JP2007210456A - 車両用スタビライザシステム - Google Patents

車両用スタビライザシステム Download PDF

Info

Publication number
JP2007210456A
JP2007210456A JP2006032592A JP2006032592A JP2007210456A JP 2007210456 A JP2007210456 A JP 2007210456A JP 2006032592 A JP2006032592 A JP 2006032592A JP 2006032592 A JP2006032592 A JP 2006032592A JP 2007210456 A JP2007210456 A JP 2007210456A
Authority
JP
Japan
Prior art keywords
stabilizer
vehicle
force
wheel
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032592A
Other languages
English (en)
Other versions
JP4380640B2 (ja
Inventor
Shuichi Takema
修一 武馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006032592A priority Critical patent/JP4380640B2/ja
Priority to KR1020087019358A priority patent/KR100978772B1/ko
Priority to US12/278,902 priority patent/US7896360B2/en
Priority to PCT/JP2007/052308 priority patent/WO2007091666A1/en
Priority to EP07708281A priority patent/EP1986873B1/en
Priority to CN2007800044648A priority patent/CN101378919B/zh
Publication of JP2007210456A publication Critical patent/JP2007210456A/ja
Application granted granted Critical
Publication of JP4380640B2 publication Critical patent/JP4380640B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0161Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during straight-line motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/18Multilink suspensions, e.g. elastokinematic arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/18Multilink suspensions, e.g. elastokinematic arrangements
    • B60G2200/184Assymetric arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/462Toe-in/out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/442Rotary actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/122Mounting of torsion springs
    • B60G2204/1224End mounts of stabiliser on wheel suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/419Gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/33Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

【課題】実用性の高い車両用スタビライザシステムを提供する。
【解決手段】スタビライザバー28と、それを回転させて車輪12と車体とを接近離間させる力であるスタビライザ力を発生させるアクチュエータ32とを備え、車体が受けるロールモーメント等に応じてそのスタビライザ力を変化させる制御を行うスタビライザシステムにおいて、スタビライザバーとサスペンション装置36のサスペンションアーム78とを連結するリンクロッド34をサスペンションアームに対して傾斜して設ける。このような構造によって、スタビライザ力をサスペンションアームの軸方向の力(軸力)として作用させることが可能となり、この軸力によって車輪のトー角とキャンバ角とを変化させることができる。つまり、車体のロール等を抑制するとともに車両の旋回特性をアンダーステア特性とすることが可能となるのである。
【選択図】図5

