JP3788141B2 - 排気ガス浄化システム - Google Patents

排気ガス浄化システム Download PDF

Info

Publication number
JP3788141B2
JP3788141B2 JP30224299A JP30224299A JP3788141B2 JP 3788141 B2 JP3788141 B2 JP 3788141B2 JP 30224299 A JP30224299 A JP 30224299A JP 30224299 A JP30224299 A JP 30224299A JP 3788141 B2 JP3788141 B2 JP 3788141B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
way catalyst
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30224299A
Other languages
English (en)
Other versions
JP2001123827A (ja
Inventor
浩行 金坂
仁 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30224299A priority Critical patent/JP3788141B2/ja
Publication of JP2001123827A publication Critical patent/JP2001123827A/ja
Application granted granted Critical
Publication of JP3788141B2 publication Critical patent/JP3788141B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関や燃焼器等から排出される排気ガスを浄化するためのシステムに係り、特に酸素を過剰に含むリーンバーン排気ガス中の窒素酸化物を高効率で浄化し得る排気ガス浄化システムに関する。
【0002】
【従来の技術】
従来、自動車等の内燃機関から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等を浄化する触媒としては、理論空燃比で働く三元触媒が用いられている。しかし、三元触媒では、内燃機関の排気ガスが酸素過剰の時には窒素酸化物を浄化することができない。
このような内燃機関の排気ガスが酸素過剰の時に窒素酸化物を浄化する方法として、特許掲載第2600429号公報には、排気ガスが酸素過剰の時にNOxを吸収させ、吸収させたNOxを、NOx吸収剤に流入する排気ガス中の酸素の濃度を低下させて放出させ、浄化処理するという方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記特許掲載公報に記載されているような、排気ガスが酸素過剰の時にNOxを吸収させ、NOx吸収剤に流入する排気ガス中の酸素の濃度を低下させて、吸収させたNOxを放出させて浄化処理するという方法においては、NOxを脱離浄化する時に還元剤としてHCとCOを用いており、NOxを十分に還元反応させるためには、NOxの脱離浄化時に還元剤としてHCとCOを十分に供給してやる必要がある。このため、NOx以外のHCとCO成分が充分に浄化されずに排出されてしまい、十分なHC及びCO浄化性能が得られなかった。
【0004】
この解決方法としては、NOx吸蔵触媒の後段に三元触媒を配置して浄化する方法等があるが、このような触媒システムでは、HC及びCOを浄化する触媒が排気流路の後段に配置されるため、触媒入口の排気温度が低くなってしまい、十分なHC及びCOの浄化性能が得られないという課題があった。
また、上述のように吸収させたNOxを放出させて浄化処理する際に、排気ガス中のHC及びCO成分を増加させて酸素濃度を低下させると、燃費向上効果が十分には得られなくなるという課題もある。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、酸素過剰で運転することによる燃費向上効果を十分に享有でき、HC及びCO成分を効率良く浄化し、特にエンジン始動直後の低温時に排出されるHC及びCOを効率良く浄化できる排気ガス浄化システムを提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、HCとCOを選択的に浄化する酸化触媒や三元触媒を、NOx浄化触媒の上流側に配置することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の排気ガス浄化システムは、還元成分のうちの炭化水素と一酸化炭素を選択的に浄化し、且つ水素とアンモニアを殆ど浄化しない酸化触媒及び/又は三元触媒と、還元成分を用いて窒素酸化物を還元処理するNOx浄化触媒とを、排気ガス組成が、空燃比が酸素過剰の状態であるいわゆるリーンの状態、理論空燃比又は燃料過剰の状態であるいわゆるリッチ状態をとる内燃機関又は燃焼装置の排気通路に設置し、
上記NOx浄化触媒の上記排気ガス通路上流側に、上記酸化触媒及び/又は三元触媒を配置して成り、
上記酸化触媒及び/又は三元触媒の炭化水素の選択浄化率が98.5%以上で、一酸化炭素の選択浄化率が90%以上である、ことを特徴とする。
【0010】
また、本発明の排気ガス浄化システムの更に他の好適形態は、上記酸化触媒又は三元触媒が、白金、パラジウム及び固体酸性を有する酸化物を含み、白金及びパラジウムの含有量の50%以上が、上記固体酸性を有する酸化物と同一層に混在していることを特徴とする。
【0011】
更にまた、本発明の排気ガス浄化システムの他の好適形態は、上記NOx浄化触媒は、空燃比が上記リーン状態において窒素酸化物を還元成分と反応させて浄化するNOx選択還元触媒、空燃比が上記リーン状態において窒素酸化物を一時的に吸収し理論空燃比及び/又は上記リッチ状態で窒素酸化物を放出して還元成分によって窒素酸化物を浄化するNOx吸蔵型三元触媒、又は理論空燃比の近傍のリーン条件下で窒素酸化物を還元浄化する三元触媒及びこれらの任意の組合せに係る触媒であることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の排気ガス浄化システムについて詳細に説明する。
上述の如く、この排気ガス浄化システムは、還元成分のうちのHCとCOを選択的に浄化する酸化触媒及び/又は三元触媒と、還元成分を用いてNOxを還元処理するNOx浄化触媒とを用いて構成されており、上記酸化触媒及び/又は三元触媒は、内燃機関又は燃焼装置の排気通路の上流側に配置され、その下流側に上記NOx浄化触媒が配置されている。
【0013】
ここで、前段の酸化触媒/三元触媒における触媒反応について説明する。
理論空燃比近傍や燃料過剰領域(リッチ領域)において、エンジンから排出される排気ガス中には、還元ガス成分としてHC及びCO以外に水素(H)とアンモニア(NH)が含まれている。そして、これらのH及びNH成分も、通常に用いられている酸化触媒や三元触媒において、次式
+O→H
NH+O→N+H
NO+H→N+H
などで表される反応により、HC及びCOなどの還元成分と同様に浄化されてしまう。
【0014】
このため、排気浄化システムとして、排気ガス温度が低い領域から働くように、前段にHC及びCOを浄化する酸化触媒や還元触媒を配置し、後段にNOxを浄化する還元触媒を配置した場合、後段の還元触媒にはNOxを還元浄化するための還元剤が供給されず、NOxが充分に浄化されないことになる。
よって、特許掲載第2600429号公報に記載されているような従来の排気ガス浄化システムにおいては、排気通路内の後段に配置されたNOx吸蔵触媒でNOxを脱離浄化させるための還元成分であるHC、CO、H及びNH等が、排気通路内の前段側の三元触媒において酸化反応してしまい、後段のNOx吸蔵触媒においては必要量の還元成分が供給されないために、排気ガス中の酸素濃度を低下させた状態でNOxを脱離させてもNOx浄化性能が充分に得ることができない。
【0015】
そこで、本発明においては、酸化触媒又は三元触媒として、HCとCOを選択的に浄化する触媒、即ち還元成分のうちHCとCOは浄化するが、HとNHは殆ど浄化しない特定の触媒を用いることにし、これにより、酸素過剰雰囲気下(リーン状態)でNOx浄化触媒に吸収させたNOxを処理するために必要となる還元成分を、後段のNOx浄化触媒に供給することにしている。
【0016】
かかる酸化触媒又は三元触媒としては、次式
HC+O→HO+CO…(1)
2CO+O→2CO…(2)
HC+NO→HO+N+CO…(3)
CO+NO→CO+N…(4)
で表される反応を促進する触媒であり、その時のHC、COのそれぞれの選択浄化率が98.5%、90%以上であることを要するが、具体的には、白金、パラジウム及び固体酸性を有する酸化物を含み、白金及びパラジウムの含有量の50%以上が、固体酸性を有する酸化物と同一の触媒層に混在している触媒を好ましく用いることができる。
【0017】
上記選択浄化率が、HCで98.5%未満、COで90%未満では、O2、NOがHC、COと反応する以外に、H、NHとする次式の反応
2H+O→2HO …▲5▼
4NH+3O→2N+6HO …▲6▼
4H+2NO→2HO+N…▲7▼
4NH+6NO→6HO+5N…▲8▼
が進み、H、NHが酸化反応により消費されてしまう。
また、白金及びパラジウムの混在量がこれらの含有量の50%未満の場合には、▲1▼〜▲4▼の反応よりも▲5▼〜▲8▼の反応が促進されるため、還元剤成分としてのH、NHが減少してしまう。
【0018】
次に、後段に設置するNOx浄化触媒につき説明する。
このNOx浄化触媒としては、還元成分によってNOxを還元浄化できれば十分であるが、本システムにおいて、この還元成分は、上述の特定酸化触媒及び/又は三元触媒の作用により主成分がH及び/又はNHということになる。
かかるNOx浄化触媒としては、NOx選択還元触媒、NOx吸蔵型三元触媒又は所定の三元触媒及びこれらの任意の組合せに係る触媒を挙げることができ、NOx選択還元触媒は、空燃比が酸素過剰な状態(リーン状態)においてNOxを還元成分と反応させて浄化し、NOx吸蔵型三元触媒は、空燃比が酸素過剰な状態においてNOxを一時的に吸収し理論空燃比及び/又はリッチな状態でNOxを放出して還元成分によりNOxを浄化し、所定の三元触媒は、理論空燃比の近傍のリーン条件下でNOxを還元浄化する機能を有する。
【0019】
上記NOx選択還元触媒としては、銅(Cu)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、ガリウム(Ga)、ランタン(La)、セリウム(Ce)、亜鉛(Zn)、チタン(Ti)、カルシウム(Ca)、バリウム(Ba)、又は銀(Ag)及びこれらの混合元素、並びに白金(Pt)、イリジウム(Ir)、ロジウム(Rh)又はパラジウム(Pd)及びこれらの混合貴金属の少なくとも一方を含むゼオライト又はアルミナを用いて成る触媒を挙げることができる。
【0020】
また、NOx吸蔵型三元触媒としては、セシウム(Cs)、バリウム(Ba)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、ランタン(La)又はカルシウム(Ca)及びこれらの混合金属元素と、白金(Pt)、パラジウム(Pd)又はロジウム(Rh)及びこれらの混合貴金属元素とを含む触媒を例示することができる。
【0021】
更に、上記NOxを理論空燃比の近傍のリーン条件下で還元浄化する三元触媒としては、白金、パラジウム又はロジウム及びこれらの混合貴金属元素と、セリウム、ランタン、ネオジウム(Nd)又はプラセオジウム(Pr)等の希土類元素及びこれら混合元素並びにジルコニアの少なくとも一方とを含む触媒を用いることができる。
【0022】
なお、本発明の排気ガス浄化システムにおいて、後段に用いるNOx還元浄化触媒については、内燃機関等におけるリーン運転の条件に応じて、NOx選択還元触媒、NOx吸蔵型三元触媒及び上記所定の三元触媒から選定することができる。
【0023】
また、本発明の排気ガス浄化システムにおいては、上述した酸化触媒、三元触媒及びNOx浄化触媒を用いる場合、一体構造型担体に担持して用いるのが好ましい。
かかる一体構造型担体としては、耐熱性材料から成るモノリス担体が好ましく、例えばコーディライトなどのセラミック製のものや、フェライト系ステンレスなどの金属製のものが用いられる。
【0024】
なお、後段のNOx浄化触媒については、理論空燃比時には三元触媒としての機能を有することが好ましいため、Pt、Pd及びRh等の貴金属はその少なくとも一部が多孔質基材に担持されることが好ましく、なかでもアルミナに担持されることが好ましい。
この際に使用されるアルミナとしては、耐熱性の高いものが好ましく、なかでも比表面積が50〜300m/g程度の活性アルミナが好ましい。
【0025】
また、アルミナの耐熱性を向上させる目的で、従来から三元触媒で使用されているように、セリウム及びランタン等の希土類化合物やジルコニウムなどの添加物を更に加えてもよい。
更に、三元触媒としての機能を増強するために、従来から三元触媒に用いられている材料を添加してもよく、例えば酸素ストレージ機能を持つセリアや、貴金属へのHC吸着被毒を緩和するバリウムや、Rhの耐熱性向上に寄与するジルコニア等を加えてもよい。
【0026】
なお、本発明の浄化システムにおいて、NOx浄化触媒の貴金属量は、NOx吸収機能と三元機能が十分に得られる限り、特に制限されないが、一般の三元触媒で用いられているように、触媒1L当たり0.1〜10gの範囲であることが好ましい。
【0027】
本発明の排気ガス浄化システムにおいては、良好な排気ガス浄化を実現するに当たり、排気ガス組成を変動させる必要があり、かかる変動によって、空燃比を酸素過剰状態(リーン状態)、理論空燃比(ストイキ)及び燃料過剰状態(リッチ状態)のいずれかに制御することができる。
例えば、エンジンの排気ガスからHを比較的多量に生成させるためには、燃料濃度を増大する濃度変動を行う必要があるが、かかる濃度変動は、走行条件に拘わらずに一定時間おきに実施してもよく、また、走行条件を考慮してNOx浄化触媒(NOx吸蔵型三元触媒)でのNOx吸収量が多くなっている条件下、又はNOx浄化触媒がNOxを還元浄化しやすい条件(温度条件、排気ガス流量条件等)下のタイミングに合わせて行うことが好ましい。
【0028】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
なお、図1に、以下の実施例で構築した排気ガス浄化システムの構成を概略的に示す。同図において、この排気ガス浄化システムは、エンジン1の排気系に酸化触媒/三元触媒2と、NOx浄化触媒3を設置して成り、酸化触媒/三元触媒2は、エンジン1の排気ガス出口の直後に設置され、排気ガス中のHCとCOを選択的に浄化処理し、その後段に設置されたNOx浄化触媒3は、排気ガス中に含まれるNOxを酸素過剰雰囲気で酸化吸収し、且つ還元成分が供給された時にNOxを還元処理により浄化する。
【0029】
(実施例1)
[酸化触媒/三元触媒の調製]
タングステン酸アンモニウム水溶液と市販のチタニアゾルを混合し、得られた沈殿物を焼成し、WとTiを等モル量含有するW−Ti酸化物粉末(粉末A)を調製した。更に、粉末Aにジニトロジアンミン白金水溶液と硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pt,Pd担持W−Ti酸化物粉末(粉末B)を得た。この粉末Bの貴金属濃度は4.0重量%、Pt/Pd=0.2であった。
同様に、活性アルミナ粉末にジニトロジアンミン白金水溶液と硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pt,Pd担持活性アルミナ粉末(粉末C)を得た。この粉末Cの貴金属濃度も粉末Bと同様4.0重量%、Pt/Pd=0.2とした。
【0030】
上記粉末B100g、粉末C100gと硝酸水溶液200gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。
このスラリー液をコージェライト質モノリス担体(0.1L、400セル/平方インチ)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、500℃で1時間焼成した。コート量重量100g/L−担体の触媒Aを得た。貴金属担持量は4.0g/L−担体であった。
【0031】
[NOx浄化触媒の調製]
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末B)を得た。この粉末のPd濃度は5.0重量%であった。
硝酸Rh水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末C)を得た。この粉末のRh濃度は3.0重量%であった。
粉末Bを347g、粉末Cを58g、活性アルミナ粉末を496g、水900gを磁性ボールミルに投入し、混合粉砕してスラリ液を得た。粉砕時間を1時間とした。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量200g/L−担体を得た。更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ないNOx浄化触媒を調製した。
【0032】
[排気ガス浄化システムの構築]
上述のようにして得られた酸化触媒/三元触媒とNOx浄化触媒を用い、図1に示しように、エンジン1の前段に酸化触媒/三元触媒、後段にNOx浄化触媒を設置して、本実施例の排気ガス浄化システムを構築した。
【0033】
(実施例2)
酸化触媒/三元触媒については、実施例1と同様に調製したものを用いた。NOx浄化触媒については、酢酸バリウムの代わりに炭酸セシウムを用いた以外は実施例1と同様の操作を繰り返し調製した。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
【0034】
(実施例3)
酸化触媒/三元触媒は実施例1と同様に調製した。NOx浄化触媒としては、いわゆるNOx選択還元触媒を用いた。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用したNOx選択還元触媒は、下記の操作によって調製した。
【0035】
[NOx選択還元触媒の調製]
セリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末1000gに対して硝酸パラジウム溶液を用いてパラジウム2.0重量%になるように加え、よく攪拌した後、オーブン中150℃で3時間乾燥し、400℃で2時間空気雰囲気中で焼成を行った。このパラジウム担持活性アルミナ1500g、セリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末800g、10重量%HNO硝酸460g、水1840gをボールミルポットに投入し、8時間粉砕してスラリーを得た。得られたスラリーをモノリスハニカム担体基材(1.3L、400セル)に塗布し乾燥した後、400℃で2時間、空気雰囲気中で焼成した。この時の塗布量は、焼成後に52g/個になるようにした。
【0036】
次に、γ−アルミナを主たる成分としセリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末2000g、10重量%硝酸400g、水1600gをボールミルポットに投入し、8時間粉砕して得たスラリーを焼成後の塗布量52g/個になるように塗布し乾燥した後、400℃で2時間、空気雰囲気中で焼成した。
更に、0.2モル/Lの硝酸銅又は酢酸銅溶液を5.2kgとゼオライト粉末2kgを混合し、攪拌した後、濾過を行った。これを3回繰り返した後、乾燥、焼成を行い、Cuをイオン交換したゼオライト粉末を調製した。このCuをイオン交換したゼオライト粉末1890g、シリカゾル(固形分20%)1150g及び水1100gを磁性ボールミルに投入し、粉砕して得たスラリーを上記担体に焼成後に塗布量325g/個になるように塗布し乾燥した後、400℃で2時間空気中で焼成し、触媒を調製した。
【0037】
(実施例4)
酸化触媒/三元触媒は実施例1と同様に調製した。NOx浄化触媒としては、特定の三元触媒を用いた。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用した三元触媒は、下記の操作によって調製した。
【0038】
[特定三元触媒の調製]
まず、γ−アルミナを主たる成分とする活性アルミナに硝酸セリウム溶液と硝酸バリウム溶液を含浸し、乾燥した後500℃で1時間焼成した。このときのセリウム担持濃度は7重量%、バリウム濃度は5重量%とした。こうして得られた粉末に硝酸パラジウム水溶液を含浸し、乾燥した後400℃で1時間焼成して、Pd担持活性アルミナ粉末を得た。Pdの担持濃度は1.00重量%であった。この粉末700g、酸化セリウム粉末300g、アルミナゾル1000gをボールミルで混合、粉砕して得られたスラリーをモノリス担体基材(1.3L、400セル)に付着させ焼成(400℃、1時間)した。このときの付着量は200g/Lに設定した。このようにして三元触媒を得た。この三元触媒におけるPd量は1.8g/個になっていた。
【0039】
(実施例5)
酸化触媒/三元触媒は実施例1と同様に調整した。NOx浄化触媒としては、実施例1で調製したNOx浄化触媒を同一の触媒コンバータに2個、縦列配置した。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用した通常のマニ三元触媒は、下記の操作によって調製した。
【0040】
[通常のマニ三元触媒の調製]
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末1)を得た。この粉末のPd濃度は17.0重量%であった。
硝酸Rh水溶液をセリウム、ジルコニウムを添加した活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末2)を得た。この粉末のRh濃度は3.0重量%であった。
【0041】
粉末1を190.7g、粉末2を54.0g、酸化セリウム粉末を49g、活性アルミナ粉末を506.3gアルミナゾルを1000gを磁性ボールミルに投入し、1時間混合粉砕してスラリ液を得た。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量140g/L−担体を得た。
更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ない触媒を調製した。この時の貴金属量としては、パラジウム/ロジウムの比が20/1としてトータルの貴金属量が7g/Lになるようにした。
【0042】
(比較例)
前段に上述した通常のマニ三元触媒を配置し、後段には以下のようにして得られたNOx浄化触媒を配置し、本例の排気ガス浄化システムを構築した。
【0043】
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末1)を得た。この粉末のPd濃度は17.0重量%であった。
硝酸Rh水溶液をセリウム、ジルコニウムを添加した活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末2)を得た。この粉末のRh濃度は3.0重量%であった。
【0044】
実施例1で用いた粉末1を190.7g、粉末2を54.0g、酸化セリウム粉末を49g、活性アルミナ粉末を506.3gアルミナゾルを1000gを磁性ボールミルに投入し、1時間混合粉砕してスラリ液を得た。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量140g/L−担体を得た。
更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ない触媒を調製した。この時の貴金属量としては、パラジウム/ロジウムの比が20/1としてトータルの貴金属量が7g/Lになるようにし、NOx浄化触媒を得た。
【0045】
<性能評価>
上記各例の排気ガス浄化システムを、排気量1.8Lの直噴ガソリンエンジンを搭載した乗用車に適用し、排気ガス浄化の性能評価を行なった。得られた結果を表1に示す。
【0046】
【表1】
Figure 0003788141
【0047】
【発明の効果】
以上説明してきたように、本発明によれば、HCとCOを選択的に浄化する酸化触媒や三元触媒を、NOx浄化触媒の上流側に配置することとしたため、酸素過剰で運転することによる燃費向上効果を十分に享有でき、HC及びCO成分を効率良く浄化し、特にエンジン始動直後の低温時に排出されるHC及びCOを効率良く浄化できる排気ガス浄化システムを提供することができる。
即ち、本発明の排気ガス浄化システムを用いると、酸素過剰雰囲気下の幅広いA/F領域で高いNOx浄化処理が行なえ、燃費性能を向上できるのみならず、HC及びCO浄化性能とNOx浄化性能を高い転化率で両立することができる。
【図面の簡単な説明】
【図1】本発明の排気ガス浄化システムの一実施例を示すシステム構成図である。
【符号の説明】
1 エンジン
2 酸化触媒/三元触媒
3 NOx浄化触媒

Claims (7)

  1. 還元成分のうちの炭化水素と一酸化炭素を選択的に浄化し、且つ水素とアンモニアを殆ど浄化しない酸化触媒及び/又は三元触媒と、還元成分を用いて窒素酸化物を還元処理するNOx浄化触媒とを、排気ガス組成が、空燃比が酸素過剰の状態であるいわゆるリーンの状態、理論空燃比又は燃料過剰の状態であるいわゆるリッチ状態をとる内燃機関又は燃焼装置の排気通路に設置し、
    上記NOx浄化触媒の上記排気ガス通路上流側に、上記酸化触媒及び/又は三元触媒を配置して成り、
    上記酸化触媒及び/又は三元触媒の炭化水素の選択浄化率が98.5%以上で、一酸化炭素の選択浄化率が90%以上である、ことを特徴とする排気ガス浄化システム。
  2. 上記酸化触媒又は三元触媒が、白金、パラジウム及び固体酸性を有する酸化物を含み、白金及びパラジウムの含有量の50%以上が、上記固体酸性を有する酸化物と同一層に混在していることを特徴とする請求項記載の排気ガス浄化システム。
  3. 上記固体酸性を有する酸化物が、タングステン−チタン酸化物であることを特徴とする請求項2記載排気ガス浄化システム。
  4. 上記NOx浄化触媒は、空燃比が上記リーン状態において窒素酸化物を還元成分と反応させて浄化するNOx選択還元触媒、空燃比が上記リーン状態において窒素酸化物を一時的に吸収し理論空燃比及び/又は上記リッチ状態で窒素酸化物を放出して還元成分によって窒素酸化物を浄化するNOx吸蔵型三元触媒、若しくは理論空燃比の近傍のリーン条件下で窒素酸化物を還元浄化する三元触媒又はこれらの任意の組合せに係る触媒であることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化システム。
  5. 上記NOx選択還元触媒が、銅、コバルト、ニッケル、鉄、ガリウム、ランタン、セリウム、亜鉛、チタン、カルシウム、バリウム及び銀から成る群より選ばれた少なくとも1種の元素、及び/又は白金、イリジウム、ロジウム及びパラジウムから成る群より選ばれた少なくとも1種の貴金属を含むゼオライト若しくはアルミナを含有することを特徴とする請求項記載の排気ガス浄化システム。
  6. 上記NOx吸蔵型三元触媒が、セシウム、バリウム、ナトリウム、カリウム、マグネシウム、ランタン及びカルシウムから成る群より選ばれた少なくとも1種の金属元素と、白金、パラジウム及びロジウムから成る群より選ばれた少なくとも1種の貴金属元素とを含むことを特徴とする請求項4又は5記載の排気ガス浄化システム。
  7. 上記窒素酸化物を還元浄化する三元触媒が、白金、パラジウム及びロジウムから成る群より選ばれた少なくとも1種の貴金属元素と、セリウム、ランタン、ネオジウム及びプラセオジウムから成る群より選ばれた少なくとも1種の希土類元素及び/又はジルコニアとを含むことを特徴とする請求項4〜6のいずれか1つの項に記載の排気ガス浄化システム。
JP30224299A 1999-10-25 1999-10-25 排気ガス浄化システム Expired - Lifetime JP3788141B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30224299A JP3788141B2 (ja) 1999-10-25 1999-10-25 排気ガス浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30224299A JP3788141B2 (ja) 1999-10-25 1999-10-25 排気ガス浄化システム

Publications (2)

Publication Number Publication Date
JP2001123827A JP2001123827A (ja) 2001-05-08
JP3788141B2 true JP3788141B2 (ja) 2006-06-21

Family

ID=17906673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30224299A Expired - Lifetime JP3788141B2 (ja) 1999-10-25 1999-10-25 排気ガス浄化システム

Country Status (1)

Country Link
JP (1) JP3788141B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290391B2 (ja) * 2002-06-07 2009-07-01 ヴァルティオン テクンニィルリネン ツッツキムスケスクス 窒素酸化物を接触的に除去するための方法とそのための装置
DE10248508A1 (de) * 2002-07-15 2004-01-29 Volkswagen Ag Verbrennungsmotoranlage mit direkteinspritzendem Ottomotor und einem Katalysatorsystem
DE10300298A1 (de) 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
JP2007130580A (ja) * 2005-11-10 2007-05-31 Toyota Motor Corp 排ガス浄化装置及び排ガス浄化方法
CN103316709A (zh) * 2007-10-29 2013-09-25 优美科触媒日本有限公司 氮氧化物去除用催化剂和使用该催化剂的氮氧化物去除方法
EP2354485A1 (en) * 2010-01-13 2011-08-10 Delphi Technologies Holding S.à.r.l. Exhaust system for compression-ignition engine
JP5691779B2 (ja) * 2010-12-07 2015-04-01 株式会社デンソー 排ガス浄化装置
JP5747794B2 (ja) * 2011-03-08 2015-07-15 株式会社デンソー 炭化水素選択酸化触媒及びその製造方法
JP5843699B2 (ja) * 2012-05-31 2016-01-13 本田技研工業株式会社 内燃機関の排気浄化システム
US9266092B2 (en) * 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
US9861961B2 (en) 2013-07-08 2018-01-09 Umicore Shokubai Japan Co., Ltd. Catalyst for nitrogen oxide removal
BR112016001465A2 (pt) * 2013-07-26 2017-08-29 Johnson Matthey Plc Artigo catalisador para tratar um gás de escape, e, métodos para tratar um gás de escape e para regenerar um artigo catalítico
JP6132324B2 (ja) 2014-01-22 2017-05-24 ユミコア日本触媒株式会社 リーンバーンエンジン用排ガス浄化触媒
JP6378222B2 (ja) * 2016-02-12 2018-08-22 トヨタ自動車株式会社 排ガス浄化触媒装置、排ガス浄化システム、及び排ガス浄化触媒装置の劣化検出方法
KR20230125088A (ko) * 2017-06-09 2023-08-28 바스프 코포레이션 촉매 물품 및 배기가스 처리 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187230A (ja) * 1992-01-14 1993-07-27 Toyota Motor Corp 内燃機関の排気浄化装置
JPH11104493A (ja) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd 排気ガス浄化用触媒及び使用方法

Also Published As

Publication number Publication date
JP2001123827A (ja) 2001-05-08

Similar Documents

Publication Publication Date Title
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP4092441B2 (ja) 排ガス浄化用触媒
US10919025B2 (en) N2O removal from automotive exhaust for lean/rich systems
JP3788141B2 (ja) 排気ガス浄化システム
JP3965676B2 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP3493792B2 (ja) 排気ガス浄化用触媒
JPH08281106A (ja) 排気ガス浄化用触媒及びその製造方法
JPH10192713A (ja) 排気ガス浄化用触媒及びその使用方法
JPH10128114A (ja) 排ガス浄化用触媒
JPH08281110A (ja) 排気ガス浄化用触媒及びその製造方法
JPH09220470A (ja) 排気ガス浄化用触媒
JPH10165819A (ja) 排気ガス浄化用触媒及びその使用方法
JPH1157477A (ja) 排気ガス浄化用触媒及びその使用方法
JP2001293374A (ja) 排気ガス浄化用触媒及び排気ガス浄化システム
JP2003290629A (ja) 排ガス浄化システム
JP3560147B2 (ja) 排気ガス浄化システム
JP3477974B2 (ja) 排気ガス浄化用触媒
JP4106762B2 (ja) 排気ガス浄化用触媒装置及び浄化方法
JP3477982B2 (ja) 排気ガス浄化用触媒及び排気ガス浄化方法
JPH0871424A (ja) 排ガス浄化用触媒
JPH08281111A (ja) 排気ガス浄化用触媒及びその製造方法
JP3682845B2 (ja) 排気ガス浄化システム
JP2001190931A (ja) メタン含有排ガスの浄化方法
JPH11294150A (ja) 排ガス浄化装置及びその使用方法
JPH09206594A (ja) 排気ガス浄化用触媒

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Ref document number: 3788141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term