ、アルミナ、酸化ジルコニウムの1種または2種以上を含有していることが好ましい(請求項3)。これにより、容易に上記放熱性塗膜の放熱性を高めることができる。   In the heat radiating member for an LED bulb according to the present invention, the heat radiating coating film preferably contains one or more of titanium oxide, carbon, silica, alumina, and zirconium oxide as the heat radiating substance ( Claim 3). Thereby, the heat dissipation of the said heat-radiation coating film can be improved easily.

上記放熱性塗膜の放熱性の特性としては、赤外線の積分放射率によって評価することができる。本発明では、赤外線の積分放射率が70%以上となるように調整することが好ましい。これによって、安定した放熱特性が得られる。
赤外線の積分放射率は、FT−IRによって試料と理想黒体の赤外線放射量を比較することにより測定することができる。
The heat dissipation properties of the heat dissipation coating can be evaluated by the infrared integrated emissivity. In the present invention, it is preferable to adjust so that the integrated emissivity of infrared rays is 70% or more. Thereby, stable heat dissipation characteristics can be obtained.
The infrared integrated emissivity can be measured by comparing the amount of infrared radiation of the sample and the ideal black body by FT-IR.

また、上記放熱性塗膜は、上記ベース樹脂100重量部に対して、平均粒径0.1〜100μmの酸化チタンを50〜200重量部、微粉末のカーボンを1〜25重量部、シリカを50〜200重量部、アルミナを50〜200重量部、酸化ジルコニウムを50〜200重量部の1種あるいは2種以上を含有することが好ましい(請求項4)。   The heat-dissipating coating film comprises 50 to 200 parts by weight of titanium oxide having an average particle size of 0.1 to 100 μm, 1 to 25 parts by weight of fine carbon, and silica with respect to 100 parts by weight of the base resin. One or more of 50 to 200 parts by weight, 50 to 200 parts by weight of alumina, and 50 to 200 parts by weight of zirconium oxide are preferably contained.

すなわち、上記放熱性塗膜に酸化チタンを含有させる場合には、その平均粒径を0.1〜100μmの範囲にすることが好ましい。酸化チタンの平均粒径が0.1μm未満の場合には、赤外線積分放射率が低下するという問題があり、一方、100μmを超える場合には、酸化チタンの塗膜からの脱落数が増加するという問題がある。   That is, when titanium oxide is contained in the heat-radiating coating film, the average particle size is preferably in the range of 0.1 to 100 μm. When the average particle diameter of titanium oxide is less than 0.1 μm, there is a problem that the infrared integrated emissivity decreases. On the other hand, when the average particle diameter exceeds 100 μm, the number of drops of titanium oxide from the coating film increases. There's a problem.

また、上記放熱性塗膜に酸化チタンを含有させる場合の含有量は、上記ベース樹脂100重量部に対して、50〜200重量部とすることが好ましい。酸化チタンの含有量が50重量部未満の場合には、赤外線積分放射率が低下するという問題があり、一方、200重量部を超える場合には、酸化チタンの塗膜からの脱落数が増加するという問題がある。   Moreover, when the titanium oxide is contained in the heat-radiating coating film, the content is preferably 50 to 200 parts by weight with respect to 100 parts by weight of the base resin. When the content of titanium oxide is less than 50 parts by weight, there is a problem that the infrared integrated emissivity is lowered. On the other hand, when the content exceeds 200 parts by weight, the number of drops of titanium oxide from the coating film increases. There is a problem.

また、上記微粉末のカーボンとしては、粒径が1nm〜500nmのカーボンを用いることが好ましい。また、上記放熱性塗膜にカーボンを含有させる場合の含有量は、1〜25重量部であることが好ましい。カーボンの含有量が1重量部未満の場合には赤外線積分放射率が低下するという問題があり、一方、25重量部を超える場合には、カーボンの塗膜からの脱落数が増加するという問題がある。   The fine powder carbon is preferably carbon having a particle size of 1 nm to 500 nm. Moreover, it is preferable that content in the case of making the said heat-radiating coating film contain carbon is 1-25 weight part. When the carbon content is less than 1 part by weight, there is a problem that the infrared integrated emissivity is lowered. On the other hand, when the carbon content is more than 25 parts by weight, there is a problem that the number of dropping off of the carbon from the coating film is increased. is there.

また、上記放熱性塗膜にシリカを含有させる場合の含有量は、50〜200重量部であることが好ましい。シリカの含有量が50重量部未満の場合には、赤外線積分放射率が低下するという問題があり、一方、200重量部を超える場合には、シリカの塗膜からの脱落数が増加するという問題がある。   Moreover, it is preferable that content in the case of making the said heat-radiating coating film contain a silica is 50-200 weight part. When the silica content is less than 50 parts by weight, there is a problem that the infrared integrated emissivity is lowered. On the other hand, when the silica content is more than 200 parts by weight, the number of silica drops from the coating film is increased. There is.

また、上記放熱性塗膜にアルミナを含有させる場合の含有量は、50〜200重量部であることが好ましい。アルミナの含有量が50重量部未満の場合には、赤外線積分放射率が低下するという問題があり、一方、200重量部を超える場合には、アルミナの塗膜からの脱落数が増加するという問題がある。   Moreover, it is preferable that content when making the said heat-radiating coating film contain alumina is 50-200 weight part. When the content of alumina is less than 50 parts by weight, there is a problem that the infrared integrated emissivity is lowered. On the other hand, when it exceeds 200 parts by weight, the number of falling off of the alumina from the coating film is increased. There is.

また、上記放熱性塗膜に酸化ジルコニウムを含有させる場合の含有量は、50〜200重量部であることが好ましい。酸化ジルコニウムの含有量が50重量部未満の場合には、赤外線積分反射率が低下するという問題があり、一方、200重量部を超える場合には、酸化ジルコニウムの塗膜からの脱落数が増加するという問題がある。   Moreover, it is preferable that content when making the said heat-radiating coating film contain a zirconium oxide is 50-200 weight part. When the content of zirconium oxide is less than 50 parts by weight, there is a problem that the infrared integrated reflectance is lowered. On the other hand, when the content exceeds 200 parts by weight, the number of zirconium oxides falling from the coating film increases. There is a problem.

また、上記放熱性塗膜の膜厚は、0.5〜100μmであることが好ましい。膜厚が0.5μm未満の場合には、赤外線積分放射率が低下するという問題があり、一方、100μmを超える場合にはコストが増大するという問題がある。   Moreover, it is preferable that the film thickness of the said heat-radiation coating film is 0.5-100 micrometers. When the film thickness is less than 0.5 μm, there is a problem that the infrared integrated emissivity is lowered, while when it exceeds 100 μm, there is a problem that the cost is increased.

また、上記放熱性塗膜は、平均粒径0.3〜100μmのNi球状フィラー、あるいは0.2〜5μmの厚さで2〜50μmの長径を有する鱗片状のNiフィラーの少なくとも一方を含有しており、これら両者の合計含有量は、上記ベース樹脂100重量部に対して1〜1000重量部であることが好ましい(請求項5)。これらのNiフィラーを放熱性塗膜に含有させることによって、放熱性塗膜に導電性を付与することができ、LED電球の回路から発生する電磁波を遮断する効果を高めることができ、他の電子機器、家電機器等への影響を最小限に抑えることができる。   The heat-radiating coating film contains at least one of Ni spherical filler having an average particle diameter of 0.3 to 100 μm or scaly Ni filler having a thickness of 0.2 to 5 μm and a long diameter of 2 to 50 μm. The total content of these both is preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the base resin. By including these Ni fillers in the heat dissipating coating film, the heat dissipating coating film can be provided with conductivity, and the effect of blocking electromagnetic waves generated from the circuit of the LED bulb can be enhanced. The impact on equipment, home appliances, etc. can be minimized.

上記Ni球状フィラーの平均粒径が0.3μm未満では導電性向上効果十分に得られないという問題があり、一方、100μmを超える場合には、Ni球状フィラーの塗膜からの脱落量が増加するという問題がある。
また、上記燐片状Niフィラーの厚みが0.2μm未満の場合には導電性向上効果十分に得られないという問題があり、一方、5μmを超える場合にはコストが増大するという問題がある。また、燐片状Niフィラーの長径が2μm未満の場合には導電性が低下するという問題があり、一方、50μmを超える場合には鱗片状Niフィラーの塗膜からの脱落数が増加するという問題がある。
When the average particle diameter of the Ni spherical filler is less than 0.3 μm, there is a problem that the effect of improving the conductivity cannot be obtained sufficiently. On the other hand, when the average particle diameter exceeds 100 μm, the amount of Ni spherical filler falling from the coating film increases. There is a problem.
Further, when the thickness of the flake shaped Ni filler is less than 0.2 μm, there is a problem that the effect of improving the conductivity cannot be sufficiently obtained, while when it exceeds 5 μm, there is a problem that the cost increases. Further, when the major axis of the flaky Ni filler is less than 2 μm, there is a problem that the conductivity is lowered. On the other hand, when it exceeds 50 μm, the number of flaky Ni fillers dropped from the coating film is increased. There is.

そして、これら両者のNiフィラー(Ni球状フィラーと鱗片状Niフィラー)の合計含有量(一方のみの含有の場合も含む)は、上記ベース樹脂100重量部に対して1〜1000重量部であることが好ましい。この含有量が1重量部未満の場合には導電性が不足し、一方、1000重量部を超える場合にはNiフィラーの塗膜からの脱落数が増加するという問題がある。   And the total content (including the case of containing only one) of these Ni fillers (Ni spherical filler and scaly Ni filler) is 1-1000 parts by weight with respect to 100 parts by weight of the base resin. Is preferred. When the content is less than 1 part by weight, the conductivity is insufficient, while when it exceeds 1000 parts by weight, there is a problem that the number of Ni fillers falling from the coating film increases.

また、上記放熱性塗膜は、上記ベース樹脂100重量部に対して、0.05〜3重量部のラノリン、カルナバ、ポリエチレン、マイクロクリスタリンの1種あるいは2種のインナーワックスを含有していることが好ましい(請求項6)。これにより、耐疵付き性向上効果を得ることができると共に、加工性をも向上させることができる。
上記インナーワックスの含有量が、ベース樹脂100重量部に対し0.05重量部未満の場合には耐疵つき性が低下するという問題があり、一方、3重量部を超える場合にはブロッキングが発生するという問題がある。
The heat-radiating coating film contains 0.05 to 3 parts by weight of one or two inner waxes of lanolin, carnauba, polyethylene, and microcrystalline with respect to 100 parts by weight of the base resin. (Claim 6). As a result, it is possible to obtain the effect of improving the scratch resistance and to improve the workability.
When the content of the inner wax is less than 0.05 parts by weight with respect to 100 parts by weight of the base resin, there is a problem that the scratch resistance is lowered. On the other hand, when the content exceeds 3 parts by weight, blocking occurs. There is a problem of doing.

また、上記合成樹脂塗膜は、上記基板の表面に形成された塗布型あるいは反応型のクロメートまたはノンクロメート層の上層に形成されていることが好ましい(請求項7)。この場合には、アルミニウム合金板と上記プレコート層との密着性を向上させることができ、加工性、耐久性等を高めることができる。   The synthetic resin coating film is preferably formed in an upper layer of a coating type or reactive type chromate or non-chromate layer formed on the surface of the substrate. In this case, adhesion between the aluminum alloy plate and the precoat layer can be improved, and workability, durability, and the like can be improved.

また、上記放熱性塗膜を備えた上記合成樹脂塗膜は、上記放熱性塗膜の下層に下地塗膜を有する複数積層構造を有しており、上記下地塗膜は、ウレタン樹脂、アイオノマー樹脂、ポリエチレン樹脂、エポキシ樹脂、フッ素樹脂、ポリエステル樹脂の1種あるいは2種以上からなる数平均分子量が10000以上の樹脂よりなることが好ましい(請求項8)。この場合には、上記放熱性塗膜の下層に、様々な特性を有する合成樹脂塗膜を下地塗膜として配置することができ、塗膜の密着性、加工性等をさらに向上させることができる。   In addition, the synthetic resin coating film provided with the heat dissipating coating film has a multi-layer structure having a base coating film under the heat dissipating coating film, and the base coating film includes a urethane resin and an ionomer resin. It is preferable that the number average molecular weight which consists of 1 type or 2 types or more of polyethylene resin, an epoxy resin, a fluororesin, and a polyester resin consists of resin more than 10000 (Claim 8). In this case, a synthetic resin coating film having various properties can be disposed as a base coating film under the heat-dissipating coating film, and the adhesion and workability of the coating film can be further improved. .

特に上記下地塗膜を構成する樹脂として、上記特定の樹脂のうち数平均分子量が10000以上の樹脂を選択することにより、凹凸部を有する上記放熱部材の加工を行う際の塗膜の加工性をさらに向上させることが可能となる。また、下地塗膜を構成する樹脂の数平均分子量の上限値は、下地塗膜の伸びが放熱性塗膜の伸びと大きく異なると加工時の塗膜割れが起きやすくなるという理由により40000とすることが好ましい。
なお、下地塗膜としては、放熱性物質等が含有されていない点以外は、上記放熱性塗膜と同じ樹脂を用いてもよいし、他の樹脂でもよい。
In particular, by selecting a resin having a number average molecular weight of 10,000 or more among the specific resins as the resin constituting the base coating film, the processability of the coating film when processing the heat radiating member having an uneven portion is increased. Further improvement is possible. Further, the upper limit of the number average molecular weight of the resin constituting the base coating film is set to 40000 because the coating film cracks easily occur when the elongation of the base coating film is significantly different from the elongation of the heat radiation coating film. It is preferable.
In addition, as the base coating film, the same resin as the above-described heat-dissipating coating film may be used except that a heat-dissipating substance or the like is not contained, or another resin may be used.

また、上記下地塗膜の膜厚は、50μmを超えるとアルミニウム合金板と放熱性塗膜の密着性が低下するので、50μm以下とすることが好ましく、また、膜厚が薄すぎても密着性が低下するため、1μm上とすることが好ましい。さらに好ましい範囲は5μm以上20μm以下である。   Moreover, since the adhesiveness of an aluminum alloy plate and a heat-radiating coating film will fall when the film thickness of the said foundation coating film exceeds 50 micrometers, it is preferable to set it as 50 micrometers or less, and even if a film thickness is too thin, it is adhesiveness. Is preferably 1 μm or more. A more preferable range is 5 μm or more and 20 μm or less.

また、上記合成樹脂塗膜には、放熱性、加工性、密着性を阻害しない範囲で、顔料及び染料を添加し、意匠性を向上させてもよい。   Moreover, a pigment and dye may be added to the said synthetic resin coating film in the range which does not inhibit heat dissipation, workability, and adhesiveness, and design property may be improved.

(実施例1)
本発明の実施例にかかるLED電球用放熱部材につき、図1〜図8を用いて説明する。
本例のLED電球用放熱部材1は、図8に示すごとく、LED素子8を内蔵してなるLED電球80における放熱部材である。
本例では、複数種類の放熱部材1を作製し、その特性を評価した。
本発明の実施例としての放熱部材1は、図2〜図5に示すごとく、アルミニウム合金板20を略円錐形にプレス成形することによって形成されている。放熱部材1の外周側面10には凹凸部12が形成されている。
また、一部のものについては、アルミニウム合金板よりなる基板20の両面に放熱性物質215を含有した放熱性塗膜21をプレコートしたプレコートアルミニウム合金板2を用いて形成されている。
以下、上記放熱部材1の製造工程に準じて詳説する。
Example 1
An LED bulb heat dissipation member according to an embodiment of the present invention will be described with reference to FIGS.
The LED bulb heat radiating member 1 of this example is a heat radiating member in an LED bulb 80 in which an LED element 8 is incorporated, as shown in FIG.
In this example, a plurality of types of heat dissipating members 1 were produced and their characteristics were evaluated.
The heat radiating member 1 as an embodiment of the present invention is formed by press-molding an aluminum alloy plate 20 into a substantially conical shape as shown in FIGS. Concave and convex portions 12 are formed on the outer peripheral side surface 10 of the heat radiating member 1.
Some of them are formed using a precoated aluminum alloy plate 2 in which a heat dissipating coating film 21 containing a heat dissipating material 215 is precoated on both surfaces of a substrate 20 made of an aluminum alloy plate.
Hereinafter, it explains in full detail according to the manufacturing process of the said heat radiating member 1. FIG.

<アルミニウム合金板>
アルミニウム合金板20としては、材質−質別が5N01−O材、サイズが1.5mm厚×100mm幅×100mm長さのものを準備し、その両面をアルカリ系脱脂剤で脱脂した状態で使用した。
<Aluminum alloy plate>
As the aluminum alloy plate 20, a material-type material of 5N01-O and a size of 1.5 mm thickness × 100 mm width × 100 mm length were prepared and used in a state where both surfaces were degreased with an alkaline degreasing agent. .

<プレコートアルミニウム合金板>
図1に示すごとく、放熱部材1用のプレコートアルミニウム合金板2を作製する。
基板20としては、材質−質別が5N01−O材、サイズが1.5mm厚×100mm幅×100mm長さのものを準備した。
次に、基板20の両面をアルカリ系脱脂剤で脱脂した後、基板20をリン酸クロメート浴に浸漬し、化成処理を行った。得られた化成皮膜(リン酸クロメート皮膜)22は、皮膜中のCr含有量として20±5mg/m2の範囲内とした。
<Pre-coated aluminum alloy plate>
As shown in FIG. 1, the precoat aluminum alloy plate 2 for the heat radiating member 1 is produced.
As the substrate 20, a 5N01-O material having a material-type classification and a size of 1.5 mm thickness × 100 mm width × 100 mm length were prepared.
Next, after degreasing both surfaces of the substrate 20 with an alkaline degreasing agent, the substrate 20 was immersed in a phosphoric acid chromate bath and subjected to chemical conversion treatment. The obtained chemical conversion film (phosphate chromate film) 22 was within a range of 20 ± 5 mg / m 2 as the Cr content in the film.

次に、基板20の両面のそれぞれの面に、放熱性塗膜21のみよりなる合成樹脂塗膜を形成した。塗料としては、数平均分子量が10000のポリエステル樹脂をベース樹脂とし、固形分比において、上記ベース樹脂100重量部に対して、放熱性物質として平均粒径1μmの酸化チタンが50重量部含有され、インナーワックスとしてポリエチレンが1重量部含有されているものを用いた。塗装はバーコーターを用いて行い、放熱性塗膜21の膜厚は30μmとした。また、放熱性塗膜21の焼き付け硬化条件は、表面温度が230℃になるように240℃のオーブン中に60秒保持する条件とした。   Next, a synthetic resin coating film composed only of the heat-dissipating coating film 21 was formed on each of both surfaces of the substrate 20. As a paint, a polyester resin having a number average molecular weight of 10,000 is used as a base resin, and in a solid content ratio, 100 parts by weight of the base resin contains 50 parts by weight of titanium oxide having an average particle diameter of 1 μm as a heat-dissipating substance. An inner wax containing 1 part by weight of polyethylene was used. The coating was performed using a bar coater, and the film thickness of the heat dissipating coating film 21 was 30 μm. Moreover, the baking hardening conditions of the heat-radiation coating film 21 were set as the conditions hold | maintained for 60 second in 240 degreeC oven so that surface temperature might be 230 degreeC.

<プレス成形>
図2に示すごとく、アルミニウム合金板20またはプレコートアルミニウム合金板2に複数回のプレス成形を施す。
まず、図2(a)(b)に示すごとく、平板状のアルミニウム合金板20またはプレコートアルミニウム合金板2に絞り加工を加え、略円錐状の形状の中間体151に成形する。このとき、中間体151の小径先端部には底部材158が存在したままであり、大径後端部の周囲には成形した部分の周囲が余白部分159として残存したままである。
<Press molding>
As shown in FIG. 2, the aluminum alloy plate 20 or the precoated aluminum alloy plate 2 is subjected to press forming a plurality of times.
First, as shown in FIGS. 2 (a) and 2 (b), the flat aluminum alloy plate 20 or the precoated aluminum alloy plate 2 is drawn to form an intermediate body 151 having a substantially conical shape. At this time, the bottom member 158 still exists at the small-diameter front end portion of the intermediate body 151, and the periphery of the molded portion remains as the blank portion 159 around the large-diameter rear end portion.

次に、図2(b)(c)に示すごとく、略円錐形状の中間体151の小径部先端部の底部材158を切除すると共に、大径後端部の周囲の余白部分159を切除する。
次に、図2(c)(d)に示すごとく、中間体151の外周側面に凹部121を有する凹凸部12を形成する。凹凸部12は、断面略円弧状の凹部121を軸方向に沿って縦長に設け、かつ、これを周方向16個配置することにより形成した。
Next, as shown in FIGS. 2B and 2C, the bottom member 158 at the tip of the small-diameter portion of the substantially conical intermediate 151 is cut off, and the blank portion 159 around the rear end of the large-diameter is cut off. .
Next, as shown in FIGS. 2 (c) and 2 (d), the concave / convex portion 12 having the concave portion 121 is formed on the outer peripheral side surface of the intermediate body 151. The concavo-convex portion 12 was formed by providing vertically concave portions 121 having a substantially arc-shaped cross section along the axial direction and arranging 16 concave portions in the circumferential direction.

得られた放熱部材1は、図3に示すごとく、円錐形状の本体部分の前後にストレート部18、19を有する形状を呈している。図3、図5に示すごとく、大径部分の外径D1は約53mm、小径D2は約25mm、全長Lは約45mm、凹部121の深さD3は2mmとした。   As shown in FIG. 3, the obtained heat radiating member 1 has a shape having straight portions 18 and 19 before and after the conical main body portion. As shown in FIGS. 3 and 5, the outer diameter D1 of the large diameter portion is about 53 mm, the small diameter D2 is about 25 mm, the total length L is about 45 mm, and the depth D3 of the recess 121 is 2 mm.

<評価材>
上記プレコートアルミニウム合金板2を素材として用いて図3〜図5の状態まで加工した本発明の実施例を評価材1とし、合成樹脂塗膜を施していない無塗装の上記アルミニウム合金板20を素材として用いて図3〜図5の状態まで加工した本発明の実施例を評価材2とし、その他に、比較例としての2種の評価材を準備した。
評価材3は、上記プレコートアルミニウム合金板2を素材として用いて図2(c)の状態まで成形したものである。
評価材4は、合成樹脂塗膜を施していない無塗装の上記アルミニウム合金板20を素材として用いて図2(c)の状態まで成形したものである。評価材3、4は、外周側面には凹凸部を形成せずに、断面真円状の外周側面を有する形状とした。
<Evaluation material>
The embodiment of the present invention processed to the state shown in FIGS. 3 to 5 using the pre-coated aluminum alloy plate 2 as a material is an evaluation material 1, and the uncoated aluminum alloy plate 20 without a synthetic resin coating is used as a material. As an evaluation material 2, an example of the present invention processed to the state shown in FIGS. 3 to 5 was used, and in addition, two types of evaluation materials as comparative examples were prepared.
The evaluation material 3 is formed to the state of FIG. 2C using the pre-coated aluminum alloy plate 2 as a material.
The evaluation material 4 is formed up to the state shown in FIG. 2C using the uncoated aluminum alloy plate 20 not provided with a synthetic resin coating as a material. The evaluation materials 3 and 4 were formed in a shape having an outer peripheral side surface having a perfect circular cross section without forming an uneven portion on the outer peripheral side surface.

<評価>
評価は、図8に示すごとく、各評価材を放熱部材として用いて作製したLED電球80を用いて行った。LED電球80は、同図に示すごとく、アルミニウム合金板をプレス成形して作製した蓋体3(図6)と放熱部材1とを組み合わせ、蓋体3の上面に4個のLED素子8(図示は2個のみ)及びその制御部を配置し、放熱部材1には口金部86を挿入配置し、蓋体3を覆う半球ドーム85を被せることにより作製した。
LED素子8は、温度85℃の発熱をするタイプの白色LED素子である。
<Evaluation>
As shown in FIG. 8, the evaluation was performed using an LED bulb 80 manufactured using each evaluation material as a heat radiating member. As shown in the figure, the LED bulb 80 is a combination of a lid 3 (FIG. 6) produced by press-molding an aluminum alloy plate and the heat dissipating member 1, and four LED elements 8 (shown on the upper surface of the lid 3). And only two of them are arranged, and the base member 86 is inserted into the heat dissipating member 1 and covered with a hemispherical dome 85 that covers the lid 3.
The LED element 8 is a type of white LED element that generates heat at a temperature of 85 ° C.