Description

本発明は、車両に搭載されるスタビライザシステムに関し、詳しくは、アクチュエータを備えてスタビライザバーが発揮するスタビライザ力を変更可能なスタビライザシステムに関する。
車両用スタビライザシステムは、スタビライザバーの捩り反力に依拠するスタビライザ力を利用して、車体のロールを抑制するシステムである。近年では、下記特許文献に記載されているように、アクチュエータを備え、そのアクチュエータによってスタビライザ力を例えばアクティブに変更可能なシステム(以下、「アクティブスタビライザシステム」という場合がある)が検討され、既に実用化され始めている。
特表2002−518245号公報 特開2004−314947号公報
車両に搭載されるサスペンション装置では、車輪の車体に対する上下動に伴って車輪のトー角,キャンバ角等が変化し、一般的な車両では、それらの変化を利用して、車両の旋回特性がアンダステア傾向となるように設計される。アクチュエータを備えていない伝統的なスタビライザシステム(以下、「コンベンショナルシステム」という場合がある)の採用を前提として設計されたサスペンション装置に、上述のアクティブスタビライザシステムを採用する場合について考えれば、例えば、そのシステムは、車体のロール量をコンベンショナルシステムに比べてより抑制可能とされることが一般的であることから、その場合には、上述のトー角,キャンバ角等の変化が抑制され、期待する車両旋回特性が得られないことが予想される。ここに掲げたことは一例であるが、アクティブスタビライザシステムは、開発途上であり、未だに十分な改善の余地を残すものとなっており、種々の改善を施すことにより、実用性を向上させることが可能である。本発明は、そのような実情に鑑みてなされたものであり、実用性の高い車両用スタビライザシステムを提供することを課題とする。
上記課題を解決するために、本発明の車両用スタビライザシステムは、アクチュエータを備えたいわゆるアクティブスタビライザシステムであり、スタビライザバーとサスペンションアームとを連結するリンクロッドを、サスペンションアームに対して傾斜して設けたことを特徴とする。
本発明の車両用スタビライザシステムによれば、スタビライザバーが発揮するスタビライザ力を、サスペンションアームに対する軸力として作用させることができ、例えば、コンプライアンスの変化を利用して、車輪のトー角,キャンバ角等を変化させることが可能となる。そのことにより、例えば、車両旋回特性を改善することが可能となり、本発明のスタビライザシステムは、実用性の高いシステムとなるのである。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
なお、下記各項において、(1)項が請求項1に相当し、(2)項が請求項2に、(5)項ないし(7)項を合わせたものが請求項3に、(8)項ないし(10)項を合わせたものが請求項4に、(11)項が請求項5に、(14)項が請求項6に、(17)項が請求項7に、それぞれ相当する。
(1)トーションバー部とそのトーションバー部と連続するとともにそのトーションバー部と交差して延びるアーム部とを有するスタビライザバーと、前記アーム部の端部とサスペンションアームとを連結するリンクロッドと、前記スタビライザバーを前記トーションバー部の軸線まわりに回転させるアクチュエータとを備え、前記トーションバー部の捩り反力に依拠して、車輪と車体とを接近離間させる力であるスタビライザ力を発揮するとともに、前記アクチュエータによって、スタビライザ力を変更可能な車両用スタビライザシステムであって、
前記リンクロッドが、それが連結されるサスペンションアームに対して傾斜して設けられた車両用スタビライザシステム。
本項の態様は、いわゆるアクティブスタビライザシステムに関する態様であり、簡単に言えば、スタビライザバーとサスペンションアームとを連結するリンクロッドを、サスペンションアームに対して傾斜するように設けた態様である。従来のシステムでは、スタビライザ力が専ら車体と車輪とを接近・離間させる力として機能するようにされていたため、その力の効率を考え上記リンクロッドは、サスペンションアームに対して直角となるように設けられていた。それに対し本項の態様では、リンクロッドがサスペンションアームに対して傾斜しているため、スタビライザ力を、サスペンションアームの軸力、つまり、サスペンションアームの車体側の連結部と車体側の連結部とを結ぶ方向の力として作用させることができ、その軸力によるコンプライアンス変化を利用することで、車輪のトー角,キャンバ角等を変化させることが可能となる。したがって、スタビライザ力による車両旋回特性の改善,変更等を、容易に行うことが可能となるのである。
(2)前記リンクロッドが、それが連結されるサスペンションアームとのなす角度が80゜以下となるように傾斜して設けられた(1)項に記載の車両用スタビライザシステム。
(3)前記リンクロッドが、それが連結されるサスペンションアームとのなす角度が70゜以下となるように傾斜して設けられた(2)項に記載の車両用スタビライザシステム。
(4)前記リンクロッドが、それが連結されるサスペンションアームとのなす角度が60゜以下となるように傾斜して設けられた(3)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、リンクロッドのサスペンションアームに対する傾斜角(以下、単に「リンクロッドの傾斜角」,「傾斜角」という場合がある)を限定した態様である。傾斜角が80゜以下であれば、スタビライザ力によって実効的なサスペンションアームの軸力を発生させることが可能である。この傾斜角を小さくすればする程、同じスタビライザ力であっても、上記軸力をより大きくすることが可能である。一方で、傾斜角が小さくなるにつれて、サスペンションアームを回動させる力、つまり、車輪と車体とを接近・離間させる力(以下、「車輪車体接近離間方向力」という場合がある)が減少するため、軸力と車輪車体接近離間方向力とのバランスを考慮して、リンクロッドの傾斜角を決定することが望ましい。
(5)前記スタビライザバーが前輪に対して設けられたものである(1)項ないし(4)項のいずれかに記載の車両用スタビライザシステム。
(6)前記リンクロッドが、前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のトー角をトーイン方向に変化させ、離間する向きのスタビライザ力を発生させる場合においてトーアウト方向に変化させるような軸力をサスペンションアームに対して付与する向きに傾斜させられた(5)項に記載の車両用スタビライザシステム。
(7)前記リンクロッドが、前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のキャンバ角を車輪上部が内側に向かう方向に変化させ、離間する向きのスタビライザ力を発生させる場合において車輪上部が外側に向かう方向に変化させるような軸力をサスペンションアームに対して付与する向きに傾斜させられた(5)項または(6)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、スタビライザバーが前輪に対して設けられた場合の態様であり、上記3つのうちの後の2つの項の態様は、その場合におけるリンクロッドの傾斜方向に対する限定を加えた態様である。スタビライザ力の方向によって、つまり、スタビライザ力が、車輪と車体とが接近する方向(以下、「バウンド方向」という場合がある)の力である場合と、車輪と車体とが離間する方向(以下、「リバウンド方向」という場合がある)の力である場合とによって、上記のようにサスペンションアームに作用する軸力の方向を異ならせれば、車両が旋回する場合において、その旋回特性をアンダステア特性傾向が強くなるような特性とすることが可能である。したがって、ロール抑制効果が高いスタビライザシステムであっても、リンクロッドを上記方向に傾斜させることによって、車両の旋回特性を良好なものとすることができるのである。なお、上記後の2つの項の態様を合わせた態様、つまり、リンクロッドをトー角とキャンバ角との両者が上記のように変化する向きに傾斜させた態様をも採用可能である。
(8)前記スタビライザバーが後輪に対して設けられたものである(1)項ないし(4)項のいずれかに記載の車両用スタビライザシステム。
(9)前記リンクロッドが、前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のトー角をトーアウト方向に変化させ、離間する向きのスタビライザ力を発生させる場合においてトーイン方向に変化させるような軸力をサスペンションアームに対して付与する向きに傾斜させられた(8)項に記載の車両用スタビライザシステム。
(10)前記リンクロッドが、前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のキャンバ角を車輪上部が外側に向かう方向に変化させ、離間する向きのスタビライザ力を発生させる場合において車輪上部が内側に向かう方向に変化させるような軸力をサスペンションアームに対して付与する向きに傾斜させられた(8)項または(9)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、スタビライザバーが後輪に対して設けられた場合の態様であり、上記3つのうちの後の2つの項の態様は、その場合におけるリンクロッドの傾斜方向に対する限定を加えた態様である。スタビライザ力の方向によって、上記のようにサスペンションアームに作用する軸力の方向を異ならせれば、前輪側の態様と同様に、車両旋回特性をアンダステア特性傾向が強くなるような特性とすることが可能である。また、前輪側態様と同様、上記後の2つの項の態様を合わせた態様、つまり、リンクロッドをトー角とキャンバ角との両者が上記のように変化する向きに傾斜させた態様をも採用可能である。
(11)当該スタビライザシステムが、左右の車輪の各々に対応して、前記スタビライザバー、前記リンクロッドおよび前記アクチュエータをそれぞれ1対備えるとともに、それら1対のアクチュエータの各々が、その各々に対応する前記スタビライザバーをそれの前記トーションバー部の前記アーム部とは反対側の端部において回転させるものとされた(1)項ないし(10)項のいずれかに記載の車両用スタビライザシステム。
(12)前記アクチュエータが、車体に固定的に支持されたハウジングと、そのハウジングに保持された駆動源としての電動モータと、前記ハウジングに保持されて前記電動モータの回転を減速して伝達する減速機とを備え、前記スタビライザバーのトーションバー部が前記減速機の出力部に連結された(11)項に記載の車両用スタビライザシステム。
(13)前記減速機が、ハーモニックギヤ機構を含んで構成された(12)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、左右の車輪の各々に対応して、それぞれが互いに独立して制御可能な2つのスタビライザ装置が設けられたシステム、つまり、いわゆる左右独立型のアクティブスタビライザシステムに関する態様である。このシステムでは、左右のアクチュエータの各々を制御することで、アクティブなロール抑制制御を始めとして、アクティブなピッチ抑制制御,車高調整制御を実行することが可能である。
(14)前記スタビライザバーが、前記トーションバー部が車幅方向に延びるように配設されるとともに、前記アーム部が左右の車輪の各々に対応してトーションバー部の両端部に1対設けられたものであり、
当該スタビライザシステムが、左右の車輪の各々に対応して、左右のサスペンションアームの各々と前記1対のアーム部の各々とを連結する1対の前記リンクロッドを備え、
前記アクチュエータが、前記スタビライザバーを前記トーションバー部の車幅方向の中間部において回転させるものである(1)項ないし(10)項のいずれかに記載の車両用スタビライザシステム。
(15)前記アクチュエータが、車体に固定的に支持されたハウジングと、そのハウジングに保持された駆動源としての電動モータと、前記ハウジングに保持されて前記電動モータの回転を減速して伝達する減速機とを備え、前記スタビライザバーのトーションバー部の中間部が前記減速機の出力部に連結された(14)項に記載の車両用スタビライザシステム。
(16)前記減速機が、ハーモニックギヤ機構を含んで構成された(15)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、アクチュエータによってトーションバー部の左右を同方向に回転させることが可能なスタビライザ装置が設けられたシステム、つまり、いわゆる左右同相回転型のアクティブスタビライザシステムに関する態様である。このシステムでは、アクティブなロール抑制制御を実行することはできないが、アクティブなピッチ抑制制御,車高調整制御を実行することが可能である。
(17)当該スタビライザシステムが、左右の車輪の各々に対応して、前記スタビライザバーおよび前記リンクロッドをそれぞれ1対備え、前記1対のスタビライザバーの各々のトーションバー部が、それの各々の前記アーム部とは反対側の端部が互いに向かい合うようにして車幅方向に延びるように配設され、かつ、前記アクチュエータが、前記1対のスタビライザバーをそれらが有するトーションバー部の端部において相対回転させるものである(1)項ないし(10)項のいずれかに記載の車両用スタビライザシステム。
(18)前記アクチュエータが、ハウジングと、そのハウジングに保持された駆動源としての電動モータと、前記ハウジングに保持されて前記電動モータの回転を減速して伝達する減速機とを備え、前記1対のスタビライザバーの一方がそれのトーションバー部の端部においてハウジングと連結され、前記1対のスタビライザーバーの他方がそれのトーションバー部の端部において前記減速機の出力部に連結された(17)項に記載の車両用スタビライザシステム。
(19)前記減速機が、ハーモニックギヤ機構を含んで構成された(18)項に記載の車両用スタビライザシステム。
上記3つの項の態様は、左右の車輪に対応して設けられた1対のアクチュエータを互いに逆方向に回転させることが可能なスタビライザ装置が設けられたシステム、つまり、いわゆる左右逆相回転型のアクティブスタビライザシステムに関する態様である。このシステムでは、アクティブなピッチ抑制制御,車高調整制御を実行することができないが、アクティブなロール抑制制御が実行が可能である。
以下、請求可能発明のいくつかの実施例を、図を参照しつつ詳しく説明する。なお、本請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
(A)第1実施例
≪スタビライザシステムの構成および機能≫
図1に、第1実施例の車両用スタビライザシステム10を模式的に示す。本スタビライザシステム10は、前後左右の4つの車輪12の各々に対応した4つのスタビライザ装置20を含んで構成されている。スタビライザ装置20はそれぞれ、スタビライザバー28と、スタビライザバー28を回転させるアクチュエータ32と、リンクロッド34とを備えている。本スタビライザシステム10を搭載する車両には、各車輪12に対応した4つのサスペンション装置36が設けられている。スタビライザバー28の一端部はサスペンション装置36にリンクロッド34を介して連結され、他端部はアクチュエータ32に接続されている。なお、車輪12,サスペンション装置36,スタビライザ装置20,スタビライザ装置20を構成するスタビライザバー28等は総称であり、4つの車輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、左前輪,右前輪,左後輪,右後輪の各々に対応するものにFL,FR,RL,RRを付す場合がある。
アクチュエータ32は、図2に示すように、駆動源としての電動モータ40と、その電動モータ40の回転を減速して伝達する減速機42とを含んで構成されている。これら電動モータ40および減速機42は、アクチュエータ32の外殻部材であるハウジング44内に設けられている。ハウジング44は、それの一端部に固定された取付部材46によって、車体に固定的に取り付けられている。ハウジング44の他端部には、出力軸48が延び出すように配設されている。出力軸48は、ハウジング44内に延び入る状態で配設されるとともに、ハウジング44に回転可能かつ軸方向に移動不能に支持されている。その出力軸48のハウジング44内に存在する一方の端部が、後に詳しく説明するように、減速機42に接続され、その出力軸48は、減速機42の出力軸を兼ねるものとなっており、その軸方向の中央部において、ブッシュ型軸受49を介してハウジング44に相対回転可能に保持されている。
電動モータ40は、ハウジング44の周壁の内面に沿って一円周上に固定して配置された複数のコイル50と、ハウジング44に回転可能に保持された中空状のモータ軸52と、コイル50と向きあうようにしてモータ軸52の外周に固定して配設された永久磁石54とを含んで構成されている。電動モータ40は、コイル50がステータとして機能し、永久磁石54がロータとして機能するモータであり、3相のDCブラシレスモータとされている。なお、ハウジング44内に、モータ軸52の回転角度、すなわち、電動モータ40の回転角度を検出するためのモータ回転角センサ55が設けられている。モータ回転角センサ55は、エンコーダを主体とするものであり、アクチュエータ32の制御、つまり、スタビライザ装置20の制御に利用される。
減速機42は、波動発生器(ウェーブジェネレータ)56,フレキシブルギヤ(フレクスプライン)58およびリングギヤ(サーキュラスプライン)60を備え、ハーモニックギヤ機構(ハーモニックドライブ機構(登録商標),ストレイン・ウェーブ・ギヤリング機構等とも呼ばれる)として構成されている。波動発生器56は、楕円状カムと、それの外周に嵌められたボールベアリングとを含んで構成されるものであり、モータ軸52の一端部に固定されている。フレキシブルギヤ58は、周壁部が弾性変形可能なカップ形状をなすものとされており、周壁部の開口側の外周に複数の歯が形成されている。このフレキシブルギヤ58は、先に説明した出力軸48に接続され、それによって支持されている。詳しく言えば、減速機42の出力部として機能する出力軸48は、モータ軸52を貫通しており、それから延び出す端部において、フレキシブルギヤ58の底部とセレーション嵌合によって相対回転不能かつ軸方向に相対移動不能に接続されているのである。リングギヤ60は、概してリング状をなして内周に複数(フレキシブルギヤの歯数よりやや多い数、例えば2つ多い数)の歯が形成されたものであり、ハウジング44に固定されている。フレキシブルギヤ58は、その周壁部が波動発生器56に外嵌して楕円状に弾性変形させられ、楕円の長軸方向に位置する2箇所においてリングギヤ60と噛合し、他の箇所では噛合しない状態とされている。上述のような構造により、波動発生器56が1回転(360度)すると、つまり、電動モータ40のモータ軸52が1回転すると、フレキシブルギヤ58とリングギヤ60とが、それらの歯数の差分だけ相対回転させられる。
ここで、上述のサスペンション装置36について説明すれば、そのサスペンション装置36は、車両上方からの視点で描いた図3および車両後方からの視点で描いた図4に示すように、独立懸架式のものであり、マルチリンク式サスペンション装置とされている。転舵輪である前輪12FL,FRに対応したサスペンション装置36FL,FRと非転舵輪である後輪12RL,RRに対応したサスペンション装置36RL,RRとでは、互いに少し異なる構成であるが、説明を簡略化するため、それらを同じ図を用いて説明する。サスペンション装置36は、サスペンションアームとしての第1アッパアーム72,第2アッパアーム74,第1ロアアーム76,第2ロアアーム78,トーコントロールアーム80を備えている。5本のアーム72,74,76,78,80のそれぞれの一端部は車体に回動可能に連結され、他端部は、サスペンション装置36RL,RRではアクスルキャリア82に、サスペンション装置36FL,FRではナックル83に連結されている。アクスルキャリア82は、車輪12RL,RRを車軸を中心に回転可能に保持しており、ナックル83は、車輪12FL,FRを車軸を中心に回転可能にかつ転舵可能に保持している。それら5本のアーム72,74,76,78,80は、車輪12と車体との接近離間(相対的な上下動の意味)に伴い、上記一端部(車体側)を中心に回動させられ、上記他端部(車輪側)が車体に対して上下させられる。なお、第2ロアアーム78は、アクスルキャリア82若しくはナックル83のそれが車輪12の車軸を保持する位置の後方かつ下方の部分に連結されている。さらに、アクスルキャリア82若しくはナックル83は、車輪12と車体との接近離間に伴い、それに連結されたトーコントロールアーム80によってそれの軸方向に押されたり引かれたりするようにされている。また、サスペンション装置36は、ショックアブソーバ84とサスペンションスプリング86とを備えており、それらは、それぞれ、タイヤハウジングに設けられたマウント部と第2ロアアーム78との間に配設されている。つまり、サスペンション装置36は、車輪12と車体とを弾性的に相互支持するとともに、それらの接近離間に伴う振動に対する減衰力を発生させているのである。
スタビライザ装置20の備えるスタビライザバー28は、略車幅方向に延びるトーションバー部90と、トーションバー部90と連続するとともにそれと交差して概ね車両前方に延びるアーム部92とに区分することができる。スタビライザバー28のトーションバー部90は、アーム部92に近い箇所において、車体に固定された保持具94によって車体の一部に回転可能に保持されている。アクチュエータ32は、上述の取付部材46によって車体の幅方向における中央付近に固定されている。そのトーションバー部90の端部(車幅方向における中央側の端部)は、ハウジング44の一端部から延びだす出力軸48の端部とセレーション嵌合によって相対回転不能に接続されている。一方、アーム部92の端部(トーションバー部90側とは反対側の端部)は、リンクロッド34を介して、上述した第2ロアアーム78に連結されている。詳しくいえば、上記構造のサスペンション装置36の第2ロアアーム78には、リンクロッド連結部98が設けられ、リンクロッド34の一端部がそのリンクロッド連結部98に、他端部がスタビライザバー28のアーム部92の端部に、それぞれ遥動可能に連結されている。
電動モータ40が駆動させられて出力軸48が回転させられると、スタビライザバー28のトーションバー部90が捩じられることになる。この捩りにより生じる捩り反力が、アーム部92,リンクロッド34,リンクロッド連結部98を介して、第2ロアアーム78に伝達される。つまり、この捻り反力が、第2ロアアーム78を車体に対して押し下げたり、引き上げたりする力、言い換えれば、車輪12と車体とを接近離間させる力であるスタビライザ力として作用する。スタビライザ装置24は、アクチュエータ32の作動が制御されることで、スタビライザ力の大きさを変化させることが可能とされているのである。
アクチュエータ32が備える電動モータ40には、図1に示すように、電源としてのバッテリ130から電力が供給される。本スタビライザシステム10では、そのバッテリ130と4つのスタビライザ装置20の各々との間に、それぞれ、各スタビライザ装置20に対応する4つのインバータ132が設けられている。各インバータ132は駆動回路として機能するものであり、各スタビライザ装置20が有する電動モータ40には、対応するインバータ132を介して電力が供給される。なお、電動モータ40は定電圧駆動されることから、電動モータ40への供給電力量は、供給電流量を変更することによって変更され、電動モータ40の力は、その供給電流量に応じた力となる。ちなみに、供給電流量は、各インバータ132がPWM(Pulse Width Modulation)によるパルスオン時間とパルスオフ時間との比(デューティ比)を変更することによって行われる。
スタビライザ装置20、詳しくは、アクチュエータ32は、図1に示すスタビライザ電子制御ユニット(スタビライザECU)150によって制御される。そのスタビライザECU150は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されており、スタビライザECU150には、上記モータ回転角センサ55とともに、操舵量としてのステアリング操作部材としてのステアリングホイールの操作量(操舵量の一種である)すなわち操作角を検出するための操作角センサ152,車両走行速度(以下、「車速」と略す場合がある)を検出するための車速センサ154,車体に実際に発生する横加速度である実横加速度を検出する横加速度センサ156,車体に実際に発生する前後加速度である実前後加速度を検出する前後加速度センサ158,アクセルスロットルの開度を検出するスロットルセンサ160,ブレーキ圧を検出するブレーキ圧センサ162,各車輪と車体との距離を検出する4つのストロークセンサ163,各ドアの開閉を検出する4つのドアセンサ164が接続されている。(図1では、それぞれ「θ」,「δ」,「v」,「Gy」,「Gzg」,「Sr」,「Br」,「St」,「Dr」と表されている)。また、スタビライザECU150は、各インバータ132にも接続され、それらを制御することで、各スタビライザ装置20をそれぞれ制御するものとされている。スタビライザECU150のコンピュータが備えるROMには、後に説明するプログラム、各スタビライザ装置20の制御に関する各種のデータ等が記憶されている。
本スタビライザシステム10では、4つのスタビライザ装置20をそれぞれ独立して制御することが可能となっている。つまり、各スタビライザ装置20によるスタビライザ力が、それぞれ、独立して制御されて、車体のロールを抑制する制御(以下「ロール抑制制御」という場合がある)、車体のピッチを抑制する制御(以下、「ピッチ抑制制御」という場合がある)、車体の路面からの高さを調製する制御(以下、「車高調整制御」という場合がある)が実行される。
詳しくいえば、ロール抑制制御では、車両の旋回時において、その旋回に起因するロールモーメントに応じて、旋回内輪側のスタビライザ装置20に車輪と車体とを接近させる方向(以下、「バウンド方向」という場合ある)のスタビライザ力を、旋回外輪側のスタビライザ装置20に車輪と車体とを離間させる方向(以下、「リバウンド方向」という場合がある)のスタビライザ力をそれぞれ発揮させることで、そのロールが抑制される。また、ピッチ抑制制御では、車体の制動時に発生する車体のノーズダイブに対しては、そのノーズダイブに起因するピッチモーメントに応じて、前輪側のスタビライザ装置20FL,FRにリバウンド方向のスタビライザ力を、後輪側のスタビライザ装置20RL,RRにバウンド方向のスタビライザ力をそれぞれ発揮させることで、そのノーズダイブが抑制され、車体の加速時に発生する車体のスクワットに対しては、そのスクワットに起因するピッチモーメントに応じて、後輪側のスタビライザ装置20RL,RRにリバウンド方向のスタビライザ力を、前輪側のスタビライザ装置20FL,FRにバウンド方向のスタビライザ力を発揮させることで、そのスクワットが抑制される。さらに、車高調整制御では、車両に積載される荷物の重量,車両に搭乗する乗員の重量等(以下、「積載・搭乗重量」という場合がある)の増減に起因する車高の変化に応じて、各輪のスタビライザ装置20にその変化を抑制する方向のスタビライザ力を発揮させることで、車高が設定車高に維持される。
≪サスペンションジオメトリとスタビライザ力との関係≫
上記構成を有するサスペンション装置36では、車輪12と車体との接近離間に伴う5本のアーム72,74,76,78,80の動作によって、各車輪12のトー角とキャンバ角とが変化するようにされている。具体的にいえば、各車輪12と車体とが離間するような場合、つまり、車輪がリバウンドする場合には、各前輪12FL,FRのトー角はトーイン方向に、キャンバ角は各前輪12FL,FRの上部が車幅方向における内側に向かう方向(以下、「内側方向」という場合がある)に変化し、各後輪12RL,RRのトー角はトーアウト方向に、キャンバ角は各後輪12RL,RRの上部が車幅方向における外側に向かう方向(以下、「外側方向」という場合がある)に変化する。逆に、各車輪12と車体とが接近するような場合、つまり、車輪がバウンドする場合には、各前輪12FL,FRのトー角はトーアウト方向に、キャンバ角は外側方向に変化し、各後輪12RL,RRのトー角はトーイン方向に、キャンバ角は内側方向に変化する。サスペンション装置36がこのようなサスペンションジオメトリを有することから、車両が左旋回するような場合には、旋回内輪側の前輪のトー角はトーイン方向に、キャンバ角は内側方向に、旋回内輪側の後輪のトー角はトーアウト方向に、キャンバ角は外側方向に変化し、一方で、旋回外輪側の前輪のトー角はトーアウト方向に、キャンバ角は外側方向に、旋回外輪側の後輪のトー角はトーイン方向に、キャンバ角は内側方向に変化することになる。このようなトー角,キャンバ角の変化により、車両の旋回特性がアンダーステア傾向となるようにされているのである。
ところが、本スタビライザシステム10を搭載する車両においては、例えば、旋回時の車体姿勢の安定を目的として、先に説明したようなロール抑制制御が実行されることから、車体の旋回に伴う各車輪12と車体との接近離間が抑制される。そのため、上記サスペンションジオメトリに依拠するところの旋回特性におけるアンダーステア傾向が弱まることとなる。そのことに鑑み、本スタビライザシステム10では、アンダーステア傾向の減少を抑制するあるいはアンダーステア傾向を増長させるべく、スタビライザ力をサスペンション装置36に作用させるように構成されている。具体的に言えば、各サスペンション装置36の備える第2ロアアーム78にそれぞれ連結される各スタビライザ装置20の備えるリンクロッド34が、第2ロアアーム78に対して傾斜して設けられている。より詳しく言えば、図5に左前輪12FLについて示すように、前輪側のサスペンション装置36FL,FRの第2ロアアーム78FL,FRに対して、それに連結されるリンクロッド34FL,FRが、概して車幅方向における車体外側に傾斜するように配設され、また、図6に左後輪12RLについて示すように、後輪側のサスペンション装置36RL,RRの第2ロアアーム78RL,RRに対して、それに連結されるリンクロッド34RL,FRが、概して車幅方向における車体中央側に傾斜するように配設されているのである。ちなみに、本スタビライザシステム10では、それらリンクロッド34と第2ロアアーム78とのなす角度である傾斜角αは、前輪側の傾斜角αF、後輪側の傾斜角αRとも、約58゜とされている。
上記リンクロッド34が傾斜させられていることから、スタビライザ装置20の発生させるスタビライザ力の一部が第2ロアアーム78の軸方向の力(以下、「軸力」という場合がある)として作用することとなる。詳しく言えば、図5に示すように、前輪側では、リバウンド方向のスタビライザ力が発揮される場合には、ロアアーム78FL,FRに対して車体側に向かう方向の軸力が付与され(実線矢印)、バウンド方向のスタビライザ力が発揮される場合には、ロアアーム78FL,FRに対して車輪側に向かう方向の軸力が付与されることになる(点線矢印)。逆に、図6に示すように、後輪側では、リバウンド方向のスタビライザ力が発揮される場合には、ロアアーム78RL,RRに対して車輪側に向かう方向の軸力が付与され(実線矢印)、バウンド方向のスタビライザ力が発揮される場合には、ロアアーム78RL,RRに対して車体側に向かう方向の軸力が付与されることになる(点線矢印)。
上記ロアアーム78に作用する軸力によって、サスペンション装置36のコンプライアンスが変化し、その結果として、車輪12のトー角,キャンバ角が変化させられる。車両が左旋回する場合における各スタビライザ装置20によるスタビライザ力の方向と各車輪12のトー角の変化を、図7に示し、前輪側のスタビライザ装置20FL,FRによるスタビライザ力の方向と各車輪12FL,FRのキャンバ角の変化を、図8(a)に、後輪側のスタビライザ装置20RL,RRによるスタビライザ力の方向と各車輪12RL,RRのキャンバ角の変化を、図8(b)に、それぞれ示す。それらの図から解るように、車両の左旋回時には、スタビライザ力に依拠する軸力の作用によって、左前輪12FL,右後輪RRのトー角はそれぞれトーイン方向に変化させられ、右前輪12FR,左後輪12RLのトー角はそれぞれトーアウト方向に変化させられる。また、左前輪12FL,右後輪RRのキャンバ角はそれぞれ内側方向に変化させられ、右前輪12FR,左後輪12RLのキャンバ角はそれぞれ外側方向に変化させられる。つまり、車両の旋回特性がアンダーステア傾向となるようにされているのである。ちなみに、車両が右旋回する場合には、各車輪12のトー角,キャンバ角は、左旋回とは逆向きに変化し、右旋回時においても、同様に、アンダーステア傾向となるようにされている。
つまり、上述したように、本スタビライザシステム10を装備する車両では、車体姿勢の安定化を目的とする当該システム10のロール抑制制御によって、サスペンションジオメトリに基づくアンダーステア傾向が弱まることになるが、ロアアーム78に作用する軸力によって、アンダーステア傾向が補償されることになる。したがって、本スタビライザシステム10を採用することにより、車体のロールを抑制しつつ、アンダーステア傾向となる車両旋回特性を維持することが可能となるのである。なお、サスペンションジオメトリに依拠するところの旋回特性がアンダーステア傾向以外の場合であっても、本スタビライザシステム10を採用することにより、旋回特性をアンダーステア傾向とすることが可能となっている。
≪動作方向によるアクチュエータの効率の差異≫
ここで、アクチュエータの効率(以下、「アクチュエータ効率」という場合がある)について考察する。アクチュエータ効率は、正効率,逆効率との2種が存在する。アクチュエータ逆効率(以下、単に「逆効率」という場合がある)ηNは、ロール,ピッチ,車体の静荷重等、外部からスタビライザバー28に作用する力(以下、「外部入力」という場合がある)によっても電動モータ40が回転させられない最小のモータ力のその外部入力に対する比率と定義し、また、アクチュエータ正効率(以下、単に「正効率」という場合がある)ηPは、上記外部入力に抗してスタビライザバー28のトーションバー部90を回転させるのに必要な最小のモータ力に対するその外部入力の比率と定義することができる。つまり、スタビライザ力をFsと、電動モータ40が発生する力であるモータ力をFmとすれば、正効率ηP,逆効率ηNは、下式のように表現でき、
正効率ηP=Fs/Fm
逆効率ηN=Fm/Fs
それら正効率ηP,逆効率ηNは、一般的なアクチュエータでは、図9に示されている正効率特性線、逆効率特性線の傾きに相当するものとなる。ちなみに、モータ力は、電動モータ40への供給電流量iに比例すると考えることができる。
図9から解るように、同じ大きさのスタビライザ力Fsを発生させる場合であっても、正効率特性下において必要な電動モータ40のモータ力FmPと、逆効率特性下において必要なモータ力FmNとでは、その値が異なり(FmP>FmN)、電動モータ40が同じ大きさのモータ力Fmを発生している場合であっても、正効率特性下において発生可能なスタビライザ力FsPと、逆効率特性下において発生可能なスタビライザ力FsNとでは、その値が異なるものとなっている(FsN>FsP)。すなわち、電動モータ40のモータ力Fmに対応する電動モータ40への供給電流量をimとすれば、その電流量imが電動モータ40に供給された場合、逆効率ηNに従うスタビライザ力FsNに釣り合う外部入力によっても電動モータ40が回転させられず、逆に、正効率ηPに従うスタビライザ力FsPに釣り合う外部入力以下の外部入力に対してしか、スタビライザバー28のトーションバー部90を回転させることができないのである。
それに対して、本スタビライザシステム10の備えるアクチュエータ32の効率は、図10に示すように、スタビライザ力の方向、つまり、モータ力の発生方向によって、正効率,逆効率とも互いに異なるように調整されている。詳しく言えば、図10における、正効率ηPR,逆効率ηNRは、それぞれ、スタビライザ力がリバウンド方向に発揮された場合、つまり、モータ力がその方向と対応する方向(以下、「リバウンド対応方向」という場合がある)に発揮された場合のものとされ、また、正効率ηPB,逆効率ηNBは、スタビライザ力がバウンド方向に発揮された場合、つまり、モータ力がその方向と対応する方向(以下、「バウンド対応方向」という場合がある)に発揮された場合のものとされており、正効率ηP,逆効率ηNともに、スタビライザ力がリバウンド方向に発揮されている場合のほうが、バウンド方向に発揮されている場合に比較して、低くされている。具体的には、正効率特性下において、同じ大きさのスタビライザ力FsPを発揮させる場合であっても、必要となるリバウンド対応方向におけるモータ力FmPRは、バウンド対応方向に必要なモータ力FmPBより大きく、そのために、外部入力に抗ってリバウンド方向に電動モータ40を回転させ難く、つまり、アクチュエータ32を回転させ難くなっている。一方、逆効率特性下において、同じ大きさのスタビライザ力FsNを発生させる場合であっても、必要となるリバウンド対応方向のモータ力FmNRは、バウンド対応方向モータ力FmNBより小さくされており、それらの方向とは逆方向における同じ大きさの外部入力が作用した場合であっても、電動モータ40がバウンド対応方向に、つまり、アクチュエータ32がバウンド方向に回転させられ難くなっている。このことは、図におけるモータ力FmNR,FmNB,FmPR,FmPBとそれらに対応する電動モータ40への供給電流量iNR,iNB,iPR,iPBとの関係から解るように、正効率特性下では、スタビライザ力をリバウンド方向に発揮させる場合のほうが、バウンド方向に発揮させる場合に比較して、電動モータ40に電力を多く供給しなければならず、逆に、逆効率特性下では、スタビライザ力をリバウンド方向に発揮させる場合のほうが、バウンド方向に発揮させる場合に比較して、電動モータ40への電力の供給がすくなくても済むことを意味している。
モータ力の方向つまりスタビライザ力の方向によってアクチュエータ効率を変化させるために、アクチュエータ32の減速機42は、モータ力の方向によって内部損失が異なる構造とされている。詳しく言えば、図11に示すように、第1の歯車としてのリングギヤ60の内周に形成された歯および第2の歯車としてのフレキシブルギヤ58の外周に形成された歯の形状を特徴的のものとすることで、上記内部損失を異ならせているのである。具体的に言えば、図11(a)はバウンド対応方向にモータ力を発生している状態を、図11(b)はリバウンド対応方向にモータ力を発生している状態を示すものであり、噛合状態においてリングギヤ60の歯とフレキシブルギヤ58の歯とが互いに接触する面どうしによって規定される圧力角βは、リバウンド対応方向における圧力角βRが、バウンド対応方向における圧力角βBより大きくされているのである。このような圧力角βの差異により、減速機42は、モータ力の方向によって内部損失が異なるものとされている。
上述したところのリバウンド方向の逆効率ηNRが低くされていることは、本スタビライザシステム10において、前述の車高調整制御に有利に作用するものとなっている。本スタビライザシステム10の車高調整制御は、積載・搭乗重量が最も小さいと想定される状態を基準状態とし、その状態から積載・搭乗重量が多くなることに伴って生じる車高の減少を抑制あるいは解消すべく、車高を高くする方向の車高調整を行うようにされている。つまり、車高調整のためのスタビライザ力は、専ら、バウンド方向の外部入力に対抗してリバウンド方向に発揮される。したがって、本スタビライザシステム10では、リバウンド方向の逆効率ηNRが低くされていることで、調整された車高を維持する場合において電動モータ42には比較的小さな電力しか必要とされないことになり、本システム10は、省電力なシステムとされているのである。
≪スタビライザシステムの制御≫
上述のように、本スタビライザシステム10は、4つのスタビライザ装置20をそれぞれ制御することで、ロール抑制制御,ピッチ抑制制御,車高調整制御が可能とされており、それら3つの制御が組み込まれた総合的なスタビライザ制御が実行可能とされている。このスタビライザ制御では、各スタビライザ装置20において、車体が受けるロールモーメント,ピッチモーメント,積載・搭乗重量等に基づいて、適切なスタビライザ力を発揮させるべく、スタビライザバー28のトーションバー部90の捩り量が適切な量となるようなアクチュエータ32の作動が制御される。なお、スタビライザ力と電動モータ40の回転角であるモータ回転角とは対応関係にあるため、実際の制御では、目標モータ回転角が決定され、実際のモータ回転角が目標モータ回転角となるように制御が実行される。ちなみに、スタビライザ力の方向および大きさは、発生させるべきモータ力の方向および大きさすなわち電動モータ40への供給電力と対応関係にあり、実際の電動モータ42の制御は、供給電力が適切なものとなるように実行される。
スタビライザ制御では、上述の目標モータ回転角は、ロール抑制制御,ピッチ抑制制御,車高調整制御の各制御ごとの目標モータ回転角成分であるロール抑制目標モータ回転角成分,ピッチ抑制目標モータ回転角成分,車高調整目標モータ回転角成分を合計したものとされる。以下に、ロール抑制制御,ピッチ抑制制御,車高調整制御の各々を、それら各々における目標モータ回転角成分の決定方法を中心に詳しく説明するとともに、上記電動モータ40への供給電力の決定について詳しく説明する。
なお、以下の説明において、電動モータ40のモータ回転角θは、車両が平坦路で静止しかつ標準体重(例えば、60kg)の運転者のみが車両に搭乗している状態(以下、「基準状態」という場合がある)での電動モータ40のモータ回転角θを基準角(θ=0)とし、その基準角からの変位角(360゜を超える場合もある)として扱うものとし、また、基準角からリバウンド対応方向に回転した角度である場合に+、バウンド対応方向に回転した角度である場合に−とする。また、厳密には、車輪の分担荷重差,サスペンションスプリング86の剛性差等により、前輪側12FL,FRに設けられたスタビライザ装置20FL,FRと後輪側12RL,RRに設けられたスタビライザ装置20RL,RRとでは、発揮すべきスタビライザ力は異なり、目標モータ回転角は異なるものとなるが、以下の説明では、説明を単純化するために、そのような前後差はないものとして扱うこととする。
i)ロール抑制制御
ロール抑制制御では、車体が受けるロールモーメントを指標する横加速度に基づいて、ロール抑制目標モータ回転角成分θ* Rが決定される。詳しく言えば、ステアリングホイールの操舵角δと車両走行速度vに基づいて推定された推定横加速度Gycと、実測された実横加速度Gyrとに基づいて、制御に利用される横加速度である制御横加速度Gy*が、次式に従って決定される。
Gy*=KA・Gyc+KB・Gyr
ここで、KA,KBはゲインであり、そのように決定された制御横加速度Gy*に基づいて、ロール抑制目標モータ角成分θ* Rが決定される。スタビライザECU150内には制御横加速度Gy*をパラメータとするロール抑制目標モータ角成分θ* Rのマップデータが格納されており、そのマップデータを参照して、ロール抑制目標モータ角成分θ* Rが決定される。図12に、このマップデータを概念的に示す。実線は左側車輪12FL,RLに対して設けられたスタビライザ装置20FL,RLに対応し、点線は右側車輪12FR,RRに対して設けられたスタビライザ装置20FR,RRに対応している。大まかに言えば、制御横加速度Gy*の値が正のときは、車両は左旋回中であり、制御横加速度Gy*の値が負のときは、車両は右旋回中であることを意味している。例えば、車両の左旋回時には車体のロールを抑制するため、旋回内輪である左側車輪12FL,RLを適正量バウンドさせるように、それらの車輪に対応するスタビライザ装置20FL,RLのロール抑制目標モータ角成分θ* Rが決定され(実線)、旋回外輪である右側車輪12FR,RRを適正量リバウンドさせるようにそれらの車輪に対応するスタビライザ装置20FR,RRのロール抑制目標モータ角成分θ* Rが決定される(点線)。この際の制御横加速度Gy*をGy* Aとすると、図から解るように、左側車輪12FL,RLに対応するスタビライザ装置20FL,RLにおけるロール抑制目標モータ角成分θ* RNの絶対値は、右側車輪12FR,RRに対応するスタビライザ装置20FR,RRにおけるロール抑制目標モータ角成分θ* RGの絶対値より大きくされる(|θ* RN|>|θ* RG|)。車両の右旋回時においては、ロール抑制目標モータ角成分θ* Rの符号は逆になり、右側車輪12FR,RRに対応するスタビライザ装置20FR,RRにおけるロール抑制目標モータ角成分θ* RNの絶対値は、左側車輪12FL,RLに対応するスタビライザ装置20FL,RLにおけるロール抑制目標モータ角成分θ* RGの絶対値より大きくされる(|θ* RN|>|θ* RG|)。つまり、本ロール抑制制御によれば、旋回内輪側のバウンド方向のスタビライザ力が旋回外輪側のリバウンド方向のスタビライザ力より大きくされ、そのことによって、旋回内輪の浮き上がりが抑制されるとともに、車体の重心位置が低くされることで、旋回時における車両の安定性が向上させられることとなる。
ii)ピッチ抑制制御
ピッチ抑制制御では、車体が受けるピッチモーメントを指標する前後加速度に基づいて、ピッチ抑制目標モータ回転角成分θ* Pが決定される。つまり、実測された実前後加速度Gzgに基づいて、ピッチ抑制目標モータ回転角成分θ* Pが決定される。スタビライザECU150内には実前後加速度Gzgをパラメータとするピッチ抑制目標モータ回転角成分θ* Pのマップデータが格納されており、そのマップデータを参照して、ピッチ抑制目標モータ回転角成分θ* Pが決定される。図13に、このマップデータを概念的に示す。実線は前輪12FL,FRに対して設けられたスタビライザ装置20FL,FRに対応し、点線は後輪12RL,RRに対して設けられたスタビライザ装置20RL,RRに対応している。実前後加速度Gzgの値が正のときは、車体がスクワット傾向にある場合、概して言えば発進時等の車両加速時を、実前後加速度Gzgの値が負のときは、車体がノーズダイブ傾向にある場合、概して言えば制動時等の車両減速時を意味している。つまり、車両のある程度急激な加速時には車両のスクワットを抑制するため、各前輪12FL,FRを適正量バウンドさせるように、それらの車輪に対応するスタビライザ装置20FL,FRのピッチ抑制目標モータ回転角成分θ* Pが決定され(実線)、各後輪12RL,RRを適正量リバウンドさせるように、それらの車輪に対応するスタビライザ装置12RL,RRのピッチ抑制目標モータ回転角成分θ* Pが決定される(点線)。逆に、車両のある程度の急激な減速時には車両のノーズダイブを抑制するため、各前輪12FL,FRを適正量リバウンドさせるように、それらの車輪に対応するスタビライザ装置20FL,FRのピッチ抑制目標モータ回転角成分θ* Pが決定され(実線)、各後輪12RL,RRを適正量バウンドさせるように、それらの車輪に対応するスタビライザ装置12RL,RRのピッチ抑制目標モータ回転角成分θ* Pが決定される(点線)。
iii)車高調整制御
車高調整制御では、積載・搭乗重量を指標する各車輪12と車体との離間距離に基づいて、車高調整目標モータ回転角成分θ* Hが決定される。詳しくいえば、ストロークセンサ163によって車輪12と車体との実際の距離Lが検出され、車輪12と車体との設定距離L*に対する実距離Lの偏差である距離偏差ΔLが、各車輪について算出される。なお、車輪12と車体との設定距離L*は、先に説明したように、基準状態での車輪12と車体との距離とされている。その距離偏差ΔLに基づいて、車高調整目標モータ回転角成分θ* Hが決定される。スタビライザECU150内には距離偏差ΔLをパラメータとする車高調整目標モータ回転角成分θ* Hのマップデータが格納されており、そのマップデータを参照して、車高調整目標モータ回転角成分θ* Hが決定される。なお、先に説明したように、最も積載・搭乗重量が小さいと想定される状態を基準状態としているため、スタビライザ力は、殆どの場合、車高を上昇させる方向の力となり、車高調整目標モータ回転角成分θ* Hは、リバウンド対応方向に回転した角度となる。
iv)電動モータへの供給電力の決定
以上のように、ロール抑制目標モータ回転角成分θ* R,ピッチ抑制目標モータ回転角成分θ* P,車高調整目標モータ回転角成分θ* Hがそれぞれ決定されると、それらを合計した目標モータ回転角θ*が決定される。このように、電動モータ40の制御は、回転角に基づいて行われるが、その制御の際に、電動モータ40に供給される電力は、実際のモータ回転角である実モータ回転角θの目標モータ回転角θ*からの偏差であるモータ回転角偏差Δθ(=θ*−θ)と、目標モータ回転角θ*とに基づいて決定される。概して言えば、モータ回転角偏差Δθに基づくフィードバック制御の手法に従って決定され、実際には、電動モータ40への目標供給電流i*が決定されることによって決定される。具体的には、まず、上記モータ回転角偏差Δθが認定され、次いで、それをパラメータとして、次式に従って、電動モータ40に対する目標供給電流i*が決定される。
*=K1・Δθ+K2・θ*
ここで、K1,K2は、それぞれ、第1ゲイン,第2ゲインを意味しており、以下に説明する条件によって変化させている。なお、目標供給電流i*は、それの符号によってモータ力の方向が異なることから、モータ力の方向と大きさとを表すものとなっている。
上記目標供給電流i*を決定するための式は、2つの項からなり、それら2つの項は、それぞれが、目標供給電力の成分と考えることができる。第1項の成分は、モータ回転角偏差Δθに基づく成分(以下、「偏差依拠電流成分」という場合がある)、第2項の成分は、目標モータ回転角θ*に基づく成分(以下、「目標回転角依拠成分」という場合がある)である。モータ回転角偏差Δθは、それの符号により、実モータ回転角θが目標モータ回転角θ*に近づくべき方向つまり電動モータ40を回転させるべき方向と、回転させるべき量とを表すものであり、大まかに言えば、偏差依拠成分は、外部入力に抗って電動モータ40を回転させるために必要な成分、つまり、外部入力に抗ってアクチュエータ32を動作させるモータ力の成分と考えることができる。それに対して、目標回転角依拠成分は、外部入力によっても、電動モータ40が回転させられないようにするための電流成分、つまり、外部入力の作用下、アクチュエータ32の動作位置を維持するためのモータ力の成分と考えることができる。原則的に、前述の基準状態を維持する場合には、スタビライザ力は必要とされないが、サスペンションスプリング48の弾性反力,ロールモーメント,ピッチモーメント,車体の荷重等の外力の作用下で、基準状態ではない状態を維持するためには、その基準状態から外れた程度に応じた大きさのスタビライザ力が必要とされる。したがって、基準角からの変位角である目標モータ回転角θ*の大きさに応じた電流を電動モータ40に供給し続ける必要があるのである。本スタビライザシステム10では、それらのことに鑑みて、目標供給電流i*は、上記2つの電流成分の和として決定される。
ここで、先のアクチュエータ効率を考えれば、概して言えば、上記目標回転角依拠成分は、モータ回転角θを維持するための電流成分であればよいため、逆効率ηNに従う大きさの電流成分であればよいことなる。したがって、目標供給電流i*を決定するための上記式における第2項のゲインである第2ゲインK2は、目標回転角依拠成分が逆効率特性に沿った値となるように決定すればよいのである。それに対して、上記偏差依拠成分は、外部入力の作用下において、電動モータ42を回転させるために必要な成分であるため、目標モータ回転角θ*が実際のモータ回転角θよりも基準角から離れている場合のことを考えれば、2つの供給電流成分の和が正効率ηPを超える大きさとなるようにする必要がある。そのことに鑑みて、その条件を満足するように、上記式における第1項のゲインである第1ゲインK1を決定する必要がある。
ところが、先に説明したように、本スタビライザシステム10のアクチュエータの効率は、スタビライザ力がリバウンド方向に発揮される場合、つまり、電動モータ40のモータ力の方向がリバウンド対応方向とされる場合には、正効率ηP,逆効率ηNとも低くされ、スタビライザ力がバウンド方向に発揮される場合、つまり、電動モータ40のモータ力の方向がバウンド対応方向とされる場合には、正効率ηP,逆効率ηNとも高くされている。そのことに鑑み、本スタビライザシステム10においては、第1ゲインK1は、モータ回転角偏差Δθの符号によって変更される。具体的に言えば、モータ回転角偏差Δθの符号が正となる場合には電動モータ40にリバウンド対応方向のモータ力を発揮させてアクアクチュエータ32を動作させる必要があり、モータ回転角偏差Δθの符号が負となる場合には電動モータ40にバウンド対応方向のモータ力を発揮させてアクチュエータ32を動作させればよいことから、モータ回転角偏差Δθが0以上の場合の第1ゲインがK1(H)とされ、モータ回転角偏差Δθが0未満の場合の第1ゲインがK1(L)(<K1(H))とされる。その一方で、第2ゲインK2は、目標モータ回転角θ*の符号によって変更される。具体的に言えば、目標モータ回転角θ*が正の場合は、リバウンド対応方向のモータ力を発揮させてアクチュエータ32の動作位置を維持すればよく、目標モータ回転角θ*が負の場合は、バウンド対応方向のモータ力を発揮させてアクチュエータ32の動作位置を維持する必要があることから、目標モータ回転角θ*が0以上の場合には、第2ゲインがK2(L)とされ、目標モータ回転角θ*が0未満の場合の第2ゲインがK2(H)(>K2(L))とされる。
第1ゲインK1,第2ゲインK2を変更しつつ、上記式によって目標供給電流i*が決定された後、目標供給電流i*の符号に依拠するモータ力発生方向に対する指令および目標供給電流i*の大きさに応じたデューティ比の指令が、スタビライザECU150によってインバータ132に送信され、インバータ132の制御下で、アクチュエータ32つまりスタビライザ装置20が作動が制御される。
なお、上述のスタビライザ制御が実行される際には、車両の通常走行中おいて、車両の旋回,急加速,急減速は、それぞれ相当の頻度で発生し、それら発生の都度に応じて上記ロール抑制制御,ピッチ抑制制御が実行されるが、車高調整制御は、車高調整が必要とされる場合には、恒久的若しくはある程度継続的に実行される。したがって、車高調整制御は、ロール抑制制御,ピッチ抑制制御に比較して時間的に長く実行されることになる。先に説明したように、車高調整制御が実行されている場合には、概ねリバウンド方向のスタビライザ力が発揮された状態とされるため、比較的長時間にわたって、車高を維持するための電流成分としての役割を果たす上記目標回転角依拠成分に関する第2ゲインK2が小さくされることになる。このようにして、本スタビライザシステム10では、車高調整を実行する割には省電力なシステムとされているのである。
≪スタビライザ制御プログラム≫
上述のスタビライザ制御は、図14にフローチャートを示すスタビライザ制御プログラムが、イグニッションスイッチがON状態とされている間、短い時間間隔(例えば、数msec)をおいてスタビライザECU150により繰り返し実行されることによって行われる。以下に、スタビライザ制御のフローを、図に示すフローチャートを参照しつつ、簡単に説明する。
スタビライザ制御プログラムによる処理では、まず、車体のロールの発生の有無が判断される。詳しく言えば、ロールは車両の旋回時に発生することから、まず、上述の操作角センサ152,車速センサ154の検出値に基づいて判断される。具体的には、ステアリングホイールの操作角が閾角度以上、かつ、車速が閾速以上となった場合に、車両の旋回に起因する車体のロールが実質的に発生するあるいは発生していると判断される。車体のロールが発生するあるいは発生していると判断された場合には、ロール抑制制御を実行するため、上述のように、ロール抑制目標モータ回転角成分θ* Rが取得される。
次に、車体のピッチの発生の有無が判断される。詳しく言えば、上述のように、車体のピッチにはノーズダイブとスクワットとがあり、ノーズダイブは車両の減速時に、スクワットは車両の加速時に発生する。そのため、上述の前後加速度センサ158,スロットルセンサ160,ブレーキ圧センサ162の検出値に基づいて、抑制すべき程度を超えたノーズダイブ・スクワットの発生の有無が判断される。具体的には、前後加速度の絶対値が閾加速度以上、かつ、ブレーキ圧が閾圧以上となった場合に、車体がノーズダイブするあるいはしていると判断され、前後加速度の絶対値が閾加速度以上、かつ、アクセルスロットの開度が閾値以上となった場合に、車体はスクワットするあるいはしていると判断される。車体にノーズダイブ・スクワットのいずれか一方が発生するあるいは発生していると判断された場合には、ピッチ抑制制御を実行するため、上述のように、ピッチ抑制目標モータ回転角成分θ* Pが取得される。
続いて、積載・搭乗重量が変化したか否かが判断される。具体的には、イグニッションスイッチをON状態とした直後、および、各ドアに設けられたドアセンサ164により各ドアのいずれか1つのドアが開けられた後に閉められたことが検出された場合に、乗員,荷物等が増減しているとして、積載・搭載重量が変化した可能性があると認定される。この認定を条件として、車両が静止状態にある場合において、ストロークセンサ163の検出値に基づいて、前述したところの車輪12と車体との距離についての偏差ΔLが求められ、その求められた偏差ΔLが、それ以前の偏差ΔLから実質的に変化したか否かによって、積載・搭乗重量が変化したか否かが判断される。車高調整目標モータ回転角成分θ* Hは、前回までの値が常に記憶されており、積載・搭載重量が変化したと判断された場合には、上述のようにして、新たに、車高調整目標モータ回転角成分θ* Hの値が取得され、その新たに取得された値が、既に記憶されている値に置き換えることによって、車高調整目標モータ回転角成分θ* Hが変更される。
次に、ロール抑制目標モータ回転角成分θ* R,ピッチ抑制目標モータ回転角成分θ* P,車高調整制御目標モータ回転角成分θ* Hが合計されることによって、目標モータ回転角θ*が決定される。この目標モータ回転角θ*と実際のモータ回転角θとからモータ回転角偏差Δθが算出され。続いて、上述のように、モータ回転角偏差Δθと目標モータ回転角θ*とのそれぞれの符号によって、第1ゲインK1と第2ゲインK2とが決定される。そして、それぞれのゲインK1,K2に基づいて、上記式に従って目標供給電流i*が決定される。その決定された目標供給電流i*に基づくモータ力発生方向およびデューティ比についての指令が、インバータ132に発令される。以上の一連の処理の後、本プログラムの1回の実行が終了する。
(B)第2実施例
本実施例の車両用スタビライザシステムにおいては、ロール抑制制御は実行されないが、ピッチ抑制制御と車高調整制御とは実行可能な態様とされている。図15に、第2実施例の車両用スタビライザシステム180を模式的に示す。本実施例の車両用スタビライザシステム180は、第1実施例の車両用スタビライザシステム10と共通する構成要素を多く備えているため、車両用スタビライザシステム180の説明において、第1実施例と共通する構成要素については、同じ符号を用い、それらの説明は省略あるいは簡略に行うものとする。本スタビライザシステム180は、前輪12FL,FRと後輪12RL,RRとの各々に対応した2つのスタビライザ装置182を含んで構成されている。スタビライザ装置182はそれぞれ、スタビライザバー184と、スタビライザバー184を回転させるアクチュエータ186と、1対のリンクロッド188とを備えている。スタビライザバー184は、その両端部において左右のサスペンション装置36に各リンクロッド34を介してそれぞれ連結され、その車幅方向の中央部においてアクチュエータ186に連結されている。なお、スタビライザ装置182,スタビライザ装置182を構成するスタビライザバー184等は総称であり、前輪,後輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、前輪,後輪の各々に対応するものにF,Rを付す場合がある。
アクチュエータ186は、図16に示すように、外殻部材としての略円筒状のハウジング192を備えており、そのハウジング192の外周面に設けられた一対の取付部材194によって車体に固定的に取り付けられている。さらに、アクチュエータ186は、先のアクチュエータ32と同様に、ハウジング192の内部に電動モータ40と減速機42とを備えている。その電動モータ40の備える中空状のモータ軸52の内部を貫通した状態、すなわち、アクチュエータ186を貫通した状態で、上述のスタビライザバー184がアクチュエータ186と連結されている。詳しくいえば、スタビライザバー184は、1対のスタビライザバー部材196とそれらスタビライザバー部材196の各々を連結する連結パイプ200とを含んで構成されている。それらスタビライザバー部材196の各々が、ハウジング192内にそれの両端部から延び入り、さらに、モータ軸52を貫通する連結パイプ200内にそれの両端部から延び入っている。それらスタビライザバー部材196の連結パイプ200内に存在する各々の一方の端部がそれぞれ、連結パイプ200の軸方向の略中央部において連結パイプ200とセレーション嵌合によって相対回転不能かつ、軸方向に相対移動不能に接続されている。その連結パイプ200が、その一方の端部において減速機42の出力部としてのフレキシブルギヤ58の底部とセレーション嵌合によって、相対回転不能かつ、軸方向に相対移動不能に接続されており、その他方の端部において、ブッシュ型軸受201を介してハウジング192に相対回転可能に保持されている。また、連結パイプ200の両端部の内壁には、緩衝ゴム202,204がそれぞれ固着されており、ハウジング192の一方の端部には、ブーツ206が設けられている。
図17に、スタビライザ装置182と、それに対応する左右の車輪とサスペンション装置とを車両上方からの視点において示す。スタビライザ装置182の備えるスタビライザバー184は、略車幅方向に延びるトーションバー部210と、トーションバー部210の両端部のそれぞれと連続するとともに各々と交差して概ね車両前方に延びる1対のアーム部212とに区分することができる。つまり、トーションバー部210は、各スタビライザバー部材196の略車幅方向に延びる部分と連結パイプ200とを含んで構成されている。スタビライザバー184のトーションバー部210は、各アーム部212に近い箇所において、車体に固定された1対の保持具94によって車体の一部に回転可能に保持されている。また、アクチュエータ186は、上述の取付部材194によって車体の幅方向における中央付近に固定されている。スタビライザバー184の各アーム部212の端部(トーションバー部210側とは反対側の端部)はそれぞれ、各リンクロッド188をそれぞれ介して、左右のサスペンション装置36がそれぞれ備える各第2ロアアーム78に連結されている。それら各リンクロッド188は、先のリンクロッド34と同様に、それぞれに対応する第2ロアアーム78に対して傾斜して設けられている。具体的にいえば、図示は省略するが、前輪側のサスペンション装置36FL,FRの第2ロアアーム78FL,FRに対して、それぞれに連結される各リンクロッド188Fが、概して車幅方向における車体外側に傾斜するように配設され、また、後輪側のサスペンション装置36RL,RRの第2ロアアーム78RL,RRに対して、それぞれに連結される各リンクロッド188Rが、概して車幅方向における車体中央側に傾斜するように配設されているのである。
本実施例のスタビライザシステム180においては、アクティブなロール抑制制御は実行されないが、スタビライザ装置182の備えるスタビライザバー184が、車両の旋回時において、1本のコンベンショナルなスタビライザバーと略同様に機能する。詳しくいえば、車体のロールに伴いスタビライザバー184のトーションバー部210が捩られ、その捩り反力に依拠するスタビライザ力によって車体のロールが抑制される。そのため、車両の旋回に伴う各車輪12と車体との接近離間が抑制され、上述のサスペンションジオメトリに依拠するところの旋回特性におけるアンダーステア傾向が弱まることとなる。ただし、本実施例のスタビライザ装置182においては、上述の構造からスタビライザ力の一部が第2ロアアーム78の軸力として作用し、サスペンション装置36のコンプライアンスが変化させられる。その結果として、車輪12のトー角,キャンバ角が変化させられ、アンダーステア傾向が助長されることになる。つまり、本スタビライザシステム180を採用することにより、アクティブなロール抑制制御を実行せずに、車体のロールを抑制しつつ、アンダーステア傾向となる車両旋回特性を維持することが可能となるのである。
また、本スタビライザ装置182は、アクチュエータ186によって左右輪側に同方向、つまり、左右輪側ともにバウンド方向若しくは、左右輪側ともにリバウンド方向のスタビライザ力を発揮させることが可能となっている。また、本スタビライザシステム180では、2つのスタビライザ装置182F,Rをそれぞれ独立して制御することが可能となっている。すなわち、各スタビライザ装置182によるスタビライザ力が、それぞれ、独立して制御されて、車体のピッチを抑制する制御(以下、「ピッチ抑制制御」という場合がある)、車体の路面からの高さを調製する制御(以下、「車高調整制御」という場合がある)が実行される。
本実施例のアクチュエータ186には先の実施例と同様の減速機42が備えられていることから、減速機42の備える各ギヤ58,60のそれぞれの歯が噛合して接触するそれぞれのギヤ58,60の歯面どうしの圧力角は、モータ力の方向によって異なっている。本実施例においては、先の実施例と同様に、モータ力がリバウンド対応方向に発揮されている場合の圧力角は、モータ力がバウンド対応方向に発揮されている場合の圧力角より大きくされている。つまり、正効率,逆効率ともに、スタビライザ力がリバウンド方向に発揮されている場合のほうが、バウンド方向に発揮されている場合に比較して、低くされている。このため、本実施例における車高調整制御において、先の実施例と同様に、調整された車高を維持する場合において電動モータ42には比較的小さな電力しか必要とされないことになり、本システム180は、省電力なシステムとされているのである。
本スタビライザシステム180は、上述のように、ピッチ抑制制御,車高調整制御が実行可能とされており、それら2つの制御が組み込まれた総合的なスタビライザ制御が実行可能とされている。このスタビライザ制御は、図18にフローチャートを示す第2スタビライザ制御プログラムが、イグニッションスイッチがON状態とされている間、短い時間間隔(例えば、数msec)をおいてスタビライザECU150により繰り返し実行されることによって行われる。本実施例のピッチ抑制制御,車高調整制御は先の実施例のピッチ抑制制御,車高調整制御と略同様の制御とされているため、先のスタビライザ制御と同様の制御の説明については、省略あるいは簡略に行うものとする。なお、本実施例におけるスタビライザ制御では、前輪側と後輪側とのそれぞれのスタビライザ装置182を独立して制御するようにされている。
第2スタビライザ制御プログラムによる処理では、先の実施例と同様に、車体のピッチの発生の有無が判断され、ピッチが発生するあるいはしていると判断された場合には、ピッチ抑制制御を実行するため、ピッチ抑制目標モータ回転角成分θ* Pが取得される。次に、積載・搭乗重量が変化したか否かが判断され、その結果によって、車高調整目標モータ回転角成分θ* Hが変更される。その際に使用される車輪12と車体との距離についての偏差ΔLは、先の実施例と異なり、設定距離L*に対する左右のそれぞれの車輪と車体との実際の各距離の平均距離Lの偏差とされている。次に、ピッチ抑制目標モータ回転角成分θ* P,車高調整制御目標モータ回転角成分θ* Hが合計されることによって、目標モータ回転角θ*が決定される。以下の処理については、先の制御プログラムと同様に実行され、一連の処理の後、本プログラムの1回の実行が終了する。
(C)第3実施例
本実施例の車両用スタビライザシステムにおいては、ピッチ抑制制御と車高調整制御とは実行されないが、ロール抑制制御は実行可能な態様とされている。図19に、第3実施例の車両用スタビライザシステム220を模式的に示す。本実施例の車両用スタビライザシステム220は、第1実施例の車両用スタビライザシステム10と共通する構成要素を多く備えているため、車両用スタビライザシステム220の説明において、第1実施例と共通する構成要素については、同じ符号を用い、それらの説明は省略あるいは簡略に行うものとする。本スタビライザシステム220は、前輪12FL,FRと後輪12RL,RRとの各々に対応した2つのスタビライザ装置222を含んで構成されている。スタビライザ装置222はそれぞれ、一対のスタビライザバー224と、それらスタビライザバー224を相対回転させるアクチュエータ226と、1対のリンクロッド228とを備えている。各スタビライザバー224の一端部はそれぞれアクチュエータ226に接続されており、他端部はそれぞれ、左右のサスペンション装置36に各リンクロッド228を介して連結されている。なお、スタビライザ装置222,スタビライザ装置222を構成するスタビライザバー224等は総称であり、前輪,後輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、前輪,後輪の各々に対応するものにF,Rを付す場合がある。
アクチュエータ226は、図20に示すように、外殻部材としての略円筒状のハウジング230を備えており、その内部に電動モータ40と減速機232とを備えている。そのハウジング230の両端部の各々には、2つの出力軸244,246の各々が延び出すように配設されている。一方の出力軸244は、ハウジング230の端部に固定して接続されており、また、他方の出力軸246は、ハウジング230内に延び入る状態で配設されるとともに、ハウジング230に対して回転可能かつ軸方向に移動不能に支持されている。詳しくいえば、減速機232の出力部として機能する出力軸246は、ハウジング230内に延び入って電動モータ40の備えるモータ軸52を貫通した状態で、その出力軸246のハウジング230内に存在する一方の端部において、減速機232の備えるフレキシブルギヤ248とセレーション嵌合によって、相対回転不能かつ、軸方向に相対移動不能に接続されており、出力軸246の軸方向の中央部において、ブッシュ型軸受249を介してハウジング230に相対回転可能に保持されている。
図21に、スタビライザ装置222と、それに対応する左右の車輪とサスペンション装置とを車両上方からの視点において示す。スタビライザ装置222の備える各スタビライザバー224はそれぞれ、略車幅方向に延びるトーションバー部250と、トーションバー部250と連続するとともにそれと交差して概ね車両前方に延びるアーム部252とに区分することができる。各スタビライザバー224のトーションバー部250はそれぞれ、各アーム部252に近い箇所において、車体に固定された1対の保持具254によって車体の一部に回転可能かつ、軸方向に移動不能に保持されている。それらトーションバー部250の端部(車幅方向における中央側の端部)はそれぞれ、ハウジング230の両端部から延びだす各出力軸244,246の端部とセレーション嵌合によって相対回転不能に接続されている。一方、スタビライザバー224の各アーム部252の端部(トーションバー部250側とは反対側の端部)はそれぞれ、各リンクロッド228をそれぞれ介して、左右のサスペンション装置36がそれぞれ備える各第2ロアアーム78に連結されている。それら各リンクロッド228は、第1実施例のリンクロッド34と同様に、それぞれに対応する第2ロアアーム78に対して傾斜して設けられている。具体的にいえば、図示は省略するが、前輪側のサスペンション装置36FL,FRの第2ロアアーム78FL,FRに対して、それぞれに連結される各リンクロッド228Fが、概して車幅方向における車体外側に傾斜するように配設され、また、後輪側のサスペンション装置36RL,RRの第2ロアアーム78RL,RRに対して、それぞれに連結される各リンクロッド228Rが、概して車幅方向における車体中央側に傾斜するように配設されているのである。
本実施例のスタビライザシステム220においては、車高調整制御は実行されないことから、モータ力の方向に関わらずアクチュエータの正効率,逆効率とも互いに同じになるように調整されている。具体的には、減速機232の備えるフレキシブルギヤ248とリングギヤ256とのそれぞれの歯が噛合して接触するそれぞれのギヤ248,256の歯面どうしの圧力角は、電動モータ40の回転方向に関わらず同じとされている。
本スタビライザ装置222は、アクチュエータ226によって左右輪側に異方向、つまり、左右車輪の一方側にバウンド方向,他方側にリバウンド方向のスタビライザ力を発揮させることが可能となっている。さらに言えば、アクチュエータ226が車体に固定されておらず、アクチュエータ226によって左右輪側に同じ大きさのスタビライザ力が発揮させられる。つまり、1つのアクチュエータ226によって、左右輪側それぞれに相対的なスタビライザ力が発揮されるのである。また、本スタビライザシステム220では、2つのスタビライザ装置222F,Rをそれぞれ独立して制御することが可能となっている。すなわち、各スタビライザ装置222によるスタビライザ力が、それぞれ、独立して制御されて、車体のロールを抑制する制御(以下「ロール抑制制御」という場合がある)が実行される。
本スタビライザシステム220を搭載する車両においては、旋回時の車体姿勢の安定を目的として、ロール抑制制御が実行されることから、車体の旋回に伴う各車輪12と車体との接近離間が抑制される。そのため、上述のサスペンションジオメトリに依拠するところの旋回特性におけるアンダーステア傾向が弱まることとなる。ただし、本実施例のスタビライザ装置222においては、第1実施例と同様に、上述の構造からスタビライザ力の一部が第2ロアアーム78の軸力として作用し、サスペンション装置36のコンプライアンスが変化させられる。その結果として、車輪12のトー角,キャンバ角が変化させられ、アンダーステア傾向が補償されることになる。したがって、本スタビライザシステム220を採用することにより、車体のロールを抑制しつつ、アンダーステア傾向となる車両旋回特性を維持することが可能となるのである。
上述のロール抑制制御は、図22にフローチャートを示すロール抑制制御プログラムが、イグニッションスイッチがON状態とされている間、短い時間間隔(例えば、数msec)をおいてスタビライザECU150により繰り返し実行されることによって行われる。本実施例のロール抑制制御は第1実施例のロール抑制制御と略同様の制御とされているため、第1実施例のスタビライザ制御と同様の制御の説明については、省略あるいは簡略に行うものとする。なお、本実施例におけるスタビライザ制御では、前輪側と後輪側とのそれぞれのスタビライザ装置222を独立して制御するようにされている。
ロール抑制制御プログラムによる処理では、第1実施例と同様に、車体のロールの発生の有無が判断され、ロールが発生するあるいはしていると判断された場合には、ロール抑制制御を実行するため、ロール抑制目標モータ回転角成分θ* Rが決定される。ただし、上述のように、1つのアクチュエータ226によって左右輪側それぞれに相対的なスタビライザ力が発揮されることから、ロール抑制目標モータ回転角成分θ* R決定の際に参照されるマップデータは、第1実施例のものと異なり、図23のようにされている。具体的に言えば、車両の左旋回時において、制御横加速度Gy* Bとなるような場合にロール抑制目標モータ回転角成分θ* Rがθ* RBとされ、車両の右旋回時において、制御横加速度−Gy* Bとなるような場合にロール抑制目標モータ回転角成分θ* Rが−θ* RBとされている。なお、本プログラムにおいては、ロール抑制目標モータ回転角成分θ* Rが目標モータ回転角θ*とされている。以下の処理においては、上述のように、モータ力の方向に関わらずアクチュエータの正効率,逆効率とも互いに同じとされているため、目標供給電流i*を決定する際の次式の第1ゲインK1,第2ゲインK2はそれぞれ一定とされている。
*=K1・Δθ+K2・θ*
以下の処理については、第1実施例の制御プログラムと同様に実行され、一連の処理の後、本プログラムの1回の実行が終了する。
第1実施例のスタビライザシステムの全体構成を示す模式図である。 第1実施例のスタビライザ装置を構成するアクチュエータを示す概略断面図である。 第1実施例のスタビライザ装置とそれが連結されたサスペンション装置とを車両上方からの視点において示す図である。 第1実施例のスタビライザ装置とそれが連結されたサスペンション装置とを車両後方からの視点において示す図である。 第1実施例の左前輪に対応するスタビライザ装置とそれが連結されたサスペンション装置とを車両後方からの視点において示す図である。 第1実施例の左後輪に対応するスタビライザ装置とそれが連結されたサスペンション装置とを車両後方からの視点において示す図である。 車両の左旋回時における各スタビライザ装置によるスタビライザ力の方向と各車輪のトー角の変化を示す図である。 車両の左旋回時における各スタビライザ装置によるスタビライザ力の方向と各車輪のキャンバ角の変化を示す図である。 一般的なアクチュエータの正効率および逆効率を概念的に示すグラフである。 第1実施例のアクチュエータの正効率および逆効率を概念的に示すグラフである。 第1実施例の減速機を構成するフレキシブルギヤとリングギヤとの噛合部分の概略図である。 ロール抑制目標モータ回転角成分と制御横加速度との関係を示すマップデータである。 ピッチ抑制目標モータ回転角成分と実前後加速度との関係を示すマップデータである。 スタビライザ制御プログラムを示すフローチャートである。 第2実施例のスタビライザシステムの全体構成を示す模式図である。 第2実施例のスタビライザ装置を構成するアクチュエータを示す概略断面図である。 第2実施例のスタビライザ装置とそれが連結されたサスペンション装置とを車両上方からの視点において示す図である。 第2スタビライザ制御プログラムを示すフローチャートである。 第3実施例のスタビライザシステムの全体構成を示す模式図である。 第3実施例のスタビライザ装置を構成するアクチュエータを示す概略断面図である。 第3実施例のスタビライザ装置とそれが連結されたサスペンション装置とを車両上方からの視点において示す図である。 ロール抑制制御プログラムを示すフローチャートである。 ロール抑制目標モータ回転角成分と制御横加速度との関係を示すマップデータである。
符号の説明
10:車両用スタビライザシステム 12:車輪 28:スタビライザバー 32:アクチュエータ 34:リンクロッド 40:電動モータ 42:減速機(ハーモニックギヤ機構) 44:ハウジング 48:出力軸(出力部) 56:ウェーブジェネレータ(ハーモニックギヤ機構) 58:フレキシブルギヤ(出力部)(ハーモニックギヤ機構) 60:リングギヤ(ハーモニックギヤ機構) 78:第2ロアアーム(サスペンションアーム) 90:トーションバー部 92:アーム部 180:車両用スタビライザシステム 184:スタビライザバー 186:アクチュエータ 188:リンクロッド 192:ハウジング 210:トーションバー部 212:アーム部 220:車両用スタビライザシステム 224:スタビライザバー 226:アクチュエータ 228:リンクロッド 230:ハウジング 232:減速機(ハーモニックギヤ機構) 246:出力軸(出力部) 248:フレキシブルギヤ(ハーモニックギヤ機構) 250:トーションバー部 252:アーム部 256:リングギヤ(ハーモニックギヤ機構)

























Claims (7)

  1. トーションバー部とそのトーションバー部と連続するとともにそのトーションバー部と交差して延びるアーム部とを有するスタビライザバーと、前記アーム部の端部とサスペンションアームとを連結するリンクロッドと、前記スタビライザバーを前記トーションバー部の軸線まわりに回転させるアクチュエータとを備え、前記トーションバー部の捩り反力に依拠して、車輪と車体とを接近離間させる力であるスタビライザ力を発揮するとともに、前記アクチュエータによって、スタビライザ力を変更可能な車両用スタビライザシステムであって、
    前記リンクロッドが、それが連結されるサスペンションアームに対して傾斜して設けられた車両用スタビライザシステム。
  2. 前記リンクロッドが、それが連結されるサスペンションアームとのなす角度が80゜以下となるように傾斜して設けられた請求項1に記載の車両用スタビライザシステム。
  3. 前記スタビライザバーが前輪に対して設けられたものであり、
    前記リンクロッドが、(a)前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のトー角をトーイン方向に変化させ、離間する向きのスタビライザ力を発生させる場合においてトーアウト方向に変化させるような軸力と、(b)前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のキャンバ角を車輪上部が内側に向かう方向に変化させ、離間する向きのスタビライザ力を発生させる場合において車輪上部が外側に向かう方向に変化させるような軸力との少なくとも一方をサスペンションアームに対して付与する向きに傾斜させられた請求項1または請求項2に記載の車両用スタビライザシステム。
  4. 前記スタビライザバーが後輪に対して設けられたものであり、
    前記リンクロッドが、(a)前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のトー角をトーアウト方向に変化させ、離間する向きのスタビライザ力を発生させる場合においてトーイン方向に変化させるような軸力と、(b)前記スタビライザバーが車体と車輪とを接近させる向きのスタビライザ力を発生させる場合において車輪のキャンバ角を車輪上部が外側に向かう方向に変化させ、離間する向きのスタビライザ力を発生させる場合において車輪上部が内側に向かう方向に変化させるような軸力との少なくとも一方をサスペンションアームに対して付与する向きに傾斜させられた請求項1または請求項2に記載の車両用スタビライザシステム。
  5. 当該スタビライザシステムが、左右の車輪の各々に対応して、前記スタビライザバー、前記リンクロッドおよび前記アクチュエータをそれぞれ1対備えるとともに、それら1対のアクチュエータの各々が、その各々に対応する前記スタビライザバーをそれの前記トーションバー部の前記アーム部とは反対側の端部において回転させるものとされた請求項1ないし請求項4のいずれかに記載の車両用スタビライザシステム。
  6. 前記スタビライザバーが、前記トーションバー部が車幅方向に延びるように配設されるとともに、前記アーム部が左右の車輪の各々に対応してトーションバー部の両端部に1対設けられたものであり、
    当該スタビライザシステムが、左右の車輪の各々に対応して、左右のサスペンションアームの各々と前記1対のアーム部の各々とを連結する1対の前記リンクロッドを備え、
    前記アクチュエータが、前記スタビライザバーを前記トーションバー部の車幅方向の中間部において回転させるものである請求項1ないし請求項4のいずれかに記載の車両用スタビライザシステム。
  7. 当該スタビライザシステムが、左右の車輪の各々に対応して、前記スタビライザバーおよび前記リンクロッドをそれぞれ1対備え、前記1対のスタビライザバーの各々のトーションバー部が、それの各々の前記アーム部とは反対側の端部が互いに向かい合うようにして車幅方向に延びるように配設され、かつ、前記アクチュエータが、前記1対のスタビライザバーをそれらが有するトーションバー部の端部において相対回転させるものである請求項1ないし請求項4のいずれかに記載の車両用スタビライザシステム。






















JP2006032592A 2006-02-09 2006-02-09 車両用スタビライザシステム Expired - Fee Related JP4380640B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006032592A JP4380640B2 (ja) 2006-02-09 2006-02-09 車両用スタビライザシステム
KR1020087019358A KR100978772B1 (ko) 2006-02-09 2007-02-02 차량 스태빌라이저 시스템
US12/278,902 US7896360B2 (en) 2006-02-09 2007-02-02 Vehicle stabilizer system
PCT/JP2007/052308 WO2007091666A1 (en) 2006-02-09 2007-02-02 Vehicle stabilizer system
EP07708281A EP1986873B1 (en) 2006-02-09 2007-02-02 Vehicle stabilizer system
CN2007800044648A CN101378919B (zh) 2006-02-09 2007-02-02 车辆稳定器***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032592A JP4380640B2 (ja) 2006-02-09 2006-02-09 車両用スタビライザシステム

Publications (2)

Publication Number Publication Date
JP2007210456A true JP2007210456A (ja) 2007-08-23
JP4380640B2 JP4380640B2 (ja) 2009-12-09

Family

ID=37898618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032592A Expired - Fee Related JP4380640B2 (ja) 2006-02-09 2006-02-09 車両用スタビライザシステム

Country Status (6)

Country Link
US (1) US7896360B2 (ja)
EP (1) EP1986873B1 (ja)
JP (1) JP4380640B2 (ja)
KR (1) KR100978772B1 (ja)
CN (1) CN101378919B (ja)
WO (1) WO2007091666A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857361B1 (ko) 2007-11-02 2008-09-05 현대자동차주식회사 자동차의 지오메트리 제어장치
JP2010168000A (ja) * 2009-01-26 2010-08-05 Nissan Motor Co Ltd 車体傾動システム
US20120059552A1 (en) * 2009-05-08 2012-03-08 Honda Motor Co., Ltd. Rear wheel toe angle control device and method for calibrating a reference position of an electric actuator in a rear wheel toe angle control device
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
KR20170095073A (ko) * 2016-02-12 2017-08-22 주식회사 만도 차량용 스태빌라이저
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8762003B2 (en) * 2005-07-06 2014-06-24 Bombardier Recreational Products Inc. Leaning vehicle with tilting front wheels and suspension therefor
DE102007024770A1 (de) * 2007-05-26 2008-11-27 Bayerische Motoren Werke Aktiengesellschaft Aktives Fahrwerk für Kraftfahrzeuge
JP5223636B2 (ja) * 2008-12-05 2013-06-26 日産自動車株式会社 操舵輪用サスペンション装置
US8755972B2 (en) * 2009-12-25 2014-06-17 Honda Motor Co., Ltd. Rear wheel toe angle control system for a vehicle
DE112011102186T5 (de) * 2010-06-30 2013-04-11 Mazda Motor Corporation Aufhängungsvorrichtung für Fahrzeuge
US8205892B2 (en) * 2010-07-30 2012-06-26 Deere & Company Method of automatically changing wheel toe angle
US8662228B2 (en) * 2011-01-19 2014-03-04 Green Lite Motors Corporation Free-to-lean three-wheeled passenger vehicle, power plant controller and body therefor
DE102011005611A1 (de) * 2011-03-16 2012-09-20 Ford Global Technologies, Llc Vorrichtung und Verfahren zur Lenkung der Räder einer mittels Achsschenkellenkung lenkbaren Fahrzeugachse
DE102011006967A1 (de) * 2011-04-07 2012-10-11 Zf Friedrichshafen Ag Vorrichtung zum Betätigen eines Schaltelementes mit zwei Schaltelementen
DE102011016540A1 (de) * 2011-04-08 2012-10-11 Audi Ag Federungsanordnung für Radaufhängungen von Kraftfahrzeugen
DE102011075890A1 (de) * 2011-05-16 2012-11-22 Schaeffler Technologies AG & Co. KG Wankstabilisator eines Kraftfahrzeuges
US20130113407A1 (en) * 2011-11-09 2013-05-09 GM Global Technology Operations LLC Control system with remote drivers
KR101518886B1 (ko) * 2011-12-09 2015-05-12 현대자동차 주식회사 액티브 롤 컨트롤 장치
KR101283606B1 (ko) 2011-12-12 2013-07-05 현대자동차주식회사 액티브 롤 컨트롤 장치
JP6054074B2 (ja) * 2011-12-12 2016-12-27 現代自動車株式会社Hyundai Motor Company アクティブロールコントロール装置
DE102012022889A1 (de) * 2012-11-23 2014-05-28 Audi Ag Stabilisatoranordnung für eine Radaufhängung von Kraftfahrzeugen
KR101394054B1 (ko) 2012-12-31 2014-05-09 현대자동차 주식회사 액티브 롤 컨트롤 장치용 액추에이터
DE102013002714B4 (de) * 2013-02-16 2016-06-30 Audi Ag Drehfederanordnung für eine Radaufhängung eines Kraftfahrzeugs
EP3626485B1 (en) * 2013-03-15 2024-05-29 ClearMotion, Inc. Active vehicle suspension improvements
DE102013211458B4 (de) * 2013-06-19 2024-06-20 Ford Global Technologies, Llc Unabhängige Radaufhängung für die angetriebenen Räder eines Fahrzeugs
JP6030521B2 (ja) * 2013-08-30 2016-11-24 本田技研工業株式会社 後輪サスペンション装置
JP6030520B2 (ja) * 2013-08-30 2016-11-24 本田技研工業株式会社 後輪サスペンション装置
DE102014113261B4 (de) * 2014-09-15 2017-04-27 Benteler Automobiltechnik Gmbh Kraftfahrzeughinterachse mit elastischer Lagerung
DE102015203906A1 (de) * 2015-03-05 2016-09-08 Ford Global Technologies, Llc Semi-aktive Stabilisatoranordnung für ein Fahrwerk eines Fahrzeugs
US9834057B2 (en) 2015-11-04 2017-12-05 Ford Global Technologies, Llc Suspension stabilization system and related methods
DE102015222761B4 (de) 2015-11-18 2022-04-28 Volkswagen Aktiengesellschaft Gegenlenkende Kraftfahrzeug-Hinterachse
TWI592319B (zh) * 2015-12-04 2017-07-21 財團法人船舶暨海洋產業研發中心 收折式懸吊系統
DE102016200926A1 (de) * 2016-01-22 2017-07-27 Ford Global Technologies, Llc Anpassungsverfahren und Kraftfahrzeug
JP6443395B2 (ja) * 2016-06-06 2018-12-26 トヨタ自動車株式会社 スタビライザ制御装置
JP6583255B2 (ja) * 2016-12-27 2019-10-02 トヨタ自動車株式会社 車両走行制御装置
EP3409515B1 (de) * 2017-06-02 2019-11-27 Ovalo GmbH Aktives fahrwerk und verfahren zur steuerung eines aktiven fahrwerks
EP3409516B1 (de) * 2017-06-02 2022-09-28 Ovalo GmbH Aktives fahrwerk
JP6909071B2 (ja) * 2017-06-23 2021-07-28 Ntn株式会社 補助転舵機能付ハブユニットおよび車両
JP6638707B2 (ja) * 2017-07-27 2020-01-29 トヨタ自動車株式会社 サスペンション制御システム
US11083973B2 (en) * 2017-11-09 2021-08-10 Namero, LLC Vehicle hopping system
JP6605010B2 (ja) * 2017-11-27 2019-11-13 本田技研工業株式会社 車輪操舵装置
CN108146423B (zh) * 2018-02-09 2023-07-21 吉林大学 一种转向、防倾与驱动集成式轮边电驱动***及控制方法
WO2020153681A2 (ko) * 2019-01-26 2020-07-30 장순길 자동차의 스태빌라이저
KR102213288B1 (ko) 2019-01-26 2021-02-05 장순길 자동차의 스태빌라이저
US11279195B2 (en) * 2019-07-30 2022-03-22 Honda Motor Co., Ltd. Individual active torsional springs
DE102019213278A1 (de) * 2019-09-03 2021-03-04 Zf Friedrichshafen Ag Verfahren zum Betreiben eines verstellbaren Wankstabilisators
CN112937244B (zh) * 2019-12-11 2022-07-15 比亚迪股份有限公司 主动稳定杆及车辆
JP7180638B2 (ja) * 2020-06-08 2022-11-30 トヨタ自動車株式会社 車両の走行状態制御装置及び方法
US11313302B1 (en) 2021-07-06 2022-04-26 Hyundai Motor Company Engine idle speed optimization

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1489223A (fr) 1966-06-10 1967-07-21 Aides à la suspension
JPH02274609A (ja) 1989-04-17 1990-11-08 T R W S I Kk スタビライザ及びその制御方法
IT1245804B (it) 1991-05-06 1994-10-18 Fiat Auto Spa Sistema per il controllo del carico di una barra stabilizzatrice anti-rollio associata ad una sospensione a ruote indipendenti di un autoveicolo.
US5480186A (en) * 1994-12-23 1996-01-02 Ford Motor Company Dynamic roll control system for a motor vehicle
WO1999067100A1 (de) 1998-06-25 1999-12-29 Robert Bosch Gmbh System und verfahren zur wankstabilisierung von fahrzeugen
KR20020055815A (ko) * 2000-12-29 2002-07-10 이계안 차량의 안티 롤 제어장치
JP3993470B2 (ja) 2002-06-13 2007-10-17 ダイハツ工業株式会社 スタビライザ装置
JP3943554B2 (ja) * 2003-03-28 2007-07-11 アイシン精機株式会社 スタビライザ制御装置
WO2005047031A1 (en) * 2003-11-12 2005-05-26 Hiromichi Fujimori Adjustable stabilizer bar assembly
JP2005193701A (ja) 2003-12-26 2005-07-21 Fuji Heavy Ind Ltd 自動車車両
JP4303140B2 (ja) * 2004-02-12 2009-07-29 アイシン精機株式会社 スタビライザ制御装置
JP2005262946A (ja) * 2004-03-17 2005-09-29 Aisin Seiki Co Ltd スタビライザ制御装置
JP4455987B2 (ja) * 2004-12-28 2010-04-21 トヨタ自動車株式会社 車両用スタビライザシステム
DE602005015937D1 (de) * 2005-06-06 2009-09-24 Delphi Tech Inc Regelbares Torsionsystem für Fahrzeugaufhängung
JP2007118672A (ja) 2005-10-26 2007-05-17 Toyota Motor Corp 前輪用サスペンション装置
JP4244999B2 (ja) * 2006-02-09 2009-03-25 トヨタ自動車株式会社 車両用スタビライザシステム
CN1857939A (zh) * 2006-05-18 2006-11-08 上海嘉仕久企业发展有限公司 高刚度乘用车后桥
JP4958066B2 (ja) * 2006-11-09 2012-06-20 アイシン精機株式会社 スタビライザ制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857361B1 (ko) 2007-11-02 2008-09-05 현대자동차주식회사 자동차의 지오메트리 제어장치
JP2010168000A (ja) * 2009-01-26 2010-08-05 Nissan Motor Co Ltd 車体傾動システム
US20120059552A1 (en) * 2009-05-08 2012-03-08 Honda Motor Co., Ltd. Rear wheel toe angle control device and method for calibrating a reference position of an electric actuator in a rear wheel toe angle control device
US8583328B2 (en) * 2009-05-08 2013-11-12 Honda Motor Co., Ltd. Rear wheel toe angle control device and method for calibrating a reference position of an electric actuator in a rear wheel toe angle control device
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
KR20170095073A (ko) * 2016-02-12 2017-08-22 주식회사 만도 차량용 스태빌라이저
KR102449420B1 (ko) * 2016-02-12 2022-09-30 주식회사 만도 차량용 스태빌라이저

Also Published As

Publication number Publication date
US20100164189A1 (en) 2010-07-01
CN101378919B (zh) 2011-04-06
WO2007091666A1 (en) 2007-08-16
CN101378919A (zh) 2009-03-04
KR100978772B1 (ko) 2010-08-30
JP4380640B2 (ja) 2009-12-09
KR20080083708A (ko) 2008-09-18
US7896360B2 (en) 2011-03-01
EP1986873A1 (en) 2008-11-05
EP1986873B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4380640B2 (ja) 車両用スタビライザシステム
JP4244999B2 (ja) 車両用スタビライザシステム
JP4127298B2 (ja) 車輪車体間距離調整装置および車輪車体間距離調整システム
JP4386101B2 (ja) 車両用サスペンションシステム
JP4258538B2 (ja) 車両用サスペンションシステム
JP4333792B2 (ja) 車体ロール抑制システム
JP4404018B2 (ja) 車両用スタビライザシステム
JP2006151262A (ja) 車両用サスペンションシステム
JP2009202622A (ja) 車両用サスペンションシステム
JP2008302731A (ja) 車体姿勢制御装置
JP2009120009A (ja) 車両用サスペンションシステム
JP2006248489A (ja) 車両用スタビライザシステム
JP2009029257A (ja) 車両用ロール抑制システム
JP2010260470A (ja) 車両用サスペンションシステム
JP2009202621A (ja) 車両用スタビライザシステム
JP4941416B2 (ja) 車両用サスペンションシステム
JP2007083853A (ja) 車両用サスペンションシステム
JP2010125960A (ja) 車両用スタビライザシステム
JP4872782B2 (ja) 車両用サスペンションシステム
JP4872686B2 (ja) 車両用サスペンションシステム
JP2010125959A (ja) 車両用スタビライザシステム
JP2007186073A (ja) 車両用スタビライザシステム
JP2009166631A (ja) 車両用サスペンションシステム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4380640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees