KR101129164B1 - Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer - Google Patents

Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer Download PDF

Info

Publication number
KR101129164B1
KR101129164B1 KR1020120006571A KR20120006571A KR101129164B1 KR 101129164 B1 KR101129164 B1 KR 101129164B1 KR 1020120006571 A KR1020120006571 A KR 1020120006571A KR 20120006571 A KR20120006571 A KR 20120006571A KR 101129164 B1 KR101129164 B1 KR 101129164B1
Authority
KR
South Korea
Prior art keywords
coating material
epoxy resin
solution
titanium dioxide
led lamp
Prior art date
Application number
KR1020120006571A
Other languages
Korean (ko)
Inventor
김민철
유대원
Original Assignee
후지라이테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지라이테크 주식회사 filed Critical 후지라이테크 주식회사
Priority to KR1020120006571A priority Critical patent/KR101129164B1/en
Application granted granted Critical
Publication of KR101129164B1 publication Critical patent/KR101129164B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE: A manufacturing method of coating material with improved reflecting efficiency and an LED illumination light coated with the material as an insulating layer are provided to enhance light reflectivity and maintain quality of the LED illumination light including color rendering(Ra) and color temperature(K). CONSTITUTION: A manufacturing method of coating material with improved reflecting efficiency comprises the following steps: dropping TiR4 solution to epoxy resin prepolymer and stirring at the same time; dropping water to a mixture of the epoxy resin prepolymer and TiR4 solution; diffusing the mixing solution using ultrasonic waves; adding titanium dioxide to the mixing solution; evaporating volatile material by putting the mixing solution into an evaporator; and mixing the mixing solution with a UV hardener or thermosetting material.

Description

광 반사능이 향상된 코팅재의 제조방법 및 이를 절연막으로 코팅한 LED 조명등 {Manufacturing Method of Coating Material for LED Lamp with improved Reflecting Efficieny and LED Lamp coated with the same as Insulating Layer}Manufacturing Method of Coating Material for LED Lamp with improved Reflecting Efficieny and LED Lamp coated with the same as Insulating Layer}

본 발명은 광 반사능이 개선된 코팅재의 제조방법에 관한 것으로, 특히 백색 안료로 나노사이즈의 이산화티탄 입자를 함유하고, 에폭시수지를 매트릭스 수지로 하는 LED 조명등의 절연막으로 유용한 코팅재의 제조방법에 관한 것이다.The present invention relates to a method for producing a coating material having improved light reflecting ability, and more particularly, to a method for producing a coating material useful for insulating films such as LED lighting containing nano-sized titanium dioxide particles as white pigments and epoxy resins as matrix resins. .

본 발명은 상기 제조방법에 의해 제조된 코팅재를 절연막으로 코팅한 LED 조명등에 관한 것이다.The present invention relates to an LED lamp which coated the coating material prepared by the manufacturing method with an insulating film.

LED는 종래의 광원에 비해 크기가 작고, 빛 에너지로의 전환효율이 높으며, 수명이 길어 그 사용이 확대되고 있다.LEDs have a smaller size, higher conversion efficiency to light energy, and longer lifespan than conventional light sources, and their use is expanding.

LED 조명등은, 도 1에 도시된 바와 같이, 기본적으로 회로가 구성된 PCB 기판(10)과, 상기 PCB 기판(10) 위에 장착되는 LED 광원(20)과, 상기 PCB 기판(10) 위에 코팅되는 절연막(30)과, 상기 LED 광원(20)에서 발생되는 열을 외부로 방출시키기 위한 히트 싱크(50)와, 상기 LED 광원의 빛을 외부로 투과시키며 확산시키는 확산판(60)으로 이루어진다.As shown in FIG. 1, the LED lighting lamp basically includes a PCB substrate 10 having a circuit, an LED light source 20 mounted on the PCB substrate 10, and an insulating film coated on the PCB substrate 10. 30, a heat sink 50 for dissipating heat generated by the LED light source 20 to the outside, and a diffusion plate 60 for transmitting and diffusing the light of the LED light source to the outside.

여기에서, 상기 절연막(30)은 PCB 기판(10)에 인쇄된 회로 사이를 절연시킬 목적으로 코팅하기 때문에 붙여진 이름인데, 절연 기능 외에도 상기 PCB 기판(10)에 인쇄된 회로가 오염되는 것을 방지하고, 상기 PCB 기판(10)에 상기 LED 광원(20)을 장착시킬 때 원하지 않는 부위에 솔더링 납(40)이 부착되는 것을 방지하며, 상기 LED 광원(20)에서 발생되는 빛의 20~30% 정도를 차지하는 것으로 알려진 상기 확산판(60)에서 내부로 반사되는 빛을 재반사하는 기능도 있다.Here, the insulating film 30 is named because it is coated for the purpose of insulating the printed circuit on the PCB substrate 10, in addition to the insulation function to prevent the printed circuit on the PCB substrate 10 is contaminated When the LED light source 20 is mounted on the PCB substrate 10, the soldering lead 40 is prevented from being attached to an unwanted portion, and about 20 to 30% of the light generated from the LED light source 20 is applied. There is also a function to re-reflect the light reflected from the inside of the diffusion plate 60 known to occupy.

상기 절연막(30)은 수지에 TiO2, ZnO, Al2O3, MgO 등의 백색 안료를 혼합한 도료를 코팅하는데 통상 백색 안료로 사용되는 마이크로미터(μm) 사이즈의 금속 산화물은 입자가 커서 광 반사능이 떨어진다. 왜냐하면, 입자와 입자 사이의 공간으로 입사된 빛은 흡수되기 때문이다. 그러나 입자와 입자 사이의 공간을 입도가 낮은 입자로 채우고자 하는 경우에는 볼밀(ball mill)로는 금속 산화물 입자를 마이크로미터(μm) 크기 이하로 분쇄하기 어렵고, 반사율을 높이기 위해 단순히 백색 안료의 함량을 높이고자 하는 경우에는 밀착성, 굽힘성 등 도료로서의 특성이 훼손되는 문제가 있다.The insulating film 30 is a coating of a mixture of white pigments such as TiO 2 , ZnO, Al 2 O 3 , MgO, and the like to a resin. The reflectivity is poor. This is because light incident on the space between the particles is absorbed. However, in the case where it is desired to fill the space between the particles with particles of low particle size, it is difficult to crush the metal oxide particles to the size of micrometer (μm) or less with a ball mill, and simply increase the content of the white pigment to increase the reflectance. In order to increase, there is a problem that the characteristics as a paint, such as adhesiveness, bendability is impaired.

백색 안료로 미리 합성된(ex situ) 나노 사이즈의 금속 산화물을 사용하는 경우에는 매트릭스 수지를 형성하는 프리폴리머의 점성이 높아서 나노 사이즈의 금속산화물 입자를 적시기 어렵기 때문에 안료 입자를 수지 내에 골고루 분산시키기가 어렵다는 문제점이 있다.
In the case of using a pre-synthesized nano-sized metal oxide as a white pigment, it is difficult to disperse the pigment particles evenly in the resin because it is difficult to wet the nano-sized metal oxide particles due to the high viscosity of the prepolymer forming the matrix resin. There is a problem that is difficult.

본 발명 목적은 광 반사능이 개선된 코팅재의 제조방법, 특히 백색 안료로 나노사이즈의 이산화티탄 입자를 함유하고 에폭시수지를 매트릭스 수지로 하는 LED 조명등의 절연막으로 유용한 코팅재의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a coating material having improved light reflecting ability, in particular, a method for producing a coating material useful as an insulating film such as LED lighting containing nano-sized titanium dioxide particles as a white pigment and epoxy resin as a matrix resin.

본 발명의 다른 목적은 상기 제조방법에 의해 제조된 코팅재를 절연막으로 코팅한 LED 조명등을 제공하는 것이다.It is another object of the present invention to provide an LED lighting lamp coated with an insulating film of the coating material produced by the manufacturing method.

삭제delete

본 발명은 LED 조명등에서 절연막은 반사판으로도 작용을 하는데 대부분의 빛은 마이크로미터 사이즈의 입경이 큰 이산화티탄 입자에 의해 반사되지만 입자와 입자 사이로 입사되는 빛은 반사되지 않고 소실되기 때문에 반사율이 낮은 것으로 보고, 입경이 큰 이산화티탄 입자 사이의 공간을 나노미터 사이즈의 입경이 작은 이산화티탄 입자로 채우면 광 반사율이 높아질 것이라는 가정 하에 이루어진 것이다.In the present invention, the insulating film also acts as a reflector in the LED lamp, but most of the light is reflected by the titanium dioxide particles having a large particle size of micrometer size, but the light incident between the particles and the particles is not reflected but lost because the reflectance is low As a result, it was made on the assumption that filling the space between titanium dioxide particles having a large particle size with titanium dioxide particles having a small particle size of nanometer size would increase the light reflectance.

상기 목적을 달성하기 위한 본 발명은 매트릭스 수지로서 에폭시수지에 백색안료로서 이산화티탄 입자가 분산된 코팅재의 제조방법으로, 상기 이산화티탄이 기계적으로 분쇄된 직경 1~100μm의 입자 50~90 wt%와 제자리 합성된 직경 1~100 nm의 입자 10~50 wt%이 매트릭스 수지 내에 분산된 것을 제1 특징으로 한다.In order to achieve the above object, the present invention provides a method for preparing a coating material in which titanium dioxide particles are dispersed as a white pigment in an epoxy resin as a matrix resin, and 50 to 90 wt% of particles having a diameter of 1 to 100 μm in which the titanium dioxide is mechanically crushed. The first feature is that 10 to 50 wt% of particles having a diameter of 1 to 100 nm synthesized in situ are dispersed in the matrix resin.

입자 크기별로 이산화티탄 입자의 제조방법을 달리 하는 것은 직경 1~100μm의 입자는 볼밀(ball mill) 등으로 분쇄하여 얻을 수 있지만 직경 1~100 nm의 나노입자는 종래의 기계적 방법으로는 얻기 어렵기 때문이다.The method for producing titanium dioxide particles by particle size can be obtained by crushing particles with a diameter of 1 to 100 μm using a ball mill, but nanoparticles with a diameter of 1 to 100 nm are difficult to obtain by conventional mechanical methods. Because.

그리하여 본 발명의 발명자는 이산화티탄 나노입자의 제자리 합성(in situ)을 시도하여 각고의 노력 끝에 하기 제자리 합성법에 의한 이산화티탄 나노입자가 분산된 코팅재의 제조방법을 완성하였으며 이는 본 발명의 제2 특징을 구성한다.
Thus, the inventors of the present invention attempted in situ synthesis of titanium dioxide nanoparticles and completed a method of preparing a coating material in which titanium dioxide nanoparticles were dispersed by the following in situ synthesis method after endeavoring efforts. Configure

본 발명의 직경 1~100μm의 이산화티탄 입자와 직경 1~100 nm의 이산화티탄 나노입자가 함께 분산된 코팅재의 제조방법은,The method for producing a coating material in which titanium dioxide particles having a diameter of 1 to 100 μm and titanium dioxide nanoparticles having a diameter of 1 to 100 nm of the present invention are dispersed together,

1) TiR4를 용매에 녹인 TiR4 용액을 에폭시수지 프리폴리머에 적하하면서 교반하는 제1 단계,1) TiR 4 dissolved in TiR 4 A first step of stirring while dropping the solution onto the epoxy resin prepolymer,

2) 제1 단계에서 만들어진 에폭시수지 프리폴리머와 TiR4 용액의 혼합액에 물을 적하하면서 교반하는 제2 단계,2) a second step of stirring while dropping water to the mixed solution of the epoxy resin prepolymer and TiR 4 solution made in the first step,

3) 제2 단계에서 만들어진 용액을 초음파조(bath sonicator)에서 초음파로 분산시키는 제3 단계,  3) a third step of dispersing the solution made in the second step by ultrasonic in a bath sonicator,

4) 제3 단계에서 만들어진 용액에 직경 1~100μm의 미리 만들어진 이산화티탄 분말을 혼합하는 제4 단계,  4) a fourth step of mixing the pre-made titanium dioxide powder having a diameter of 1 ~ 100μm to the solution made in the third step,

5) 제4 단계에서 만들어진 용액을 증발기(evaporator)에 넣고 휘발성 물질을 증발시키는 제5 단계, 및  5) a fifth step of putting the solution made in the fourth step into an evaporator and evaporating volatile materials, and

6) UV 경화제 또는 열 경화제를 혼합하는 제6 단계를 포함한다.  6) a sixth step of mixing the UV curing agent or the thermal curing agent.

(여기에서, R은 C1~C4의 알킬기이다.)
(Wherein R is an alkyl group of C 1 to C 4 )

이하, 각 단계별로 보다 상세히 설명한다.Hereinafter, each step will be described in more detail.

제1 단계에서 TiR4는 TiO2의 전구체(precursor)로 사용되는 것인데, R은 C1~C4의 알킬기 사용하는 것이 바람직하다. 왜냐하면, 제2 단계에서 물을 적하하면 R은 RH가 되는데 분자량이 작아야 제5 단계에서 용이하게 제거되기 때문이다. 또한, 같은 이유로 TiR4 용매는 C4~C10의 알칸을 사용하는 것이 바람직한데 이중결합이 있으면 반응에 참여하여 에폭시 수지의 질을 저하시킬 수 있기 때문이다.In the first step, TiR 4 is used as a precursor of TiO 2 , and R is preferably a C 1 to C 4 alkyl group. This is because, when water is added in the second step, R becomes RH because the molecular weight is small so that it is easily removed in the fifth step. In addition, for the same reason, it is preferable to use C 4 -C 10 alkanes for the TiR 4 solvent because the presence of a double bond can participate in the reaction and degrade the quality of the epoxy resin.

에폭시수지 프리폴리머로는 비스-(3-글리시딜옥시)페닐포스핀 옥사이드[bis-(3-glycidyloxy)phenylphosphine oxide], 페놀 노볼락(phenol novolac), 크레졸 노볼락(cresol novolac), 비스페놀-A 노볼락(bisphenol-A novolac), 비스페놀-F의 디글리시딜에테르(diglycidylether of bisphenol-F), 트리글리시딜 p-아미노페놀(triglycidyl p-aminophenol), 테트라글리시딜 메틸렌 디아닐린(tetraglycidyl methylen dianiline), 사이클로알리파틱 에폭시수지(cycloaliphatic epoxy resin)에서 선택되는 모노머 또는 올리고머를 사용한다.Epoxy resin prepolymers include bis- (3-glycidyloxy) phenylphosphine oxide, phenol novolac, cresol novolac, bisphenol-A Bisphenol-A novolac, bisphenol-F diglycidylether of bisphenol-F, triglycidyl p-aminophenol, tetraglycidyl methylene dianiline monomer or oligomer selected from dianiline) and cycloaliphatic epoxy resin.

본 발명의 제1 목적은 LED 조명등 절연막의 광 반사율을 높이는 것이다. 따라서 전기절연성능을 훼손시키지 않으면서 광 반사율을 높일 수 있다면 매트릭스 수지의 물성은 그다지 중요하지 않다. 따가서 상기 에폭시 수지 프리폴리머에 에폭시 아크릴레이트 올리고머(epoxy acrylate olygomer) 또는 아크릴 수지(acrylate resin), 또는 이들의 혼합물을 혼합하여 사용할 수 있다.A first object of the present invention is to increase the light reflectance of an LED lamp insulating film. Therefore, the physical properties of the matrix resin is not very important if the light reflectance can be increased without compromising the electrical insulation performance. In addition, the epoxy resin prepolymer may be used by mixing an epoxy acrylate oligomer or an acrylic resin, or a mixture thereof.

또, TiR4 용액이 에폭시수지 프리폴리머와 골고루 혼합되도록 또는 혼합하기 용이하도록 에폭시수지 프리폴리머에 휘발성 용제에 혼합하여 사용할 수도 있다. 여기서 혼합된 용제는 제5 단계에서 다른 휘발성 물질들과 함께 제거된다. In addition, TiR 4 The solution may be mixed with the epoxy resin prepolymer and mixed with the volatile solvent in the epoxy resin prepolymer so as to be easily mixed. The mixed solvent is removed with the other volatiles in the fifth step.

제2 단계에서 제1 단계에서 만들어진 에폭시수지 프리폴리머와 TiR4 용액의 혼합액에 물을 적하하면서 교반하면 다음 반응이 일어나 에폭시 수지 프리폴리머 내에 TiO2 나노입자가 생성된다.
In the second step, water is added dropwise to the mixed solution of the epoxy resin prepolymer and the TiR 4 solution prepared in the first step, followed by stirring to generate TiO 2 nanoparticles in the epoxy resin prepolymer.

[반응식 1]Scheme 1

TiR4 + 2H2O → TiO2 + 4RH
TiR 4 + 2H 2 O → TiO 2 + 4RH

빠른 반응을 피하기 위하여 물을 아세톤 또는 C4~C10의 알칸 등과 혼합하여 적하할 수도 있다. 여기에서 사용된 아세톤이나 C4~C10의 알칸은 제5 단계에서 다른 휘발성 물질들과 함께 제거된다.In order to avoid rapid reaction, water may be added dropwise by mixing with acetone or alkane of C 4 to C 10 . Acetone or C 4 -C 10 alkanes used here are removed along with other volatiles in the fifth step.

제3 단계에서는 제2 단계에서 만들어진 TiO2 나노입자가 분산된 에폭시 수지 프리폴리머를 초음파로 분산시키는데 이렇게 하면 TiO2 나노입자의 분산도가 높아진다.In the third step, the epoxy resin prepolymer in which the TiO 2 nanoparticles prepared in the second step are dispersed is ultrasonically dispersed, thereby increasing the degree of dispersion of the TiO 2 nanoparticles.

제4 단계에서는 TiO2 나노입자가 분산된 에폭시 수지 프리폴리머에 직경 1~100μm의 미리 만들어진 이산화티탄 분말을 혼합하는데 이를 미리 혼합하면 핵으로 작용하여 TiO2 나노입자가 잘 형성되지 않을 우려가 있다.In the fourth step, TiO 2 nanoparticles are mixed with epoxy resin prepolymer in which TiO 2 nanoparticles are dispersed, and pre-made titanium dioxide powder having a diameter of 1 to 100 μm may be mixed to act as a nucleus to prevent TiO 2 nanoparticles from being formed well.

제5 단계에서는 제4 단계에서 만들어진 직경 1~100μm의 이산화티탄 입자와 직경 1~100 nm의 이산화티탄 나노입자가 분산된 용액에서 휘발성 물질들이 증발하여 제거된다. 여기서 제거되는 물질은 제2 단계에서 생성된 RH와 각 단계에서 용매로 사용된 아세톤이나 C4~C10의 알칸 등이다.In the fifth step, volatiles are removed by evaporation from a solution in which titanium dioxide particles having a diameter of 1 to 100 μm and titanium dioxide nanoparticles having a diameter of 1 to 100 nm are dispersed in the fourth step. Substances removed here are RH produced in the second step and acetone or C 4 ~ C 10 alkanes used as the solvent in each step.

마지막으로, 본 발명의 코팅재는 제6 단계에서 UV 경화제 또는 열 경화제를 혼합함으로써 완성되는데 이를 PCB 기판 위에 도포하고, 원치 않는 부분은 마스킹(masking)한 후, UV를 조사하거나 원하는 부분만 가열하여 절연막을 형성한다.Finally, the coating material of the present invention is completed by mixing a UV curing agent or a thermal curing agent in the sixth step, which is applied onto the PCB substrate, masking the unwanted portion, and then irradiating UV or heating only the desired portion of the insulating film To form.

UV 경화가 경화를 제어하기 쉬운데 UV 경화제로는 이를테면, 벤조페논(benzophenone)나 1,1-디클로로아세토페논(1,1-dichloroacetophenone)을 사용한다. 가격이 저렴하고, 경화속도가 빠르며, 얇은 도막의 형성에 적합하기 때문이다.UV curing is easy to control curing, and UV curing agents such as benzophenone or 1,1-dichloroacetophenone are used. This is because the price is low, the curing speed is high, and it is suitable for forming a thin coating film.

본 발명에 의하면 이산화티탄 나노입자를 함유하지 않은 기존의 코팅재를 코팅한 LED 조명등의 절연막보다 광 반사능이 향상된다. According to the present invention, the light reflecting ability is improved compared to an insulating film such as an LED lamp coated with a conventional coating material containing no titanium dioxide nanoparticles.

이와 함께 LED 조명등의 총광속(lm)과 광효율(lm/W)도 상승하는데, 후술하는 실시예 2에서 보듯이, 연색성(Ra)이나 색온도(K) 등 빛의 질은 훼손되지 않는다.Along with this, the total luminous flux (lm) and the light efficiency (lm / W) of the LED lamp also increase. As shown in Example 2 described later, light quality such as color rendering (Ra) and color temperature (K) is not impaired.

도 1은 LED 조명등을 개략적으로 도시한 단면도이다.
도 2는 실시예 1의 제4 단계 생성물(이산화티탄 입자)의 전자현미경 사진이다.
1 is a cross-sectional view schematically showing an LED lamp.
2 is an electron micrograph of a fourth step product (titanium dioxide particles) of Example 1. FIG.

본 발명은 후술하는 실시예들에 의하여 그 내용이 더욱 명확해지고, 비교예와의 비교에서 효과가 명확해질 것이다.
The present invention will be further clarified by the following examples, the effect will be clear in comparison with the comparative example.

[실시예 1]Example 1

1) 에폭시 아크릴레이트 올리고머(epoxy acrylate oligomer) 30g, 비스페놀-A 노볼락 모노머 (bisphenol-A novolac) 15g을 아세톤 15g에 녹여 에폭시 수지 프리폴리머 용액을 만들고 이를 교반하면서 TiEt4 60g을 헥산(hexane)에 녹인 TiEt4 용액 235mL(약 1M 농도)을 적하하고, 적하 완료 후 10분간 더 교반하였다. (제1 단계)1) 30 g of epoxy acrylate oligomer and 15 g of bisphenol-A novolac were dissolved in 15 g of acetone to form an epoxy resin prepolymer solution, and 60 g of TiEt 4 was dissolved in hexane while stirring. 235 mL (about 1 M concentration) of TiEt 4 solution was added dropwise, and further stirred for 10 minutes after completion of dropping. (First stage)

2) 제1 단계에서 만들어진 용액을 격렬하게 교반하면서 물 13mL과 아세톤 90mL를 진탕한 용액을 적하하고, 적하 완료 후 실온(25℃)에서 2시간 더 교반하였다. (제2 단계)2) While stirring the solution prepared in the first step, the solution shaken with 13 mL of water and 90 mL of acetone was added dropwise, and after completion of dropping, the mixture was stirred at room temperature (25 ° C) for 2 hours. (Second stage)

3) 제2 단계에서 만들어진 용액을 초음파조에 넣고 1시간 분산시켰다. (제3 단계) 3) The solution prepared in the second step was placed in an ultrasonic bath and dispersed for 1 hour. (Third step)

4) 제3 단계에서 만들어진 용액에 평균직경 20μm의 이산화티탄 분말(ex situ) 30g을 혼합하였다. 4) 30 g of titanium dioxide powder (ex situ) having an average diameter of 20 μm was mixed with the solution prepared in the third step.

도 2는 이 혼합물의 전자현미경 사진으로, 제1~제3 단계에서 제자리 합성된(in situ) 이산화티탄의 입도는 1~100nm이고, 본 단계(제4 단계)에서 혼합한(ex situ) 이산화티탄의 입도는 1~100μm이다.
FIG. 2 is an electron micrograph of the mixture, in which the particle size of the titanium dioxide synthesized in situ in the first to third stages is 1 to 100 nm, and in this stage (the fourth stage), the dioxide is mixed. The particle size of titanium is 1-100 μm.

5) 증발기(evaporator)에 넣고 50℃에서 진공을 걸어 휘발성 물질을 증발시킨 후, UV 경화제로 벤조페논 5g을 혼합하여 코팅재를 제조하였다. (제4 단계~ 제6 단계)
5) Put the evaporator (vacuum) at 50 ℃ to evaporate the volatiles, and then mixed with 5g benzophenone with a UV curing agent to prepare a coating material. (Fourth step-sixth step)

[비교예 1]Comparative Example 1

공지된 방법에 의해 코팅재를 제조하였다. The coating material was manufactured by a well-known method.

에폭시 아크릴레이트 올리고머(epoxy acrylate oligomer) 30g, 비스페놀-A 노볼락 모노머 (bisphenol-A novolac) 15g을 아세톤 15g에 녹여 에폭시 수지 프리폴리머 용액(실시예 1과 동일한 조성임)을 만들고, 여기에 평균직경 20μm의 이산화티탄 분말 60g을 혼합하고, 증발기에 넣고 50℃에서 진공을 걸어 휘발성 물질을 증발시킨 후, UV 경화제로 실시예 1과 동일한 벤조페논 5g을 혼합하여 코팅재를 제조하였다.
30 g of epoxy acrylate oligomer and 15 g of bisphenol-A novolac were dissolved in 15 g of acetone to form an epoxy resin prepolymer solution (the same composition as in Example 1), where the average diameter was 20 μm. 60 g of titanium dioxide powder was mixed, put into an evaporator, and vacuum was applied at 50 ° C. to evaporate volatile materials. Then, 5 g of the same benzophenone as in Example 1 was mixed with a UV curing agent to prepare a coating material.

[실시예 2][Example 2]

상기 [실시예 1]과 [비교예 1]에서 제조된 코팅재를 각각 LED 조명등의 PCB 기판에 도포하고, UV 경화시킨 후, 반사율, 총광속 등을 측정하였다. 종래기술과 대비한 구체적인 수치는 다음과 같다.
The coating materials prepared in [Example 1] and [Comparative Example 1] were applied to PCB substrates such as LED lamps, and UV cured, and then reflectance, total luminous flux, and the like were measured. Specific figures compared with the prior art are as follows.

평판형 55W LED 조명등에 적용한 경우의 성능 비교Performance comparison when applied to flat 55W LED lamp 구분division 종래의 코팅재를 코팅한 LED 조명등LED lamps coated with conventional coating materials 실시예 1의 코팅재를 코팅한 LED 조명등LED lamp coating the coating material of Example 1 측정값Measures 비교compare 절연막의 반사율(450nm 기준)Reflectivity of Insulation Layer (Based on 450nm) 83%83% 90%90% 8.4%상승8.4% increase 총광속(lm)Total luminous flux (lm) 4203.64203.6 4431.54431.5 5.4%상승5.4% increase 광효율(lm/W)Light efficiency (lm / W) 73.173.1 76.976.9 5.2%상승5.2% increase 연색성(Ra)Color rendering (Ra) 77.777.7 78.078.0 -- 색온도(K)Color temperature (K) 6,2126,212 6,3956,395 --

본 발명의 LED 조명등은 이산화티탄 나노입자를 함유하지 않은 기존의 코팅재를 코팅한 LED 조명등보다 광 반사능이 8.4% 향상되었는데 이로써 LED 조명등의 총광속(lm)과 광효율(lm/W)은 각각 5% 상승하였다.The LED lamp of the present invention has a 8.4% improvement in light reflectivity compared to an LED lamp coated with a conventional coating material that does not contain titanium dioxide nanoparticles. Thus, the total luminous flux (lm) and the light efficiency (lm / W) of the LED lamp are 5%, respectively. Rose.

여기에서, 연색성(Ra)은 태양빛에 얼마나 가까운지를 나타내는 지수(태양광 = 100)이고, 색온도(K)는 흑체복사를 가정했을 때의 표면 온도(주광색 형광등 = 6,500K)이다. 절연막의 광 반사능이 높아져도 총광속과 광효율이 높아질 뿐 빛의 질이 크게 변화되지 않는 것을 의미한다.
Here, the color rendering index (Ra) is an index indicating how close to sunlight (sunlight = 100), and the color temperature (K) is the surface temperature (a daylight fluorescent lamp = 6,500K) assuming black body radiation. Even if the light reflecting ability of the insulating film is increased, the total luminous flux and light efficiency are increased, which means that the light quality does not change significantly.

[실시예 3~5][Examples 3-5]

에폭시 수지 프리폴리머, 용제 및 UV 경화제를 바꾸고, 이산화티탄 나노입자 전구체로서의 TiEt4의 양을 변화시킨 것을 제외하고는 [실시예 1]과 동일한 방법으로 코팅재를 제조하여 PCB 기판에 도포하고, UV 경화시킨 후 [실시예 2]와 동일한 조건에서 동일한 방법으로 반사율을 측정하였다.A coating material was prepared in the same manner as in [Example 1] except that the epoxy resin prepolymer, the solvent, and the UV curing agent were changed, and the amount of TiEt 4 as the titanium dioxide nanoparticle precursor was changed, and then applied to the PCB substrate. Then, the reflectance was measured by the same method under the same conditions as in [Example 2].

결과를 표로 정리하면 다음과 같다.
The results are summarized as follows.

구분division 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 에폭시 수지 프리폴리머Epoxy Resin Prepolymer 비스-(3-글리시딜옥시)페닐포스핀 옥사이드 45g 45 g of bis- (3-glycidyloxy) phenylphosphine oxide 트리글리시딜 p-아미노페놀 45g45 g of triglycidyl p-aminophenol 테트라글리시딜 메틸렌 디아닐린 45g45 g of tetraglycidyl methylene dianiline 프리폴리머 용제Prepolymer Solvent 아세톤Acetone 나프타naphtha 나프타naphtha UV 경화제UV curing agent 벤조페논Benzophenone 1,1-디클로로아세토페논1,1-dichloroacetophenone 1,1-디클로로아세토페논1,1-dichloroacetophenone TiEt4의 양TiEt 4 amount 60g 60 g 40g 40g 20g20g 절연막의 반사율(450nm 기준)Reflectivity of Insulation Layer (Based on 450nm) 91%91% 90%90% 87%87%

실시예 1과 실시예 3~5에서 제조된 코팅재의 성능(반사율)은, 당연한 것으로 판단되지만, 에폭시 수지 프리폴리머, 용제 및 UV 경화제의 종류와는 거의 무관하고, 이산화티탄 나노입자를 형성하는 TiEt4의 양에 따라 달라지는데 TiEt4의 양이 20g인 경우(TiO2로 환산하면 9.4g)에만 반사율이 떨어진다. 따라서 이산화티탄 나노입자가 광 반사에 상당한 기여를 하고 있음을 알 수 있다.Although the performance (reflectivity) of the coating materials prepared in Examples 1 and 3 to 5 is taken for granted, TiEt 4 which forms titanium dioxide nanoparticles, which is almost independent of the type of epoxy resin prepolymer, solvent and UV curing agent, is formed. It depends on the amount of, but the reflectance falls only when the TiEt 4 is 20g (9.4g in terms of TiO 2 ). Therefore, it can be seen that the titanium dioxide nanoparticles make a significant contribution to the light reflection.

본 발명은 매트릭스 수지로는 에폭시 수지, 백색안료로는 이산화티탄에만 국한되었는데 통상의 당업자라면 매트릭스 수지는 열경화성 수지 전반에 대하여, 그리고 백색안료는 ZnO, MgO, Al2O3 등으로 확대 적용할 수 있을 것이다.The present invention is limited to epoxy resin as a matrix resin, titanium dioxide as a white pigment, and a person skilled in the art can apply the matrix resin to a thermosetting resin as a whole, and a white pigment as ZnO, MgO, Al 2 O 3, and the like. There will be.

10: PCB 기판 20: LED 광원
30: 절연막 40: 솔더링 납
50: 히트 싱크 60: 확산판
10: PCB substrate 20: LED light source
30: insulating film 40: soldering lead
50: heat sink 60: diffuser plate

Claims (9)

삭제delete 1) TiR4를 용매에 녹인 TiR4 용액을 에폭시수지 프리폴리머에 적하하면서 교반하는 제1 단계,
2) 제1 단계에서 만들어진 에폭시수지 프리폴리머와 TiR4 용액의 혼합액에 물을 적하하면서 교반하는 제2 단계,
3) 제2 단계에서 만들어진 용액을 초음파조(bath sonicator)에서 초음파로 분산시키는 제3 단계,
4) 제3 단계에서 만들어진 용액에 직경 1~100μm의 미리 만들어진 이산화티탄 분말을 혼합하는 제4 단계,
5) 제4 단계에서 만들어진 용액을 증발기(evaporator)에 넣고 휘발성 물질을 증발시키는 제5 단계, 및
6) UV 경화제 또는 열 경화제를 혼합하는 제6 단계를 포함하는,
매트릭스 수지로서 에폭시수지와, 백색안료로서 제자리 합성된 이산화티탄 입자와 기계적으로 분쇄된 이산화티탄 입자를 포함하는 코팅재의 제조방법.
(여기에서, R은 C1~C4의 알킬기이다.)
1) a first step of a solution of the 4 TiR TiR 4 in a solvent with stirring was added dropwise to the epoxy resin prepolymer,
2) a second step of stirring while dropping water to the mixed solution of the epoxy resin prepolymer and TiR 4 solution made in the first step,
3) a third step of dispersing the solution made in the second step by ultrasonic in a bath sonicator,
4) a fourth step of mixing the pre-made titanium dioxide powder having a diameter of 1 ~ 100μm to the solution made in the third step,
5) a fifth step of putting the solution made in the fourth step into an evaporator and evaporating volatile materials, and
6) a sixth step of mixing the UV curing agent or the thermal curing agent,
A method for producing a coating material comprising an epoxy resin as a matrix resin, titanium dioxide particles synthesized in situ as a white pigment and titanium dioxide particles mechanically pulverized.
(Wherein R is an alkyl group of C 1 to C 4 )
제2항에 있어서, TiR4 용액의 용매가 C4~C10의 알칸인 것을 특징으로 하는 코팅재의 제조방법.The method of claim 2, wherein TiR 4 Method for producing a coating material, characterized in that the solvent of the solution is C 4 ~ C 10 alkanes. 제2항에 있어서, 에폭시수지 프리폴리머가 비스-(3-글리시딜옥시)페닐포스핀 옥사이드[bis-(3-glycidyloxy)phenylphosphine oxide], 페놀 노볼락(phenol novolac), 크레졸 노볼락(cresol novolac), 비스페놀-A 노볼락(bisphenol-A novolac), 비스페놀-F의 디글리시딜에테르(diglycidylether of bisphenol-F), 트리글리시딜 p-아미노페놀(triglycidyl p-aminophenol), 테트라글리시딜 메틸렌 디아닐린(tetraglycidyl methylen dianiline), 사이클로알리파틱 에폭시수지(cycloaliphatic epoxy resin)에서 선택되는 모노머 또는 올리고머인 것을 특징으로 하는 코팅재의 제조방법.The method of claim 2, wherein the epoxy resin prepolymer is a bis- (3-glycidyloxy) phenylphosphine oxide, phenol novolac, cresol novolac ), Bisphenol-A novolac, diglycidylether of bisphenol-F, triglycidyl p-aminophenol, tetraglycidyl methylene A method of producing a coating material, characterized in that the monomer or oligomer selected from dianiline (tetraglycidyl methylen dianiline), cycloaliphatic epoxy resin (cycloaliphatic epoxy resin). 제4항에 있어서, 에폭시수지 프리폴리머가 에폭시 아크릴레이트 올리고머(epoxy acrylate olygomer) 또는 아크릴 수지(acrylate resin), 또는 이들의 혼합물을 추가로 함유하는 것을 특징으로 하는 코팅재의 제조방법.The method of manufacturing a coating material according to claim 4, wherein the epoxy resin prepolymer further contains an epoxy acrylate olygomer or an acrylic resin, or a mixture thereof. 제2항에 있어서, 에폭시수지 프리폴리머를 휘발성 용제에 혼합하여 사용하는 것을 특징으로 하는 코팅재의 제조방법.The method for producing a coating material according to claim 2, wherein the epoxy resin prepolymer is mixed with a volatile solvent and used. 제2항에 있어서, 2)단계에서 물을 아세톤 또는 C4~C10의 알칸과 혼합하여 적하하는 것을 특징으로 하는 코팅재의 제조방법.The method of claim 2, wherein in step 2), water is added dropwise by mixing with acetone or C 4 -C 10 alkanes. 제2항에 있어서, 6)단계의 UV 경화제로 벤조페논(benzophenone) 또는 1,1-디클로로아세토페논(1,1-dichloroacetophenone)을 사용하는 것을 특징으로 하는 코팅재의 제조방법.The method for preparing a coating material according to claim 2, wherein benzophenone or 1,1-dichloroacetophenone is used as the UV curing agent of step 6). 제2항 내지 제8항의 어느 한 방법에 의하여 제조된 코팅재를 PCB 기판 위의 절연막으로 코팅한 LED 조명등.


An LED lamp having a coating material prepared by any one of claims 2 to 8 coated with an insulating film on a PCB substrate.


KR1020120006571A 2012-01-20 2012-01-20 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer KR101129164B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120006571A KR101129164B1 (en) 2012-01-20 2012-01-20 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120006571A KR101129164B1 (en) 2012-01-20 2012-01-20 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer

Publications (1)

Publication Number Publication Date
KR101129164B1 true KR101129164B1 (en) 2012-03-26

Family

ID=46142645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120006571A KR101129164B1 (en) 2012-01-20 2012-01-20 Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer

Country Status (1)

Country Link
KR (1) KR101129164B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425339B1 (en) * 2014-02-12 2014-08-01 (주)대광라이텍 LED Lights Having Improved Light Reflectivity by Coating of Ceramic Coating Agents
KR101673848B1 (en) * 2016-05-12 2016-11-08 인스엘이디 주식회사 High illumination reflector and led light apparatus with the same
CN109369939A (en) * 2018-09-28 2019-02-22 江苏视科新材料股份有限公司 A kind of difunctional optical resin material of anti-blue light/discoloration and preparation method thereof
KR20220163654A (en) 2021-06-03 2022-12-12 김주성 Ground coating material with improved reflection efficiency and method for preparing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010102A (en) * 1995-08-31 1997-03-27 박홍기 Light diffusion film
JP2004277735A (en) * 2003-02-27 2004-10-07 Sanyo Chem Ind Ltd Hardening resin composition and hardened product of the same
JP2009149879A (en) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd White heat-hardening resin composition, printed-wiring board with the hardened material, and reflection board for light emitting element formed of the hardened material
JP2011034958A (en) 2009-07-06 2011-02-17 Sumitomo Light Metal Ind Ltd Heat dissipating member for led light bulb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010102A (en) * 1995-08-31 1997-03-27 박홍기 Light diffusion film
JP2004277735A (en) * 2003-02-27 2004-10-07 Sanyo Chem Ind Ltd Hardening resin composition and hardened product of the same
JP2009149879A (en) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd White heat-hardening resin composition, printed-wiring board with the hardened material, and reflection board for light emitting element formed of the hardened material
JP2011034958A (en) 2009-07-06 2011-02-17 Sumitomo Light Metal Ind Ltd Heat dissipating member for led light bulb

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425339B1 (en) * 2014-02-12 2014-08-01 (주)대광라이텍 LED Lights Having Improved Light Reflectivity by Coating of Ceramic Coating Agents
KR101673848B1 (en) * 2016-05-12 2016-11-08 인스엘이디 주식회사 High illumination reflector and led light apparatus with the same
CN109369939A (en) * 2018-09-28 2019-02-22 江苏视科新材料股份有限公司 A kind of difunctional optical resin material of anti-blue light/discoloration and preparation method thereof
CN109369939B (en) * 2018-09-28 2021-04-27 南京米兰达视光科学研究院有限公司 Blue light prevention/color change dual-function optical resin material and preparation method thereof
KR20220163654A (en) 2021-06-03 2022-12-12 김주성 Ground coating material with improved reflection efficiency and method for preparing thereof

Similar Documents

Publication Publication Date Title
JP5334573B2 (en) Light emission conversion type LED
WO2010110204A1 (en) Phosphor member, method for producing phosphor member, and lighting device
KR101129164B1 (en) Manufacturing method of coating material for led lamp with improved reflecting efficieny and led lamp coated with the same as insulating layer
JP2002232002A (en) Method of manufacturing wavelength converting casting material
TW200845429A (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
TWI746876B (en) Dispersion, composition, sealing member, light-emitting device, lighting fixture, display device, and manufacturing method of light-emitting device
WO2021193727A1 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting tool, display device, and method for producing dispersion liquid
JP7017636B2 (en) Encapsulating resin composition for surface mount discrete devices of LED displays and its applications
US10658554B2 (en) LED lamp with siloxane particle material
Lai et al. High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs
WO2020203462A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing dispersion liquid
CN107342348A (en) A kind of preparation method of LED component
JP5228464B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2015096950A (en) Light scattering composition, light scattering complex, and manufacturing method therefor
WO2019026956A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
KR101425339B1 (en) LED Lights Having Improved Light Reflectivity by Coating of Ceramic Coating Agents
Yu et al. Enhancing light efficiency and moisture stability of the quantum dots-light-emitting diodes by coating superhydrophobic nanosilica particles
WO2010128664A1 (en) Led illuminating lamp and method for manufacturing dome cap for led illuminating lamp
WO2022071385A1 (en) Dispersion solution, composition, sealing member, light-emitting device, lighting device, display device, method for producing dispersion solution, and method for modifying surface of metal oxide particles
KR20190084743A (en) Phosphor composition and phosphor sheet using the same
JP2021155261A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting device, and display device
CN108070853B (en) Ceramic slurry, preparation method and composite ceramic heat dissipation substrate
JP2022057148A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting fixture, and display device
Zhou et al. Quantum dots electrostatically adsorbed on the surface of SiO2 nanoparticle-decorated phosphor particles for white light-emitting diodes with a stable optical performance
TWI228321B (en) LED structure and manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 9