EP1579109A1 - Dispositif et procede de post-traitement de gaz d'echappement - Google Patents

Dispositif et procede de post-traitement de gaz d'echappement

Info

Publication number
EP1579109A1
EP1579109A1 EP03782415A EP03782415A EP1579109A1 EP 1579109 A1 EP1579109 A1 EP 1579109A1 EP 03782415 A EP03782415 A EP 03782415A EP 03782415 A EP03782415 A EP 03782415A EP 1579109 A1 EP1579109 A1 EP 1579109A1
Authority
EP
European Patent Office
Prior art keywords
catalytic converter
exhaust gas
catalyst
nitrogen oxide
oxide storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03782415A
Other languages
German (de)
English (en)
Inventor
Andreas Hertzberg
Brigitte Bandl-Konrad
Bernd Krutzsch
Arno Nolte
Markus Paule
Stefan Renfftlen
Norbert WALDBÜSSER
Michel Weibel
Günter Wenninger
Rolf Wunsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32519680&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1579109(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1579109A1 publication Critical patent/EP1579109A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/14Combinations of different methods of purification absorption or adsorption, and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas aftertreatment device according to the preamble of claim 1 and to an exhaust gas aftertreatment method that can be carried out with such a device.
  • Such devices and methods are used in particular for exhaust gas aftertreatment or exhaust gas purification in predominantly lean-burn internal combustion engines in motor vehicles.
  • nitrogen oxide storage catalysts also known as NO x storage catalysts or NO x adsorber catalysts or abbreviated as NSK
  • NSK nitrogen oxide storage catalysts
  • Lean operating phases of the internal combustion engine correspond to adsorption phases of the nitrogen oxide storage catalytic converter, in which it oxidizes nitrogen monoxide (MO) in nitrogen dioxide (N0 2 ) and stores them temporarily as nitrates.
  • MO nitrogen monoxide
  • N0 2 nitrogen dioxide
  • the nitrogen oxide storage catalyst is freed from the stored nitrates by converting them to nitrogen dioxide and then nitrogen monoxide. The latter is then reduced to nitrogen using suitable reducing agents.
  • a known technique of providing the necessary reducing agents is to switch the predominantly lean combustion device, the exhaust gas of which is aftertreated, briefly to rich operation, which means that in the exhaust gas Reducing agents hydrogen (H 2 ), carbon monoxide (CO) and unburned hydrocarbons (HC) are present.
  • H 2 hydrogen
  • CO carbon monoxide
  • HC unburned hydrocarbons
  • the nitrogen oxide reduction can also take place in a downstream, so-called DENOX catalyst, and post-engine metering of hydrocarbons can also be provided to provide the reducing agents, see, for example, EP 0 540 280 A1 and EP 0 573 672 AI.
  • SCR process Another known exhaust gas aftertreatment process is the so-called selective catalytic reduction process, abbreviated as the SCR process.
  • a selectively acting reducing agent is added to the exhaust gas for the purpose of nitrogen oxide reduction, typically ammonia.
  • the ammonia is temporarily stored in a corresponding denitration catalytic converter, abbreviated as SCR catalytic converter, and is used by the latter to catalytically reduce nitrogen oxides (NO x ) contained in the exhaust gas with the formation of nitrogen and water.
  • SCR catalytic converter a corresponding denitration catalytic converter
  • the effectiveness of SCR catalysts is strongly dependent on the ratio N ⁇ / N0 2 at lower temperatures, with an effectiveness maximum at an N0 2 content of approx. 50% for temperatures below 200 ° C and significantly reduced effectiveness with a lower N0 2 content , At higher At temperatures above approx.
  • the nitrogen oxide reduction is limited by the oxidation of ammonia.
  • the ammonia storage capacity of the SCR catalytic converter decreases with increasing temperature.
  • SCR catalysts are subject to thermal aging and should not be exposed to temperatures above approx. 700 ° C to 750 ° C.
  • SCR catalytic converters can also store unburned hydrocarbons at low temperatures and, if the exhaust gas composition is rich, also oxidize hydrocarbons with a suitable design, especially if they contain vanadium oxide (V 2 0 5 ) as a catalytic material.
  • a generic exhaust gas aftertreatment device is described in the published patent application EP 0 878 609 A1, in which an NO x storage catalytic converter and an SCR catalytic converter are arranged downstream of the exhaust gas system.
  • the NO x storage catalytic converter can alternatively or additionally to a Three-way catalytic converter can be designed for ammonia formation with briefly rich engine operation, which is realized by post-injection of fuel into at least some of the engine combustion chambers.
  • an exhaust gas aftertreatment device with an oxidation catalyst, a downstream NO x storage catalyst and a particle filter downstream of the NO x storage catalyst or between the oxidation catalyst and the NO x storage catalyst is described for particle and nitrogen oxide reduction.
  • the oxidation catalytic converter favors the function of the NO x storage catalytic converter by formation of NO 2 , but no CRT effect can be achieved for the particle filter, since the nitrogen oxides are reduced to nitrogen even before the particle filter. If the oxidation Talysator is used for heating the particulate filter by burning post-injected fuel, this arrangement results in a high temperature load on the NO x storage catalytic converter and a relatively high fuel consumption.
  • the exhaust gas upstream of the NO x storage catalytic converter predominantly contains NO and only a little N0 2 , since the latter is converted into NO by the CRT effect, as a result of which the storage behavior of the NO x storage catalytic converter deteriorates.
  • the oxidation catalytic converter is used in this arrangement for the desulfation heating of the NO x storage catalytic converter by burning post-injected fuel, a relatively high temperature must be reached at the oxidation catalytic converter due to the high heat capacity and the heat transfer in the intermediate exhaust gas section, which can lead to thermal aging effects thereof ,
  • the invention is based on the technical problem of providing an exhaust gas aftertreatment device of the type mentioned at the outset and an associated exhaust gas aftertreatment method with which as many of the following requirements as possible can be met to a high degree with relatively little effort: effective nitrogen oxide reduction in a wide temperature range, no additional reducing agent operating material , Avoidance of ammonia and hydrogen sulfide emissions, minimal particle emission, particle oxidation through N0 2 reaction, minimal CO and HC emissions, comparatively low temperature load of all exhaust gas cleaning components, minimal additional fuel consumption and little space requirement.
  • the invention solves this problem by providing an exhaust gas aftertreatment device with the features of Claim 1 and an exhaust gas aftertreatment method with the features of claim 11 or 12.
  • the exhaust gas aftertreatment device contains, in addition to a nitrogen oxide storage catalytic converter and an SCR catalytic converter connected downstream thereof, a particle filter and / or a NO 2 formation catalytic converter arranged upstream of the SCR catalytic converter.
  • the nitrogen oxide storage catalytic converter enables effective nitrogen oxide reduction, especially in lean-burn internal combustion engines. Thanks to its NH 3 storage capacity, the downstream SCR catalytic converter prevents unwanted emissions of ammonia generated by the NO x storage catalytic converter. At the same time, the SCR catalytic converter is able to reduce nitrogen oxides, if any, with stored ammonia in the exhaust gas downstream of the NO x storage catalytic converter, the ammonia being simultaneously oxidized. This effect can be used to specifically form ammonia on the nitrogen oxide storage catalytic converter in order to use this as a reducing agent in the SCR catalytic converter.
  • the N0 2 content is significantly lower and is, for example, a maximum of 20%.
  • the effectiveness of the SCR catalyst is highest at low temperatures below 300 ° C, for example, with an N0 2 content of 50% a lower N0 2 share significantly reduced.
  • the N0 2 formation catalyst can be connected upstream of it. This catalyst can have a comparatively small volume and have a coating which contains, inter alia, a noble metal (for example platinum) and is capable of at least in a temperature range from about 200 ° C. to 350 ° C. the NO 2 fraction of the NO x - Increase emissions to at least approximately 50%.
  • the coating of the N0 2 formation catalyst has the property of not specifically oxidizing ammonia generated in the N0 X storage catalytic converter during operation with ⁇ ⁇ l, but allowing it to pass through unchanged. This can be achieved, for example, in that the coating contains no oxygen-storing component.
  • control unit which can also be used, for example, to control the combustion device, such as an internal combustion engine
  • functions are preferably implemented which decide on the necessity and possibility of specific NH 3 generation and the operating parameters, in particular the duration and enrichment depth at the NSK - Regeneration, specify appropriately.
  • the NH 3 formation can be increased by a smaller air ratio and a longer regeneration period, provided the temperature of the NO x storage catalytic converter is in the range of possible NH 3 formation.
  • the operation of the combustion device during the NSK regeneration can be adjusted in a manner known per se so that a high NO x raw emission thereof is achieved and the NH 3 formation on the NO x storage catalytic converter is thereby further increased.
  • the SCR catalytic converter can also be used in order to avoid an H 2 S emission which arises, for example, during the desulfation.
  • an SCR catalytic converter can, due to its specific Properties can oxidize to S0 2 even with rich exhaust gas composition ( ⁇ ⁇ l) during the desulfation. In this way, an unpleasant odor nuisance can be avoided.
  • SCR catalysts if they contain vanadium oxide, can oxidize unburned hydrocarbons (HC) even under rich conditions ( ⁇ ⁇ 1). This can reduce the reduction agent breakthrough in NSK regeneration.
  • the emission of potentially carcinogenic hydrocarbons such as benzene, toluene, ethylbenzene and xylene for example, can be reduced, which may result from rich conditions at the N0 X storage catalyst.
  • the SCR catalytic converter Due to its property of also storing hydrocarbons at low temperatures, the SCR catalytic converter can also help to reduce HC emissions after a cold start. The HC stored at low temperatures are released again at higher temperatures and can be oxidized on the SCR catalytic converter or a downstream oxidation catalytic converter.
  • a particle filter can be used for post-motor particle reduction. This retains the emitted particles with a high degree of effectiveness. As usual, the collected particles can be burned off at regular intervals by increasing the temperature to over 600 ° C. If the exhaust gas reaching the particle filter contains N0 2 , soot oxidation takes place in the temperature range between approximately 250 ° C and 400 ° C by reaction with N0 2 (CRT effect).
  • the particle filter can generally be coated catalytically, wherein the coating can contain components such as a noble metal (eg platinum) and a washcoat.
  • the occurring maximum temperature load of the individual components can be be adapted to specific requirements.
  • it can be ensured by a suitable arrangement that the temperatures of the individual components during driving are in a range that is favorable for the respective function.
  • the rich operation required for the regeneration of the NO x storage catalytic converter can be achieved by means of internal engine measures or an additional post-engine introduction of reducing agent (for example fuel or hydrogen).
  • the NO x storage catalytic converter for desulfation and the particle filter for thermal regeneration can be heated by means of internal engine measures, including fuel post-injection.
  • internal engine measures including fuel post-injection.
  • incompletely burned hydrocarbons remaining in the exhaust gas lead to an additional exothermic reaction on an optionally arranged catalytic converter, which further increases the exhaust gas temperature.
  • reducing agent for example fuel or hydrogen
  • reducing agent eg fuel or hydrogen
  • other methods of heating are also possible. These are not explicitly mentioned below, but can be used instead of the post-motor supply of reducing agent.
  • an electrically heated catalytic converter, electrical heating of the particle filter or the use of a burner can be mentioned as customary conventional measures.
  • the secondary air can be provided, for example, by an electrically driven secondary air pump or a compressor, or can be removed by a compressor in the case of supercharged engines.
  • An optional combination or integration of two of the functionalities mentioned in one component can achieve a significant reduction in the space requirement.
  • the exhaust gas treatment device includes one or more N0 X sensors after the NO x storage catalytic converter and / or the SCR catalyst and / or means for detecting the temperature of one or more of the exhaust gas purifying component and / or means for detecting the NH 3 - Loading the SCR catalytic converter.
  • the method according to claim 11 enables a comparatively precise, model-based control of the point in time for the triggering of a respective regeneration of the nitrogen oxide storage catalytic converter.
  • the method according to claim 12 allows a targeted control of the ammonia generation during a respective regeneration phase of the nitrogen oxide storage catalytic converter, taking into account the current conditions, in particular The temperatures of the ammonia-generating NO x storage catalyst and the SCR catalyst and / or the ammonia loading of the SCR catalyst, depending on the determined operating state, a variable amount of ammonia can be specified, which is to be generated in the upcoming regeneration phase of the NO x storage catalyst ,
  • this method is used as a criterion for the completion of a regeneration phase of the NO x storage catalytic converter determining whether the exhaust air-fuel ratio after the N0 x storage catalyst falls below a value dependent on the desired amount of ammonia formation threshold.
  • an external, for example post-engine, reducing agent supply can be provided in the exhaust line during the NSK regeneration in order to operate the combustion device lean also in this period and thereby achieve a high NO x raw emission thereof.
  • a secondary air supply can be provided at a suitable point in the exhaust line during the rich operation phases in order to oxidize any proportions of NH 3 , H 2 S, CO and HC in these operating phases and thus to prevent corresponding pollutant emissions.
  • FIG. 1 is a schematic block diagram representation of an internal combustion engine of a motor vehicle with closed, single-flow exhaust gas aftertreatment device, which, connected in series, contains a first oxidation catalytic converter, a particle filter, a NO x storage catalytic converter, a NO 2 formation catalytic converter, an SCR catalytic converter and a second oxidation catalytic converter,
  • FIG. 2 shows a schematic block diagram representation corresponding to FIG. 1, but with a modified exhaust gas aftertreatment device which, in series, contains a NO x storage catalytic converter, a NO 2 formation catalytic converter, a particle filter, an SCR catalytic converter and an oxidation catalytic converter,
  • FIG. 3 shows a schematic block diagram representation corresponding to FIG. 1 with a modified exhaust gas aftertreatment device which, connected in series, contains a NO x storage catalytic converter, an NO formation catalytic converter, an SCR catalytic converter, an oxidation catalytic converter and a particle filter,
  • FIG. 4 is a schematic block diagram representation corresponding to FIG. 1, but with a modified exhaust gas aftertreatment device that includes a first oxidation catalyst, an integrated nitrogen oxide storage and SCR catalyst, a second oxidation catalyst and a particle filter, and
  • FIG. 5 is a schematic block diagram representation corresponding to FIG. 1, but for a modified internal combustion engine with a double-flow exhaust line and orderly double-flow exhaust gas aftertreatment device.
  • a control unit 2 serves to control the internal combustion engine 1, which can be, for example, a conventional diesel or gasoline engine, and the exhaust gas aftertreatment device. Furthermore, temperature sensors 8, NO x sensors 9, lambda probes 10, devices 11 for the post-engine supply of reducing agent, a device 12 for the supply of secondary air and pressure sensors 14 are provided at suitable points on the exhaust gas line 3, as shown.
  • the internal combustion engine 1 delivers exhaust gas that contains NO x , particles, CO and HC, among other things.
  • CO and HC are oxidized to C0 2 and H 2 0 on the oxidation catalyst 4.
  • part of the NO contained in the exhaust gas is oxidized to N0 2 .
  • the particles present in the exhaust gas are retained in the particle filter 5.
  • a part of the soot particles accumulated in the particle filter 5 is oxidized by reaction with N0 2 , whereby N0 is reduced to NO.
  • the nitrogen oxides contained in the exhaust gas are stored in the NO x storage catalytic converter 6.
  • the N0 2 content is significantly lower and is, for example, a maximum of 20%.
  • the effectiveness of the SCR catalytic converter 7 is highest and at low temperatures below 300 ° C., for example, with a NO 2 content of 50% significantly reduced with a lower N0 2 content. Therefore, the .SCR catalyst 7 is preceded by the N0 2 formation catalyst 13.
  • This catalyst 13 has a coating containing, inter alia, noble metal (eg platinum) and is capable, at least in a temperature range of about 200 ° C to 35 ⁇ '° C the N0 2 content in the NO x emissions to at least approximately Increase 50%.
  • the coating of the N0 2 formation catalyst has the property of not specifically oxidizing ammonia generated in operation with ⁇ ⁇ l in the NO x storage catalyst, but allowing it to pass through unchanged. This can be achieved, for example, in that the coating contains no oxygen-storing component.
  • the SCR catalytic converter 7 is able to reduce the nitrogen oxides with the aid of NH 3 stored in it. Here, the effectiveness at temperatures below 300 ° C is increased by the upstream NO 2 formation catalyst 13.
  • Heating measures can be used in order to achieve sufficient temperatures on all components, in particular on the NO x storage catalytic converter 6 and SCR catalytic converter 7, even during low-load operation and thus to achieve the best possible NO x reduction.
  • These can be internal engine, for example a late relocation of the main injection or post-injection, or also post-engine by supplying a reducing agent upstream of the NO x storage catalytic converter for exothermic generation, provided the NO x storage catalytic converter 6 has reached a sufficient temperature for converting the reducing agent.
  • Other measures to increase the exhaust gas temperature can include: increasing the idle speed, lengthening the afterglow time, switching on additional electrical consumers or increasing the EGR rate.
  • the above-mentioned heating measures can be controlled, for example, by the control unit 2 depending on the incoming temperature sensor signals or by means of a model.
  • the exhaust pipe 3 can be thermally insulated, to minimize heat loss from the exhaust gas. For example, air gap insulation can be used.
  • NSK regenerations are required at regular intervals.
  • the times for regenerations are determined with the help of the NO x sensor 9 behind the SCR catalytic converter.
  • the signal from the NO x sensor 9 is recorded and evaluated in the control unit 2.
  • the control unit 2 requests an NSK regeneration , If criteria taken into account in the control unit 2 are fulfilled, which are a prerequisite for the realization of an NSK regeneration on the engine side, for example operation in a part of the operating range of the engine 1 in which an NSK regeneration can be represented, the NSK regeneration is initiated.
  • the control unit 2 contains models for the NO x raw emission, the NO x storage behavior of the NO x storage catalytic converter 6, the NH 3 formation on the NO x storage catalytic converter and the NH 3 storage in the SCR Catalyst 7 stored. These can be used for the evaluation of the NO x sensor signal behind the SCR catalytic converter and can also be used for diagnostic purposes. Based on the sensor signals, the models can be adapted to the current aging condition of the catalysts. Alternatively, by comparing the sensor signals of the NO x sensors 9 and / or the lambda probes 10 with the modeled behavior of the catalysts, a diagnosis of the aging state can be carried out without, however, adapting the model.
  • an NSK Regeneration can be requested if the modeled SCR loading with NH 3 falls below a relative value, eg 5% of the possible NH 3 loading, or absolute value, eg 0.1 g NH 3 .
  • the signal from the NO x sensor 9 after the NO x storage catalytic converter can also be viewed. This can be evaluated analogously to the procedure described above and can serve as a criterion for the request for NSK regeneration.
  • the signal from the NO x sensor 9 after the N0 X storage catalytic converter can be used as an input variable for the NSK model in the control unit 2.
  • the nitrate loading of the N0 2 storage catalytic converter 6 can be calculated and thus the NH 3 formation can be estimated taking into account the aging.
  • the NH 3 loading of the SCR catalytic converter 7 is also calculated using a model, NSK regeneration can be requested if the modeled SCR loading with NH 3 has a relative value, for example 5% of the possible NH 3 loading, or absolute Value, for example 0.1 g NH 3 , falls below.
  • both NO x sensors 9 can also be used, a sensor as described above providing a criterion for requesting NSK regeneration and the second NO x sensor being used for diagnosis and adaptation of the catalyst models in the control unit 2.
  • an NH 3 sensor can be provided after the N0 X storage catalytic converter and also after the SCR catalytic converter (not shown in FIG. 1), the signal for adapting the models of the N0 X storage catalytic converter 6 and the SCR catalytic converter 7 or for Regulation of the regeneration parameters can be used.
  • the control unit 2 contains functions which decide on the necessity and possibility of a specific NH 3 generation in the case of an upcoming NSK regeneration and which accordingly specify the operating parameters, in particular the duration and the enrichment level.
  • temperatures of the NO x storage catalytic converter 6 and the SCR catalytic converter 7. are determined by the temperature sensors 8 in or behind the respective components.
  • the temperature of the SCR catalytic converter 7 can be calculated on the basis of the measured temperature after the NO x storage catalytic converter with the aid of a model in the control unit 2, so that the sensor 8 after the SCR catalytic converter can be omitted.
  • the current NH 3 loading of the SCR catalytic converter 7 calculated using the model can also be used as a criterion.
  • the temperatures of the N0 X storage catalytic converter 6 and the SCR catalyst 7 are within predetermined ranges, the current NH 3 -load of the SCR catalyst 7 is low, and possibly other conditions are satisfied, a maximum NH 3 formation is sought , If the temperature of the NO x storage catalytic converter 6 is outside the predetermined range, which can be, for example, between 230 ° C. and 370 ° C., NH 3 formation is not possible or is possible only to a limited extent and is therefore also not sought. This avoids unnecessarily high fuel consumption and increased HC and CO emissions due to regeneration that is too long. If the temperature of the SCR catalytic converter 7 is outside the predetermined range, which can be, for example, between 200 ° C.
  • temperature gradients for example a rapid increase, can also be taken into account or a temperature prediction can be implemented.
  • the predicted temperature is then taken into account in addition to the current temperature. For example, less NH 3 formation is aimed for if a strong increase in the temperature of the SCR catalytic converter 7 is predicted, since otherwise there is a risk of subsequent NH 3 desorption in the SCR catalytic converter 7.
  • the aging state of the NO x storage catalyst 6 is also taken into account 3 formation in deciding on the desired NH, since the NO x with increasing aging of the N0 X storage catalytic converter 6 - reduction in the SCR catalyst 7 is gaining in importance.
  • the optimal air ratio is determined in the control unit 2 as a function of the desired NH 3 formation. If strong NH 3 formation is desired, an air ratio for maximum NH 3 formation is specified. If this is not the case, an air ratio is specified for little or no NH 3 formation. Intermediate values for average NH 3 formation are also possible.
  • the air ratio can also be varied continuously or in stages during the NSK regeneration. For example, a lower air ratio can be set at the beginning and a larger air ratio with progressive regeneration in order to achieve a strong NH 3 formation with low HC and CO emissions during the NSK regeneration. The duration of the NSK regeneration is also set depending on the desired NH 3 formation.
  • the regeneration is ended as soon as the air ratio determined with the lambda probe 10 after the NO x storage catalytic converter falls below a threshold value ⁇ l.
  • it can also be extended beyond this point in time by a predetermined time or number of work cycles of the engine 1.
  • the regeneration is ended immediately as soon as the air ratio downstream of the NO x storage catalytic converter falls below a threshold value ⁇ 2, where ⁇ 2 is greater than ⁇ l. This largely prevents HC / CO breakthroughs and low fuel consumption.
  • the threshold values can be varied depending on the NSK aging and other parameters. Intermediate values are also possible in order to achieve a medium NH 3 formation.
  • the engine operation during the NSK regeneration is additionally set in such a way that the highest possible N0 X raw emission of the engine 1 is achieved. This can be done in combination with a post-engine supply of reducing agent upstream of the N0 X storage catalytic converter 6. This further increases the NH 3 formation on the NO x storage catalytic converter 6. If no NH 3 formation is aimed for, on the other hand, the engine operation is set so that the lowest possible N0 X raw emission of the same is achieved.
  • the device 11 arranged in front of the NO x storage catalytic converter 6 for the supply of reducing agent after the engine is used to convert the N0 X storage catalytic converter 6 for a desulfating heating up.
  • This measure takes place in addition to motor measures for heating.
  • the motor measures can be reduced by the support by means of the supply of a reducing agent after the motor, so that the thermal aging of the oxidation catalytic converter is reduced.
  • the up heating of the N0 X storage catalytic converter 6 post-engine solely by supply of reducing agent is not desirable, since because of the large amount of reducing agent a strong exo- thermie would be produced on the N0 X storage catalytic converter 6, which would lead to thermal aging.
  • the amount of reducing agent supplied is regulated, inter alia, depending on the following parameters: desired temperature of the NO x storage catalytic converter 6, actual temperature after the particle filter, actual temperature after the NO x storage catalytic converter and exhaust gas mass flow.
  • At least one of the two devices 11 shown in FIG. 1 for the post-motor supply of reducing agent can be used to achieve the highest possible NO x raw emission of the engine 1 during the NSK regeneration.
  • the air ratio can before N0 X storing catalyst to ⁇ ⁇ l are lowered.
  • Thermal regeneration of the particle filter 5 is required at regular intervals. This can be the case, for example, if a high pressure drop across the particle filter 5 is determined with the pressure sensors 14 before and after the particle filter, which indicates an impermissibly high loading of the particle filter 5.
  • the device 11 arranged in front of the particle filter 5 and the upstream oxidation catalytic converter 4 can be used to heat the particle filter 5 post-motor supply of reducing agents can be used. This measure takes place in addition to internal engine measures to raise the exhaust gas temperature. The measures taken within the engine can be reduced by the support by means of a supply of reducing agents after the engine.
  • Heating of the oxidation catalytic converter 4 and thus of the particle filter 5 solely by supplying the motor with a reducing agent is not to be aimed at, since the large quantity of reducing agent would cause a strong exothermic reaction on the oxidation catalytic converter 4, which would lead to thermal aging.
  • the amount of reducing agent supplied is regulated, inter alia, depending on the following parameters: desired temperature of the particle filter 5, actual temperature before the particle filter, actual temperature after the particle filter and exhaust gas mass flow.
  • the device 12 for supplying secondary air and the further oxidation catalytic converter 4 are connected downstream of the SCR catalytic converter 7.
  • This oxidation catalyst 4 can be made significantly smaller and, for example, also with a lower noble metal loading than the oxidation catalyst 4 upstream of the particle filter.
  • the device 12 for supplying secondary air is always activated when the engine 1 is operated with ⁇ ⁇ 1. Unwanted emissions such as NH 3 , H 2 S and CO and HC can occur during these phases. These components can be oxidized in the oxidation catalytic converter 4 downstream of the device 12 for supplying secondary air, so that an emission of these undesired components is avoided.
  • the quantity of secondary air supplied is set such that a lean exhaust gas composition ( ⁇ > l) is achieved on the downstream oxidation catalytic converter 4 despite engine operation with ⁇ ⁇ l.
  • the signal of at least one lambda probe 10 and the exhaust gas mass flow are used in the control unit 2, among other things. If the device 12 for supplying secondary air is only able to provide a sufficient amount of secondary air after a certain lead time, it is activated with a corresponding lead time before the change to operation with ⁇ ⁇ l.
  • the SCR catalytic converter 7 is protected from high temperatures after the particle filter during the thermal regeneration of the particle filter 5, since the exhaust gas line length significantly cools the exhaust gas until it reaches the SCR catalytic converter 7 and also the NO x storage catalyst 6 acts as a heat sink. In this way, the thermal aging of the SCR catalyst 7 can be kept low.
  • the high thermal capacity of the particle filter 5 leads to a stabilization of the temperatures of the downstream components, even during unsteady driving. This ensures that the NO x storage catalytic converter 6 and the SCR catalytic converter 7 are usually in a favorable temperature range, even during unsteady driving, and the system therefore operates with high efficiency.
  • the risk is minimized that undesired desorption of stored NH 3 occurs on the SCR catalytic converter 7 due to a rapid increase in temperature.
  • the particle filter 5 can be catalytically coated.
  • the catalytic coating of the particle filter 5 can be similar to the coating of one of the oxidation catalysts 4.
  • the upstream oxidation catalyst 4 can be made smaller or with a lower noble metal content, which leads to space and cost advantages.
  • the oxidizer connected upstream of the particle filter 5 can on catalyst 4 also completely eliminated.
  • the temperature sensor 8 in front of the particle filter 5 is also omitted.
  • the catalytic coating of the particle filter 5 can also be similar to the coating of the NO x storage catalytic converter 6.
  • the downstream NO x storage catalytic converter 6 can be made smaller, which leads to space and cost advantages.
  • the separate NO x storage catalytic converter 6 can also be dispensed with entirely, ie integrated into the particle filter 5.
  • the temperature sensors 8 can also be omitted.
  • Part or all of the NO x sensors 9 can also be omitted.
  • the components contained in the exhaust gas aftertreatment system are modeled in the control unit 2 such that the temperatures or NO x concentrations occurring at the respective positions are available as output variables of the model.
  • one or both devices 11 for the post-motor supply of reducing agent can be omitted.
  • the device 12 for supplying secondary air and the downstream oxidation catalyst 4 can also be omitted.
  • the N0 2 formation catalyst 13 can, as shown in Fig. 1, be carried out as a separate component. Alternatively, it is also possible to integrate this at the outlet end of the NO x storage catalytic converter 6 or at the inlet end of the SCR catalytic converter 7. Alternatively, the N0 2 formation catalyst 13 can also be omitted.
  • the embodiment shown in FIG. 2 differs from that of FIG. 1 in that the NO x storage Catalyst 6 forms the first exhaust gas cleaning component, which then the N0 2 formation catalyst 13, the particle filter 5, the SCR catalyst 7 and the downstream oxidation catalyst 4 are connected in this order, while the other, upstream oxidation catalyst is omitted.
  • Functionally identical components are given the same reference numerals in FIG. 2 as in FIG. 1.
  • the following explanations for the exemplary embodiment of FIG. 2 can be limited to the differences resulting from the different order of the exhaust gas-cleaning components, otherwise the above applies to the exemplary embodiment 1 explained properties and advantages accordingly.
  • the NO x storage catalytic converter 6 of the internal combustion engine takes in the example of Fig. 2, the function in the regular lean operation 1 CO and HC to C0 2 and to oxidise H 2 0 and rn a substantial part of vitespeiche in the exhaust nitrogen oxides contained '.
  • the NO 2 formation catalyst 13 is connected directly upstream of the particle filter 5 in order to increase the NO 2 content of the nitrogen oxides, depending on the operating state after the NO x storage catalyst 6, still typically contained in the exhaust gas, from typically at most 20% to at least about 50% .
  • the soot oxidation in the particle filter 5 can be promoted by reaction with NO 2 (CRT effect) and the effectiveness of the downstream SCR catalytic converter 7 can be increased.
  • CRT effect reaction with NO 2
  • These effects can be further enhanced by allowing a maximum NO x slip at the NO x storage catalytic converter 6, so that the NO x reduction potential of the SCR catalytic converter 7 can be used to the maximum.
  • the effectiveness is also increased by the NO 2 formation catalyst 13 connected upstream of the particle filter 5.
  • the device 11 positioned here directly in front of the NO 2 formation catalytic converter 13 can be used to heat the particle filter 5, so that internal engine measures can be reduced for this purpose, which reduces the aging effects of the NO x .
  • Storage catalyst 6 reduced.
  • the heating of the N0 2 formation catalytic converter 13 solely by supplying a reducing agent after the engine is not desirable because of the thermal aging effects thereof.
  • the amount of reducing agent supplied is regulated, inter alia, depending on the following parameters: target temperature of the particle filter 5, actual temperature before the NO 2 formation catalyst or after the NO x storage catalyst, actual temperature after the particle filter and exhaust gas mass flow.
  • the NO x storage catalytic converter 6 quickly reaches the required operating temperature after a cold start due to its position close to the engine. This means that small measures are required to raise the exhaust gas temperature. This leads to a reduction in fuel consumption through heating measures.
  • the SCR catalytic converter 7 is protected from high temperatures during the desulfation of the NO x storage catalytic converter 6, since the exhaust gas line causes a significant cooling of the exhaust gas until it reaches the SCR catalytic converter 7 and also the particle filter 5 and the N0 2 formation catalyst 13 act as a heat sink. In this way, the thermal aging of the SCR catalyst 7 can be kept low.
  • the high heat capacity of the particle filter 5 leads to a stabilization of the temperature of the downstream SCR catalytic converter 7, even during unsteady driving. This ensures that the SCR catalytic converter 7 even when the stationary driving is usually in a favorable temperature range and therefore works with high efficiency. In addition, the risk is minimized that undesired desorption of stored NH 3 occurs on the SCR catalytic converter 7 due to a rapid increase in temperature.
  • the particle filter 5 can be catalytically coated.
  • the catalytic coating of the particle filter 5 can be similar to the coating of the NO 2 formation catalyst 13.
  • the upstream NO 2 formation catalyst 13 can be made smaller or with a lower noble metal content, which leads to space and cost advantages. If necessary, the N0 2 formation catalyst upstream of the particle filter 5 can also be dispensed with entirely.
  • the catalytic coating of the particle filter 5 can also be similar to the coating of the NO x storage catalytic converter 6.
  • the N0 X storage catalytic converter 6 arranged close to the engine can be made smaller, which leads to installation space and cost advantages.
  • the separate NO x storage catalytic converter 6 can also be dispensed with entirely, ie its function can be integrated in the particle filter 5.
  • the N0 2 formation catalyst 13 and the device 11 for the post-engine supply of reducing agent upstream of the N0 2 formation catalyst 13 can also be omitted.
  • the pressure sensor 14 shown in front of the particle filter is retained, the NO x sensor 9 shown in FIG. 2 after the NO x storage catalytic converter 6 and the lambda probe 10 are then positioned behind the particle filter 5:
  • the catalytic coating can also be similar to the coating of the downstream SCR catalytic converter 7.
  • the SCR catalytic converter 7 can be made smaller, which leads to space and cost advantages.
  • the SCR catalytic converter as a separate component can also be dispensed with entirely.
  • the temperature sensor 8 shown in FIG. 2 between the particle filter and the SCR catalytic converter can be omitted, but the pressure sensor 14 shown after the particle filter is retained.
  • the N0 2 formation catalyst 13 can also be integrated instead of upstream of the particle filter 5 at the outlet end of the NO x storage catalyst 6.
  • the NO 2 formation catalyst 13 can also be arranged upstream of the SCR catalyst 7.
  • the NO 2 formation catalyst 13 can also be integrated at the entry-side end of the SCR catalyst 7.
  • the N0 2 formation catalyst 13 can also be omitted.
  • a further oxidation catalytic converter can additionally be connected upstream of the NO x storage catalytic converter 6, which can lead to a further reduction in HC and CO emissions, particularly during a cold start.
  • FIG. 3 shows, as a further variant, an exhaust gas aftertreatment device which differs from that of FIG. 2 in that the positions of the particle filter 5 and SCR catalyst 7 are interchanged and the oxidation catalyst 4 is connected directly upstream of the particle filter 5.
  • the other components that is to say the various sensors 8, 9, 10, 14, the devices 11 for the post-motoric reducing agent supply and the secondary air supply device 12 are also suitable for the associated exhaust gas cleaning components 4 to 7 , 13 arranged in the exhaust line 3 at modified positions.
  • the devices 11 for the post-motoric reducing agent supply and the secondary air supply device 12 are also suitable for the associated exhaust gas cleaning components 4 to 7 , 13 arranged in the exhaust line 3 at modified positions.
  • Analogous to the embodiment of FIG. 2 above only those measures and the resulting effects of the example of FIG. 3 will be discussed below that 1 and 2 are different from those in the examples of FIGS. 1 and 2, while reference may otherwise be made to the above explanations regarding the examples of FIGS. 1 and 2 with regard to the corresponding functions and properties.
  • the NO 2 formation catalyst 13 connected upstream of the SCR catalytic converter 7 in turn permits a noticeable increase in the effectiveness of the SCR catalytic converter 7, in particular in the temperature range below 300 ° C.
  • the device 11 upstream of the oxidation catalyst 4 upstream of the particle filter 5 can be used to heat up the particle filter 5 for supplying the engine with a reducing agent.
  • the NO x storage catalytic converter 6 and the SCR catalytic converter 7 are not thermally stressed by this measure.
  • An exclusive heating of the particulate filter by the supply of a reducing agent after the engine is not sought, in order not to cause excessive thermal aging of the oxidation catalytic converter 4.
  • the quantity of reducing agent supplied is regulated, inter alia, depending on the following parameters: target temperature of the particle filter 5, actual exhaust gas temperature upstream of the oxidation catalytic converter 4 or after the SCR catalytic converter 7, actual exhaust gas temperature after the particle filter 5 and exhaust gas mass flow.
  • the SCR catalytic converter 7 also reaches the required operating temperature relatively quickly after a cold start due to its position behind the NO x storage catalytic converter 6. Another advantage is that no additional oxidation catalyst is required as the last system component in order to oxidize the undesired exhaust gas components by means of secondary air injection.
  • the SCR catalytic converter 7 is protected against high temperatures. protected during thermal regeneration of the particle filter 5 by being positioned upstream of the particle filter 5.
  • the particle filter 5 can be catalytically coated, the catalytic coating being similar to that of the upstream oxidation catalyst 4, so that the latter can be made smaller or with a lower noble metal content, which leads to space and cost advantages.
  • the oxidation catalyst upstream of the particle filter 5 can also be completely dispensed with.
  • the N0 2 formation catalyst 13 can, as shown in Fig. 3, be designed as a separate component. Alternatively, it can be integrated into the relevant component at the outlet-side end of the NO x storage catalytic converter 6 or at the inlet-side end of the SCR catalytic converter 7, or can be omitted entirely. In a manner not shown, a further oxidation catalytic converter can be connected upstream of the NO x storage catalytic converter 6, which can lead to a further reduction in HC and CO emissions, particularly during a cold start.
  • FIG. 4 shows a further variant in which the exhaust gas aftertreatment device has a combined SCR and nitrogen oxide storage catalytic converter 15, which combines the functions of the NO x storage catalytic converter 6 and the SCR catalytic converter 7 of the examples in FIGS. 1 to 3.
  • An oxidation catalytic converter 4 is directly connected upstream of this integrated catalytic converter 15 and the downstream particle filter 5.
  • the remaining components according to the examples of FIGS. 1 to 3 are arranged to match the position of these exhaust gas cleaning components 4, 5, 15, as shown.
  • the integrated catalytic converter 15 can be realized, for example, by using an SCR catalytic converter, which is produced as a full extrudate, the catalytic material of the SCR catalytic converter serving as a carrier for a further catalytic coating, namely a nitrogen oxide storage catalytic converter coating.
  • a nitrogen oxide storage catalyst coating in addition to the SCR coating in the case of an SCR catalyst which is not produced as a full extrudate.
  • both functional components reach the required operating temperature very quickly after the cold start, so that almost no additional heating measures are required, which would result in an increase in fuel consumption.
  • the times for NSK regeneration are determined in the example of FIG. 4 with the help of the NO x sensor 9 behind the integrated, combined catalyst 15 or alternatively by one of the other methods mentioned above.
  • the models stored in the control unit 2 include a model of the nitrogen oxide storage behavior, the ammonia storage behavior and the ammonia generation behavior of the combined catalytic converter 15.
  • the temperature of the combined catalytic converter 15 as can be detected by the temperature sensor 8 connected downstream.
  • the model-based, current ammonia loading of the combined catalyst 15, for example can also be used as a further criterion.
  • a maximum NH 3 formation can be sought, for example, if the temperature of the combined catalytic converter 15 is within a predetermined range of, for example, between 230 ° C. and 370 ° C. and the current NH 3 load thereof is low and other conditions are possibly met ,
  • the device 11 arranged in front of the oxidation catalytic converter 4 close to the engine for the supply of post-engine reductant can be used to heat the integrated, combined catalytic converter 15 for desulfating the nitrogen oxide storage catalytic converter coating, supplemented by additional engine heating measures, as explained above.
  • the amount of reducing agent supplied is regulated, inter alia, depending on the following parameters: target temperature of the combined catalytic converter 15, actual temperature of the same and exhaust gas mass flow.
  • the oxidation catalytic converter 4 connected upstream of the particle filter 5 and the device 11 connected upstream thereof for the supply of post-motor reducing agent can be used to heat the particle filter.
  • the combined nitrogen oxide storage and SCR catalytic converter 15 in turn remains unloaded thermally by the particle filter heating.
  • the amount of reducing agent supplied is regulated, inter alia, depending on the following parameters: the desired temperature of the particle filter 5, the actual exhaust gas temperature upstream of the oxidation catalytic converter 4, the actual exhaust gas temperature after the particle filter 5 and the exhaust gas mass flow. It is advantageous in the embodiment of FIG.
  • the particle filter 5 can be catalytically coated, in particular with a catalytic coating similar to that of the upstream oxidation catalytic converter 4.
  • the upstream oxidation catalytic converter 4 can be made smaller or with a lower noble metal content, which leads to corresponding installation space and cost advantages.
  • the oxidation catalyst 4 upstream of the particle filter 5 can also be omitted.
  • the SCR catalyst coating and the nitrogen oxide storage catalyst coating can be applied in a suitable manner mixed on a carrier in the combined catalyst 15.
  • the two coatings can be applied alternately in the exhaust gas flow direction, so that the exhaust gas first flows through an area with nitrogen oxide storage catalyst coating, then an area with SCR catalyst coating, then again through an area with nitrogen oxide storage catalyst coating, etc.
  • This embodiment can also be realized in that disks of a nitrogen oxide storage catalytic converter and disks of an SCR catalytic converter are alternately arranged one behind the other in a housing.
  • the arrangement that changes several times in the exhaust gas flow direction has the advantage that there is an extended temperature window in which the system works efficiently. This is how temperature peaks whose area of the system is less noticeable with a multiple alternating arrangement of nitrogen oxide storage catalyst and SCR catalyst, for example in the formation of ammonia, than in an arrangement with a nitrogen oxide storage catalyst and a separately connected SCR catalyst.
  • the internal combustion engine 1 has a double-flow section of the exhaust line 3 with a suitably assigned exhaust gas aftertreatment device.
  • the latter comprises, in a similar and symmetrical manner, a NO x storage catalytic converter 6, a NO 2 formation catalytic converter 13 and an SCR catalytic converter 7 together with associated sensors 8, 9, 10 and device 11 for supplying post-motoric reductant at suitable positions in accordance with the examples in FIG 1 to 4.
  • the two parallel exhaust gas lines are merged downstream of the two SCR catalytic converters 7 to form a subsequent, single line section, in which the particle filter 5, together with an upstream oxidation catalytic converter 4 and matching sensors 8, 9, 14, device 11 for the post-engine Reducing agent supply and secondary air supply device 12 are arranged as shown.
  • Such a double-flow arrangement can be useful, for example, in engines whose cylinders are arranged in a V-shape.
  • the prerequisite is that if an exhaust gas turbocharger is used, a separate turbocharger is used for each cylinder bank, since otherwise the two flows must be brought together before the turbine of the turbocharger.
  • the operating strategy for this exhaust gas aftertreatment system is designed in such a way that only minor modifications are necessary compared to the operation of a single-flow system. This is important because otherwise complex new developments of additional functions in the control unit 2 of the internal combustion engine 1 would be required. In addition, this approach can limit the number of sensors used and thus the increase in costs for the overall system.
  • the basic idea is to consider the two parallel strands as a single strand, so that basically the same processes take place in both strands. This is only possible if the two strands do not differ fundamentally in terms of raw engine emissions, catalyst types and catalyst volumes, etc.
  • more complex approaches such as strands operated completely independently of one another and, for example, also staggered phases with rich exhaust gas, so that lean exhaust gas is always present after the two strands have been brought together, are possible.
  • the signals from the NO x sensors 9 downstream of the NO x storage catalytic converters 6 can be used in an averaged or differently weighted manner as a representative nitrogen oxide concentration after the NO x storage catalytic converter for the NSK model in the control unit 2.
  • the termination criterion for NSK regeneration can be a drop below the associated threshold value ⁇ l by one of the two lambda sensors 10 downstream of the two parallel NO x storage catalysts 6. If no ammonia formation is desired, the NSK regeneration is terminated, for example, immediately if the air ratio after one of the two parallel NO x storage catalytic converters 6 falls below the threshold value ⁇ 2.
  • the two parallel exhaust gas section sections can also be merged directly behind the two parallel NO x storage catalytic converters 6 to form a subsequent single-flow section section, in which there is then only one SCR catalytic converter 7 with an optional NO 2 formation catalytic converter 13 connected upstream.
  • the use of integrated nitrogen oxide storage and SCR catalysts in each of the plurality of strand sections is in accordance with the example of FIG. 4 and / or a different sequence of the exhaust gas-purifying Components possible, in particular according to the Fig. 1, 2 and 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention se rapporte à un dispositif de post-traitement de gaz d'échappement comprenant un catalyseur de stockage d'oxyde d'azote et un catalyseur de réduction sélective (SCR), ainsi qu'à un procédé de post-traitement de gaz d'échappement correspondant. Le dispositif selon l'invention est caractérisé en ce qu'il comporte : un filtre à particules disposé en amont du catalyseur de stockage d'oxyde d'azote ou entre ce catalyseur de stockage d'oxyde d'azote et le catalyseur SCR ou en amont du catalyseur SCR, et/ou ; un catalyseur de formation de NO2 disposé en amont du catalyseur SCR. Il est possible de déterminer le moment des phases fonctionnelles de régénération du catalyseur de stockage d'oxyde d'azote, en fonction de la teneur en oxyde d'azote du gaz d'échappement en amont du catalyseur de stockage d'oxyde d'azote ou du catalyseur SCR, et/ou à partir de sa charge en ammoniac. Il est en outre possible de déterminer une quantité de production d'ammoniac théorique pour chaque phase fonctionnelle de régénération. La présente invention se rapporte en outre à l'utilisation de ce dispositif et de ce procédé, principalement pour des moteurs à combustion interne et à mélange pauvre de véhicule automobile.
EP03782415A 2003-01-02 2003-12-16 Dispositif et procede de post-traitement de gaz d'echappement Withdrawn EP1579109A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10300298A DE10300298A1 (de) 2003-01-02 2003-01-02 Abgasnachbehandlungseinrichtung und -verfahren
DE10300298 2003-01-02
PCT/EP2003/014313 WO2004061278A1 (fr) 2003-01-02 2003-12-16 Dispositif et procede de post-traitement de gaz d'echappement

Publications (1)

Publication Number Publication Date
EP1579109A1 true EP1579109A1 (fr) 2005-09-28

Family

ID=32519680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782415A Withdrawn EP1579109A1 (fr) 2003-01-02 2003-12-16 Dispositif et procede de post-traitement de gaz d'echappement

Country Status (5)

Country Link
US (5) US7210288B2 (fr)
EP (1) EP1579109A1 (fr)
JP (1) JP4541898B2 (fr)
DE (1) DE10300298A1 (fr)
WO (1) WO2004061278A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731727A1 (fr) * 2004-03-24 2006-12-13 Hitachi, Ltd. Dispositif de clarification de gaz d'echappement derive de moteur a combustion interne, procede de clarification de gaz d'echappement, et agent de capture de constituant de soufre pour moteur a combustion interne

Families Citing this family (306)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
DE10300298A1 (de) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
US7490464B2 (en) * 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
US7213395B2 (en) 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
DE102004036036A1 (de) 2004-07-24 2006-03-16 Daimlerchrysler Ag Abgassystem, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs
US7536232B2 (en) * 2004-08-27 2009-05-19 Alstom Technology Ltd Model predictive control of air pollution control processes
DE102004046639A1 (de) * 2004-09-25 2006-03-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
US20070227143A1 (en) * 2004-11-08 2007-10-04 Robel Wade J Exhaust purification with on-board ammonia production
AT414295B (de) * 2004-12-07 2006-11-15 Man Nutzfahrzeuge Oesterreich Abgasführung bei einer brennkraftmaschine
FR2881177B1 (fr) * 2005-01-27 2010-05-14 Renault Sas Procede de desulfuration d'un moteur de vehicule
US7062904B1 (en) 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines
DE102005009686A1 (de) * 2005-03-03 2006-09-07 Volkswagen Ag Verfahren zur Abgasnachbehandlung bei Dieselmotoren oder dergleichen, und Vorrichtung zur Durchführung dieses Verfahrens
DE102005013707A1 (de) * 2005-03-24 2006-09-28 Daimlerchrysler Ag Kraftfahrzeug mit Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
JP2006274986A (ja) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp 排気後処理装置
DE102005017402A1 (de) * 2005-04-15 2006-10-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur dosierten Bereitstellung eines, insbesondere als Feststoff vorliegenden, Reduktionsmittels für Abgassysteme
JP4521824B2 (ja) * 2005-06-09 2010-08-11 三菱ふそうトラック・バス株式会社 排気浄化装置
JP4529822B2 (ja) * 2005-07-05 2010-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102005031816A1 (de) * 2005-07-06 2007-01-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Reduzierung des Partikel- und Stickoxidanteils im Abgasstrom einer Verbrennungskraftmaschine und entsprechende Abgasaufbereitungseinheit
US7251929B2 (en) 2005-07-07 2007-08-07 Eaton Corporation Thermal management of hybrid LNT/SCR aftertreatment during desulfation
DE102005032843A1 (de) * 2005-07-14 2007-01-25 Robert Bosch Gmbh Ammoniakerzeuger, Fahrzeug und Verfahren zur Erzeugung von Ammoniak
JP4781031B2 (ja) * 2005-07-19 2011-09-28 トヨタ自動車株式会社 排気浄化装置の制御装置
FR2892766A1 (fr) * 2005-10-27 2007-05-04 Renault Sas Dispositif de traitement d'oxydes d'azote pour gaz d'echappement de vehicule automobile
DE102006009934A1 (de) * 2006-03-03 2007-09-06 Daimlerchrysler Ag Abgasnachbehandlungssystem und Verfahren zur Abgasreinigung
EP1837496B1 (fr) 2006-03-23 2013-03-13 Ford Global Technologies, LLC Moteur à combustion interne avec un système de traitement combiné des gaz d'échappement et procédé d'opération d'un tel moteur à combustion interne
JP2007285295A (ja) * 2006-03-24 2007-11-01 Ngk Insulators Ltd 排気ガス浄化システム
US7562522B2 (en) * 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
ES2368512T3 (es) * 2006-06-22 2011-11-17 Hitachi Zosen Inova Ag Regeneración de catalizadores scr de baja temperatura.
EP1873367B1 (fr) * 2006-06-26 2008-12-24 Ford Global Technologies, LLC Procédé de fonctionnement de moteur à combustion avec catalyseur à quatre voies
US7490463B2 (en) * 2006-06-29 2009-02-17 Delphi Technologies, Inc. Process and system for removing soot from particulate filters of vehicle exhaust systems
US8209960B2 (en) * 2006-07-21 2012-07-03 International Engine Intellectual Property Company, Llc System and method for coupled DPF regeneration and LNT DeNOx
US20080016852A1 (en) * 2006-07-21 2008-01-24 Eaton Corporation Coupled DPF regeneration and LNT desulfation
US7610751B2 (en) 2006-07-21 2009-11-03 Eaton Corporation Fuel injection before turbocharger
US20080016850A1 (en) * 2006-07-21 2008-01-24 Eaton Corporation Simultaneous LNT and DPF regeneration
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7434387B2 (en) 2006-07-26 2008-10-14 Eaton Corporation Integrated DPF-reformer
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
JP5115047B2 (ja) * 2006-08-14 2013-01-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102006038291A1 (de) * 2006-08-16 2008-02-21 Man Nutzfahrzeuge Aktiengesellschaft Abgasnachbehandlungssystem
DE102006038288A1 (de) * 2006-08-16 2008-02-21 Man Nutzfahrzeuge Aktiengesellschaft Abgasnachbehandlungssystem
DE102006038904A1 (de) * 2006-08-18 2008-02-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Zugabe mindestens eines Reaktanden zu einem Abgasstrom und Vorrichtung zur Aufbereitung eines Abgasstroms einer Verbrennungskraftmaschine
US20080072575A1 (en) * 2006-09-21 2008-03-27 Eaton Corporation Catalyst to improve low temperature deNOx activity in a reformer-LNT exhaust aftertreatment system
DE102006051790A1 (de) * 2006-11-03 2008-05-08 Daimler Ag Abgasnachbehandlungssystem eines Verbrennungsmotors
KR20090095653A (ko) * 2006-12-21 2009-09-09 존슨 맛쎄이 퍼블릭 리미티드 컴파니 희박 연소 내연 기관 및 이를 위한 배기 시스템을 포함하는 장치
KR20090094466A (ko) * 2006-12-23 2009-09-07 우미코레 아게 운트 코 카게 희박 연소 엔진용 배기 방출 제어 시스템 및 시스템 동작 방법
US7621981B2 (en) * 2006-12-29 2009-11-24 Cummins Filtration Ip, Inc Apparatus, system, and method for dispersing heat within a particulate filter
DE102007004602B4 (de) * 2007-01-30 2009-05-28 Continental Automotive Gmbh Heizvorrichtung zum Erhitzen eines Speichers für ein Komplexsalz
BRPI0807073A2 (pt) * 2007-01-31 2014-04-08 Umicore Ag & Co Kg Método para regenerar filtros de carvão no sistema de exaustão de um motor de queima pobre, e sistema de exaustão para o mesmo
DE102007008577B3 (de) * 2007-02-16 2008-10-23 Audi Ag Verfahren und Vorrichtung zur Erzeugung von Ammoniak für die Abgasbehandlung bei Brennkraftmaschinen in einem Kraftfahrzeug
ES2373073T3 (es) * 2007-02-21 2012-01-31 Volvo Lastvagnar Ab Sistema de post-tratamiento de gases de escape.
US20080202101A1 (en) * 2007-02-23 2008-08-28 Driscoll James J Exhaust treatment system
US20080202096A1 (en) * 2007-02-28 2008-08-28 Caterpillar Inc. Particulate regeneration and engine control system
JP2008231950A (ja) * 2007-03-16 2008-10-02 Toyota Motor Corp 内燃機関の排気浄化装置
JP4792424B2 (ja) * 2007-05-11 2011-10-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4304539B2 (ja) * 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx浄化システムの制御方法及びNOx浄化システム
DE102007024081A1 (de) 2007-05-22 2008-11-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zum Verdampfen eines Fluides
JP4438828B2 (ja) 2007-06-08 2010-03-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8230678B2 (en) 2007-06-21 2012-07-31 Daimler Trucks North America Llc Treatment of diesel engine exhaust
JP4274270B2 (ja) * 2007-06-26 2009-06-03 いすゞ自動車株式会社 NOx浄化システム及びNOx浄化システムの制御方法
DE102007030442A1 (de) 2007-06-29 2009-01-02 Audi Ag Vorrichtung zur Reinigung von Abgasen einer Brennkraftmaschine
US8006480B2 (en) * 2007-07-25 2011-08-30 Eaton Corporation Physical based LNT regeneration strategy
JP4910932B2 (ja) * 2007-08-01 2012-04-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5018325B2 (ja) 2007-08-08 2012-09-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102007039082A1 (de) * 2007-08-18 2009-02-19 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
US8001769B2 (en) * 2007-08-20 2011-08-23 Caterpillar Inc. Control of SCR system having a filtering device
JP4821737B2 (ja) * 2007-08-21 2011-11-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102007039588B4 (de) 2007-08-22 2010-01-21 Audi Ag Vorrichtung und Verfahren zur Reinigung von Abgasen für eine Brennkraftmaschine
JP4983491B2 (ja) * 2007-09-05 2012-07-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4286887B2 (ja) * 2007-09-28 2009-07-01 日産ディーゼル工業株式会社 排気浄化装置
JP4286888B2 (ja) * 2007-09-28 2009-07-01 日産ディーゼル工業株式会社 排気浄化装置
DE102007046460A1 (de) * 2007-09-28 2009-04-02 Daimler Ag Verfahren zur Verminderung der Emission von Stickstoffdioxid bei einem Kraftfahrzeug mit einer mager betriebenen Brennkraftmaschine
JP2009091909A (ja) * 2007-10-04 2009-04-30 Hino Motors Ltd 排気浄化装置
FR2922594A1 (fr) * 2007-10-23 2009-04-24 Peugeot Citroen Automobiles Sa Procede de gestion d'injection d'uree dans un systeme a reduction catalytique selective
JP2009103098A (ja) 2007-10-25 2009-05-14 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009114879A (ja) * 2007-11-02 2009-05-28 Toyota Motor Corp 内燃機関の排気浄化装置
JP4947036B2 (ja) * 2007-11-14 2012-06-06 マツダ株式会社 エンジンの排気浄化方法
DE102007056102B4 (de) * 2007-11-15 2011-05-19 Continental Automotive Gmbh Verfahren zum Betreiben eines Verbrennungsmotors und eines daran angeschlossenen Abgasnachbehandlungssystems mit einem Partikelfilter und einem SCR-Katalysator
US9993771B2 (en) 2007-12-12 2018-06-12 Basf Corporation Emission treatment catalysts, systems and methods
US9863297B2 (en) * 2007-12-12 2018-01-09 Basf Corporation Emission treatment system
KR100999616B1 (ko) * 2007-12-14 2010-12-08 기아자동차주식회사 배기 가스 내의 질소산화물 저감 장치
DE102007060623B4 (de) 2007-12-15 2011-04-14 Umicore Ag & Co. Kg Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
US7926263B2 (en) * 2007-12-20 2011-04-19 GM Global Technology Operations LLC Regeneration system and method for exhaust aftertreatment devices
EP2072773A1 (fr) 2007-12-21 2009-06-24 Umicore AG & Co. KG Procédé de traitement NOx de gaz d'échappement et systeme
JP4506842B2 (ja) * 2008-01-23 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置
US7708966B2 (en) * 2008-02-04 2010-05-04 Ceramatec, Inc. Systems and methods for on-site selective catalytic reduction
US8156733B2 (en) * 2008-02-29 2012-04-17 Detroit Diesel Corporation Method of operating an internal combustion engine to heat up a selective catalyst reducer
WO2009110373A1 (fr) 2008-03-03 2009-09-11 トヨタ自動車株式会社 Purificateur de gaz d'échappement pour moteur à combustion interne
KR100969378B1 (ko) * 2008-03-31 2010-07-09 현대자동차주식회사 배기 가스 정화 장치
ATE460973T1 (de) * 2008-04-11 2010-04-15 Umicore Ag & Co Kg Abgasreinigungssystem zur behandlung von motorenabgasen mittels scr-katalysator
JP4333803B1 (ja) * 2008-04-22 2009-09-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2112339A1 (fr) * 2008-04-24 2009-10-28 Umicore AG & Co. KG Procédé et dispositif de nettoyage de gaz d'échappement d'un moteur à combustion interne
US8201398B2 (en) * 2008-05-30 2012-06-19 Daimler Trucks North America Llc Diesel engine exhaust treatment system with drive shaft accommodating housing and method
US8276371B2 (en) * 2008-06-06 2012-10-02 Caterpillar Inc. Exhaust system having exhaust system segment with improved catalyst distribution and method
DE102008035562A1 (de) * 2008-07-30 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasreinigungssystem für Dieselmotoren von Nutzkraftfahrzeugen
DE102008037156A1 (de) * 2008-08-08 2010-02-18 Audi Ag Verfahren und eine Vorrichtung zur Reinigung eines Abgasstroms einer magerlauffähigen Brennkraftmaschine
JP5130162B2 (ja) * 2008-09-05 2013-01-30 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
DE102008046381B4 (de) * 2008-09-09 2011-12-22 Man Truck & Bus Ag Verfahren zur Verminderung von Stickoxiden im Abgasstrom von Brennkraftmaschinen
US8945495B2 (en) * 2008-10-21 2015-02-03 GM Global Technology Operations LLC Method and architecture for reducing NOX and particulate matter emissions in exhaust gas from hydrocarbon fuel source with a fuel lean combustion mixture
US20100101214A1 (en) * 2008-10-24 2010-04-29 Herman Andrew D Diagnostic methods for selective catalytic reduction (scr) exhaust treatment system
DE102008055890A1 (de) * 2008-11-05 2010-05-12 Süd-Chemie AG Partikelminderung mit kombiniertem SCR- und NH3-Schlupf-Katalysator
DE102008043706B4 (de) * 2008-11-13 2013-09-05 Ford Global Technologies, Llc Verfahren zur Reduktion von Stickoxiden in Abgasen
US8291695B2 (en) * 2008-12-05 2012-10-23 GM Global Technology Operations LLC Method and apparatus for controlling exhaust emissions in a spark-ignition direct-injection engine
KR101028556B1 (ko) * 2008-12-05 2011-04-11 기아자동차주식회사 배기 가스 정화 장치
US8448423B2 (en) * 2008-12-09 2013-05-28 GM Global Technology Operations LLC Method and apparatus for controlling operation of a spark-ignition direct-injection engine
EP2388449B1 (fr) * 2009-01-13 2013-12-18 Toyota Jidosha Kabushiki Kaisha Dispositif de purification d'échappement pour moteur à combustion interne
US8448424B2 (en) * 2009-01-16 2013-05-28 Ford Global Technologies, Llc. Emission control system with an integrated particulate filter and selective catalytic reduction unit
US8091342B2 (en) * 2009-01-28 2012-01-10 GM Global Technology Operations LLC Technique for production of ammonia on demand in a three way catalyst for a passive selective catalytic reduction system
DE102009007765A1 (de) * 2009-02-06 2010-08-12 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine mit einer einen SCR-Katalysator umfassenden Abgasreinigungsanlage
DE102009014236B4 (de) * 2009-03-20 2016-12-29 Audi Ag Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine
US9453443B2 (en) * 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
FR2943729A1 (fr) * 2009-03-24 2010-10-01 Peugeot Citroen Automobiles Sa Procede de controle des emissions polluantes d'un moteur a combustion, groupe motopropulseur et vehicule equipe de ce groupe motopropulseur
US20100251700A1 (en) * 2009-04-02 2010-10-07 Basf Catalysts Llc HC-SCR System for Lean Burn Engines
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
GB2482094B (en) * 2009-04-17 2014-05-14 Johnson Matthey Plc Small pore molecular sieve supported copper catalysts durable against lean/rich ageing for the reduction of nitrogen oxides
US8327621B2 (en) 2009-04-22 2012-12-11 GM Global Technology Operations LLC Oxidation catalyst outlet temperature correction systems and methods
US20110283685A1 (en) * 2009-04-27 2011-11-24 Kotrba Adam J Exhaust Treatment System With Hydrocarbon Lean NOx Catalyst
US8246923B2 (en) * 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
WO2010134189A1 (fr) * 2009-05-21 2010-11-25 トヨタ自動車株式会社 Dispositif de régulation des émissions de gaz d'échappement pour moteur à combustion interne
EP2439384B1 (fr) * 2009-06-03 2017-04-05 Toyota Jidosha Kabushiki Kaisha Dispositif de purification des gaz d'échappement pour moteur à combustion interne
DE102009025136A1 (de) * 2009-06-17 2010-12-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung eines Partikel aufweisenden Abgases
US20100326059A1 (en) * 2009-06-26 2010-12-30 Gm Global Technology Operations, Inc. Selective catalytic reduction exhaust aftertreatment system and engine incorporating the same
US8371108B2 (en) * 2009-07-29 2013-02-12 Ford Global Technologies, Llc Twin turbo diesel aftertreatment system
US8240136B2 (en) * 2009-07-29 2012-08-14 Ford Global Technologies, Llc SCR catalyst heating control
US8240194B2 (en) 2009-07-30 2012-08-14 Ford Global Technologies, Llc Methods and systems for diagnostics of an emission system with more than one SCR region
KR101726580B1 (ko) * 2009-08-28 2017-04-13 우미코레 아게 운트 코 카게 동일한 저장 기능을 갖는 촉매 컨버터의 상류측의 저장 기능을 갖는 촉매 활성 벽 유동 필터를 갖는 배기 가스 후처리 시스템
US20110047970A1 (en) * 2009-09-01 2011-03-03 Cummins Intellectual Properties, Inc. HIGH EFFICIENCY NOx REDUCTION SYSTEM AND METHOD
KR20110024598A (ko) * 2009-09-02 2011-03-09 현대자동차주식회사 디젤 자동차의 질소산화물 저감 장치
US20110064633A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Multi-Functional Catalyst Block and Method of Using the Same
US20110064632A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Staged Catalyst System and Method of Using the Same
US8181452B2 (en) * 2009-09-29 2012-05-22 Ford Global Technologies, Llc Particulate filter regeneration during engine shutdown
JP4894954B2 (ja) * 2009-10-06 2012-03-14 トヨタ自動車株式会社 内燃機関の排気浄化システム
US8557203B2 (en) * 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
JP5257333B2 (ja) * 2009-11-17 2013-08-07 三菱自動車工業株式会社 排気浄化装置
WO2011061820A1 (fr) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Système de purification d'émission de gaz échappement pour un moteur à combustion interne
US8596049B2 (en) * 2009-12-22 2013-12-03 Caterpillar Inc. Exhaust system having an aftertreatment module
US8460610B2 (en) * 2009-12-22 2013-06-11 Caterpillar Inc. Canister aftertreatment module
DE112010005012B4 (de) 2009-12-23 2023-02-16 Caterpillar Inc. Abgasnachbehandlungssystem
US8635861B2 (en) 2009-12-23 2014-01-28 Caterpillar Inc. Exhaust aftertreatment system
EP2354485A1 (fr) * 2010-01-13 2011-08-10 Delphi Technologies Holding S.à.r.l. Système d'échappement pour moteur à allumage par compression
DE102010000896A1 (de) 2010-01-14 2011-07-21 Robert Bosch GmbH, 70469 Verfahren zur Bestimmung eines NO2-/NOX-Verhältnisses im Abgas
JP5630024B2 (ja) 2010-01-25 2014-11-26 いすゞ自動車株式会社 ディーゼルエンジンの排気浄化装置及び排気浄化方法
US8459010B2 (en) * 2010-02-26 2013-06-11 General Electric Company System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device
US8621846B2 (en) * 2010-03-02 2014-01-07 GM Global Technology Operations LLC Gas/liquid mixing device for diesel exhaust aftertreatment
GB201003781D0 (en) * 2010-03-08 2010-04-21 Johnson Matthey Plc Improvements in the control of vehicle emissions
US8464523B2 (en) * 2010-03-12 2013-06-18 GM Global Technology Operations LLC Targeted particulate matter filter regeneration system
RU2480592C1 (ru) 2010-03-15 2013-04-27 Тойота Дзидося Кабусики Кайся Система очистки выхлопных газов двигателя внутреннего сгорания
CN102741515B (zh) 2010-03-15 2014-10-01 丰田自动车株式会社 内燃机排气净化装置
CN102791971B (zh) 2010-03-15 2015-08-05 丰田自动车株式会社 内燃机的排气净化装置
US20110225969A1 (en) * 2010-03-19 2011-09-22 Gm Global Technology Operations, Inc. Compressor bypass to exhaust for particulate trap regeneration
KR101321294B1 (ko) 2010-04-01 2013-10-28 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
US8763369B2 (en) 2010-04-06 2014-07-01 GM Global Technology Operations LLC Apparatus and method for regenerating an exhaust filter
JP2011220213A (ja) * 2010-04-08 2011-11-04 Hitachi Constr Mach Co Ltd 建設機械の内燃機関における排気ガス浄化システム
JP5449009B2 (ja) * 2010-04-28 2014-03-19 日野自動車株式会社 排気浄化装置
EP2570627B1 (fr) * 2010-05-12 2013-12-18 Toyota Jidosha Kabushiki Kaisha Dispositif d'épuration des gaz d'échappement pour moteur à combustion interne
CN102985648B (zh) 2010-05-20 2015-12-16 丰田自动车株式会社 内燃机的排气净化装置
US8464515B2 (en) * 2010-05-21 2013-06-18 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US8413432B2 (en) * 2010-06-30 2013-04-09 GM Global Technology Operations LLC Particulate filter regeneration interruption systems and methods
FR2962164B1 (fr) * 2010-06-30 2012-12-07 Valeo Systemes Thermiques Dispositif de recirculation de gaz d'echappement d'un moteur de vehicule automobile
US9108153B2 (en) 2010-07-28 2015-08-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9528413B2 (en) * 2010-07-30 2016-12-27 Ford Global Technologies, Llc Synergistic SCR/DOC configurations for lowering diesel emissions
DE102010039020A1 (de) * 2010-08-06 2012-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regeneration eines Partikelfilters
US8429899B2 (en) * 2010-08-09 2013-04-30 GM Global Technology Operations LLC Target particulate matter filter regeneration and temperature control system
US20120042637A1 (en) * 2010-08-18 2012-02-23 Caterpillar Inc. Tall vertical scr
WO2012025976A1 (fr) * 2010-08-23 2012-03-01 トヨタ自動車株式会社 Dispositif de purification des gaz d'échappement pour moteur à combustion interne
US9121325B2 (en) 2010-08-30 2015-09-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CA2752774C (fr) 2010-08-30 2014-02-18 Toyota Jidosha Kabushiki Kaisha Systeme de purification des gaz d'echappement d'un moteur a combustion interne
US9441517B2 (en) * 2010-09-02 2016-09-13 Ford Global Technologies, Llc Diesel engine exhaust treatment system
FR2964696A1 (fr) * 2010-09-13 2012-03-16 Renault Sa Systeme et procede de traitement des oxydes d'azote pour ligne d'echappement d'un vehicule automobile
JP5120498B2 (ja) 2010-10-04 2013-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012046332A1 (fr) 2010-10-04 2012-04-12 トヨタ自動車株式会社 Dispositif de purification de gaz d'échappement pour moteur à combustion interne
US9010090B2 (en) 2010-10-18 2015-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8943803B2 (en) * 2010-10-27 2015-02-03 Caterpillar Inc. Power system with cylinder-disabling strategy
US8800264B2 (en) * 2010-11-10 2014-08-12 Chrysler Group Llc Sampling tube for improved exhaust gas flow to exhaust sensor
US8707684B2 (en) * 2010-11-11 2014-04-29 GM Global Technology Operations LLC Control method and apparatus for regenerating a particulate filter
US8661797B2 (en) * 2010-11-15 2014-03-04 GM Global Technology Operations LLC NOx adsorber regeneration system and method
EP2484876B8 (fr) 2010-12-06 2016-09-14 Toyota Jidosha Kabushiki Kaisha Methode de purification de gaz d'échappement destiné à un moteur à combustion interne
WO2012086093A1 (fr) 2010-12-20 2012-06-28 トヨタ自動車株式会社 Dispositif d'épuration des gaz d'échappement pour moteur à combustion interne
US9028761B2 (en) 2010-12-24 2015-05-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8661788B2 (en) * 2010-12-29 2014-03-04 GM Global Technology Operations LLC Exhaust aftertreatment systems that include an ammonia-SCR catalyst promoted with an oxygen storage material
FR2970294B1 (fr) * 2011-01-11 2012-12-28 Peugeot Citroen Automobiles Sa Ligne d'echappement pour un moteur a combustion interne
JP5331177B2 (ja) * 2011-01-14 2013-10-30 トヨタ自動車株式会社 内燃機関の卑金属排ガス浄化装置
WO2012108059A1 (fr) 2011-02-07 2012-08-16 トヨタ自動車株式会社 Dispositif de purification de gaz d'échappement pour moteur à combustion interne
EP2503120B1 (fr) 2011-02-10 2016-09-14 Toyota Jidosha Kabushiki Kaisha Procédé de purification des nox d'un sytème de purification de gaz d'échappement pour moteur à combustion interne
CN103502590B (zh) 2011-03-17 2016-03-16 丰田自动车株式会社 内燃机的排气净化装置
JP5218672B2 (ja) 2011-04-15 2013-06-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102011100677A1 (de) * 2011-05-06 2012-11-08 Daimler Ag Betriebsverfahren für einen Kraftfahrzeug-Dieselmotor
JP5864901B2 (ja) * 2011-05-19 2016-02-17 日野自動車株式会社 パティキュレートフィルタの手動再生方法
DE102011077251B3 (de) * 2011-06-09 2012-06-06 Ford Global Technologies, Llc Diagnoseverfahren und Diagnosemodul für einen Filter eines NOx Sensors eines Abgassystems
US8919099B2 (en) * 2011-06-10 2014-12-30 GM Global Technology Operations LLC System and method for determining an ammonia generation rate in a three-way catalyst
GB2492175B (en) 2011-06-21 2018-06-27 Johnson Matthey Plc Exhaust system for internal combustion engine comprising catalysed filter substrate
US9714625B2 (en) * 2011-07-28 2017-07-25 GM Global Technology Operations LLC System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor
US8621845B2 (en) 2011-08-17 2014-01-07 GM Global Technology Operations LLC Passive SCR control system and method
DE102011111590A1 (de) 2011-08-25 2013-02-28 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung, Verfahren zur Aufbereitung von Abgas und Kraftfahrzeug
JP5786943B2 (ja) * 2011-09-06 2015-09-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102011114097A1 (de) * 2011-09-22 2013-03-28 Alantum Europe Gmbh Anordnung zur Nachbehandlung des Abgases eines Verbrennungsmotors
KR101317411B1 (ko) 2011-10-13 2013-10-18 기아자동차주식회사 매연 필터 재생 시스템 및 그 방법
DE102011117104A1 (de) * 2011-10-27 2012-08-23 Mtu Friedrichshafen Gmbh Brennkraftmaschine mit Abgasnachbehandlungssystem
JP5665015B2 (ja) * 2011-11-02 2015-02-04 株式会社デンソー 内燃機関の排気浄化装置
US8661790B2 (en) * 2011-11-07 2014-03-04 GM Global Technology Operations LLC Electronically heated NOx adsorber catalyst
ES2633727T3 (es) 2011-11-07 2017-09-25 Toyota Jidosha Kabushiki Kaisha Dispositivo de limpieza de gases de escape para motor de combustión interna
EP2626529B1 (fr) 2011-11-09 2015-10-21 Toyota Jidosha Kabushiki Kaisha Dispositif d'épuration de l'échappement pour moteur à combustion interne
US9175590B2 (en) 2011-11-30 2015-11-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CN103228883B (zh) 2011-11-30 2015-08-19 丰田自动车株式会社 内燃机的排气净化装置
JP2013119772A (ja) * 2011-12-06 2013-06-17 Ud Trucks Corp 排気浄化装置
GB201121468D0 (en) * 2011-12-14 2012-01-25 Johnson Matthey Plc Improvements in automotive catalytic aftertreatment
US9103251B2 (en) * 2012-01-25 2015-08-11 Cummins Inc. Devices and methods for compliant aftertreatment component assembly
EP2639419B1 (fr) 2012-02-07 2017-05-03 Toyota Jidosha Kabushiki Kaisha Dispositif de purification d'échappement pour moteur à combustion interne
US20130239554A1 (en) * 2012-03-19 2013-09-19 GM Global Technology Operations LLC Exhaust gas treatment system having a solid ammonia gas producing material
US9138686B2 (en) * 2012-03-30 2015-09-22 GM Global Technology Operations LLC Carbon monoxide-selective oxidation catalysts
WO2013158063A1 (fr) * 2012-04-16 2013-10-24 International Engine Intellectual Property Company, Llc Optimisation du dosage d'ammoniac pendant la régénération
US20140060011A1 (en) * 2012-05-04 2014-03-06 Mcguire Stove & Technologies, Llc Method, system, and device for decontaminating polluted combustion gas using volcanic rock
JP6074912B2 (ja) * 2012-05-11 2017-02-08 いすゞ自動車株式会社 排気ガス浄化システム及び排気ガス浄化方法
US9188071B2 (en) 2012-05-15 2015-11-17 GM Global Technology Operations LLC System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts
JP2013241859A (ja) * 2012-05-18 2013-12-05 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
WO2013183153A1 (fr) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Système de moteur
JP5884906B2 (ja) * 2012-06-19 2016-03-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20130343959A1 (en) * 2012-06-21 2013-12-26 Tenneco Automotive Operating Company Inc. Common rail reductant injection system
SE538193C2 (sv) * 2012-07-05 2016-03-29 Scania Cv Ab SCR-system och förfarande vid ett SCR-system
US20140069086A1 (en) 2012-09-13 2014-03-13 Leon A. LaPointe Exhaust system for spark-ignited gaseous fuel internal combustion engine
JP2014084785A (ja) * 2012-10-23 2014-05-12 Honda Motor Co Ltd 内燃機関の排気浄化システム
US8950179B2 (en) 2012-12-03 2015-02-10 Caterpillar Inc. Engine exhaust aftertreatment component including aftertreatment brick module
US9789442B2 (en) * 2012-12-13 2017-10-17 Johnson Matthey Public Limited Company Automotive catalytic aftertreatment system
US9222388B2 (en) 2013-02-28 2015-12-29 Tenneco Automotive Operating Company Inc. Urea common rail
US9114363B2 (en) * 2013-03-15 2015-08-25 General Electric Company Aftertreatment system for simultaneous emissions control in stationary rich burn engines
US20140311122A1 (en) * 2013-04-17 2014-10-23 GM Global Technology Operations LLC Flow controlled electrically assisted dpf regeneration
US9057315B2 (en) * 2013-07-08 2015-06-16 Honda Motor Co., Ltd. Oxygen sensor heat sinking boss
JP6090051B2 (ja) * 2013-08-08 2017-03-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102013108745A1 (de) * 2013-08-13 2015-02-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasbehandlungseinheit
US9512766B2 (en) * 2013-08-16 2016-12-06 Ford Global Technologies, Llc Multi-cell structure for automotive catalyst support
US9910413B2 (en) 2013-09-10 2018-03-06 General Electric Technology Gmbh Automatic tuning control system for air pollution control systems
WO2015046273A1 (fr) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 Dispositif de diagnostic de dysfonctionnement pour dispositif de purification de gaz d'échappement
US9228460B2 (en) * 2013-10-24 2016-01-05 Cummins Inc. Systems and methods for thermal management of aftertreatment system components
KR101684502B1 (ko) 2013-11-22 2016-12-08 현대자동차 주식회사 배기 가스 정화 장치 및 배기 가스 정화 방법
DE112014005463T5 (de) * 2014-01-20 2016-08-18 Cummins Inc. Verfahren zur Steuerung eines Nachbehandlungssystems zur selektiven katalytischen Reduktion als Reaktion auf einen Ammoniakschlupfzustand
JP6187385B2 (ja) * 2014-05-26 2017-08-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE212015000170U1 (de) * 2014-06-30 2017-02-14 Haldor Topsoe A/S Abgasnachbehandlungssystem für einen Dieselmotor
WO2016010558A1 (fr) * 2014-07-18 2016-01-21 Cummins Emission Solutions, Inc. Post-traitement des gaz d'échappement comprenant deux dispositifs de dosage d'agent réducteur en boucle fermée
DE202014103378U1 (de) 2014-07-21 2014-08-08 Ford Global Technologies, Llc Vorrichtung zur Abgasnachbehandlung
DE102015209269A1 (de) 2014-07-21 2016-01-21 Ford Global Technologies, Llc Vorrichtung und Verfahren zur Abgasnachbehandlung
DE102014214122A1 (de) 2014-07-21 2016-01-21 Ford Global Technologies, Llc Vorrichtung und Verfahren zur Abgasnachbehandlung
DE102014219061A1 (de) * 2014-09-22 2016-03-24 Voith Patent Gmbh Abgasnachbehandlungssystem für Verbrennungsmotoren
DE102014221322A1 (de) * 2014-10-21 2016-04-21 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung für eine Abgasanlage einer Brennkraftmaschine
JP6264261B2 (ja) * 2014-11-05 2018-01-24 マツダ株式会社 排気ガス浄化システム
JP6414488B2 (ja) * 2015-03-05 2018-10-31 いすゞ自動車株式会社 排気浄化装置のメンテナンス用具、及びメンテナンス方法
US20160258335A1 (en) * 2015-03-06 2016-09-08 Pleasurecraft Marine Engine Company Marine Exhaust System With Catalyst
GB2550811B (en) 2015-03-11 2021-02-10 Cummins Emission Solutions Inc System and method for monitoring particulate filter condition in an aftertreatment system
KR101673352B1 (ko) 2015-03-30 2016-11-07 현대자동차 주식회사 배기 가스 정화 장치의 린 녹스 트랩에서 발생되는 암모니아의 양을 계산하는 방법 및 배기 가스 정화 장치
JP6274152B2 (ja) * 2015-05-08 2018-02-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6248978B2 (ja) * 2015-05-11 2017-12-20 トヨタ自動車株式会社 内燃機関の制御装置
DE102015007908A1 (de) * 2015-06-20 2016-12-22 Man Truck & Bus Ag Verfahren zum Betreiben eines Gasmotors
KR101673359B1 (ko) 2015-06-25 2016-11-07 현대자동차 주식회사 린 녹스 트랩과 선택적 환원 촉매를 구비한 배기 가스 정화 장치에서 린 녹스 트랩의 재생 방법 및 배기 가스 정화 장치
CN105257371A (zh) * 2015-07-17 2016-01-20 贵州黄帝车辆净化器有限公司 Art-v型柴油发动机尾气后处理装置及催化还原方法
JP6287996B2 (ja) * 2015-08-06 2018-03-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9879580B2 (en) * 2015-08-19 2018-01-30 Cummins, Inc. Diagnostic methods for a high efficiency exhaust aftertreatment system
AT517670B1 (de) * 2015-09-04 2023-03-15 Innio Jenbacher Gmbh & Co Og Abgasnachbehandlungsvorrichtung
US9631565B2 (en) 2015-09-15 2017-04-25 Hyundai Motor Company Control method for improving nitrogen oxide purification performance
DE102015012736A1 (de) 2015-10-01 2017-04-06 Man Truck & Bus Ag Verfahren zum Betreiben eines Abgasnachbehandlungssystems
WO2017065729A1 (fr) * 2015-10-12 2017-04-20 Cummins, Inc. Procédé pour améliorer la caractéristique de désorption d'hydrocarbures à l'aide de capteurs de o2 ou nox d'échappement
US10005031B2 (en) * 2015-12-08 2018-06-26 GM Global Technology Operations LLC Dual-layer catalyst
CN107023355B (zh) * 2015-12-11 2020-05-19 现代自动车株式会社 废气净化***及其控制方法
DE102015016986A1 (de) * 2015-12-24 2017-06-29 Daimler Ag Abgasnachbehandlungseinrichtung für eine Verbrennungskraftmaschine
US10077727B2 (en) 2016-01-13 2018-09-18 GM Global Technology Operations LLC Engine control systems and methods for nitrogen oxide reduction
US9957911B2 (en) 2016-02-18 2018-05-01 GM Global Technology Operations LLC Dedicated exhaust gas recirculation control systems and methods
MX2018010592A (es) * 2016-03-02 2019-05-16 Watlow Electric Mfg Derivacion de flujo accionado por calentador.
DE102016003058A1 (de) 2016-03-11 2017-09-14 Daimler Ag Dieselverbrennungskraftmaschine mit einer Abgasnachbehandlungseinrichtung für einen Kraftwagen, sowie Verfahren zum Betreiben einer solchen Dieselverbrennungskraftmaschine
DE102016205299A1 (de) * 2016-03-31 2017-10-05 Man Diesel & Turbo Se Brennkraftmaschine mit Abgasnachbehandlungssystem
DE102016209358B4 (de) * 2016-05-31 2018-10-18 Continental Automotive Gmbh Verfahren, Vorrichtung zum Überwachen einer Stickoxidfalle, Computerprogramm und Computerprogrammprodukt
JP6489070B2 (ja) * 2016-06-02 2019-03-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102016121509B4 (de) * 2016-11-10 2021-09-16 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
US10220784B2 (en) * 2016-11-29 2019-03-05 Ford Global Technologies, Llc Luminescent windshield display
JP2020510831A (ja) * 2017-03-01 2020-04-09 日本特殊陶業株式会社 還元ガスを用いた一酸化窒素検出装置
DE102017203267A1 (de) * 2017-03-01 2018-09-06 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine mit einer Abgasanlage
DE102017006059A1 (de) * 2017-06-27 2018-12-27 Daimler Ag Abgasanlage für einen Kraftwagen
DE102017009612A1 (de) * 2017-10-17 2019-04-18 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
FR3073895B1 (fr) * 2017-11-17 2020-10-02 Renault Sas Procede de traitement des oxydes d'azote a l'echappement d'un moteur a combustion interne
DE102018000434B4 (de) * 2018-01-19 2021-05-27 Daimler Ag Verfahren zum Betreiben einer Abgasanlage einer Verbrennungskraftmaschine eines Kraftwagens und Abgasanlage für eine Verbrennungskraftmaschine eines Kraftwagens
JP6962266B2 (ja) * 2018-04-24 2021-11-05 株式会社豊田自動織機 内燃機関の排気浄化装置
US20190353071A1 (en) * 2018-05-18 2019-11-21 GM Global Technology Operations LLC Selective catalytic reduction device control
DE102018114681A1 (de) * 2018-06-19 2019-12-19 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem und Verfahren zur Regeneration eines Partikelfilters
AT521749B1 (de) * 2018-10-05 2021-12-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Oxidationskatalysator-Beschichtung
AT521759B1 (de) * 2018-10-05 2021-12-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Regenerationsstrategie
DE102018009233A1 (de) * 2018-11-26 2019-09-12 Daimler Ag Abgasnachbehandlungseinrichtung für ein Kraftfahrzeug mit einem Katalysator, welcher wenigstens ein SCR-Material und wenigstens ein NOx-Speicher-Material aufweist, und Verfahren zum Betreiben einer solchen Abgasnachbehandlungseinrichtung
DE102018220570A1 (de) 2018-11-29 2020-06-04 Robert Bosch Gmbh Kompakt bauendes Abgasnachbehandlungssystem
US11268418B2 (en) * 2019-01-18 2022-03-08 Caterpillar Inc. Engine system and operating strategy for selective in situ and ex situ limiting of NOx production
US11073056B2 (en) * 2019-03-12 2021-07-27 Ford Global Technologies, Llc Methods and systems for exhaust emission control
US10876450B2 (en) * 2019-05-22 2020-12-29 FEV Europe GmbH Splitflow catalyst system
DE102019211114A1 (de) * 2019-07-26 2021-01-28 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102019129286A1 (de) * 2019-10-30 2021-05-06 Volkswagen Aktiengesellschaft Abgasbehandlungsanordnung für eine Verbrennungskraftmaschine
FR3102798B1 (fr) * 2019-11-05 2022-05-13 Renault Sas Procédé et système de détermination d’un besoin de chauffe d’un catalyseur de réduction sélective d’oxydes d’azote d’un moteur de véhicule automobile
SE543753C2 (en) * 2019-11-19 2021-07-13 Scania Cv Ab Method and system for diagnosing oxidation of a substance in an exhaust gas stream
US11359529B2 (en) * 2020-03-02 2022-06-14 GM Global Technology Operations LLC Monitoring of diesel oxidation catalyst in aftertreatment assembly
US11326493B2 (en) 2020-07-21 2022-05-10 Paccar Inc Ammonia storage capacity of SCR catalyst unit
US11976582B2 (en) 2020-07-21 2024-05-07 Paccar Inc Methods for diagnostics and operation of an emissions aftertreatment system
US11428136B2 (en) 2020-07-21 2022-08-30 Paccar Inc Heater diagnostics in heavy-duty motor vehicle engines
US11181026B1 (en) * 2020-07-21 2021-11-23 Paccar Inc Methods for operation of an emissions aftertreatment system for NOx control during regeneration of diesel particulate filter
US11879367B2 (en) 2020-07-21 2024-01-23 Paccar Inc NOx sensor diagnostics in heavy-duty motor vehicle engines
US11725560B2 (en) 2020-07-21 2023-08-15 Paccar Inc Heater control in heavy-duty motor vehicle engines
US11352927B2 (en) 2020-07-21 2022-06-07 Paccar Inc Control of selective catalytic reduction in heavy-duty motor vehicle engines
US11499463B2 (en) 2020-07-21 2022-11-15 Paccar Inc Methods for evaluating diesel exhaust fluid quality
EP4204668A1 (fr) * 2020-09-24 2023-07-05 Miratech Group, LLC Appareil, système et procédé d'oxydation du méthane dans un échappement de moteur à mélange pauvre
CN112412599B (zh) * 2020-11-18 2022-04-05 潍柴动力股份有限公司 上游NOx传感器故障识别方法、装置、车辆及存储介质
CN112814770B (zh) * 2020-12-31 2022-04-05 潍柴动力股份有限公司 并联式scr***的均匀性评价方法及装置
DE102021115663A1 (de) 2021-06-17 2022-12-22 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
US11927124B2 (en) 2021-11-30 2024-03-12 Cummins Power Generation Inc. Aftertreatment system, dual fuel system, and methods therefor
US11519315B1 (en) 2021-11-30 2022-12-06 Cummins Power Generation Inc. Aftertreatment system, dual fuel system, and dual fuel apparatus
DE102022206802A1 (de) * 2022-07-04 2024-01-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines Abgasnachbehandlungssystems einer Verbrennungskraftmaschine mit mindestens zwei in Reihe geschalteten SCR-Katalysatoren
DE102022120292A1 (de) * 2022-08-11 2024-02-22 Purem GmbH Abgasanlage für einen Wasserstoff-Verbrennungsmotor

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207162C1 (de) 1982-02-27 1983-10-06 Thyssen Edelstahlwerke Ag Hochwarmfeste Nickel-Eisen-Gusslegierung mit grosser Gefuegestabilitaet
US4902487A (en) * 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
EP0560991B9 (fr) 1991-10-03 2005-01-26 Toyota Jidosha Kabushiki Kaisha Dispositif pour purifier les gaz d'echappement d'un moteur a combustion interne
JP2783074B2 (ja) 1991-10-29 1998-08-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO1993012863A1 (fr) 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Dispositif limitant l'emission des gaz d'echappement dans un moteur a combustion interne
JP2845080B2 (ja) * 1993-03-17 1999-01-13 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6497851B1 (en) * 1994-12-06 2002-12-24 Englehard Corporation Engine exhaust treatment apparatus and method of use
DE19626836A1 (de) 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
AU696257B2 (en) 1995-11-09 1998-09-03 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
JP3454334B2 (ja) 1996-06-18 2003-10-06 トヨタ自動車株式会社 排気浄化方法及びその装置
JP3456408B2 (ja) 1997-05-12 2003-10-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19747670C1 (de) * 1997-10-29 1998-12-10 Daimler Benz Ag Abgasreinigungsanlage für eine Brennkraftmaschine
US7127883B1 (en) * 1997-11-10 2006-10-31 Mitsubishi Jidosha Kogoyo Kabushiki Kaisha Exhaust gas purifying apparatus of internal combustion engine
GB9802504D0 (en) * 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
DE19820828B4 (de) * 1998-05-09 2004-06-24 Daimlerchrysler Ag Stickoxidemissionsmindernde Abgasreinigungsanlage
DE19827195A1 (de) 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
WO2000021647A1 (fr) 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Procede et dispositif de traitement de gaz d'echappement
DE69927718T2 (de) * 1998-11-13 2006-07-13 Engelhard Corp. Katalysator und verfahren zur reduzierung der abgasemissionen
JP3518398B2 (ja) 1999-03-11 2004-04-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19921974A1 (de) 1999-05-12 2000-11-16 Volkswagen Ag Vorrichtung zum Reduzieren von schädlichen Bestandteilen im Abgas einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
US6293096B1 (en) * 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
US6301888B1 (en) * 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
JP3788141B2 (ja) * 1999-10-25 2006-06-21 日産自動車株式会社 排気ガス浄化システム
DE19955324A1 (de) * 1999-11-17 2001-05-23 Volkswagen Ag Vorrichtung und Verfahren zum Reduzieren von schädlichen Bestandteilen im Abgas einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
JP2001140630A (ja) * 1999-11-19 2001-05-22 Hitachi Ltd 内燃機関の排ガス浄化装置
US6391822B1 (en) * 2000-02-09 2002-05-21 Delphi Technologies, Inc. Dual NOx adsorber catalyst system
US7211226B2 (en) * 2000-03-09 2007-05-01 Fleetgaurd, Inc. Catalyst and filter combination
DE10020100A1 (de) * 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Verfahren und Katalysator zur Reduktion von Stickoxiden
US6347512B1 (en) * 2000-04-28 2002-02-19 Ford Global Technologies, Inc. Method and system for controlling a lean NOx trap purge cycle
DE10025044C1 (de) 2000-05-20 2001-11-29 Daimler Chrysler Ag Abgasreinigungsanlage für eine Verbrennungsvorrichtung und Verfahren zur Durchführung von Desulfatisierungsvorgängen
GB0013607D0 (en) * 2000-06-06 2000-07-26 Johnson Matthey Plc Emission control
DE50001415D1 (de) * 2000-11-03 2003-04-10 Ford Global Tech Inc Verfahren zur Regeneration des Partikelfilters eines Dieselmotors
DE10054877A1 (de) 2000-11-06 2002-05-29 Omg Ag & Co Kg Abgasreinigungsanlage für die selektive katalytische Reduktion von Stickoxiden unter mageren Abgasbedingungen und Verfahren zur Abgasreinigung
JP2002138819A (ja) * 2000-11-07 2002-05-17 Isuzu Ceramics Res Inst Co Ltd ディーゼルパティキュレートフィルタユニット
JP3617450B2 (ja) * 2000-12-20 2005-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10104160B4 (de) 2001-01-30 2008-07-10 Umicore Ag & Co. Kg Verfahren zum Betreiben einer Abgasreinigungsanlage für einen Verbrennungsmotor
JP3724415B2 (ja) * 2001-03-15 2005-12-07 いすゞ自動車株式会社 窒素酸化物吸蔵還元型触媒とそれを備えた排気ガス浄化シテスム及び排気ガス浄化方法。
JP3797125B2 (ja) * 2001-03-15 2006-07-12 いすゞ自動車株式会社 排気ガス浄化装置及びその再生制御方法
JP4604374B2 (ja) * 2001-03-15 2011-01-05 日産自動車株式会社 内燃機関の排気浄化装置
DE10113947B4 (de) 2001-03-22 2004-03-25 Daimlerchrysler Ag Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine
DE10118327A1 (de) * 2001-04-12 2002-10-17 Emitec Emissionstechnologie Abgassystem
JP2002309928A (ja) * 2001-04-13 2002-10-23 Yanmar Diesel Engine Co Ltd 内燃機関の排気浄化装置
DE10125759B4 (de) 2001-05-18 2012-10-31 Volkswagen Ag Verfahren zur Ermittlung eines Beladungszustandes eines NOx-Speicherkatalysators
JP2002349241A (ja) * 2001-05-24 2002-12-04 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
JP3576504B2 (ja) * 2001-05-24 2004-10-13 日野自動車株式会社 排気浄化装置
DE10128414A1 (de) 2001-06-12 2002-12-19 Daimler Chrysler Ag Abgasreinigungsanlage mit Reduktionsmittelversorgung
JP2002371901A (ja) * 2001-06-12 2002-12-26 Toyota Motor Corp 内燃機関の排気浄化装置
DE10164833A1 (de) * 2001-07-03 2004-06-09 Daimlerchrysler Ag Brennkraftmaschine mit Abgasnachbehandlungseinrichtung und Betriebsverfahren hierfür
WO2003054364A2 (fr) * 2001-12-20 2003-07-03 Johnson Matthey Public Limited Company Ameliorations dans la reduction catalytique selective
US6912847B2 (en) * 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
DE10207986A1 (de) * 2002-02-25 2003-09-04 Daimler Chrysler Ag Abgasreinigungsanlage für eine Brennkraftmaschine
US6915629B2 (en) * 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust
US7055311B2 (en) * 2002-08-31 2006-06-06 Engelhard Corporation Emission control system for vehicles powered by diesel engines
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US6928806B2 (en) * 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
US6732507B1 (en) * 2002-12-30 2004-05-11 Southwest Research Institute NOx aftertreatment system and method for internal combustion engines
DE10300298A1 (de) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
US6973776B2 (en) * 2003-11-03 2005-12-13 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US7062904B1 (en) * 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
US7562522B2 (en) * 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
ES2373073T3 (es) * 2007-02-21 2012-01-31 Volvo Lastvagnar Ab Sistema de post-tratamiento de gases de escape.
US8448424B2 (en) * 2009-01-16 2013-05-28 Ford Global Technologies, Llc. Emission control system with an integrated particulate filter and selective catalytic reduction unit
DE102011085952A1 (de) * 2011-11-08 2013-05-08 Robert Bosch Gmbh SCR-Katalysatorsystem und Verfahren zu seinem Betrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004061278A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731727A1 (fr) * 2004-03-24 2006-12-13 Hitachi, Ltd. Dispositif de clarification de gaz d'echappement derive de moteur a combustion interne, procede de clarification de gaz d'echappement, et agent de capture de constituant de soufre pour moteur a combustion interne
EP1731727A4 (fr) * 2004-03-24 2007-07-18 Babcock Hitachi Kk Dispositif de clarification de gaz d'echappement derive de moteur a combustion interne, procede de clarification de gaz d'echappement, et agent de capture de constituant de soufre pour moteur a combustion interne

Also Published As

Publication number Publication date
US9057307B2 (en) 2015-06-16
DE10300298A1 (de) 2004-07-15
JP4541898B2 (ja) 2010-09-08
US20060153761A1 (en) 2006-07-13
US7814747B2 (en) 2010-10-19
US7210288B2 (en) 2007-05-01
US8297046B2 (en) 2012-10-30
JP2006512529A (ja) 2006-04-13
US20110005204A1 (en) 2011-01-13
US20130011313A1 (en) 2013-01-10
WO2004061278A1 (fr) 2004-07-22
US20070175208A1 (en) 2007-08-02
US20150226100A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
EP1579109A1 (fr) Dispositif et procede de post-traitement de gaz d'echappement
DE102008048854B4 (de) Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
DE10347133B4 (de) Abgasnachbehandlungssysteme
EP2705227B1 (fr) Procédé pour faire fonctionner un moteur diesel de véhicule automobile
DE102007060623B4 (de) Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
DE10348799B4 (de) Abgasnachbehandlungssysteme
EP2394044B1 (fr) Procédé pour faire fonctionner un moteur à combustion interne équipé d'un système de dépollution des gaz d'échappement à catalyseur scr
EP3150814B1 (fr) Procédé de fonctionnement d'un système de traitement aval des gaz d'échappement
EP3099905B1 (fr) Procédé d'ajustement de la température d'un dispositif de retraitement de gaz d'échappement
DE102013200361B4 (de) Abgasnachbehandlungssystem, Kraftfahrzeug und Verfahren zur Abgasnachbehandlung
DE102008031402A1 (de) Mehrstufige Partikelfilter-Regeneration
DE102006007122A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und einer daran angeschlossenen Abgasnachbehandlungseinrichtung
DE112009001034T5 (de) Passive ammoniak-selektive katalytische Reduktion für NOx-Steuerung in Verbrennungsmotoren
EP2112339A1 (fr) Procédé et dispositif de nettoyage de gaz d'échappement d'un moteur à combustion interne
DE102005022420A1 (de) Abgasreinigungsanlage und Abgasreinigungsverfahren mit externer Reduktionsmittelzudosierung
EP3486444B1 (fr) Procédé de traitement de gaz d'échappement d'un moteur à combustion interne
EP2394043A1 (fr) Procede pour faire fonctionner un moteur a combustion interne equipe d'un systeme de depollution des gaz d'echappement
WO2008077602A1 (fr) Installation d'épuration des gaz d'échappement pour moteurs à mélange pauvre et procédé de mise en œuvre de l'installation
EP3608519A1 (fr) Procédé et dispositif de traitement d'échappement d'un moteur à combustion
DE10126455A1 (de) Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
DE102006017300B4 (de) Verfahren zur Regeneration von zumindest einer oxidierend arbeitenden Abgasreinigungseinrichtung und zumindest einer reduzierend arbeitenden Abgasreinigungseinrichtung sowie Vorrichtung zum Durchführen des Verfahrens
EP3584418B1 (fr) Système de post-traitement des gaz d'échappement et procédé de régénération d'un filtre à particules
EP3167171B1 (fr) Procédé permettant le dosage d'un agent de réduction d'un système de catalyseur scr et système de catalyseur scr correspondant
DE102007035937A1 (de) Abgasnachbehandlungsanlage und Verfahren zum Behandeln von Abgas
DE102004018393A1 (de) Abgasnachbehandlungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060313