評価方法は、上記LED電球80のLED素子8の近傍の蓋体3表面に温度測定用の熱電対(図示略)を固定し、通電発光の時間当たりの温度上昇を測定する方法である。
測定結果を表1に示す。
The evaluation method is a method in which a temperature measurement thermocouple (not shown) is fixed to the surface of the lid 3 in the vicinity of the LED element 8 of the LED bulb 80, and the temperature rise per time of energized light emission is measured.
The measurement results are shown in Table 1.

Figure 2011034958
Figure 2011034958

表1より知られるごとく、本発明の実施例である評価材1、2は、他の比較例の評価材3、4に比べて、放熱性能に優れていることがわかる。   As is known from Table 1, it can be seen that the evaluation materials 1 and 2 which are examples of the present invention are superior in heat dissipation performance compared to the evaluation materials 3 and 4 of other comparative examples.

(実施例2)
実施例1における合成樹脂塗膜有りの例について、さらに実験例を増やして評価した。まず、各評価材を次のようにして作製した。
(Example 2)
About the example with a synthetic resin coating film in Example 1, the experimental example was further increased and evaluated. First, each evaluation material was produced as follows.

<プレコートアルミニウム合金板>
実施例1と同様に、図1に示すごとく、放熱部材用のプレコートアルミニウム合金板2を作製する。
基板20としては、材質−質別がA1050−O材、サイズが0.5mm厚×100mm幅×100mm長さのものを準備した。
<Pre-coated aluminum alloy plate>
Similarly to Example 1, as shown in FIG. 1, a precoated aluminum alloy plate 2 for a heat radiating member is produced.
As the substrate 20, a material having a material type of A1050-O and a size of 0.5 mm thickness × 100 mm width × 100 mm length was prepared.

次に、基板20の両面をアルカリ系脱脂剤で脱脂した後、表2、表3に示す化成処理を行った。
化成処理aは、リン酸クロメート処理によって、クロム量が20mg/m2となるように反応型クロメート皮膜を形成するものである。具体的には、化成処理液に試料を浸潰するどぶ漬け法により化成処理を行い、その後、約100℃の雰囲気で乾燥させた。
化成処理bは、ジルコニウム処理によって、ジルコニウム量が20mg/m2となるように反応型ノンクロメート皮膜を形成するものである。処理方法は上記化成処理aと同様である。
化成処理cは、塗布型クロメート処理によって、クロム量が20mg/m2となるように皮膜を形成するものである。具体的には、化成処理液をバーコーターにて塗布し、その後、約120℃の雰囲気で乾燥させた。
化成処理dは、塗布型ジルコニウム処理によって、ジルコニウム量が20mg/m2となるように化成皮膜を形成するものである。具体的には、化成処理液をバーコーターにて塗布し、その後、約120℃の雰囲気で乾燥させた。
Next, after degreasing both surfaces of the substrate 20 with an alkaline degreasing agent, chemical conversion treatments shown in Tables 2 and 3 were performed.
In the chemical conversion treatment a, a reactive chromate film is formed by phosphoric acid chromate treatment so that the chromium amount becomes 20 mg / m 2 . Specifically, a chemical conversion treatment was performed by a soaking method in which a sample was immersed in a chemical conversion treatment solution, and then dried in an atmosphere of about 100 ° C.
In the chemical conversion treatment b, a reactive non-chromate film is formed by zirconium treatment so that the amount of zirconium becomes 20 mg / m 2 . The treatment method is the same as the chemical conversion treatment a.
In the chemical conversion treatment c, a film is formed by a coating type chromate treatment so that the chromium amount becomes 20 mg / m 2 . Specifically, the chemical conversion treatment liquid was applied with a bar coater and then dried in an atmosphere at about 120 ° C.
In the chemical conversion treatment d, a chemical conversion film is formed by a coating-type zirconium treatment so that the amount of zirconium is 20 mg / m 2 . Specifically, the chemical conversion treatment liquid was applied with a bar coater and then dried in an atmosphere at about 120 ° C.

次に、基板20の一方の面に、放熱性塗膜ではない合成樹脂塗膜として、数平均分子量16000のポリエステル樹脂をバーコーターを用いて塗装した。塗膜厚さは15μmとし、表面温度が230℃になるよう、240℃のオーブン中に60秒保持した。
その後、上述のポリエステル樹脂よりなる塗装面の反対面に、表2、表3に示す構成の合成樹脂塗膜を形成した。表2、表3に示すごとく、試料E4〜E6、E37、E40、E42については、下地塗膜としてポリエステル樹脂、ウレタン樹脂、ポリエステル樹脂、又はエポキシ樹脂よりなる塗膜を形成し、その上層として放熱性塗膜を形成した。その他は、下地塗膜を形成することなく最外層を形成した。いずれの塗装もバーコーターを用いて行い、下地塗膜の膜厚は10μm、放熱性塗膜の膜厚は25μmとした。
Next, a polyester resin having a number average molecular weight of 16000 was coated on one surface of the substrate 20 as a synthetic resin coating that is not a heat-dissipating coating using a bar coater. The coating thickness was 15 μm, and the film was kept in an oven at 240 ° C. for 60 seconds so that the surface temperature was 230 ° C.
Then, the synthetic resin coating film of the structure shown in Table 2 and Table 3 was formed in the opposite surface of the coating surface which consists of the above-mentioned polyester resin. As shown in Tables 2 and 3, for samples E4 to E6, E37, E40, and E42, a coating film made of polyester resin, urethane resin, polyester resin, or epoxy resin is formed as a base coating film, and heat is dissipated as an upper layer thereof. An adhesive coating was formed. In other cases, the outermost layer was formed without forming a base coating film. All coatings were performed using a bar coater, and the film thickness of the base coating film was 10 μm, and the film thickness of the heat dissipating coating film was 25 μm.

また、下地塗膜の焼き付け条件は、表面温度が230℃になるようにオーブン中に60秒保持する条件とし、上記放熱性塗膜の焼き付け硬化条件は、表面温度が230℃になるように240℃のオーブン中に60秒保持する条件とした。
また、放熱性塗膜には、インナーワックスを含有させた。インナーワックスの種類及び含有量は表2、表3に示すとおりであり、「PE」はポリエチレンを示し、「CA」はカルナバを示し、「MC」はマイクロクリスタリンを示し、「LL」はラノリンを示す。
The baking condition of the base coating film is such that the surface temperature is maintained in an oven for 60 seconds so that the surface temperature is 230 ° C., and the baking curing condition of the heat-dissipating coating film is 240 so that the surface temperature is 230 ° C. It was set as the conditions hold | maintained for 60 second in oven at ° C.
Further, the heat dissipating coating film contained an inner wax. The types and contents of the inner wax are as shown in Tables 2 and 3. “PE” indicates polyethylene, “CA” indicates carnauba, “MC” indicates microcrystalline, and “LL” indicates lanolin. Show.

また、放熱性塗膜に含有させた放熱性物質としては、全試料に酸化チタンを用いた。また、一部の試料については、微粉末のカーボン又はシリカをさらに添加した。酸化チタンの粒子径及び含有量、並びにカーボン及びシリカの含有量は、表2、表3に示すとおりである。   Moreover, titanium oxide was used for all the samples as the heat dissipation material contained in the heat dissipation coating. Further, for some samples, fine powder of carbon or silica was further added. The particle diameter and content of titanium oxide, and the contents of carbon and silica are as shown in Tables 2 and 3.

また、試料の一部には、放熱性塗膜中にNi球状フィラー又は鱗片状のNiフィラーを含有させた。これらのフィラーの径および含有量は、表2、表3に示すとおりである。   Further, a part of the sample contained Ni spherical filler or scale-like Ni filler in the heat-radiating coating film. The diameters and contents of these fillers are as shown in Tables 2 and 3.

Figure 2011034958
Figure 2011034958

Figure 2011034958
Figure 2011034958

得られた各試料に対して、実施例1と同様に、図2に示すごとく、各試料のプレコートアルミニウム合金板20に複数回のプレス成形を施す。プレス成形後に得られる放熱部材1(図3)の寸法、凹凸部の形状も実施例1と同様とした。   For each of the obtained samples, as shown in FIG. 2, the precoated aluminum alloy plate 20 of each sample is subjected to press forming a plurality of times as in Example 1. The dimensions of the heat radiating member 1 (FIG. 3) obtained after press molding and the shape of the concavo-convex part were the same as in Example 1.

得られた放熱部材の塗膜状態を目視観察し、塗膜(合成樹脂塗膜)の割れ、疵付き、剥離を確認した。さらに、放熱性及び意匠性(隠蔽性及び光沢)についても評価した。
塗膜の割れについては、目視観察により、プレス加工後の凸部において塗膜が裂けた状態のもののうち、長さ1mm以上かつ幅1mm以上の範囲においてアルミニウム素地が露出しているものを割れであるとした。そして、塗膜の割れの評価点は5段階とした。具体的には、塗膜割れがない場合を5点、長さ1mm以上1.1mm以下、もしくは幅1mm以上1.1mm以下の塗膜割れが1個の場合を4点、長さ1mm以上1.1mm以下、もしくは幅1mm以上1.1mm以下の塗膜割れが2個の場合を3点、長さ1.1mm超え、もしくは幅1.1mm超えの塗膜割れが1個の場合を2点、長さ1.1mm超え、もしくは幅1.1mm超えの割れが2個以上の場合を1点とし、3点以上を合格とした。
The coating film state of the obtained heat radiating member was visually observed, and cracks, wrinkles, and peeling of the coating film (synthetic resin coating film) were confirmed. Furthermore, heat dissipation and design properties (hiding properties and gloss) were also evaluated.
Regarding cracking of the coating film, by visual observation, among the ones in which the coating film was torn at the convex part after press working, the one with a length of 1 mm or more and a width of 1 mm or more in which the aluminum substrate was exposed was cracked. It was supposed to be. And the evaluation score of the crack of a coating film was made into five steps. Specifically, 5 points when there is no coating film crack, 4 points when the number of coating film cracks is 1 mm or more and 1.1 mm or less in length or 1 mm or more and 1.1 mm or less in width, 1 point or more between 1 mm or more in length 1 3 points when there are two coating cracks of 1 mm or less, or a width of 1 mm or more and 1.1 mm or less, and 2 points when the coating cracks are more than 1.1 mm in length or 1.1 mm in width. When the number of cracks exceeding 1.1 mm in length or exceeding 1.1 mm in width was 2 or more, 1 point was given, and 3 or more points were accepted.

疵付き性については、目視観察により、プレス加工後の塗膜表面に、異物を起点とする塗膜破壊と認定できるもののうち、長さ1mm以上かつ幅0.5mm以上の範囲においてアルミニウム素地が露出しているものを塗膜の疵とした。
塗膜の疵付きの評価点は5段階とした。具体的には、疵がないものを5点、疵が1〜2個の場合を4点、疲が3〜4個の場合を3点、疵が5〜6個の場合を2点、疵が7個以上を1点とし、3点以上を合格とした。
For scratching, the aluminum substrate is exposed in the range of 1 mm or more in length and 0.5 mm or more in width among those that can be recognized as coating film breakage starting from foreign matter on the coating film surface after press processing by visual observation. What was done was taken as the wrinkle of the coating film.
The scoring evaluation score of the coating film was made into 5 grades. Specifically, 5 points without wrinkles, 4 points with 1 to 2 wrinkles, 3 points with 3-4 fatigue, 2 points with 5-6 wrinkles, Of 7 or more was regarded as 1 point, and 3 or more was regarded as acceptable.

剥離については、プレス加工後の試料を、温度65℃、湿度90%RHの雰囲気中に30時間保持した後に、目視観察により、上記割れ若しくは疵の欠陥がある部分以外の部分の塗膜が剥がれて、長さ0.5mm以上かつ幅0.5mm以上の範囲でアルミニウム素地が露出した場合を剥離有りとした。剥離の評価点は5段階とした。具体的には、塗膜の剥離がないものを5点、長さ0.5mm以上0.7mm未満もしくは幅0.5mm以上0.7mm未満の剥離が1個の場合4点、長さ0.7mm以上0.9mm未満もしくは幅0.7mm以上0.8mm未満の剥離が1個の場合3点、長さ0.9mm以上1.1mm未満もしくは幅0.9mm以上1.1mm未満の剥離が1個の場合2点、長さ1.1mm以上もしくは幅1.1mm以上の剥離が2個以上の場合1点とし、3点以上を合格とした。   About peeling, after holding the sample after press working in an atmosphere of a temperature of 65 ° C. and a humidity of 90% RH for 30 hours, the coating film of the part other than the part having the crack or flaw defect is peeled off by visual observation. In the case where the aluminum substrate is exposed in the range of 0.5 mm or more in length and 0.5 mm or more in width, it was determined that peeling occurred. The evaluation point of peeling was made into 5 steps. Specifically, 5 points where there is no peeling of the coating film, 4 points when the length is 0.5 mm or more and less than 0.7 mm or 1 piece of width 0.5 mm or more and less than 0.7 mm, and the length is 0. If there is one piece of 7 mm or more and less than 0.9 mm or width of 0.7 mm or more and less than 0.8 mm, three points are required, and one piece of peeling is 0.9 mm or more and less than 1.1 mm or 0.9 mm or more and less than 1.1 mm In the case of two pieces, 1 point was given when peeling was 2 or more in length 1.1 mm or more or 1.1 mm or more in width, and 3 points or more was judged as acceptable.

放熱性の試験は、各評価材を放熱部材として用いて実施例1と同様に作製したLED電球を用いて行った。
評価方法は、上記LED電球のLED素子の近傍の蓋体表面に温度測定用の熱電対(図示略)を固定し、通電発光の時間当たりの温度上昇を測定する方法である。
The heat dissipation test was performed using an LED bulb manufactured in the same manner as in Example 1 using each evaluation material as a heat dissipation member.
The evaluation method is a method in which a temperature measurement thermocouple (not shown) is fixed to the lid surface in the vicinity of the LED element of the LED bulb, and the temperature rise per time of energized light emission is measured.

隠蔽性と光沢は、成形前の平板で測定を行った。標準色の塗装板として、以下のものを準備した。数平均分子量16000のポリエステル樹脂に、一次粒子径0.3μmの酸化チタンを100重量部含有させた塗料をバーコーターを用いて、厚さ3mmの透明なガラス板に塗装した。塗膜厚さは50μmとし、表面温度が230℃になるよう、240℃のオーブン中に60秒保持した。   Concealment and gloss were measured on a flat plate before molding. The following were prepared as standard color paint plates. A paint containing 100 parts by weight of titanium oxide having a primary particle diameter of 0.3 μm in a polyester resin having a number average molecular weight of 16000 was coated on a transparent glass plate having a thickness of 3 mm using a bar coater. The coating thickness was 50 μm, and the film was kept in an oven at 240 ° C. for 60 seconds so that the surface temperature was 230 ° C.

隠蔽性の評価は、塗装板のL*値を色差計(コニカミノルタ社製CR100)にて測定し、標準板のL*値を100とした相対値を算出して行った。隠蔽性の評価点は5段階とした。具体的には、L*値の相対値が96以上100以下の場合を5点、L*値の相対値が91以上96未満の場合を4点、L*値の相対値が86以上91未満の場合を3点、L*値の相対値が81以上86未満の場合を2点、L*値の相対値が81未満の場合を1点
とし、3点以上を合格とした。
The hiding property was evaluated by measuring the L * value of the coated plate with a color difference meter (CR100 manufactured by Konica Minolta) and calculating the relative value with the L * value of the standard plate being 100. The evaluation score for concealment was 5 grades. Specifically, 5 points when the relative value of the L * value is 96 or more and 100 or less, 4 points when the relative value of the L * value is 91 or more and less than 96, and the relative value of the L * value is 86 or more and less than 91 3 points, 2 points when the relative value of the L * value is 81 or more and less than 86, 1 point when the relative value of the L * value is less than 81, and 3 points or more.

光沢度の評価は、塗装板の光沢を光沢計(株式会社堀場製作所製グロスチェッカーIG320)にて60°光沢度を測定し、標準板の光沢度を100とした相対値を算出して行った。光沢度の評価点は5段階とした。具体的には、光沢度の相対値が96以上100以下の場合を5点、光沢度の相対値が91以上96未満の場合を4点、光沢度の相対値が86以上91未満の場合を3点、光沢度の相対値が81以上86未満の場合を2点、光沢度の相対値が81未満の場合を1点とし、3点以上を合格とした。   The glossiness of the coated plate was evaluated by measuring the glossiness of the coated plate with a glossmeter (Gloss Checker IG320 manufactured by Horiba, Ltd.) at 60 °, and calculating the relative value with the glossiness of the standard plate as 100. . The evaluation score for glossiness was 5 levels. Specifically, the case where the relative value of the glossiness is 96 or more and 100 or less is 5 points, the case where the relative value of the glossiness is 91 or more and less than 96 is 4 points, and the case where the relative value of the glossiness is 86 or more and less than 91 3 points, 2 points when the relative gloss value was 81 or more and less than 86, 1 point when the relative gloss value was less than 81, and 3 or more points.

加工性の評価は、塗膜の割れ性、耐疵付き性及び塗膜剥離がすべて合格である場合を合格(良)とし、いずれかの項目で不合格である場合を不合格(劣)とした。そして、加工性の評価が良であり、放熱性の評価が優である場合を総合評価として合格(○)、加工性の評価が劣であり、放熱性の評価が劣(今回の試験では該当する試料無し)である場合を総合評価として不合格(×)とした。
評価結果を表4及び表5に示す。
In the evaluation of workability, the case where the cracking property, scratch resistance and peeling of the coating film are all acceptable is regarded as acceptable (good), and the case where any item is unacceptable is regarded as unacceptable (inferior). did. And when the evaluation of workability is good and the evaluation of heat dissipation is excellent, the overall evaluation passes (○), the evaluation of workability is inferior, and the evaluation of heat dissipation is inferior (corresponding to this test) In the case of no sample to be evaluated), the overall evaluation was rejected (x).
The evaluation results are shown in Tables 4 and 5.

Figure 2011034958
Figure 2011034958

Figure 2011034958
Figure 2011034958

表4及び表5から知られるごとく、LED電球用放熱部材としての基本性能である放熱性は全試料において良好であったが、この放熱性を担保する合成樹脂塗膜の加工性については、試料C1、C2が不合格であった。このことから、放熱性物質を含有する放熱性塗膜のベース樹脂の分子量が、凹凸部を有する特殊な形状のLED電球用放熱部材を成形する際の塗膜の加工性に影響を及ぼしていることが分かる。   As is known from Table 4 and Table 5, the heat dissipation, which is the basic performance as a heat radiating member for LED bulbs, was good in all samples, but the workability of the synthetic resin coating film that ensures this heat dissipation is C1 and C2 were rejected. From this, the molecular weight of the base resin of the heat-dissipating coating film containing the heat-dissipating substance has an influence on the processability of the coating film when forming a specially shaped LED bulb heat-dissipating member having an uneven portion. I understand that.

また、放熱性塗膜に含有させる放熱性物質、Niフィラー及びインナーワックスについては、上述した好ましい範囲で選択することによって、放熱性及び導電性だけでなく意匠性も含めて総合的に特性が向上する。   In addition, the heat-dissipating substance, Ni filler, and inner wax to be included in the heat-dissipating coating film are selected from the above-mentioned preferable ranges, so that the characteristics are improved comprehensively including not only heat dissipation and conductivity but also design. To do.

(実施例3)
本例では、実施例1に示した放熱部材1の形状を変更した変形例について示す。
図9〜図11には、放熱部材1の軸方向に直交する方向の横断面における形状の変形例を示す。いずれも実施例1の図3に相当する図である。
(Example 3)
In this example, a modified example in which the shape of the heat radiating member 1 shown in the first embodiment is changed will be described.
In FIGS. 9-11, the modification of the shape in the cross section of the direction orthogonal to the axial direction of the heat radiating member 1 is shown. Both are equivalent to FIG. 3 of the first embodiment.

図9に示す放熱部材103は、凹凸部13の凸部131及び凹部132の断面形状をいずれも円弧状として交互に滑らかに連ねたものである。
図10に示す放熱部材104は、凹凸部14の凸部141及び凹部142の断面形状をいずれも底辺を除いた台形状として交互に連ねたものである。
図11に示す放熱部材105は、凹凸部15の凸部151及び凹部152の断面形状をいずれも底辺を除いた三角形状として交互に連ねたものである。
The heat radiating member 103 shown in FIG. 9 is one in which the cross-sectional shapes of the convex portion 131 and the concave portion 132 of the concavo-convex portion 13 are alternately and smoothly connected in an arc shape.
The heat radiating member 104 shown in FIG. 10 is formed by alternately connecting the cross-sectional shapes of the convex portions 141 and the concave portions 142 of the concavo-convex portion 14 as a trapezoidal shape excluding the bottom.
The heat radiating member 105 shown in FIG. 11 is one in which the cross-sectional shapes of the convex portions 151 and the concave portions 152 of the concavo-convex portion 15 are alternately connected in a triangular shape excluding the bottom.

図12には、放熱部材の全体形状の変形例である。同図に示す放熱部材106は、凹凸部の記載は省略し、その方向だけを線によって示したものである。同図に示すごとく、放熱部材の形状は、実施例1に示したような比較的単純な円錐形状に代えて、放熱部材106のように、大径部から小径部に近づくにつれて軸方向に対する傾斜角度が大きくなるいわば富士山型形状とすることができる。   FIG. 12 shows a modification of the overall shape of the heat dissipation member. In the heat dissipation member 106 shown in the figure, the description of the concavo-convex portion is omitted, and only the direction thereof is indicated by a line. As shown in the figure, the shape of the heat dissipation member is inclined with respect to the axial direction as the heat dissipation member 106 approaches the small diameter portion instead of the relatively simple conical shape as shown in the first embodiment. It can be a Mt. Fuji shape that increases the angle.

図13、図14に示す放熱部材107は、これまで説明した凹凸部と形成方向が異なり、軸方向に直交する方向に沿って凸部171と凹部172間の筋が配置されるように凹凸部17を形成した例である。
以上の変形例を採用しても、実施例1、2と同様の作用効果が得られる。
The heat dissipation member 107 shown in FIG. 13 and FIG. 14 is different in the forming direction from the uneven portion described so far, and the uneven portion is arranged so that the streaks between the protruded portion 171 and the recessed portion 172 are arranged along the direction orthogonal to the axial direction. 17 is an example.
Even if the above modification is adopted, the same effects as those of the first and second embodiments can be obtained.

1、103〜107 LED電球用放熱部材
10 外周側面
12、13〜17 凹凸部
121 凹部
2 プレコートアルミニウム合金板
20 基板
21 放熱性塗膜(合成樹脂塗膜)
8 LED素子
80 LED電球
DESCRIPTION OF SYMBOLS 1, 103-107 LED bulb heat dissipation member 10 Peripheral side surface 12, 13-17 Concavity and convexity 121 Concavity 2 Precoat aluminum alloy plate 20 Substrate 21 Heat radiation coating (synthetic resin coating)
8 LED elements 80 LED bulbs

Claims (8)

LED素子を内蔵してなるLED電球における放熱部材であって、
該放熱部材は、アルミニウム合金板を略円錐形にプレス成形することによって形成されており、
かつ、上記外周側面には凹凸部が形成されていることを特徴とするLED電球用放熱部材。
A heat dissipating member in an LED bulb having a built-in LED element,
The heat radiating member is formed by press-molding an aluminum alloy plate into a substantially conical shape,
And the uneven | corrugated | grooved part is formed in the said outer peripheral side surface, The heat radiating member for LED bulbs characterized by the above-mentioned.
請求項1において、上記アルミニウム合金板は、該アルミニウム合金板よりなる基板の両面又は片面に合成樹脂塗膜をプレコートしてなるプレコートアルミニウム合金板であり、少なくとも一方の面にプレコートされた上記合成樹脂塗膜は、ウレタン樹脂、アイオノマー樹脂、ポリエチレン樹脂、エポキシ樹脂、フッ素樹脂、ポリエステル樹脂の1種あるいは2種以上からなる数平均分子量が10000〜40000のベース樹脂中に放熱性物質を含有してなる放熱性塗膜を備えていることを特徴とするLED電球用放熱部材。   2. The pre-coated aluminum alloy plate according to claim 1, wherein the aluminum alloy plate is a pre-coated aluminum alloy plate obtained by pre-coating a synthetic resin coating on both or one side of a substrate made of the aluminum alloy plate, and the synthetic resin is pre-coated on at least one surface. The coating film contains a heat-dissipating substance in a base resin having a number average molecular weight of 10,000 to 40,000 composed of one or more of urethane resin, ionomer resin, polyethylene resin, epoxy resin, fluorine resin, and polyester resin. A heat dissipating member for an LED bulb, comprising a heat dissipating coating film. 請求項2において、上記放熱性塗膜は、上記放熱性物質として、酸化チタン、カーボン、シリカ、アルミナ、酸化ジルコニウムの1種または2種以上を含有していることを特徴とするLED電球用放熱部材。   The heat radiation coating for LED bulbs according to claim 2, wherein the heat radiation coating film contains one or more of titanium oxide, carbon, silica, alumina, and zirconium oxide as the heat radiation material. Element. 請求項3において、上記放熱性塗膜は、上記ベース樹脂100重量部に対して、平均粒径0.1〜100μmの酸化チタンを50〜200重量部、微粉末のカーボンを1〜25重量部、シリカを50〜200重量部、アルミナを50〜200重量部、酸化ジルコニウムを50〜200重量部の1種あるいは2種以上を含有することを特徴とするLED電球用放熱部材。   In Claim 3, the said heat-radiation coating film is 50-200 weight part of titanium oxide with an average particle diameter of 0.1-100 micrometers with respect to 100 weight part of said base resins, and 1-25 weight part of carbon of fine powder. A heat radiating member for an LED bulb, comprising one or more of 50 to 200 parts by weight of silica, 50 to 200 parts by weight of alumina, and 50 to 200 parts by weight of zirconium oxide. 請求項4において、上記放熱性塗膜は、平均粒径0.3〜100μmのNi球状フィラー、あるいは0.2〜5μmの厚さで2〜50μmの長径を有する鱗片状のNiフィラーの少なくとも一方を含有しており、これら両者の合計含有量は、上記ベース樹脂100重量部に対して1〜1000重量部であることを特徴とするLED電球用放熱部材。   5. The heat radiation coating film according to claim 4, wherein the heat-radiating coating film is at least one of Ni spherical filler having an average particle diameter of 0.3 to 100 [mu] m, or a scale-like Ni filler having a thickness of 0.2 to 5 [mu] m and a long diameter of 2 to 50 [mu] m. The total content of both of these is 1 to 1000 parts by weight with respect to 100 parts by weight of the base resin. 請求項4又は5において、上記放熱性塗膜は、上記ベース樹脂100重量部に対して、0.05〜3重量部のラノリン、カルナバ、ポリエチレン、マイクロクリスタリンの1種あるいは2種のインナーワックスを含有していることを特徴とするLED電球用放熱部材。   6. The heat-radiating coating film according to claim 4, wherein the heat-dissipating coating film comprises 0.05 to 3 parts by weight of lanolin, carnauba, polyethylene, or microcrystalline inner wax with respect to 100 parts by weight of the base resin. A heat radiating member for an LED bulb characterized by containing. 請求項2〜6のいずれか1項において、上記合成樹脂塗膜は、上記基板の表面に形成された塗布型あるいは反応型のクロメートまたはノンクロメート層の上層に形成されていることを特徴とするLED電球用放熱部材。   The synthetic resin coating film according to any one of claims 2 to 6, wherein the synthetic resin coating film is formed on a coating type or reactive type chromate or non-chromate layer formed on the surface of the substrate. Heat dissipation member for LED bulbs. 請求項2〜7のいずれか1項において、上記放熱性塗膜を備えた上記合成樹脂塗膜は、上記放熱性塗膜の下層に下地塗膜を有する複数積層構造を有しており、上記下地塗膜は、ウレタン樹脂、アイオノマー樹脂、ポリエチレン樹脂、エポキシ樹脂、フッ素樹脂、ポリエステル樹脂の1種あるいは2種以上からなる数平均分子量が10000〜40000の樹脂よりなることを特徴とするLED電球用放熱部材。   In any one of Claims 2-7, the said synthetic resin coating film provided with the said heat-radiating coating film has the multiple laminated structure which has a base coating film in the lower layer of the said heat-radiating coating film, The undercoat is made of a resin having a number average molecular weight of 10,000 to 40,000 consisting of one or more of urethane resin, ionomer resin, polyethylene resin, epoxy resin, fluororesin, and polyester resin. Heat dissipation member.
JP2010116993A 2009-07-06 2010-05-21 Heat dissipation member for LED bulb Expired - Fee Related JP4637272B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010116993A JP4637272B2 (en) 2009-07-06 2010-05-21 Heat dissipation member for LED bulb
CN201080030794.6A CN102472445B (en) 2009-07-06 2010-06-29 Heat dissipating member for LED light bulb
PCT/JP2010/061025 WO2011004731A1 (en) 2009-07-06 2010-06-29 Heat dissipating member for led light bulb
KR1020127003075A KR101677470B1 (en) 2009-07-06 2010-06-29 Heat dissipating member for led light bulb
TW099121995A TWI425167B (en) 2009-07-06 2010-07-05 LED ball with heat dissipation components
HK12108176.5A HK1167446A1 (en) 2009-07-06 2012-08-21 Heat dissipating member for led light bulb led

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159456 2009-07-06
JP2010116993A JP4637272B2 (en) 2009-07-06 2010-05-21 Heat dissipation member for LED bulb

Publications (2)

Publication Number Publication Date
JP2011034958A true JP2011034958A (en) 2011-02-17
JP4637272B2 JP4637272B2 (en) 2011-02-23

Family

ID=43429153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116993A Expired - Fee Related JP4637272B2 (en) 2009-07-06 2010-05-21 Heat dissipation member for LED bulb

Country Status (6)

Country Link
JP (1) JP4637272B2 (en)
KR (1) KR101677470B1 (en)
CN (1) CN102472445B (en)
HK (1) HK1167446A1 (en)
TW (1) TWI425167B (en)
WO (1) WO2011004731A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216309A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Manufacturing method of heat radiation part of led bulb, and heat radiation part of led bulb
KR101129164B1 (en) 2012-01-20 2012-03-26 후지라이테크 주식회사 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer
JP2012181966A (en) * 2011-02-28 2012-09-20 Toshiba Corp Lighting apparatus
WO2012140756A1 (en) * 2011-04-14 2012-10-18 住友軽金属工業株式会社 Heat dissipating member for led lamp
CN102818132A (en) * 2011-06-07 2012-12-12 黄振隆 Heat-radiating structure for LED bulb
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
WO2012169569A1 (en) * 2011-06-08 2012-12-13 住友軽金属工業株式会社 Precoated aluminum alloy plate for heat dissipation members, and heat dissipation member using same
CN102842988A (en) * 2011-06-23 2012-12-26 株式会社电装 Alternator for vehicle with heat dissipating fin
CN102927463A (en) * 2012-07-23 2013-02-13 贵州光浦森光电有限公司 LED screw lamp
WO2013179824A1 (en) * 2012-06-01 2013-12-05 住友軽金属工業株式会社 Heat release member
WO2013183198A1 (en) * 2012-06-07 2013-12-12 パナソニック株式会社 Lamp and lighting device
JP2014053143A (en) * 2012-09-06 2014-03-20 Aps Japan Co Ltd Luminaire
KR101497088B1 (en) * 2013-04-17 2015-03-03 박지오 Heat sink for led lamp and led lamp having the heat sink
JP2015193847A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2015193848A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2018188647A (en) * 2018-07-09 2018-11-29 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet, each coated therewith

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103283A (en) * 2009-10-16 2011-05-26 Sumitomo Light Metal Ind Ltd Heat radiating member for led bulb
CN102280538A (en) * 2011-08-11 2011-12-14 东莞巨扬电器有限公司 Composite radiator and production technology thereof
KR101233637B1 (en) 2011-12-20 2013-02-15 주식회사 썬엘이디 Bulb type lamp using pla carbon nano materials
TWI465669B (en) * 2012-03-01 2014-12-21 Frontand Technology Corp Heat sink, lamp structure with the heat sink and method for producing the heat sink
KR101390970B1 (en) * 2012-07-11 2014-05-27 주식회사 파인테크닉스 LED lamp housing for heatsink and the manufacture method
CN102818158A (en) * 2012-08-21 2012-12-12 福建百达光电有限公司 Combined type LED (Light Emitting Diode) bulb lamp
KR101395014B1 (en) * 2012-10-18 2014-05-30 인하대학교 산학협력단 LED fishing lamp heat sink structure
CN103939754A (en) * 2013-01-18 2014-07-23 合肥杰事杰新材料股份有限公司 LED lamp and making method thereof
CN103555087B (en) * 2013-09-25 2016-03-02 天长市天泰光电科技有限公司 Fluororesin heat radiation paint of a kind of LED and preparation method thereof
KR102353949B1 (en) * 2021-05-03 2022-01-20 주식회사 이노루체 Light for Tunnel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032466A (en) * 2007-07-25 2009-02-12 Toshiba Lighting & Technology Corp Illuminating device
JP2009037796A (en) * 2007-07-31 2009-02-19 Toshiba Lighting & Technology Corp Light source and illuminating device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243809A (en) 2000-02-28 2001-09-07 Mitsubishi Electric Lighting Corp Led electric bulb
CN2606967Y (en) * 2003-03-27 2004-03-17 博大科技股份有限公司 Heat radiation layer of awaiting radiator
JP4236544B2 (en) 2003-09-12 2009-03-11 三洋電機株式会社 Lighting device
JP2005136224A (en) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd Light-emitting diode illumination module
JP2005166578A (en) 2003-12-05 2005-06-23 Hamai Denkyu Kogyo Kk Electric-bulb-shaped led lamp
KR20050084730A (en) * 2004-02-24 2005-08-29 서울반도체 주식회사 Structure for radiation of heat of electric bulb for light-emitting diode
CN2842171Y (en) * 2005-10-31 2006-11-29 江珏 A kind of light source assembly
JP2007181984A (en) * 2006-01-06 2007-07-19 Furukawa Sky Kk Resin-coated aluminum sheet material which is excellent in heat dissipating property, conductivity and processability
CN101161721A (en) * 2006-10-10 2008-04-16 聚鼎科技股份有限公司 Heat conductive electrical-insulation polymeric material and heat-dissipating substrate including same
JP3129399U (en) * 2006-10-25 2007-02-22 和樹 大日向 LED lamp for automobile
JP2008186758A (en) 2007-01-31 2008-08-14 Royal Lighting Co Ltd Self-ballasted lighting led lamp
JP2008277237A (en) * 2007-04-06 2008-11-13 Toyoda Gosei Co Ltd Vehicle headlamp unit
JP2008311002A (en) 2007-06-13 2008-12-25 Futek Inc Compact bulb type irradiation device
JP2009136848A (en) * 2007-12-11 2009-06-25 Furukawa Sky Kk Heat radiation coated metal plate
TWM343769U (en) * 2008-06-02 2008-11-01 Daywey Co Ltd Heat dissipation apparatus
CN101431858A (en) * 2008-09-09 2009-05-13 秦玉行 All-metal ultra-high conducting CTP circuit board
TWM353309U (en) * 2008-09-12 2009-03-21 Shi-Ming Chen Improved tight fitting structure for annular heat dissipating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032466A (en) * 2007-07-25 2009-02-12 Toshiba Lighting & Technology Corp Illuminating device
JP2009037796A (en) * 2007-07-31 2009-02-19 Toshiba Lighting & Technology Corp Light source and illuminating device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216309A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Manufacturing method of heat radiation part of led bulb, and heat radiation part of led bulb
JP2012181966A (en) * 2011-02-28 2012-09-20 Toshiba Corp Lighting apparatus
US9212810B2 (en) 2011-02-28 2015-12-15 Kabushiki Kaisha Toshiba Lighting apparatus
WO2012140756A1 (en) * 2011-04-14 2012-10-18 住友軽金属工業株式会社 Heat dissipating member for led lamp
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
CN102818132A (en) * 2011-06-07 2012-12-12 黄振隆 Heat-radiating structure for LED bulb
KR20140035994A (en) * 2011-06-08 2014-03-24 가부시키가이샤 유에이씨제이 Precoated aluminum alloy plate for heat dissipation members, and heat dissipation member using same
KR101984482B1 (en) * 2011-06-08 2019-05-31 가부시키가이샤 유에이씨제이 Precoated aluminum alloy plate for heat dissipation members, and heat dissipation member using same
WO2012169569A1 (en) * 2011-06-08 2012-12-13 住友軽金属工業株式会社 Precoated aluminum alloy plate for heat dissipation members, and heat dissipation member using same
JP2013014132A (en) * 2011-06-08 2013-01-24 Sumitomo Light Metal Ind Ltd Precoated aluminum alloy plate for heat dissipation member, and heat dissipation member using same
CN103717393A (en) * 2011-06-08 2014-04-09 株式会社Uacj Precoated aluminum alloy plate for heat dissipation members, and heat dissipation member using same
US8866352B2 (en) 2011-06-23 2014-10-21 Denso Corporation Alternator for vehicle with heat dissipating fin
CN102842988A (en) * 2011-06-23 2012-12-26 株式会社电装 Alternator for vehicle with heat dissipating fin
KR101129164B1 (en) 2012-01-20 2012-03-26 후지라이테크 주식회사 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer
WO2013179824A1 (en) * 2012-06-01 2013-12-05 住友軽金属工業株式会社 Heat release member
WO2013183198A1 (en) * 2012-06-07 2013-12-12 パナソニック株式会社 Lamp and lighting device
JPWO2013183198A1 (en) * 2012-06-07 2016-01-28 パナソニック株式会社 Lamps and lighting equipment
CN102927463A (en) * 2012-07-23 2013-02-13 贵州光浦森光电有限公司 LED screw lamp
JP2014053143A (en) * 2012-09-06 2014-03-20 Aps Japan Co Ltd Luminaire
KR101497088B1 (en) * 2013-04-17 2015-03-03 박지오 Heat sink for led lamp and led lamp having the heat sink
JP2015193847A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2015193848A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2018188647A (en) * 2018-07-09 2018-11-29 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet, each coated therewith

Also Published As

Publication number Publication date
HK1167446A1 (en) 2012-11-30
TW201120367A (en) 2011-06-16
WO2011004731A1 (en) 2011-01-13
KR101677470B1 (en) 2016-11-18
TWI425167B (en) 2014-02-01
JP4637272B2 (en) 2011-02-23
KR20120052963A (en) 2012-05-24
CN102472445A (en) 2012-05-23
CN102472445B (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP4637272B2 (en) Heat dissipation member for LED bulb
JP4634747B2 (en) High-performance resin-coated aluminum material with excellent heat dissipation
US20090127268A1 (en) Anodised culinary item and method for producing one such item
JP4783445B2 (en) High reflection pre-coated aluminum alloy plate
JP5281619B2 (en) LED bulb member and manufacturing method thereof
JP4787372B1 (en) Resin-coated aluminum alloy plate
JP5587015B2 (en) Pre-coated aluminum plate for molding and molded container
KR20120058547A (en) Coated metallic material and manufacturing method for same
JP2006258849A (en) Resin coated metallic plate superior in light reflectivity
KR20110132210A (en) Led bulb member and method for manufacturing the same
JP4523250B2 (en) Precoated aluminum alloy plate with excellent heat dissipation, scratch resistance and conductivity
JP2005262841A (en) Resin coated aluminum material excellent in processability and heat radiation
KR101306495B1 (en) Precoated aluminum sheet for forming and container-shaped formed article
JP2007181984A (en) Resin-coated aluminum sheet material which is excellent in heat dissipating property, conductivity and processability
JP5827789B2 (en) Resin-coated Al plate for squeezed iron cans with excellent luster and method for producing squeezed iron cans
JP2011103283A (en) Heat radiating member for led bulb
WO2012140756A1 (en) Heat dissipating member for led lamp
JP2011213364A (en) Metal can
JP2013018233A (en) Resin-coated aluminum base material and method of manufacturing the same
JP5587016B2 (en) Pre-coated aluminum plate for molding and molded container
TW201241357A (en) Heat dissipation components for LED bulb
JP2011021410A (en) Blind
JP2006123463A (en) Resin coated aluminum reflective plate showing excellence in light reflection and workability
JP2007114642A (en) Precoat resin coating reflection plate of low odor
JP2008026340A (en) White resin coated metal sheet superior in workability, lightfastness and light reflectivity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4637272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees