CN101730575B - 过渡金属/沸石scr催化剂 - Google Patents

过渡金属/沸石scr催化剂 Download PDF

Info

Publication number
CN101730575B
CN101730575B CN2008800217622A CN200880021762A CN101730575B CN 101730575 B CN101730575 B CN 101730575B CN 2008800217622 A CN2008800217622 A CN 2008800217622A CN 200880021762 A CN200880021762 A CN 200880021762A CN 101730575 B CN101730575 B CN 101730575B
Authority
CN
China
Prior art keywords
zeolite
catalyst
transition metal
exhaust
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800217622A
Other languages
English (en)
Other versions
CN101730575A (zh
Inventor
P·J·安德森
J·E·科利尔
J·L·凯西
H·-Y·陈
J·M·费迪科
R·K·S·富
R·R·拉加拉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38814668&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101730575(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN101730575A publication Critical patent/CN101730575A/zh
Application granted granted Critical
Publication of CN101730575B publication Critical patent/CN101730575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/56Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates (APO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

一种使气体中的氮氧化物转化成氮的方法,所述方法通过在含至少一种过渡金属的沸石催化剂存在下使氮氧化物与含氮还原剂接触进行,其中沸石为含8个四面体原子最大环尺寸的小孔沸石,其中至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt。

Description

过渡金属/沸石SCR催化剂
本发明涉及使气体(如机动车贫油燃烧内燃机的排气)中的氮氧化物转化成氮的方法,所述方法通过在含过渡金属的沸石催化剂存在下使氮氧化物与含氮还原剂接触进行。
NOx由含氮化合物(如氨或尿素)选择性催化还原(SCR)首先开发用于处理工业固定应用。SCR技术首先在二十世纪七十年代后期在日本用于热电厂,并且自从二十世纪八十年代中期以来在欧洲已见到广泛应用。在美国,在二十世纪九十年代引入SCR***用于燃气轮机,更近来已用于燃煤发电厂。除了燃煤热电联产发电厂和燃气轮机外,SCR应用还包括化学加工业中的工厂和精炼厂加热器和锅炉、加热炉、炼焦炉、城市废物处理厂和焚烧炉。更近来,基于SCR技术的NOx还原***在欧洲、日本和美国正开发用于多种机动车(汽车)应用,例如用于处理柴油机排气。
在NH3SCR***中发生多种化学反应,所有这些反应代表将NOx还原成氮的合乎需要的反应。主反应由反应(1)表示。
4NO+4NH3+O2→4N2+6H2O    (1)
与氧的竞争非选择性反应可产生二级排放物,或者可能非生产性地消耗氨。这样的一种非选择性反应为反应(2)中所示的氨的完全氧化。
4NH3+5O2→4NO+6H2O    (2)
另外,副反应可产生不合乎需要的产物,如N2O,如反应(3)所示。
4NH3+5NO+3O2→4N2O+6H2O    (3)
硅铝酸盐沸石作为催化剂用于NOx与NH3的SCR。一种应用是利用可从氨前体(如尿素)或通过注入氨本身得到的还原剂,控制机动车柴油机的NOx排放物。为了提高催化活性,将过渡金属引入硅铝酸盐沸石。最普遍试验的过渡金属沸石为Cu/ZSM-5、Cu/β、Fe/ZSM-5和Fe/β,因为它们具有相对较宽的温度活性窗。通常,Cu基沸石催化剂显示比Fe基沸石催化剂更佳的低温NOx还原活性。
然而,在使用中,ZSM-5和β沸石有一些缺陷。它们易于在高温水热老化期间脱铝,导致酸性损失,尤其是利用Cu/β和Cu/ZSM-5催化剂。β基和ZSM-5基两种催化剂均受在相对较低温度变得吸附于催化剂上的烃影响,并且在催化***的温度升高时氧化,产生显著放热,这可能热破坏催化剂。在冷起动期间在催化剂上可能吸附显著量烃并且β和ZSM-5沸石也倾向于被烃焦化的机动车柴油机应用中,这一问题特别尖锐。
通常,Cu基沸石催化剂比Fe基沸石催化剂更不耐热,并产生更高量的N2O。然而,它们有一个合乎需要的优点,与相应的Fe沸石催化剂相比,它们在使用中滑失更少的氨。
已报告,对于NOx用烃SCR,含过渡金属的磷铝酸盐沸石显示比硅铝酸盐沸石催化剂(也称为贫NOx催化或“DeNOx催化剂”(例如,Ishihara等人,Journal of Catalysis,169(1997)93))提高的催化活性和更好的热稳定性。在一个类似倾向中,WO 2006/064805公开一种用于处理柴油机排气的利用电晕放电的电处理技术。加入NOx还原剂(烃或燃料)和Cu-SAPO-34NOx还原催化剂的装置的组合可布置在电处理装置的下游。然而,据我们了解,至今在文献中还没有报告用含过渡金属的磷铝酸盐沸石利用NH3(或尿素)使NOx SCR的研究。
WO 00/72965公开经铁(Fe)交换的沸石,所述沸石用于通过氨选择性催化还原一氧化氮,从而控制来自矿物燃料发电厂和发动机的NOx排放物。所提出的铁交换和任选Fe-稀土交换(例如Fe-Ce-交换)的沸石包括ZSM-5、丝光沸石、SAPO、斜发沸石、菱沸石、ZK-4和ZK-5。其中未确定具体的SAPO沸石,也未公开利用SAPO沸石的试验。另外,WO′965教授公开应用一定范围孔径的沸石,即大(丝光沸石)、中(ZSM-5,斜发沸石)和小(菱沸石,ZK-4,ZK-5)孔沸石,其中Fe-ZSM-5是优选的。其中未教授或提出与中孔和大孔沸石相比使用小孔沸石的任何优点。另外,ZK-4沸石为潜在水热不稳定。
美国专利4,735,927公开一种对硫中毒具有稳定性的挤出型NH3-SCR催化剂,所述催化剂包含锐钛矿形式的高表面积二氧化钛和天然或合成沸石。沸石必须为酸形式,或者可在催化产物中热转化成酸形式。适合沸石的实例包括丝光沸石、天然斜发沸石、毛沸石、片沸石、镁碱沸石、天然八面沸石或其合成对应物沸石Y、菱沸石和钠菱沸石。优选的沸石为天然斜发沸石,这种沸石可与另一种酸稳定沸石混合,如菱沸石。催化剂可任选包含少量(至少0.1%元素重量)氧化钒、氧化铜、氧化钼或其组合的前体形式的助催化剂(例如0.2%重量Cu和最多1.6%重量V)。挤出型催化剂一般不太耐用,具有较低的化学强度,需要更多催化剂物质取得相同活性,并且比施加到惰性单片基质的催化剂涂层制备起来更为复杂。
美国专利5,417,949也公开一种挤出型NH3-SCR催化剂,所述催化剂包含具有最多12的约束指数的沸石和二氧化钛粘合剂。其中有意不存在过渡金属助催化剂。(“约束指数”为确定沸石形状选择性催化性质的试验。其比较在竞争条件下正己烷及其异构体3-甲基戊烷裂化的反应速率(见V.J.Frillette等人,J Catal.67(1991)218))。
美国专利5,589,147公开一种包含分子筛和金属的氨SCR催化剂,所述催化剂可涂覆于基质单片上。用于发明的分子筛不限于任何具体分子筛物质,一般包括所有金属硅酸盐、金属磷酸盐、硅磷铝酸盐和分层及柱状分层物质。金属一般选自至少一种周期表第IIIA、IB、IIB、VA、VIA、VIIA、VIIIA族的金属及其组合。这些金属的实例包括至少一种铜、锌、钒、铬、锰、钴、铁、镍、铑、钯、铂、钼、钨、铈及其混合物。
US 5,589,147的公开关于小孔沸石(如文中定义)是否在发明方法中应用是不明确的。例如,一方面虽然涵盖分子筛SAPO-34,但也提到某些小孔沸石作为可能的沸石用于发明中,即毛沸石和菱沸石。另一方面也提供表列出一些一般沸石的约束指数(CI)值,包括适合作为催化剂用于发明方法的一些沸石。表中的大部分CI值充分低于10,其中毛沸石(在316℃为38)和ZSM-34(在371℃为50)为值得注意的例外情况。然而,显然优选在发明的方法中使用中孔径沸石,例如具有约5至小于7埃孔径的那些沸石。具体地讲,公开解释中孔径沸石是优选的,因为它们允许约束出入晶内自由空间:“中孔径沸石...具有有效孔径例如以自由吸附正己烷...如果晶体中的唯一孔窗由氧原子8元环形成,则排除大于正己烷横截面的分子进入,并且此沸石不为中孔径物质”。其中只举例说明挤出的Fe-ZSM-5。
WO 2004/002611公开一种含二氧化铈掺杂的硅铝酸盐沸石的NH3-SCR催化剂。
US 6,514,470公开一种催化还原含氮氧化物和还原剂物质的排气流中的NOx的方法。催化剂包含铝硅酸盐物质和基于催化剂总重量最多约0.1%重量的金属。所有实例均使用镁碱沸石。
Long等人Journal of Catalysis 207(2002)274-285报告对用氨选择性催化还原NO的Fe3+-交换沸石的研究。研究的沸石为丝光沸石、斜发沸石、β沸石、镁碱沸石和菱沸石。已发现,在研究条件下SCR活性按以下次序降低:Fe-丝光沸石>Fe-斜发沸石>Fe-镁碱沸石>Fe-β>Fe-菱沸石。用于制备Fe-菱沸石的菱沸石为天然存在矿物。
美国专利4,961,917公开一种NH3-SCR催化剂,所述催化剂包含具有至少约10的二氧化硅∶氧化铝比率和在所有三个结晶维由具有至少约7埃平均动力学孔径的孔互连的孔结构的沸石和Cu或Fe助催化剂。据说这类催化剂具有高活性,降低的NH3氧化,和降低的硫中毒。沸石β和沸石Y为满足所需限定的两种沸石。
美国专利3,895,094公开一种利用至少6埃晶间孔径的沸石催化剂的NH3-SCR方法。其中未提到沸石与过渡金属交换。
美国专利4,220,632也公开一种NH3-SCR方法,这一次利用3-10埃孔径的Na或H式沸石。
WO 02/41991公开用于NH3-SCR的金属助催化的沸石β,其中沸石经预处理,以提高其水热稳定性。
在本领域需要SCR催化剂,所述催化剂具有相对较佳的低温SCR活性,具有相对较高的对N2的选择性,特别是低N2O生成,具有相对较佳的热耐受性,并且相对抗烃抑制。我们现在已发现满足或有助于此需要的一类含过渡金属的沸石。
一方面,本发明提供一种使气体中的氮氧化物转化成氮的方法,所述方法通过在含至少一种过渡金属的沸石催化剂存在下使氮氧化物与含氮还原剂接触进行,其中沸石为含8个四面体原子最大环尺寸的小孔沸石,其中至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt。
“含至少一种过渡金属的沸石催化剂”是指已通过离子交换、浸渍或同晶取代等加上一种或多种金属的沸石结构。“含过渡金属的沸石催化剂”和“含至少一种过渡金属的沸石催化剂”及类似术语在本文中可互换使用。
应了解,由框架类型编号定义沸石旨在包括“类型物质”和任何及所有的同种型框架物质。(“类型物质”为首先用于确定框架类型的物质)。参考表1,表1列出用于本发明的一系列说明性沸石类沸石框架物质。为避免疑虑,除非另外澄清,本文由名称对沸石的引用(例如“菱沸石”)为沸石物质本身(在本实例中为天然存在类型物质菱沸石),而非由单独沸石可能所属框架类型编号命名的任何其他物质,例如一些其他同种型框架物质。因此,例如,在附加权利要求不要求一种沸石催化剂的权利时,放弃者应被窄范围解释,以使“其中含过渡金属的小孔沸石不为Cu/菱沸石”旨在排除类型物质,而不排除任何同种型框架物质,如SAPO-34或SSZ-13。同样,本文所用FTC是指由FTC限定的类型物质和所有同种型框架物质。关于更多资料,请读者转向国际沸石协会的网站www.iza-online.org。
沸石类型物质(如天然存在(即矿物)菱沸石)和相同框架类型编号内的同种型的区别不仅任意,而且反映物质间性质的差异,这又可在本发明方法中产生活性差异。例如,除了以下参考Long等人Journal ofCatalysis 207(2002)274-285的注解外,天然存在的菱沸石具有比硅铝酸盐同种型(如SSZ-13)更低的二氧化硅∶氧化铝比率,天然存在的菱沸石具有比硅铝酸盐同种型(如SSZ-13)更低的酸性,并且在本发明的方法中这种物质的活性相对较低(见实施例13中Cu/天然存在菱沸石与Cu/SAPO-34的比较)。
用于本发明的沸石催化剂可涂覆于适合的基质单片上,或者可形成挤出型催化剂,但优选用于催化剂涂层。
虽然现有技术(如以上背景部分中讨论的文献)确实提到用于利用含氮还原剂使气体中的氮氧化物转化成氮的含至少一种过渡金属的几种小孔沸石,但在现有技术中没有我们能够发现使用含至少一种过渡金属的小孔沸石用于此用途的具体优点的认识。因此,现有技术无差别地提出使用含至少一种过渡金属的大、中和小孔沸石。因此,我们寻求排除已只在此环境涉及的含至少一种过渡金属的任何具体小孔沸石。
关于这一点,在一个实施方案中,沸石催化剂不为Co、Ga、Mn、In或Zn之一或其两种或更多种的任何组合/柱沸石(见美国专利6,514,470)。在另一个实施方案中,含过渡金属的小孔沸石不为Cu/菱沸石、Mo/菱沸石、Cu-Mo/菱沸石、Cu/毛沸石、Mo/毛沸石或Cu-Mo/毛沸石(见美国专利4,735,927)。在另一个实施方案中,含过渡金属的小孔沸石不为Ce/毛沸石(见WO 2004/002611)。在另一个实施方案中,含过渡金属的小孔沸石不为Fe/菱沸石、Fe/ZK-5、Fe/ZK-4、Fe-稀土/菱沸石、Fe-稀土/ZK-5或Fe-稀土/ZK-4(见WO 00/72965)。另外,虽然WO 00/72965公开一般使用Ce/SAPO沸石和Ce-稀土/SAPO沸石,但未公开在发明中应用任何具体小孔SAPO沸石,如SAPO-17、SAPO-18、SAPO-34、SAPO-35、SAPO-39、SAPO-43和SAPO-56。在另一个实施方案中,含过渡金属的小孔沸石不为Fe/菱沸石(见Long等人Journal of Catalysis 207(2002)274-285)。虽然由于以上所给原因我们不相信美国专利5,589,147公开使用根据本发明方法的含至少一种过渡金属的小孔沸石,但为保险起见,根据另一个实施方案,沸石催化剂不为任何铜、锌、铬、锰、钴、铁、镍、铑、钯、铂、钼、铈之一或其混合物/任何硅铝酸盐菱沸石、硅铝酸盐毛沸石、硅铝酸盐ZSM-34和SAPO-34之一。在另一个实施方案中,含过渡金属的沸石催化剂不为LTA或Fe/CHA。
应了解,菱沸石为根据本文采用定义的小孔沸石,以上提到的Long等人的文章报告Fe/菱沸石具有任何试验催化剂的最差活性。不受任何理论限制,我们相信在此研究中Fe/菱沸石的不良性能是由于两个主要原因。首先,天然菱沸石可能包含碱性金属阳离子,包括钾、钠、锶和钙。为了得到活性物质,碱性金属阳离子需要以例如铁阳离子交换,因为碱性金属为沸石酸部位的已知毒物。在所报告的研究中,为了“洗出”现有的阳离子,天然矿物首先用NH4Cl溶液处理。然而,我们相信报告差活性的一个解释是此研究的菱沸石中酸性部位由于碱性金属阳离子保持中毒。
其次,铁离子可能在离子交换介质中与适合的配位体形成金属络合物(配位化合物)。关于这一点,我们注意到Long等人用FeCl2水溶液进行离子交换。由于沸石孔相对较小,大的配位化合物可能不能进入位于孔内的活性部位。
应了解,例如从以下表1了解,“MeAPSO”和“MeAlPO”是指用一种或多种金属取代的类沸石。适合取代金属包括但不限于一种或多种As、B、Be、Co、Fe、Ga、Ge、Li、Mg、Mn、Zn和Zr。
在一个具体实施方案中,用于本发明的小孔沸石可选自硅铝酸盐沸石、金属取代的硅铝酸盐沸石和磷铝酸盐沸石。
用于本发明的磷铝酸盐沸石包括磷铝酸盐(AlPO)沸石、金属取代的磷铝酸盐(MeAlPO)沸石、硅磷铝酸盐(SAPO)沸石和金属取代的硅磷铝酸盐(MeAPSO)沸石。
应了解,本发明扩展到催化剂涂层和挤出型基质单片,包括本发明的含过渡金属的小孔沸石和非小孔沸石(无论金属化与否)两者,如中孔、大孔和介孔沸石(无论含过渡金属与否),因为此组合也得到使用小孔沸石本身的优点。还应了解,用于本发明的催化剂涂层和挤出型基质单片可包括含两种或更多种过渡金属的小孔沸石的组合。另外,在此组合中各小孔沸石可包含一种或多种过渡金属,各金属选自以上限定组,例如,第一小孔沸石可包含Cu和Fe两者,与第一小孔沸石组合的第二小孔沸石可包含Ce。
在本发明中,我们已发现含过渡金属的小孔沸石为用NH3SCRNOx的有利催化剂。与含过渡金属的中孔、大孔或介孔沸石催化剂比较,含过渡金属的小孔沸石催化剂显示显著改善的NOx还原活性,尤其在低温。它们也显示对N2的高选择性(例如低N2O生成)和优良的水热稳定性。另外,含至少一种过渡金属的小孔沸石比较大孔沸石更抗烃抑制,较大孔沸石如中孔沸石(含10最大环尺寸的沸石),如ZSM-5,或大孔沸石(具有12最大环尺寸的沸石),如β沸石。用于本发明的小孔磷铝酸盐沸石包括SAPO-17、SAPO-18、SAPO-34、SAPO-35、SAPO-39、SAPO-43和SAPO-56。
在一个实施方案中,小孔沸石选自由ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG和ZON组成的框架类型编码。
用于本发明的沸石可包括经处理以提高水热稳定性的那些沸石。提高水热稳定性的说明性方法包括:
(i)脱铝:通过汽蒸,并用酸或络合剂(例如EDTA-乙二胺四乙酸)酸提取;用酸和/或络合剂处理;用SiCl4的气态流处理(用Si代替沸石框架中的Al);
(ii)阳离子交换-使用多价阳离子,如La;和
(iii)使用含磷化合物(参阅例如美国专利5,958,818)。
我们相信,小孔沸石可通过分子筛效应使烃的有害影响减小到最低限度,其中小孔沸石允许NO和NH3扩散到孔内的活性部位,而烃分子扩散则受到限制。关于这一点,NO(
Figure G2008800217622D00091
)和NH3(
Figure G2008800217622D00092
)两者的动力学直径均小于例如在柴油机排气中存在的一般烃(
Figure G2008800217622D00094
)的直径。因此,在一个实施方案中,用于本发明的小孔沸石催化剂具有在至少一个维小于
Figure G2008800217622D00095
的孔径。适合小孔沸石的说明性实例阐明于表1。
表1:用于本发明的小孔沸石的详细资料
Figure G2008800217622D00096
Figure G2008800217622D00102
Figure G2008800217622D00122
Figure G2008800217622D00141
Figure G2008800217622D00151
Figure G2008800217622D00152
Figure G2008800217622D00161
Figure G2008800217622D00171
具体用于处理贫油燃烧内燃机排气(例如机动车排气)中的NOx的小孔沸石列于表2中。
表2:用于处理贫油燃烧内燃机排气的优选小孔沸石
  结构   沸石
  CHA   SAPO-34
  AlPO-34
  SSZ-13
  LEV   插晶菱沸石
  Nu-3
  LZ-132
  SAPO-35
  ZK-20
  ERI   毛沸石
  ZSM-34
  Linde T型
  DDR   Deca-dodecasil 3R
  σ-1
  KFI   ZK-5
  18-冠醚-6
  [Zn-Ga-As-O]-KFI
  EAB   TMA-E
  PAU   ECR-18
  MER   麦钾沸石
  AEI   SSZ-39
  GOO   古柱沸石
  YUG   汤河原沸石
  GIS   P1
  VNI   VPI-9
用于本发明的小孔硅铝酸盐沸石可具有2至300的二氧化硅∶氧化铝比率(SAR),任选4至200,优选8至150。应了解,较高SAR比率优选提高热稳定性,但可能负面影响过渡金属交换。因此,在选择优选的物质中,可考虑SAR,以在这两种性质之间取得平衡。
含氮氧化物的气体可以5,000hr-1至500,000hr-1的气体时空间速度接触沸石催化剂,任选10,000hr-1至200,000hr-1
在一个实施方案中,用于本发明的小孔沸石不包括本文限定的磷铝酸盐沸石。在另一个实施方案中,用于本发明的小孔沸石(如本文限定)限于磷铝酸盐沸石(如本文限定)。在另一个实施方案中,用于本发明的小孔沸石为硅铝酸盐沸石和金属取代的硅铝酸盐沸石(而不为本文限定的磷铝酸盐沸石)。
用于本发明的小孔沸石可具有三维维数(即,在所有三个结晶维互连的孔结构)或二维维数。在一个实施方案中,用于本发明的小孔沸石由具有三维维数的沸石组成。在另一个实施方案中,用于本发明的小孔沸石由具有二维维数的沸石组成。
在一个实施方案中,至少一种过渡金属选自Cr、Ce、Mn、Fe、Co、Ni和Cu。在一个优选的实施方案中,至少一种过渡金属选自Cu、Fe和Ce。在一个具体实施方案中,至少一种过渡金属由Cu组成。在另一个具体实施方案中,至少一种过渡金属由Fe组成。在另一个具体实施方案中,至少一种过渡金属为Cu和/或Fe。
可在含至少一种过渡金属的沸石中包含的至少一种过渡金属的总量可以为基于含至少一种过渡金属的沸石催化剂的总重量0.01至20%重量。在一个实施方案中,可包含的至少一种过渡金属的总量可以为0.1至10%重量。在一个具体实施方案中,可包含的至少一种过渡金属的总量为0.5至5%重量。
用于本发明的优选含过渡金属的二维小孔沸石由Cu/LEV组成,如Cu/Nu-3,而用于本发明的优选含过渡金属的三维小孔沸石/磷铝酸盐沸石由Cu/CHA组成,如Cu/SAPO-34或Cu/SSZ-13。在另一个实施方案中,特别在例如通过用适合的氧化催化剂(见下)将NO/NO2比率调节到约1∶1时,优选使用含铁的沸石催化剂,如Fe-CHA,例如Fe/SAPO-34或Fe/SSZ-13。初步分析表明Cu/SSZ-13和Cu/Nu-3比相当的Cu/SAPO-34更抗延时剧烈高温贫水热老化(在4.5%H2O/空气混合物中900℃经历3小时,参看实施例4)。
可通过任何可行方法在沸石中包含至少一种过渡金属。例如,可在沸石已合成后加入,例如通过初始湿润或交换方法;或者在沸石合成期间加入至少一种金属。
用于本发明的沸石催化剂可作为封闭底漆组分涂覆于适合的单片基质上,如金属或陶瓷流通单片基质或过滤器基质,如壁流过滤器或熔结的金属或部分过滤器(例如,公开于WO 01/80978或EP1057519,后面的文献描述一种基质,所述基质包括至少减缓油烟通过的回旋流路)。或者,用于本发明的沸石可直接合成于基质上。或者,可使本发明的沸石催化剂形成挤出型流通催化剂。
用于本发明的含至少一种过渡金属的小孔沸石催化剂可涂覆于适合的单片基质上。为制造挤出型基质单片涂覆于单片基质上的用于本发明的含沸石的封闭底漆组合物可包含选自氧化铝、二氧化硅、(非沸石)二氧化硅-氧化铝、天然存在的粘土、TiO2、ZrO2和SnO2的粘合剂。
在一个实施方案中,氮氧化物用还原剂在至少100℃温度还原。在另一个实施方案中,氮氧化物用还原剂在约150℃至750℃温度还原。后面的实施方案特别用于处理来自重型和轻型柴油机的排气,特别是发动机包括含(任选催化)柴油机微粒过滤器的排气***,微粒过滤器例如通过将烃注入过滤器上游的排气***主动再生,其中用于本发明的沸石催化剂位于过滤器的下游。
在一个具体实施方案中,温度为175至550℃。在另一个实施方案中,温度为175至400℃。
在另一个实施方案中,氮氧化物还原在氧存在下进行。在一个供选的实施方案中,氮氧化物还原在无氧存在下进行。
用于本申请的沸石包括天然和合成沸石,优选合成沸石,因为这种沸石可具有更均匀的二氧化硅∶氧化铝比率(SAR)、微晶大小、微晶形态学,并且没有杂质存在(例如碱土金属)。
含氮还原剂源可以为氨本身、肼或任何适合的氨前体,如尿素((NH2)2CO)、碳酸铵、氨基甲酸铵、碳酸氢铵或甲酸铵。
此方法可对得自燃料过程的气体进行,例如得自内燃机(无论是机动还是固定)、燃气轮机和燃煤或燃油发电厂。此方法也可用于处理来自工业过程(例如精炼)、来自精炼厂加热器和锅炉、加热炉、化学加工业、炼焦炉、城市废物处理厂和焚烧炉、咖啡烘烤设备等的气体。
在一个具体实施方案中,此方法用于处理来自机动车贫油燃烧内燃机(如柴油机、贫油燃烧汽油机或由液化石油气或天然气提供动力的发动机)的排气。
另一方面,本发明提供一种用于机动车贫油燃烧内燃机的排气***,所述***包括用于传送流动排气的导管、含氮还原剂源、在排气流路中布置的含至少一种过渡金属的沸石催化剂和用于使含氮还原剂计量进入位于沸石催化剂上游的流动排气的装置,其中沸石催化剂为含8个四面体原子最大环尺寸的小孔沸石,其中至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt。
为避免疑虑,用于本发明排气***方面的含过渡金属的小孔沸石包括如上所述用于本发明方法的任何沸石。
在一个实施方案中,沸石催化剂涂覆于流通单片基质(即,具有轴向通过整个部分的很多小的平行通道的蜂窝单片催化剂载体结构)或过滤器单片基质(如上所述的壁流过滤器等)上。在另一个实施方案中,使沸石催化剂形成挤出型催化剂。
***可包括在使用时用于控制计量装置的装置,以便只在确定沸石催化剂能够在或高于所需效率(如在高于100℃、高于150℃或高于175℃)催化NOx还原时使含氮还原剂计量进入流动排气。控制装置确定可由一个或多个适合的传感器输入辅助,传感器输入指示选自排气温度、催化剂床温度、加速器位置、***中排气的质量流量、歧管真空、点火定时、发动机速度、排气的λ值、注入发动机的燃料的量、排气循环(EGR)阀的位置和因此EGR的量及升压的发动机条件。
在一个具体实施方案中,控制计量响应直接(使用适合的NOx传感器)或间接测定的排气中氮氧化物的量,如使用在控制装置中储存的预相关查表或图-使指示发动机条件的任何一个或多个上述输入与排气的预测NOx含量相关。
控制装置可包括预程序化处理器,如电子控制装置(ECU)。
可布置含氮还原剂的计量,使得在进入SCR催化剂的排气中存在以1∶1NH3/NO和4∶3NH3/NO2计算的60%至200%的理论氨。
在另一个实施方案中,用于使排气中的一氧化氮氧化成二氧化氮的氧化催化剂可位于含氮还原剂计量进入排气的点的上游。在一个实施方案中,使氧化催化剂适应产生一种进入SCR沸石催化剂的气流,所述气流具有约4∶1至约1∶3的NO∶NO2体积比率,例如在250℃至450℃氧化催化剂入口的排气温度。此设想公开于S.Kasaoka等人“Efiect of Inlet NO/NO2 Molar Ratio and Contribution of Oxygen in theCatalytic Reduction of Nitrogen Oxides with Ammonia”(用氨催化还原氮氧化物中入口NO/NO2摩尔比率的影响和氧的作用),Nippon KagakuKaishi,1978,No.6,pp.874-881和WO 99/39809。
氧化催化剂可包括在流通单片基质上涂覆的至少一种铂族金属(或这些的某种组合),如铂、钯或铑。在一个实施方案中,至少一种铂族金属为铂、钯或铂和钯两者的组合。铂族金属可负载于高表面积封闭底漆组分上,如氧化铝、沸石(如硅铝酸盐沸石)、二氧化硅、非沸石二氧化硅-氧化铝、二氧化铈、二氧化锆、二氧化钛或含二氧化铈和二氧化锆两者的混合或复合氧化物。
在另一个实施方案中,适合的过滤器基质位于氧化催化剂和沸石催化剂之间。过滤器基质可选自任何以上所述基质,例如壁流过滤器。在催化过滤器时,例如利用以上讨论种类的氧化催化剂,优选含氮还原剂计量的点位于过滤器和沸石催化剂之间。或者,如果未催化过滤器,可使计量含氮还原剂的装置位于氧化催化剂和过滤器之间。应了解,此布置公开于WO 99/39809中。
在另一个实施方案中,用于本发明的沸石催化剂涂覆于位于氧化催化剂下游的过滤器上。在过滤器包含用于本发明的沸石催化剂时,含氮还原剂计量的点优选位于氧化催化剂和过滤器之间。
在一个实施方案中,控制装置只在排气温度为至少100℃时使含氮还原剂计量进入流动排气,例如只在排气温度为150℃至750℃时。
另一方面,本发明提供一种包括本发明的排气***的机动车贫油燃烧发动机。
机动车贫油燃烧内燃机可以为柴油机、贫油燃烧汽油机或由液化石油气或天然气提供动力的发动机。
为了能够更充分地理解本发明,现在参考以下实施例,这些实施例只作为说明,并结合以下附图,其中:
图1为显示在实验室反应器上进行的相对缓和贫水热老化后含过渡金属的硅铝酸盐催化剂与含过渡金属的磷铝酸盐/小孔沸石催化剂比较的NOx转化率(气体时空间速度30,000hr-1)的曲线图;
图2为显示在图1所示试验中N2O生成的曲线图;
图3为显示在实验室反应器上进行的相对缓和贫水热老化后Cu/β沸石和Cu/SAPO-34催化剂与含过渡金属的磷铝酸盐/小孔沸石催化剂比较的NOx转化率(气体时空间速度100,000hr-1)的曲线图;
图4为显示在实验室反应器上进行的相对剧烈贫水热老化后含过渡金属的硅铝酸盐催化剂与含过渡金属的磷铝酸盐/小孔沸石催化剂比较的NOx转化率(气体时空间速度30,000hr-1)的曲线图;
图5为显示新Cu/沸石催化剂的NOx转化率的曲线图;
图6为显示老化Cu/沸石催化剂的NOx转化率的曲线图;
图7为显示图5的新Cu/沸石催化剂的N2O生成的曲线图;
图8为显示图6的老化Cu/沸石催化剂的N2O生成的曲线图;
图9为显示在300℃NH3SCR期间将HC物质加到Cu/沸石催化剂的影响的曲线图;
图10为显示在300℃NH3SCR期间将烃物质加到Cu/沸石催化剂后烃穿透的曲线图;
图11为显示在150℃流动通过Cu沸石催化剂的正辛烷的吸附分布的曲线图;
图12为显示在150℃HC吸附后HC物质对Cu/沸石催化剂的温度程序解吸(TPD)的曲线图;
图13为类似于图6的比较老化Cu/σ-1、Cu-SAPO-34、Cu/SSZ-13和Cu/β的NOx转化活性的曲线图;
图14为类似于图8的比较图13的老化Cu/沸石催化剂的N2O生成的曲线图;
图15为类似于图13的比较老化Cu/ZSM-34、Cu/SAPO-34、Cu/SSZ-13和Cu/β催化剂的NOx转化活性的曲线图;
图16为比较新和老化Cu-SAPO-34和Cu/SSZ-13催化剂的NOx转化活性的曲线图;
图17为比较Cu-SAPO-34新样品与Cu/天然存在菱沸石类型物质的NOx转化活性的曲线图;
图18为比较新Cu/SAPO-34与两种新Cu/天然存在菱沸石类型物质在两个温度数据点的NOx转化活性的条形图;
图19为比较老化Cu/β、Cu/SAPO-34、Fe/SAPO-34和Fe/SSZ-13催化剂在两个温度数据点的NOx转化活性的条形图;
图20为对新Fe/β和Fe/SSZ-13催化剂比较将正辛烷引入原料气的烃抑制效果的条形图;
图21为显示在图20的试验中引入正辛烷后烃穿透的曲线图;
图22为比较新Fe/SSZ-13催化剂用100%NO作为原料气组分利用1∶1NO∶NO2对NOx转化活性影响的条形图;
图23为本发明的排气***的一个实施方案的示意图。
图23为本发明的排气***的一个实施方案的示意图,其中柴油机12包括本发明的排气***10,排气***10包括排气线14,用于将来自发动机的排出气体通过尾管15输送到大气。在排气的流路中布置铂或铂/钯NO氧化催化剂16,氧化催化剂涂覆于陶瓷流通基质单片上。陶瓷壁流过滤器18位于排气***中氧化催化剂16的下游。
同样涂覆于陶瓷流通基质单片上的铁/小孔沸石SCR催化剂20布置于壁流过滤器18的下游。NH3氧化清除或滑失(slip)催化剂21涂覆于SCR催化剂单片基质的下游端上。或者NH3滑失催化剂可涂覆在位于SCR催化剂下游的单独基质上。提供装置(注射器22)用于将含氮还原剂流体(尿素26)从储器24注入在排气线14中传送的排气。注射器22用阀28控制,此阀又由电子控制装置30控制(阀控制由虚线表示)。电子控制装置30接收来自位于SCR催化剂下游的NOx传感器32的闭合回路反馈控制输入。
在使用时,氧化催化剂16使NO被动氧化成NO2,微粒物质被捕获于过滤器18上,并在NO2中燃烧。在由注射器22注入的尿素得到的氨存在下,从过滤器排出的NOx在SCR催化剂20上还原。也应了解,进入SCR催化剂的排气的全部NOx内含物中NO和NO2的混合物(约1∶1)合乎需要地用于NOx在SCR催化剂上还原,因为它们更容易被还原成N2。NH3滑失催化剂21将NH3氧化,另外排到大气中。类似布置描述于WO 99/39809。
实施例
实施例1-制备新5%重量Fe/ββ或SAPO-34或3%重量SSZ-13沸石催化剂的方法
使市售β沸石、SAPO-34或SSZ-13在NH4NO3溶液中进行NH4 +离子交换,然后过滤。在搅拌下将所得物质加到Fe(NO3)3的水溶液。将浆料过滤,然后洗涤并干燥。重复此过程,以得到所需金属负载。将最终产物煅烧。
实施例2-制备新3%重量Cu/沸石的方法
使市售SAPO-34、SSZ-13、σ-1、ZSM-34、Nu-3、ZSM-5和β沸石在NH4NO3溶液中进行NH4 +离子交换,然后过滤。在搅拌下将所得物质加到Cu(NO3)2的水溶液。将浆料过滤,然后洗涤并干燥。重复此过程,以得到所需金属负载。将最终产物煅烧。
实施例3-贫水热老化
在4.5%H2O/空气混合物中,使通过实施例1和2得到的催化剂在750℃贫水热老化24小时。
实施例4-剧烈贫水热老化
在4.5%H2O/空气混合物中,使通过实施例1和2得到的催化剂在900℃剧烈贫水热老化1小时。
实施例5-延时剧烈贫水热老化
在4.5%H2O/空气混合物中,使通过实施例1和2得到的催化剂在900℃剧烈贫水热老化3小时。
实施例6-试验条件
根据实施例3和4,使根据实施例1制备的Fe/ββ和根据实施例2制备的Cu/ββ、Cu/ZSM-5和Cu/SAPO-34的单独样品老化,并在实验室装置中用以下气体混合物进行试验:350ppm NO、350ppm NH3、14%O2、4.5%H2O、4.5%CO2、余量N2。结果显示于图1至4中。
同样对根据实施例2制备的Cu/ββ、Cu/ZSM-5、Cu/SAPO-34和Cu/Nu-3进行试验,并根据实施例3老化,在实验室装置中用与上述相同的气体混合物进行试验,不同之处在于使用12%O2。结果显示于图5至8中。
实施例7-正辛烷吸附试验条件
利用载入实验室装置的催化剂,在300℃NH3SCR期间(350ppmNO、350ppm NH3、12%O2、4.5%H2O、4.5%CO2,余量N2)注入1000ppm(作为C1当量)丙烯、正辛烷或甲苯。在12%O2、4.5%H2O、4.5%CO2、余量N2中,通过使温度以10℃/分钟坡升测定烃解吸。
实施例8-图1至4所示试验的结果
图1比较温和老化后Cu/SAPO-34催化剂与一系列硅铝酸盐沸石负载的过渡金属催化剂(Cu/ZSM-5、Cu/β和Fe/β)的NOx还原效率。结果清楚地显示Cu/SAPO-34对于NOx用NH3SCR具有提高的低温活性。
图2比较在催化剂上的N2O生成。显然,与另外两种含Cu催化剂相比,Cu/SAPO-34催化剂产生较低量的N2O。含Fe的催化剂也显示低N2O生成,但如图1所示,Fe催化剂在较低温度具有较小活性。
图3比较Cu/SAPO-34催化剂与Cu/β催化剂在较高气体时空间速度试验的NOx还原效率。在低反应温度,Cu/SAPO-34催化剂具有比Cu-β催化剂显著更高的活性。
图4显示强烈贫水热老化后Cu/SAPO-34催化剂和一系列硅铝酸盐沸石负载的过渡金属催化剂(Cu/ZSM-5、Cu/β和Fe/β)的NOx还原效率。结果清楚地显示Cu/SAPO-34催化剂具有优良的水热稳定性。
实施例9-图5至12所示试验的结果
在图5中比较新(即,未老化)Cu负载于小孔沸石SAPO-34和Nu-3的NH3SCR活性与Cu负载于较大孔沸石的活性。在强烈贫水热条件老化的相同催化剂的相应活性显示于图6中。比较新和老化活性分布显示,在Cu负载于小孔沸石上时只对硅铝酸盐沸石取得水热稳定性。
对新和老化催化剂测定的N2O生成分别显示于图7和8中。结果清楚地显示,通过使Cu负载于没有大孔的沸石,N2O生成显著减少。
图9比较SAPO-34和Nu-3用作小孔沸石物质的实例时HC对Cu/沸石催化剂的影响。为了比较,分别用ZSM-5和β沸石作为中孔和大孔沸石的实例。在300℃NH3SCR反应期间,使样品暴露于不同的HC物质(丙烯、正辛烷和甲苯)。图10显示HC加入后相应的HC穿透。
图11显示正辛烷在150℃流动通过不同的Cu/沸石催化剂的吸附分布。利用Cu负载于小孔沸石SAPO-34和Nu-3,几乎立即观察到HC穿透,而利用Cu负载于β沸石和ZSM-5观察到显著HC吸收。图12显示作为升温函数的随后HC解吸分布,并且证明,在Cu负载于较大孔沸石上时储存大量HC,而在利用小孔沸石时储存很少HC。
实施例10-图13和14所示试验的结果
使根据实施例2制备的Cu/SSZ-13、Cu/SAPO-34、Cu/σ-1和Cu/β以类似于实施例4所述的方式老化,并根据实施例6试验。结果显示于图13中,从这些结果可以看到,强烈贫水热老化Cu/SSZ-13、Cu/SAPO-34和Cu/σ-1各样品的NOx转化活性显著优于相应的大孔沸石Cu/β。另外,从图14可以看到,Cu/β比Cu/小孔沸石催化剂产生显著更多的N2O。
实施例11-图15所示试验的结果
使根据实施例2制备的Cu/ZSM-34、Cu/SAPO-34、Cu/SSZ-13和Cu/β以类似于实施例3所述的方式老化,并根据实施例6试验。结果显示于图15中,从这些结果可以看到,贫水热老化Cu/SSZ-13、Cu/SAPO-34和Cu/ZSM-34各样品的NOx转化活性显著优于相应的大孔沸石Cu/β。
实施例12-图16所示试验的结果
根据实施例2制备Cu/SSZ-13和Cu/SAPO-34的新样品,各样品以类似于实施例5所述的方式老化。根据实施例6试验新(即,未老化)和老化样品,结果显示于图16中,从这些结果可以看到,即使在延时强烈贫水热老化后也保持Cu/SSZ-13的NOx转化活性。
实施例13-图17和18所示试验的结果
根据实施例2制备Cu/SAPO-34和Cu/SAR约4的天然存在菱沸石类型物质,并根据实施例6试验新物质。结果显示于图17中,从这些结果可以看到,天然存在Cu/菱沸石的NOx转化活性显著低于Cu/SAPO-34。图18为比较根据实施例2制备的两种新Cu/天然存在菱沸石类型物质在两个温度数据点(200℃和300℃)的NOx转化活性的条形图,第一菱沸石物质具有约4的SAR,第二菱沸石物质具有约7的SAR。可以看到,虽然SAR 7菱沸石的NOx转化活性优于SAR 4菱沸石物质,但SAR 7菱沸石物质的活性仍显著低于新Cu/SAPO-34。
实施例14-图19所示试验的结果
根据实施例2制备Cu/SAPO-34和Cu/β。根据实施例1制备Fe/SAPO-34和Fe/SSZ-13。根据实施例4使样品老化,并根据实施例6试验老化的样品。在350℃和450℃数据点的NOx活性显示于图19中,从图19可以看到,Cu/SAPO-34、Fe/SAPO-34和Fe/SSZ-13样品显示可与Cu/β参比相比或比Cu/β参比更佳的性能。
实施例15-图20和21所示试验的结果
如实施例7所述新鲜试验根据实施例1制备的Fe/SSZ-13和Fe/β,其中将正辛烷(重复排气中未燃烧柴油燃料的影响)在8分钟引入试验。图20中所示结果比较在正辛烷引入原料气(HC-)之前8分钟和在正辛烷引入原料气(HC+)之后8分钟引入试验的NOx转化活性。可以看到,与Fe/SSZ-13相比,在正辛烷引入后Fe/β活性显著降低。我们相信,此影响是由于催化剂的焦化。
Fe/β催化剂焦化造成NOx转化活性显著降低这一假设可由图21所示结果支持,其中几乎直接在8分钟将正辛烷引入原料气之后在Fe/SSZ-13催化剂下游检测到C1烃。比较起来,对于Fe/β样品在流出物中观察到显著较低量的C1烃。由于对Fe/β样品在流出物中存在显著较少的C1烃,并且正辛烷必然已去了某处,结果表明它已在Fe/β催化剂上焦化,这促使NOx转化活性损失。
实施例16-图22所示试验的结果
以类似于实施例6所述的方式新鲜(即,未老化)试验根据实施例1制备的Fe/SSZ-13。然后用相同条件重复试验,不同之处在于350ppmNO用175ppm NO和175ppm NO2代替,即350ppm总量NOx。两个试验的结果显示于图22中,从这些结果可以看到,可通过原料气中NOx的NO2含量增加到1∶1得到显著改善。实际上,可使用位于NH3-SCR催化剂上游的适合氧化催化剂,通过使例如柴油机排气中的NO氧化调节NO∶NO2比率。
为避免疑虑,本文提到的任何和所有现有技术文献的全部内容通过引用结合到本文中。

Claims (49)

1.一种使气体中的氮氧化物转化成氮的方法,所述方法通过在含至少一种过渡金属的沸石催化剂存在下使氮氧化物与含氮还原剂接触进行,其中沸石为含8个四面体原子最大环尺寸的小孔沸石,其中所述至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt,其中含8个四面体原子最大环尺寸的小孔沸石选自CHA、LEV、ERI和DDR的框架类型编号。
2.权利要求1的方法,其中沸石为含一种或多种取代框架金属的同种型。
3.权利要求2的方法,其中所述取代框架金属选自As、B、Be、Co、Fe、Ga、Ge、Li、Mg、Mn、Zn和Zr。
4.权利要求1、2或3的方法,其中小孔沸石不为具有框架类型编号LTA的框架类型物质或其任何同种型沸石。
5.权利要求1、2或3的方法,其中含过渡金属的小孔沸石不为Ce/毛沸石。
6.权利要求1、2或3的方法,其中含过渡金属的小孔沸石不为Cu/菱沸石、Mo/菱沸石、Cu-Mo/菱沸石、Cu/毛沸石、Mo/毛沸石或Cu-Mo/毛沸石。
7.权利要求1、2或3的方法,其中含过渡金属的小孔沸石不为Fe/菱沸石、Fe/ZK-5、Fe/ZK-4、Fe-稀土/菱沸石、Fe-稀土/ZK-5或Fe-稀土/ZK-4。
8.权利要求1、2或3的方法,其中含过渡金属的小孔沸石不为Fe/菱沸石。
9.权利要求1、2或3的方法,其中小孔沸石选自硅铝酸盐沸石、金属取代的硅铝酸盐沸石和磷铝酸盐沸石。
10.权利要求9的方法,其中所述磷铝酸盐沸石选自AlPO沸石、MeAlPO沸石、SAPO沸石和MeAPSO沸石。
11.权利要求1的方法,其中CHA框架类型编号沸石为SAPO-34或SSZ-13。
12.权利要求1的方法,其中LEV框架类型编号沸石为Nu-3。
13.权利要求1的方法,其中ERI框架类型编号沸石为ZSM-34。
14.权利要求1的方法,其中DDR框架类型编号沸石为σ-1。
15.权利要求1、2或3的方法,其中沸石已经过处理以提高水热稳定性。
16.权利要求1、2或3的方法,其中沸石在至少一个维的孔径小于
Figure FSB00000825973700021
17.权利要求1、2或3的方法,其中沸石具有三维维数。
18.权利要求1、2或3的方法,其中沸石具有二维维数。
19.权利要求1、2或3的方法,其中所述至少一种过渡金属选自Cr、Ce、Mn、Fe、Co、Ni和Cu。
20.权利要求1、2或3的方法,其中所述至少一种过渡金属选自Fe、Ce和Cu。
21.权利要求1、2或3的方法,其中所述至少一种过渡金属为Fe和/或Cu。
22.权利要求1、2或3的方法,其中催化剂中存在的全部所述至少一种过渡金属为基于沸石催化剂总重量0.01至20%重量。
23.权利要求1、2或3的方法,其中催化剂中存在的全部所述至少一种过渡金属为基于沸石催化剂总重量0.1至10%重量。
24.权利要求23的方法,其中催化剂中存在的全部所述至少一种过渡金属为基于沸石催化剂总重量0.5至5%重量。
25.权利要求1、2或3的方法,其中沸石催化剂由Fe/CHA组成,具体为Fe/SAPO-34或Fe/SSZ-13。
26.权利要求1、2或3的方法,其中沸石催化剂由Cu/CHA组成,具体为Cu/SAPO-34或Cu/SSZ-13。
27.权利要求1、2或3的方法,其中氮氧化物用还原剂在至少100℃温度还原。
28.权利要求27的方法,其中温度为150℃至750℃。
29.权利要求1、2或3的方法,其中氮氧化物还原在氧存在下进行。
30.权利要求1、2或3的方法,其中控制含氮还原剂加入,以便将在沸石催化剂入口的NH3控制为以1∶1NH3/NO和4∶3NH3/NO2计算的理论氨的60%至200%。
31.权利要求1、2或3的方法,其中用位于沸石催化剂上游的氧化催化剂使气体中的一氧化氮氧化成二氧化氮,然后在混合物加入沸石催化剂之前使所得气体与含氮还原剂混合,其中氧化催化剂适应产生进入沸石催化剂的气流,所述气流具有4∶1至1∶3的NO∶NO2体积比率。
32.权利要求1、2或3的方法,其中沸石为合成沸石。
33.权利要求1、2或3的方法,其中含氮还原剂为氨本身、肼或选自尿素((NH2)2CO)、碳酸铵、氨基甲酸铵、碳酸氢铵和甲酸铵的氨前体。
34.权利要求1、2或3的方法,其中含氮氧化物的气体来源于燃烧过程。
35.权利要求34的方法,其中燃烧过程为机动车贫油燃烧内燃机中燃料的燃烧。
36.一种用于机动车贫油燃烧内燃机的排气***,所述***包括用于传送流动排气的导管、含氮还原剂源、在排气流路中布置的含至少一种过渡金属的沸石催化剂和用于使含氮还原剂计量进入位于沸石催化剂上游的流动排气的装置,其中沸石催化剂为含8个四面体原子最大环尺寸的小孔沸石,其中所述至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt,其中含8个四面体原子最大环尺寸的小孔沸石选自CHA、LEV、ERI和DDR的框架类型编号。
37.权利要求36的排气***,其中沸石催化剂涂覆于流通基质上。
38.权利要求36或37的排气***,所述***包括在使用时用于控制计量装置的装置,以便只在确定沸石催化剂能够在或高于所需效率催化NOx还原时使含氮还原剂计量进入流动排气。
39.权利要求38的排气***,其中控制装置在使用时布置成响应指示发动机条件的接收输入,所述条件选自排气温度、催化剂床温度、加速器位置、***中排气的质量流量、歧管真空、点火定时、发动机速度、排气的λ值、注入发动机的燃料的量、排气循环(EGR)阀的位置和因此EGR的量及升压。
40.权利要求38的排气***,其中控制装置在使用时响应测定的排气中氮氧化物的量控制含氮还原剂计量。
41.权利要求38的排气,其中控制装置在使用时适应使含氮还原剂计量进入排气,使得在进入沸石催化剂的排气中存在以1∶1NH3/NO和4∶3NH3/NO2计算的理论氨的60%至200%。
42.权利要求38的排气***,其中控制装置包括预程序化处理器。
43.权利要求38的排气***,其中用于使一氧化氮氧化成二氧化氮的氧化催化剂位于用于使含氮还原剂计量进入流动排气的装置的上游。
44.权利要求43的排气***,其中氧化催化剂包含至少一种铂族金属。
45.权利要求43的排气***,其中氧化催化剂包含铂。
46.权利要求43或44的排气***,其中催化剂在使用时适应在150℃至750℃氧化催化剂入口的排气温度产生4∶1至1∶3的NO∶NO2体积比率。
47.权利要求36的排气***,其中过滤器基质位于氧化催化剂和沸石催化剂之间。
48.一种装置,所述装置包括机动车贫油燃烧发动机和权利要求36至47中任一项的排气***。
49.权利要求48的装置,其中发动机为柴油机、贫油燃烧汽油机或由液化石油气或天然气提供动力的发动机。
CN2008800217622A 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂 Active CN101730575B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBPCT/GB2007/050216 2007-04-26
GBPCT/GB2007/050216 2007-04-26
PCT/GB2008/001451 WO2008132452A2 (en) 2007-04-26 2008-04-24 Transition metal/zeolite scr catalysts

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201210468386XA Division CN102974390A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂
CN201210469171XA Division CN102974391A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂

Publications (2)

Publication Number Publication Date
CN101730575A CN101730575A (zh) 2010-06-09
CN101730575B true CN101730575B (zh) 2013-01-02

Family

ID=38814668

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2008800217622A Active CN101730575B (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂
CN201210469171XA Pending CN102974391A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂
CN201210468386XA Pending CN102974390A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201210469171XA Pending CN102974391A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂
CN201210468386XA Pending CN102974390A (zh) 2007-04-26 2008-04-24 过渡金属/沸石scr催化剂

Country Status (12)

Country Link
US (14) US20100290963A1 (zh)
EP (12) EP2517776B2 (zh)
JP (5) JP5777339B2 (zh)
KR (4) KR101965943B1 (zh)
CN (3) CN101730575B (zh)
BR (1) BRPI0810133B1 (zh)
CA (2) CA2685009C (zh)
DK (7) DK2517778T4 (zh)
MX (1) MX2009011443A (zh)
MY (1) MY180938A (zh)
RU (1) RU2506989C2 (zh)
WO (1) WO2008132452A2 (zh)

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
MX2009009095A (es) 2007-02-27 2009-09-14 Basf Catalysts Llc Catalizadores de zeolita cha de cobre.
CN101730575B (zh) 2007-04-26 2013-01-02 约翰逊马西有限公司 过渡金属/沸石scr催化剂
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
KR20110010711A (ko) * 2008-05-07 2011-02-07 우미코레 아게 운트 코 카게 분자체에 기초하는 scr 촉매를 사용하여 탄화수소 함유 배기 가스 내의 산화질소를 감소시키기 위한 방법
WO2009141324A1 (en) * 2008-05-21 2009-11-26 Basf Se Process for the direct synthesis of cu containing zeolites having cha structure
EP2138681B1 (de) 2008-06-27 2019-03-27 Umicore AG & Co. KG Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
JP5549839B2 (ja) * 2008-08-19 2014-07-16 東ソー株式会社 高耐熱性β型ゼオライト及びそれを用いたSCR触媒
GB2464478A (en) 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
WO2010084930A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 窒素酸化物浄化用触媒及びその製造方法
US8512657B2 (en) * 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
GB0903262D0 (en) * 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
DE102010027883A1 (de) 2009-04-17 2011-03-31 Johnson Matthey Public Ltd., Co. Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess
EP4112168A1 (en) * 2009-04-17 2023-01-04 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalyst durable against lean/rich aging for the reduction of nitrogen oxides
EP2687284A1 (en) 2009-06-08 2014-01-22 Basf Se Cu containing silicoaluminophosphate (Cu-SAPO-34)
US8887495B2 (en) * 2009-07-14 2014-11-18 GM Global Technology Operations LLC Ash filter, exhaust gas treatment system incorporating the same and method of using the same
EP2471597B1 (en) * 2009-08-27 2020-09-23 Tosoh Corporation Highly heat-resistant scr catalyst and manufacturing method therefor
DE102009040352A1 (de) * 2009-09-05 2011-03-17 Johnson Matthey Catalysts (Germany) Gmbh Verfahren zur Herstellung eines SCR aktiven Zeolith-Katalysators sowie SCR aktiver Zeolith-Katalysator
US8246922B2 (en) * 2009-10-02 2012-08-21 Basf Corporation Four-way diesel catalysts and methods of use
WO2011042990A1 (ja) * 2009-10-09 2011-04-14 イビデン株式会社 ハニカムフィルタ
BR112012008847A2 (pt) * 2009-10-14 2019-09-24 Basf Corp peneira molecular de levinita contendo cobre, catalisador, processo para a preparação de qualquer peneira molecular de levinita contendo cobre, usa de catalisador, sistema de tratamento de gás de descarga, e, método paea seletivamente reduzir óxidos de nitrogênio
WO2011061839A1 (ja) * 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
JP5563952B2 (ja) * 2009-11-19 2014-07-30 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
CN102666430B (zh) * 2009-11-19 2015-04-29 揖斐电株式会社 蜂窝结构体以及尾气净化装置
JP5815220B2 (ja) * 2009-11-19 2015-11-17 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
WO2011061841A1 (ja) 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
US8409546B2 (en) 2009-11-24 2013-04-02 Basf Se Process for the preparation of zeolites having B-CHA structure
BR112012012244A2 (pt) 2009-11-24 2016-04-19 Basf Se processo para a preparação de zeólitos que possuam estrutura de armação cha e uma composição, material zeolítico que possui uma estrutura de armação cha, e, uso de um material zeolítico
GB2475740B (en) * 2009-11-30 2017-06-07 Johnson Matthey Plc Catalysts for treating transient NOx emissions
EP2377613B1 (en) * 2009-12-18 2014-10-15 JGC Catalysts and Chemicals Ltd. Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same
US8293198B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
ES2655323T3 (es) * 2009-12-18 2018-02-19 Basf Se Zeolita que contiene hierro, procedimiento para la preparación de zeolitas que contienen hierro y procedimiento para la reducción catalítica de óxidos de nitrógeno
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
KR101718574B1 (ko) 2009-12-24 2017-04-04 존슨 맛쎄이 퍼블릭 리미티드 컴파니 차량용 포지티브 점화 내연 기관 엔진을 위한 배기 시스템
HUE027335T2 (en) 2010-02-01 2016-09-28 Johnson Matthey Plc Extruded solid body three-way catalyst
DE102010007626A1 (de) 2010-02-11 2011-08-11 Süd-Chemie AG, 80333 Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse
GB201003784D0 (en) * 2010-03-08 2010-04-21 Johnson Matthey Plc Improvement in control OPF emissions
KR101294098B1 (ko) 2010-03-11 2013-08-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx의 선택적 촉매 환원을 위한 무질서 분자체 지지체
JP5899199B2 (ja) * 2010-04-08 2016-04-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Cu含有CHA構造型ゼオライト及びFe含有MFI構造型ゼオライトを含む選択的触媒還元用触媒、この触媒を含む排気ガス処理システム、及びこの触媒を使用してNOXを含むガス流を処理する方法
US9352307B2 (en) * 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
GB201100595D0 (en) 2010-06-02 2011-03-02 Johnson Matthey Plc Filtration improvements
US20120014866A1 (en) * 2010-07-15 2012-01-19 Ivor Bull Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx
US9289756B2 (en) * 2010-07-15 2016-03-22 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx
BR112013001031A2 (pt) * 2010-07-15 2016-05-24 Basf Se material zeolítico ofretita (off) e/ou erionita (eri), zsm-34 contendo cobre, catalisador, processo para a preparação do mesmo, uso de catalisador, sistema de tratamento de gás de exaustão, e, método para reduzir seletivamente óxidos de nitrogênio nox
US9221015B2 (en) * 2010-07-15 2015-12-29 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx
KR20130044322A (ko) * 2010-07-15 2013-05-02 바스프 에스이 질소 산화물의 선택적인 환원을 위한 구리 함유 zsm-34, 오프레타이트 및/또는 에리오나이트 제올라이트 물질
IN2013CN00093A (zh) * 2010-07-15 2015-07-03 Basf Se
JP5573453B2 (ja) * 2010-07-21 2014-08-20 三菱樹脂株式会社 窒素酸化物浄化用触媒及びその製造方法
US8987161B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Zeolite-based SCR catalysts and their use in diesel engine emission treatment
US8987162B2 (en) 2010-08-13 2015-03-24 Ut-Battelle, Llc Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst
JP5756714B2 (ja) * 2010-09-02 2015-07-29 イビデン株式会社 シリコアルミノリン酸塩、ハニカム構造体及び排ガス浄化装置
EP2428659B1 (de) * 2010-09-13 2016-05-18 Umicore AG & Co. KG Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren
US8568677B2 (en) 2010-10-12 2013-10-29 Basf Se P/S-TM-comprising zeolites for decomposition of N2O
CN103153439A (zh) * 2010-10-12 2013-06-12 巴斯夫欧洲公司 用于分解n2o的含p/s-tm沸石
CN102451749A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种用于甲醇转化制烯烃的催化剂及其制备和应用
RU2614411C2 (ru) * 2010-12-02 2017-03-28 Джонсон Мэтти Паблик Лимитед Компани Цеолитный катализатор, содержащий металл
EP2463028A1 (en) 2010-12-11 2012-06-13 Umicore Ag & Co. Kg Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides
EP2465606A1 (de) * 2010-12-16 2012-06-20 Umicore Ag & Co. Kg Zeolith-basierter Katalysator mit verbesserter katalytischer Aktivität zur Reduktion von Stickoxiden
GB201021887D0 (en) 2010-12-21 2011-02-02 Johnson Matthey Plc Oxidation catalyst for a lean burn internal combustion engine
US20130281284A1 (en) 2010-12-27 2013-10-24 Mitsubishi Plastics, Inc. Catalyst for nitrogen oxide removal
US9074530B2 (en) * 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
US8617502B2 (en) 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
US20120134916A1 (en) 2011-02-28 2012-05-31 Fedeyko Joseph M High-temperature scr catalyst
CN103402634B (zh) * 2011-03-03 2018-10-26 尤米科尔股份公司及两合公司 用于氮氧化物的选择性催化还原的催化活性材料和催化转化器
EP2495032A1 (de) * 2011-03-03 2012-09-05 Umicore Ag & Co. Kg SCR-Katalysator mit verbesserter Kohlenwasserstoffresistenz
GB201110850D0 (en) 2011-03-04 2011-08-10 Johnson Matthey Plc Catalyst and mehtod of preparation
JP2012215166A (ja) * 2011-03-29 2012-11-08 Ibiden Co Ltd 排ガス浄化システム及び排ガス浄化方法
KR20140022043A (ko) * 2011-04-04 2014-02-21 피큐 코포레이션 Fe-sapo-34 촉매 및 이의 제조 및 사용방법
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
KR101651950B1 (ko) * 2011-05-31 2016-08-29 존슨 맛쎄이 퍼블릭 리미티드 컴파니 이중 기능 촉매 필터
US10226762B1 (en) * 2011-06-17 2019-03-12 Johnson Matthey Public Limited Company Alumina binders for SCR catalysts
EP2739389B1 (en) 2011-08-03 2020-01-08 Johnson Matthey PLC Method for producing extruded honeycomb catalysts
US9174849B2 (en) * 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
GB2493987B (en) * 2011-08-26 2014-03-19 Jc Bamford Excavators Ltd An engine system
US9999877B2 (en) * 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams
JP2014530097A (ja) * 2011-10-05 2014-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガス流中のNOxを処理するためのCu−CHA/Fe−BEA混合ゼオライト触媒および方法
JP5938819B2 (ja) 2011-10-06 2016-06-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気ガス処理用酸化触媒
WO2013060341A1 (en) * 2011-10-24 2013-05-02 Haldor Topsøe A/S Catalyst composition for use in selective catalytic reduction of nitrogen oxides
US8956992B2 (en) 2011-10-27 2015-02-17 GM Global Technology Operations LLC SCR catalysts preparation methods
BR112014013246A2 (pt) * 2011-12-01 2017-06-13 Johnson Matthey Plc composição catalisadora, e, método para tratar nox
US9981256B2 (en) 2011-12-02 2018-05-29 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
WO2013082550A1 (en) 2011-12-02 2013-06-06 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox
GB201200783D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Substrate monolith comprising SCR catalyst
GB2497597A (en) 2011-12-12 2013-06-19 Johnson Matthey Plc A Catalysed Substrate Monolith with Two Wash-Coats
GB201200781D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
GB201200784D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine including SCR catalyst
US9126180B2 (en) * 2012-01-31 2015-09-08 Johnson Matthey Public Limited Company Catalyst blends
US9101877B2 (en) * 2012-02-13 2015-08-11 Siemens Energy, Inc. Selective catalytic reduction system and process for control of NOx emissions in a sulfur-containing gas stream
JP6163715B2 (ja) * 2012-03-30 2017-07-19 三菱ケミカル株式会社 ゼオライト膜複合体
JP6441789B2 (ja) * 2012-04-11 2018-12-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 金属含有ゼオライト触媒
GB2513364B (en) 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
WO2013159828A1 (en) 2012-04-27 2013-10-31 Haldor Topsøe A/S Process for the direct synthesis of cu-sapo-34
CN109184860B (zh) * 2012-04-27 2020-12-22 优美科两合公司 用于净化来自内燃机的废气的方法和***
CN102671691A (zh) * 2012-05-28 2012-09-19 四川君和环保工程有限公司 一种低温scr脱硝催化剂、其制备方法及其应用
DK2755764T3 (en) * 2012-08-17 2016-11-28 Johnson Matthey Plc Zeolite promoted V / TI / W CATALYST
EP2888042B1 (en) * 2012-08-24 2020-05-20 Tronox LLC Catalyst support materials, catalysts, methods of making them and uses thereof
DE102012018629A1 (de) * 2012-09-21 2014-03-27 Clariant International Ltd. Verfahren zur Reinigung von Abgas und zur Regenerierung eines Oxidationskatalysators
EP2900372B1 (en) * 2012-09-28 2018-01-10 Pacific Industrial Development Corporation An alumina silicate zeolite-type material for use as a catalyst in selective catalytic reduction and process of making thereof
RU2509599C1 (ru) * 2012-10-01 2014-03-20 Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") Способ очистки воздуха от оксидов азота
US20150273446A1 (en) * 2012-10-03 2015-10-01 Ibiden Co., Ltd. Honeycomb structure
WO2014060987A1 (en) * 2012-10-18 2014-04-24 Johnson Matthey Public Limited Company Close-coupled scr system
WO2014062952A1 (en) * 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve with promoter to improve low temperature performance
CN104736243A (zh) * 2012-10-19 2015-06-24 巴斯夫公司 混合金属8环小孔分子筛催化剂组合物、催化制品、体系和方法
RU2767067C1 (ru) * 2012-10-19 2022-03-16 Басф Корпорейшн 8-кольцевое молекулярное сито с малыми порами в качестве высокотемпературного катализатора скв
GB201220912D0 (en) 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
US8992869B2 (en) 2012-12-20 2015-03-31 Caterpillar Inc. Ammonia oxidation catalyst system
US9802182B2 (en) 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
JP6377086B2 (ja) 2013-03-14 2018-08-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排ガスを処理するための触媒としてのアルミノ珪酸塩又はシリコアルミノホスフェートモレキュラーシーブ/マンガン八面体モレキュラーシーブ
CN112371164A (zh) * 2013-03-14 2021-02-19 巴斯夫公司 选择性催化还原催化剂***
WO2014141200A1 (en) * 2013-03-15 2014-09-18 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas
EP2980050B1 (en) * 2013-03-29 2019-10-23 NGK Insulators, Ltd. Aluminophosphate-metal oxide bonded body and production method for same
DE202013012229U1 (de) 2013-04-05 2015-10-08 Umicore Ag & Co. Kg CuCHA Material für die SCR-Katalyse
GB2512648B (en) 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
EP3753625A1 (en) 2013-04-24 2020-12-23 Johnson Matthey Public Limited Company Filter substrate comprising zone-coated catalyst washcoat
US9403157B2 (en) 2013-04-29 2016-08-02 Ford Global Technologies, Llc Three-way catalyst comprising mixture of nickel and copper
GB2514177A (en) 2013-05-17 2014-11-19 Johnson Matthey Plc Oxidation catalyst for a compression ignition engine
GB2517034B (en) * 2013-05-31 2016-02-17 Johnson Matthey Plc Catalyzed filter for treating exhaust gas
BR112015029656A2 (pt) * 2013-05-31 2017-07-25 Johnson Matthey Plc filtro de particulado de diesel, sistema para tratamento de um gás de escape de queima pobre, e, método para reduzir fuligem em um gás de escape de queima pobre
US9630146B2 (en) 2013-06-03 2017-04-25 Ford Global Technologies, Llc Particulate filter containing a nickel-copper catalyst
KR102219718B1 (ko) 2013-06-14 2021-02-23 도소 가부시키가이샤 Lev 형 제올라이트 및 그 제조 방법
GB2519403A (en) * 2013-07-30 2015-04-22 Johnson Matthey Plc Ammonia slip catalyst
WO2015018815A1 (en) * 2013-08-09 2015-02-12 Basf Se Process for the oxygen free conversion of methane to ethylene on zeolite catalysts
JP6245895B2 (ja) * 2013-08-27 2017-12-13 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
JP6204751B2 (ja) * 2013-08-27 2017-09-27 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
EP3040122A4 (en) * 2013-08-30 2017-03-29 Otsuka Chemical Co., Ltd. Exhaust gas purification filter and exhaust gas purification apparatus
US9782761B2 (en) 2013-10-03 2017-10-10 Ford Global Technologies, Llc Selective catalytic reduction catalyst
JP6513652B2 (ja) 2013-10-31 2019-05-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Aeiゼオライトの合成
US9283548B2 (en) 2013-11-19 2016-03-15 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of NOx
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
WO2015084834A1 (en) * 2013-12-02 2015-06-11 Johnson Matthey Public Limited Company Synthesis of aei zeolite
US10005075B2 (en) * 2013-12-06 2018-06-26 Johnson Matthey Public Limited Company Passive NOx adsorber
US20150231620A1 (en) * 2014-02-19 2015-08-20 Ford Global Technologies, Llc IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING
US20150231617A1 (en) * 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
WO2015128668A1 (en) * 2014-02-28 2015-09-03 Johnson Matthey Public Limited Company Scr catalysts having improved low temperature performance, and methods of making and using the same
EP3122442A1 (en) * 2014-03-24 2017-02-01 Johnson Matthey Public Limited Company Method and system for treating exhaust gas
US9561469B2 (en) 2014-03-24 2017-02-07 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas
CN106061901A (zh) * 2014-03-26 2016-10-26 三菱树脂株式会社 含过渡金属沸石的制造方法、和通过该方法得到的过渡金属沸石以及使用该沸石的废气净化处理用催化剂
JP6204238B2 (ja) * 2014-03-26 2017-09-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102014205760A1 (de) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Verfahren zum Herstellen eines Katalysator sowie Katalysator
DE102014205783A1 (de) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Katalysator sowie Verfahren zum Herstellen eines Katalysator
US20150290632A1 (en) * 2014-04-09 2015-10-15 Ford Global Technologies, Llc IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
JP6126141B2 (ja) * 2014-05-30 2017-05-10 トヨタ自動車株式会社 排ガス浄化用触媒の製造方法
US9764313B2 (en) 2014-06-18 2017-09-19 Basf Corporation Molecular sieve catalyst compositions, catalyst composites, systems, and methods
US9889437B2 (en) 2015-04-15 2018-02-13 Basf Corporation Isomorphously substituted catalyst
US10850265B2 (en) 2014-06-18 2020-12-01 Basf Corporation Molecular sieve catalyst compositions, catalytic composites, systems, and methods
ES2554648B1 (es) 2014-06-20 2016-09-08 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-55, procedimiento de preparación y uso
EP3177386B1 (en) * 2014-08-07 2019-11-27 Johnson Matthey Public Limited Company Zoned catalyst for treating exhaust gas
EP2985068A1 (de) 2014-08-13 2016-02-17 Umicore AG & Co. KG Katalysator-System zur Reduktion von Stickoxiden
RU2698817C2 (ru) * 2014-08-15 2019-08-30 Джонсон Мэтти Паблик Лимитед Компани Зонированный катализатор для обработки отработавшего газа
CN104226361B (zh) * 2014-09-01 2017-06-20 清华大学苏州汽车研究院(吴江) 铁基scr催化剂及其制备方法
BR112017007017B1 (pt) * 2014-10-07 2021-05-18 Johnson Matthey Public Limited Company catalisador para tratamento de gás de escape, catalisador de composição de revestimento, sistema de tratamento de gás de escape, e, método para tratar um gás de escape
CN104475152B (zh) * 2014-10-09 2017-12-22 南开大学 用于氮氧化物氢气选择催化还原的催化剂及其应用
US10807082B2 (en) * 2014-10-13 2020-10-20 Johnson Matthey Public Limited Company Zeolite catalyst containing metals
JP2017534447A (ja) * 2014-10-30 2017-11-24 ビーエーエスエフ コーポレーション 混合金属型の大結晶モレキュラーシーブ触媒組成物、触媒物品、システムおよび方法
RU2702578C2 (ru) * 2014-11-19 2019-10-08 Джонсон Мэтти Паблик Лимитед Компани Объединение scr с pna для низкотемпературного контроля выхлопных газов
GB2538877B (en) * 2014-12-08 2017-04-26 Johnson Matthey Plc Passive NOx adsorber
CN107406265A (zh) 2015-01-29 2017-11-28 庄信万丰股份有限公司 铁络合物直接引入sapo‑34(cha)类型材料中
WO2016121889A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体及び窒素濃度低減方法
GB2535466A (en) 2015-02-16 2016-08-24 Johnson Matthey Plc Catalyst with stable nitric oxide (NO) oxidation performance
GB2540832B (en) * 2015-02-20 2019-04-17 Johnson Matthey Plc Bi-metal molecular sieve catalysts
MX2017010990A (es) 2015-02-27 2017-10-18 Basf Corp Sistema de tratamiento de los gases de escape.
WO2016164027A1 (en) 2015-04-09 2016-10-13 Hong-Xin Li STABILIZED MICROPOROUS CRYSTALLINE MATERIAL, THE METHOD OF MAKING THE SAME, AND THE USE FOR SELECTIVE CATALYTIC REDUCTION OF NOx
CN104801335A (zh) * 2015-04-11 2015-07-29 桂林理工大学 低温NH3还原NOx的Zr-Ce-Mn/ZSM-5复合氧化物催化剂及其制备方法
JP6292159B2 (ja) * 2015-04-13 2018-03-14 トヨタ自動車株式会社 排ガス浄化用触媒
ES2586770B1 (es) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) Método de síntesis directa del material cu-silicoaluminato con la estructura zeolítica aei, y sus aplicaciones catalíticas
RU2706923C2 (ru) * 2015-05-19 2019-11-21 Басф Корпорейшн Катализированный сажевый фильтр для применения при пассивном селективном каталитическом восстановлении
GB2542654B (en) 2015-06-28 2019-12-04 Johnson Matthey Plc Catalytic wall-flow filter having a membrane
GB2544858B (en) 2015-09-29 2020-04-15 Johnson Matthey Plc Catalytic filter having a soot catalyst and an SCR catalyst
CN108698841B (zh) * 2015-12-22 2023-01-17 巴斯夫公司 制备铁(iii)交换的沸石组合物的方法
JP6779498B2 (ja) * 2016-01-22 2020-11-04 国立大学法人広島大学 スズを含有するゼオライトおよびその製造方法
EP3411332B1 (en) * 2016-02-01 2021-03-10 Umicore Ag & Co. Kg Method for the direct synthesis of iron-containing aei-zeolite catalyst
CA3013546A1 (en) 2016-02-03 2017-08-10 Basf Corporation Copper and iron co-exchanged chabazite catalyst
US10105691B2 (en) 2016-03-31 2018-10-23 Ford Global Technologies, Llc Multiple zeolite hydrocarbon traps
WO2017178576A1 (de) * 2016-04-13 2017-10-19 Umicore Ag & Co. Kg Partikelfilter mit scr-aktiver beschichtung
US10092897B2 (en) * 2016-04-20 2018-10-09 Ford Global Technologies, Llc Catalyst trap
JP6980698B2 (ja) 2016-05-03 2021-12-15 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 活性scr触媒
BR112018073135B1 (pt) * 2016-05-11 2022-05-10 Basf Corporation Composição de catalisador, sistema adaptado para aquecer um material de catalisador e método para tratar emissões de um motor de combustão interna
GB201608643D0 (en) * 2016-05-17 2016-06-29 Thermo Fisher Scient Bremen Elemental analysis system and method
DK3463629T3 (da) * 2016-05-31 2021-12-20 Johnson Matthey Plc Fremgangsmåde for og system til behandling af nox i udstødningsgas fra stationære emissionskilder
DE102017116461A1 (de) * 2016-07-22 2018-01-25 Johnson Matthey Public Limited Company Katalysator-bindemittel für filtersubstrate
WO2018029329A1 (de) 2016-08-11 2018-02-15 Umicore Ag & Co. Kg Scr-aktives material mit erhöhter thermischer stabilität
EP3281698A1 (de) 2016-08-11 2018-02-14 Umicore AG & Co. KG Scr-aktives material
US10914214B2 (en) 2016-09-20 2021-02-09 Umicore Ag & Co. Kg SCR diesel particle filter with oxidation catalyst and oxygen storage catalyst loadings, and exhaust system including the same
DE112017005130A5 (de) 2016-10-10 2019-08-01 Umicore Ag & Co. Kg Katalysatoranordnung
KR101846914B1 (ko) * 2016-10-21 2018-04-09 현대자동차 주식회사 촉매 및 촉매의 제조 방법
GB2591673B (en) 2016-10-28 2021-11-17 Johnson Matthey Plc Catalytic wall-flow filter with partial surface coating
BR112019008626A2 (pt) * 2016-10-31 2019-07-09 Johnson Matthey Plc composição de catalisador, artigo catalítico, sistema e método para tratamento de um gás de escape, motor, e, veículo.
EP3323785A1 (en) * 2016-11-18 2018-05-23 Umicore AG & Co. KG Crystalline zeolites with eri/cha intergrowth framework type
EP3585765A1 (en) * 2016-11-30 2020-01-01 Basf Se Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the mor framework structure
KR20190086544A (ko) * 2016-12-01 2019-07-22 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx의 고정원의 배기 시스템 내의 노화된 SCR 촉매층의 유효 수명을 연장시키는 방법
KR101879695B1 (ko) * 2016-12-02 2018-07-18 희성촉매 주식회사 2가 구리 이온들을 특정비율로 담지한 제올라이트, 이의 제조방법 및 이를 포함하는 촉매조성물
CN107497482A (zh) * 2016-12-29 2017-12-22 廊坊市北辰创业树脂材料有限公司 一种新型低温复合催化剂的制备和应用
CN106799234B (zh) * 2016-12-30 2019-07-05 包头稀土研究院 一种柴油车用稀土基scr催化剂及制备方法
PL3357558T3 (pl) 2017-02-03 2020-03-31 Umicore Ag & Co. Kg Katalizator do oczyszczania gazów spalinowych silników wysokoprężnych
GB2562160B (en) 2017-03-20 2021-06-23 Johnson Matthey Plc Catalytic wall-flow filter with an ammonia slip catalyst
GB2560990A (en) * 2017-03-31 2018-10-03 Johnson Matthey Catalysts Germany Gmbh Composite material
US11179707B2 (en) 2017-03-31 2021-11-23 Johnson Matthey Catalysts (Germany) Gmbh Composite material
GB201705279D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Plc Selective catalytic reduction catalyst
GB201705241D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Catalyst composition
EP3607177A4 (en) * 2017-04-04 2020-09-02 BASF Corporation INTEGRATED EMISSION REGULATION SYSTEM
CN108855079B (zh) * 2017-05-11 2020-07-07 中国石油化工股份有限公司 一种烟气脱硝催化剂及其制备方法及脱硝工艺
CN107138174A (zh) * 2017-06-23 2017-09-08 华娜 一种脱硝催化剂及其制备方法
CA3069144A1 (en) * 2017-07-11 2019-01-17 Shell Internationale Research Maatschappij B.V. A catalyst and method of use thereof
CA3069255A1 (en) * 2017-07-11 2019-01-17 Shell Internationale Research Maatschappij B.V. Catalyst and method of use thereof in the conversion of nox and n2o
CN109250729B (zh) * 2017-07-12 2022-02-25 中国科学院大连化学物理研究所 Cu-SAPO-34分子筛合成方法及合成的分子筛和应用
CN109422276B (zh) * 2017-08-30 2022-10-18 中国科学院大连化学物理研究所 一种掺杂过渡金属的分子筛及其制备方法和应用
EP3676000A1 (de) 2017-08-31 2020-07-08 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
EP3450015A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
JP2020531241A (ja) 2017-08-31 2020-11-05 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気ガスを浄化するための受動的窒素酸化物吸着剤としてのパラジウム/白金/ゼオライト系触媒の使用
EP3449999A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
EP3450016A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
JP6964479B2 (ja) 2017-10-03 2021-11-10 エヌ・イーケムキャット株式会社 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒
US10711674B2 (en) 2017-10-20 2020-07-14 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber catalyst
CN107649175B (zh) * 2017-10-23 2020-11-03 上海歌通实业有限公司 一种Ga-Ge掺杂MnOx-SAPO分子筛催化剂的制备方法
CN109794284B (zh) * 2017-11-17 2020-06-09 中国科学院大连化学物理研究所 一种表面富集金属的分子筛材料、其制备方法及应用
JP7158141B2 (ja) 2017-11-27 2022-10-21 エヌ・イーケムキャット株式会社 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
CN109833905A (zh) 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 分子筛催化剂及其制备方法和应用
CN108187655A (zh) * 2017-12-27 2018-06-22 龙岩紫荆创新研究院 一种scr烟气脱硝催化剂、制备方法及其应用***
EP3727685A4 (en) 2018-01-03 2021-08-25 BASF Corporation SURFACE TREATED SILICOALUMINOPHOSPHATE MOLECULAR SIEVE
WO2019134958A1 (de) 2018-01-05 2019-07-11 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
DE102018100833A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
DE102018100834A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
US10898889B2 (en) 2018-01-23 2021-01-26 Umicore Ag & Co. Kg SCR catalyst and exhaust gas cleaning system
US10456746B2 (en) 2018-02-12 2019-10-29 GM Global Technology Operations LLC Selective catalytic reduction filter for reducing nitrous oxide formation and methods of using the same
JP2019142753A (ja) * 2018-02-22 2019-08-29 いすゞ自動車株式会社 Ssz−13及びssz−13の製造方法
JP7091768B2 (ja) * 2018-03-27 2022-06-28 三菱ケミカル株式会社 ゼオライト粉体
EP3774033A4 (en) * 2018-04-11 2021-12-29 BASF Corporation Mixed zeolite-containing scr catalyst
KR101963082B1 (ko) 2018-05-15 2019-03-27 경북대학교 산학협력단 유기 약염기를 포함한 유기 열전소재 및 이를 이용한 유기 열전소자
US10850264B2 (en) * 2018-05-18 2020-12-01 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
FR3081340B1 (fr) * 2018-05-24 2020-06-26 IFP Energies Nouvelles Catalyseur comprenant un melange d'une zeolithe de type structural afx et d'une zeolithe de type structural bea et au moins un metal de transition pour la reduction selective de nox
EP3613503A1 (en) 2018-08-22 2020-02-26 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber
EP3616792A1 (de) 2018-08-28 2020-03-04 Umicore Ag & Co. Kg Stickoxid-speicherkatalysator
WO2020047356A1 (en) * 2018-08-31 2020-03-05 Johnson Matthey Public Limited Company Bimetallic cu/mn catalysts for selective catalytic reduction
US11511228B2 (en) 2018-11-02 2022-11-29 Basf Corporation Exhaust treatment system for a lean burn engine
CN109433256A (zh) * 2018-11-06 2019-03-08 广东工业大学 一种Cu/Mn-SSZ-39催化剂及其制备方法和应用
CN112672811B (zh) 2018-11-16 2023-07-14 优美科股份公司及两合公司 低温氮氧化物吸附剂
US11278874B2 (en) 2018-11-30 2022-03-22 Johnson Matthey Public Limited Company Enhanced introduction of extra-framework metal into aluminosilicate zeolites
WO2020116020A1 (ja) 2018-12-06 2020-06-11 エヌ・イーケムキャット株式会社 排ガス浄化装置
WO2020144195A1 (de) 2019-01-08 2020-07-16 Umicore Ag & Co. Kg Passiver stickoxid-adsorber mit oxidationskatalytisch aktiver funktion
GB201900484D0 (en) 2019-01-14 2019-02-27 Johnson Matthey Catalysts Germany Gmbh Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites
CN109794286B (zh) * 2019-01-16 2021-12-28 山东国瓷功能材料股份有限公司 一种cha/aei复合脱硝催化剂及其制备方法与应用
US10703986B1 (en) 2019-01-30 2020-07-07 Exxonmobil Research And Engineering Company Selective oxidation using encapsulated catalytic metal
EP3695902B1 (de) 2019-02-18 2021-09-01 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
JP7194431B2 (ja) * 2019-05-15 2022-12-22 株式会社 Acr 触媒、触媒製品および触媒の製造方法
CN110026182A (zh) * 2019-05-20 2019-07-19 中国人民大学 高抗硫中低温脱硝催化剂及其制备与应用
CN110292944B (zh) * 2019-07-31 2022-11-08 北京工业大学 一种超宽温窗scr脱硝催化剂及其制备方法
KR20210029943A (ko) 2019-09-09 2021-03-17 현대자동차주식회사 고성능 질소산화물 저감용 제올라이트 및 이의 제조방법 그리고 이를 이용한 촉매
EP3791955A1 (de) 2019-09-10 2021-03-17 Umicore Ag & Co. Kg Kupfer-zeolith- und kupfer/alumina-haltiges katalytisches material für die scr, abgasreinigungsverfahren mit diesem material und verfahren zur herstellung dieses materials
EP4039356A4 (en) 2019-10-03 2023-10-18 N.E. Chemcat Corporation EXHAUST GAS PURIFICATION DEVICE
BR112022006372A2 (pt) * 2019-10-16 2023-10-03 Johnson Matthey Plc Catalisador de oxidação de amônia, óxido nítrico e compósito, e, sistema de escape para um motor veicular de ignição
EP4048875A4 (en) * 2019-10-21 2023-10-25 BASF Corporation LOW TEMPERATURE NOX ADSORBER WITH IMPROVED REGENERATION EFFICIENCY
EP3812034A1 (en) 2019-10-24 2021-04-28 Dinex A/S Durable copper-scr catalyst
EP3824988A1 (en) 2019-11-20 2021-05-26 UMICORE AG & Co. KG Catalyst for reducing nitrogen oxides
CN111013648A (zh) * 2019-12-14 2020-04-17 中触媒新材料股份有限公司 一种具有cha/kfi结构共生复合分子筛及其制备方法和scr应用
EP3885040A1 (de) 2020-03-24 2021-09-29 UMICORE AG & Co. KG Ammoniakoxidationskatalysator
CN111437875B (zh) * 2020-03-24 2023-10-27 武汉科技大学 一种具有宽温度范围的铈铁分子筛基催化剂及其制备方法
US20220314207A9 (en) * 2020-03-31 2022-10-06 Massachusetts Institute Of Technology Catalytic compositions for the oxidation of substrates
EP3978100A1 (de) 2020-09-30 2022-04-06 UMICORE AG & Co. KG Bismut enthaltender gezonter dieseloxidationskatalysator
JP2023542828A (ja) 2020-09-30 2023-10-12 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト ディーゼル酸化触媒を含有するビスマット
EP4228810A1 (en) 2020-10-14 2023-08-23 Umicore AG & Co. KG Passive nitrogen oxide adsorber
CN112169830B (zh) * 2020-10-16 2022-11-08 万华化学集团股份有限公司 一种碱性金属氧化物@zsm-5催化剂的制备方法、由其制备的催化剂及应用
KR20220069375A (ko) * 2020-11-20 2022-05-27 현대자동차주식회사 탄화수소 산화용 제올라이트 촉매 및 이의 제조방법
CN112691700A (zh) * 2020-12-28 2021-04-23 廊坊市北辰创业树脂材料股份有限公司 小孔Cu-ZK-5分子筛催化剂制备方法及其应用
CN112973777B (zh) * 2021-02-23 2022-10-21 浙江浙能技术研究院有限公司 一种高效分解氧化亚氮的低Ir负载量催化剂及其制备方法
EP4063003A1 (en) 2021-03-23 2022-09-28 UMICORE AG & Co. KG Filter for the aftertreatment of exhaust gases of internal combustion engines
US20230130033A1 (en) 2021-10-22 2023-04-27 Johnson Matthey Catalysts (Germany) Gmbh Method and catalyst article
KR20230073794A (ko) 2021-11-19 2023-05-26 한국세라믹기술원 결정성 제올라이트가 담지된 탈질촉매 및 그의 제조 방법
CN114505079B (zh) * 2022-04-20 2022-06-24 山东万达环保科技有限公司 一种低温锰基scr脱硝催化剂的制备方法及其在烟气脱硝中的应用
CN114713243A (zh) * 2022-04-29 2022-07-08 辽宁科隆精细化工股份有限公司 一种低温高效高抗硫长时间稳定scr脱硝催化剂及其制备方法
KR102660953B1 (ko) * 2022-06-30 2024-04-25 서울대학교산학협력단 Lng 발전소 배기가스 처리용 이온 교환 제올라이트 촉매

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867954A (en) * 1988-04-07 1989-09-19 Uop Catalytic reduction of nitrogen oxides
EP0624393A1 (en) * 1993-05-10 1994-11-17 Sakai Chemical Industry Co., Ltd., Catalyst for catalytic reduction of nitrogen oxides
DE10036476A1 (de) * 2000-07-25 2002-02-07 Basf Ag Katalysatorsystem zur Zersetzung von N20
WO2006064805A1 (ja) * 2004-12-17 2006-06-22 Munekatsu Furugen ディーゼルエンジンの排気ガス用電気式処理方法およびその装置
DE102005010221A1 (de) * 2005-03-05 2006-09-07 S&B Industrial Minerals Gmbh Verfahren zum Herstellen eines katalytisch wirkenden Minerals auf Basis eines Gerüstsilikates
EP1852174A1 (de) * 2006-05-02 2007-11-07 Argillon GmbH Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US798813A (en) 1904-06-13 1905-09-05 Samuel James Macfarren Steering-gear for automobiles.
US3459676A (en) 1966-06-14 1969-08-05 Mobil Oil Corp Synthetic zeolite and method for preparing the same
DE10020170C1 (de) 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
US3895094A (en) 1974-01-28 1975-07-15 Gulf Oil Corp Process for selective reduction of oxides of nitrogen
US4220632A (en) 1974-09-10 1980-09-02 The United States Of America As Represented By The United States Department Of Energy Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia
JPS51147470A (en) * 1975-06-12 1976-12-17 Toa Nenryo Kogyo Kk A process for catalytic reduction of nitrogen oxides
US4086186A (en) * 1976-11-04 1978-04-25 Mobil Oil Corporation Crystalline zeolite ZSM-34 and method of preparing the same
US4187199A (en) * 1977-02-25 1980-02-05 Chevron Research Company Hydrocarbon conversion catalyst
US4210521A (en) * 1977-05-04 1980-07-01 Mobil Oil Corporation Catalytic upgrading of refractory hydrocarbon stocks
US4297328A (en) * 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4471150A (en) * 1981-12-30 1984-09-11 Mobil Oil Corporation Catalysts for light olefin production
WO1984000071A1 (en) * 1982-06-16 1984-01-05 Boeing Co Autopilot flight director system
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
EP0115031A1 (en) * 1982-12-23 1984-08-08 Union Carbide Corporation Ferrosilicate molecular sieve composition
US4567029A (en) * 1983-07-15 1986-01-28 Union Carbide Corporation Crystalline metal aluminophosphates
US4735927A (en) 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4735930A (en) * 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
EP0233642A3 (en) * 1986-02-18 1989-09-06 W.R. Grace & Co.-Conn. Process for hydrogenation of organic compounds
US4798813A (en) 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
JPH0611381B2 (ja) * 1986-10-17 1994-02-16 株式会社豊田中央研究所 排ガス浄化方法
US4912776A (en) 1987-03-23 1990-03-27 W. R. Grace & Co.-Conn. Process for removal of NOx from fluid streams
JPS63294950A (ja) * 1987-05-27 1988-12-01 Cataler Kogyo Kk 窒素酸化物還元触媒
DE3723072A1 (de) * 1987-07-11 1989-01-19 Basf Ag Verfahren zur entfernung von stickoxiden aus abgasen
US4861743A (en) * 1987-11-25 1989-08-29 Uop Process for the production of molecular sieves
US4874590A (en) * 1988-04-07 1989-10-17 Uop Catalytic reduction of nitrogen oxides
JP2732614B2 (ja) * 1988-10-18 1998-03-30 バブコツク日立株式会社 排ガス浄化用触媒および排ガス浄化方法
FR2645141B1 (fr) 1989-03-31 1992-05-29 Elf France Procede de synthese de precurseurs de tamis moleculaires du type silicoaluminophosphate, precurseurs obtenus et leur application a l'obtention desdits tamis moleculaires
US5024981A (en) 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US4961917A (en) * 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
JP2533371B2 (ja) 1989-05-01 1996-09-11 株式会社豊田中央研究所 排気ガス浄化用触媒
US5477014A (en) 1989-07-28 1995-12-19 Uop Muffler device for internal combustion engines
JPH07106300B2 (ja) * 1989-12-08 1995-11-15 財団法人産業創造研究所 燃焼排ガス中の窒素酸化物除去法
US6063723A (en) * 1990-03-02 2000-05-16 Chevron U.S.A. Inc. Sulfur tolerant zeolite catalyst
JP2645614B2 (ja) * 1991-01-08 1997-08-25 財団法人石油産業活性化センター 窒素酸化物を含む排ガスの浄化方法
EP0494388B1 (en) 1991-01-08 1995-12-06 Agency Of Industrial Science And Technology Process for removing nitrogen oxides from exhaust gases
GB9101456D0 (en) 1991-01-23 1991-03-06 Exxon Chemical Patents Inc Process for producing substantially binder-free zeolite
US5233117A (en) * 1991-02-28 1993-08-03 Uop Methanol conversion processes using syocatalysts
US5348643A (en) * 1991-03-12 1994-09-20 Mobil Oil Corp. Catalytic conversion with improved catalyst
JPH0557194A (ja) 1991-07-06 1993-03-09 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JP2887984B2 (ja) 1991-09-20 1999-05-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5171553A (en) * 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
JP3303341B2 (ja) 1992-07-30 2002-07-22 三菱化学株式会社 ベータ型ゼオライトの製造方法
US5316753A (en) * 1992-10-09 1994-05-31 Chevron Research And Technology Company Zeolite SSZ-35
US6248684B1 (en) 1992-11-19 2001-06-19 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
KR950704598A (ko) 1992-11-19 1995-11-20 스티븐 아이. 밀러 엔진 배기 가스 스트림 처리 방법 및 장치(Method and Apparatus for Treating an Engine Exhaust Gas Stream)
DE69328195T2 (de) 1992-11-19 2000-09-28 Engelhard Corp Anwendung und gerät zur behandlung eines maschinenabgas-stroms
US5346612A (en) * 1993-02-19 1994-09-13 Amoco Corporation Distillate hydrogenation utilizing a catalyst comprising platinum, palladium, and a beta zeolite support
JPH06320006A (ja) * 1993-05-10 1994-11-22 Sekiyu Sangyo Kasseika Center 窒素酸化物接触還元用触媒
US5417949A (en) 1993-08-25 1995-05-23 Mobil Oil Corporation NOx abatement process
HU221142B1 (en) 1993-11-09 2002-08-28 Union Carbide Chem Plastic Process for removing mercaptans from gas streams and absorption solvents for use in an acid gas scrubbing process
KR960000008A (ko) 1994-06-13 1996-01-25 전상정 육묘메트 제조방법
US5520895A (en) * 1994-07-07 1996-05-28 Mobil Oil Corporation Method for the reduction of nitrogen oxides using iron impregnated zeolites
AU687582B2 (en) * 1994-07-07 1998-02-26 Mobil Oil Corporation Catalytic system for the reduction of nitrogen oxides
US5589147A (en) * 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
US5482692A (en) * 1994-07-07 1996-01-09 Mobil Oil Corporation Selective catalytic reduction of nitrogen oxides using a ferrocene impregnated zeolite catalyst
JPH0824656A (ja) * 1994-07-22 1996-01-30 Mazda Motor Corp 排気ガス浄化用触媒
US6080377A (en) * 1995-04-27 2000-06-27 Engelhard Corporation Method of abating NOx and a catalytic material therefor
JP3375790B2 (ja) 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
US6471924B1 (en) * 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
US6133185A (en) 1995-11-09 2000-10-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH10180041A (ja) 1996-12-20 1998-07-07 Ngk Insulators Ltd 排ガス浄化用触媒及び排ガス浄化システム
US5925800A (en) * 1996-12-31 1999-07-20 Exxon Chemical Patents Inc. Conversion of oxygenates to hydrocarbons with monolith supported non-zeolitic molecular sieve catalysts
US5897846A (en) 1997-01-27 1999-04-27 Asec Manufacturing Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same
US5958818A (en) 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
DE19723950A1 (de) * 1997-06-06 1998-12-10 Basf Ag Verfahren zur Oxidation einer mindestens eine C-C-Doppelbindung aufweisenden organischen Verbindung
US6004527A (en) * 1997-09-29 1999-12-21 Abb Lummus Global Inc. Method for making molecular sieves and novel molecular sieve compositions
JPH11114413A (ja) 1997-10-09 1999-04-27 Ngk Insulators Ltd 排ガス浄化用吸着材
US6162415A (en) 1997-10-14 2000-12-19 Exxon Chemical Patents Inc. Synthesis of SAPO-44
EP1044068A1 (en) * 1997-12-03 2000-10-18 Exxon Chemical Patents Inc. Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
WO1999029400A1 (en) 1997-12-10 1999-06-17 Ab Volvo Porous material, method and arrangement for catalytic conversion of exhaust gases
US5958370A (en) * 1997-12-11 1999-09-28 Chevron U.S.A. Inc. Zeolite SSZ-39
US6346498B1 (en) * 1997-12-19 2002-02-12 Exxonmobil Oil Corporation Zeolite catalysts having stabilized hydrogenation-dehydrogenation function
GB9802504D0 (en) * 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
GB9808876D0 (en) 1998-04-28 1998-06-24 Johnson Matthey Plc Combatting air pollution
WO1999056859A1 (en) 1998-05-07 1999-11-11 Engelhard Corporation Catalyzed hydrocarbon trap and method using the same
US6576203B2 (en) 1998-06-29 2003-06-10 Ngk Insulators, Ltd. Reformer
US6143681A (en) * 1998-07-10 2000-11-07 Northwestern University NOx reduction catalyst
DE69906545T2 (de) 1998-07-29 2004-03-04 Exxonmobil Chemical Patents Inc., Baytown Kristalline molekularsiebe
US20020014071A1 (en) * 1998-10-01 2002-02-07 Mari Lou Balmer Catalytic plasma reduction of nox
EP1005904A3 (en) 1998-10-30 2000-06-14 The Boc Group, Inc. Adsorbents and adsorptive separation process
DE19854502A1 (de) 1998-11-25 2000-05-31 Siemens Ag Katalysatorkörper und Verfahren zum Abbau von Stickoxiden
KR100293531B1 (ko) 1998-12-24 2001-10-26 윤덕용 이산화탄소로부터탄화수소생성을위한혼성촉매
FI107828B (fi) 1999-05-18 2001-10-15 Kemira Metalkat Oy Dieselmoottoreiden pakokaasujen puhdistusjärjestelmä ja menetelmä dieselmoottoreiden pakokaasujen puhdistamiseksi
US6787023B1 (en) 1999-05-20 2004-09-07 Exxonmobil Chemical Patents Inc. Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use
WO2000072965A1 (en) * 1999-05-27 2000-12-07 The Regents Of The University Of Michigan Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making
US6316683B1 (en) 1999-06-07 2001-11-13 Exxonmobil Chemical Patents Inc. Protecting catalytic activity of a SAPO molecular sieve
US6503863B2 (en) 1999-06-07 2003-01-07 Exxonmobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
US6395674B1 (en) 1999-06-07 2002-05-28 Exxon Mobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
JP4352516B2 (ja) * 1999-08-03 2009-10-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
US6514470B1 (en) 1999-10-28 2003-02-04 The Regents Of The University Of California Catalysts for lean burn engine exhaust abatement
JP4380859B2 (ja) * 1999-11-29 2009-12-09 三菱瓦斯化学株式会社 触媒成型体
WO2001044109A1 (en) * 1999-12-15 2001-06-21 Chevron U.S.A. Inc. Zeolite ssz-50
ATE307661T1 (de) 2000-03-01 2005-11-15 Umicore Ag & Co Kg Katalysator für die reinigung der abgase von dieselmotoren und verfahren zu seiner herstellung
US6606856B1 (en) 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
JP2001280363A (ja) 2000-03-29 2001-10-10 Toyota Autom Loom Works Ltd 動力伝達機構
AU2001252241A1 (en) * 2000-04-03 2001-10-15 Basf Aktiengesellschaft Catalyst system for the decomposition of n2o
DE10020100A1 (de) 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Verfahren und Katalysator zur Reduktion von Stickoxiden
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
US6576796B1 (en) * 2000-06-28 2003-06-10 Basf Aktiengesellschaft Process for the preparation of alkylamines
US6689709B1 (en) 2000-11-15 2004-02-10 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
DE10059520A1 (de) 2000-11-30 2001-05-17 Univ Karlsruhe Verfahren zur Abtrennung von Zeolith-Kristallen aus Flüssigkeiten
US20050096214A1 (en) 2001-03-01 2005-05-05 Janssen Marcel J. Silicoaluminophosphate molecular sieve
CN1239262C (zh) 2001-06-25 2006-02-01 埃克森美孚化学专利公司 分子筛催化剂组合物,它的制造方法和在转化过程中的用途
US6440894B1 (en) * 2001-06-25 2002-08-27 Exxonmobil Chemical Patents, Inc. Methods of removing halogen from non-zeolitic molecular sieve catalysts
US20030007901A1 (en) * 2001-07-03 2003-01-09 John Hoard Method and system for reduction of NOx in automotive vehicle exhaust systems
JP5189236B2 (ja) 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
US6759358B2 (en) 2001-08-21 2004-07-06 Sud-Chemie Inc. Method for washcoating a catalytic material onto a monolithic structure
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6914026B2 (en) 2001-09-07 2005-07-05 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
US6508860B1 (en) * 2001-09-21 2003-01-21 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas separation membrane with organosilicon-treated molecular sieve
DE10150480B4 (de) * 2001-10-16 2019-11-28 Exxonmobil Chemical Patents Inc. Verfahren zur Aufbereitung eines olefinhaltigen Produktstromes
US6601385B2 (en) * 2001-10-17 2003-08-05 Fleetguard, Inc. Impactor for selective catalytic reduction system
US7014827B2 (en) 2001-10-23 2006-03-21 Machteld Maria Mertens Synthesis of silicoaluminophosphates
US6696032B2 (en) 2001-11-29 2004-02-24 Exxonmobil Chemical Patents Inc. Process for manufacturing a silicoaluminophosphate molecular sieve
EP1458960B1 (en) * 2001-12-20 2011-02-09 Johnson Matthey Public Limited Company Improvements in selective catalytic reduction
US6685905B2 (en) 2001-12-21 2004-02-03 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieves
AU2002367007A1 (en) * 2002-01-03 2003-07-30 Exxon Mobil Chemical Patents Inc. Stabilisation of acid catalysts
US6995111B2 (en) * 2002-02-28 2006-02-07 Exxonmobil Chemical Patents Inc. Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
GB0214968D0 (en) 2002-06-28 2002-08-07 Johnson Matthey Plc Zeolite-based NH SCR catalyst
DE10232406A1 (de) 2002-07-17 2004-01-29 Basf Ag Verfahren zur Herstellung eines zeolithhaltigen Feststoffes
US20040064007A1 (en) * 2002-09-30 2004-04-01 Beech James H. Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses
US6717025B1 (en) * 2002-11-15 2004-04-06 Exxonmobil Chemical Patents Inc Process for removing oxygenates from an olefinic stream
US6928806B2 (en) 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2004188388A (ja) * 2002-12-13 2004-07-08 Babcock Hitachi Kk ディーゼル排ガス浄化用フィルタおよびその製造方法
US7122492B2 (en) 2003-02-05 2006-10-17 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US20070004954A1 (en) * 2003-02-18 2007-01-04 Sachio Asaoka Method for producing liquefied petroleum gas
US7049261B2 (en) 2003-02-27 2006-05-23 General Motors Corporation Zeolite catalyst and preparation process for NOx reduction
DE10315593B4 (de) * 2003-04-05 2005-12-22 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
JP4413520B2 (ja) 2003-04-17 2010-02-10 株式会社アイシーティー 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法
US6897179B2 (en) * 2003-06-13 2005-05-24 Exxonmobil Chemical Patents Inc. Method of protecting SAPO molecular sieve from loss of catalytic activity
JP2006527815A (ja) 2003-06-18 2006-12-07 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 還元体添加の制御方法
US20040262197A1 (en) * 2003-06-24 2004-12-30 Mcgregor Duane R. Reduction of NOx in low CO partial-burn operation using full burn regenerator additives
JP2005047721A (ja) * 2003-07-29 2005-02-24 Mitsubishi Chemicals Corp アルミノフォスフェート類の製造方法
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
US7253005B2 (en) * 2003-08-29 2007-08-07 Exxonmobil Chemical Patents Inc. Catalyst sampling system
US7008610B2 (en) 2003-12-23 2006-03-07 Exxonmobil Chemical Patents Inc. AEI-Type zeolite, its synthesis and its use in the conversion of oxygenates to olefins
WO2005063623A2 (en) 2003-12-23 2005-07-14 Exxonmobil Chemical Patents Inc. Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
GB0405015D0 (en) * 2004-03-05 2004-04-07 Johnson Matthey Plc Method of loading a monolith with catalyst and/or washcoat
US7192987B2 (en) * 2004-03-05 2007-03-20 Exxonmobil Chemical Patents Inc. Processes for making methanol streams and uses for the streams
DE102004013164B4 (de) 2004-03-17 2006-10-12 GM Global Technology Operations, Inc., Detroit Katalysator zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen
DE102004013165A1 (de) * 2004-03-17 2005-10-06 Adam Opel Ag Verfahren zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen
NL1026207C2 (nl) * 2004-05-17 2005-11-21 Stichting Energie Werkwijze voor de decompositie van N2O, katalysator daarvoor en bereiding van deze katalysator.
JP5069467B2 (ja) * 2004-07-15 2012-11-07 日揮ユニバーサル株式会社 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
WO2006031297A2 (en) * 2004-07-27 2006-03-23 The Regents Of The University Of California Catalyst and method for reduction of nitrogen oxides
US20060035782A1 (en) * 2004-08-12 2006-02-16 Ford Global Technologies, Llc PROCESSING METHODS AND FORMULATIONS TO ENHANCE STABILITY OF LEAN-NOx-TRAP CATALYSTS BASED ON ALKALI- AND ALKALINE-EARTH-METAL COMPOUNDS
US7481983B2 (en) 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
JP4662334B2 (ja) 2004-11-04 2011-03-30 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
US20060115403A1 (en) 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
CA2589467C (en) * 2004-11-29 2013-07-02 Chevron U.S.A. Inc. High-silica molecular sieve cha
EP1838420B1 (en) * 2004-11-30 2021-02-17 Chevron U.S.A., Inc. Boron-containing molecular sieve cha
MX2007011531A (es) * 2005-03-24 2007-11-16 Grace W R & Co Metodo para controlar emisiones de nox en la fccu.
EP1872852A1 (en) 2005-03-30 2008-01-02 Sued-Chemie Catalysts Japan, Inc. Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
WO2006115665A1 (en) * 2005-04-27 2006-11-02 W.R. Grace & Co.-Conn. Compositions and processes for reducing nox emissions during fluid catalytic cracking
US7879295B2 (en) * 2005-06-30 2011-02-01 General Electric Company Conversion system for reducing NOx emissions
WO2007004774A1 (en) 2005-07-06 2007-01-11 Heesung Catalysts Corporation An oxidation catalyst for nh3 and an apparatus for treating slipped or scrippedd nh3
US20070012032A1 (en) * 2005-07-12 2007-01-18 Eaton Corporation Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction
US8048402B2 (en) 2005-08-18 2011-11-01 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins
JP4698359B2 (ja) 2005-09-22 2011-06-08 Udトラックス株式会社 排気浄化装置
JP2007100508A (ja) 2005-09-30 2007-04-19 Bosch Corp 内燃機関の排気浄化装置、及び内燃機関の排気浄化方法
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
US7807122B2 (en) * 2005-11-02 2010-10-05 Exxonmobil Chemical Patents Inc. Metalloaluminophosphate molecular sieves, their synthesis and use
US7704475B2 (en) * 2005-12-14 2010-04-27 Basf Catalysts Llc Zeolite catalyst with improved NOx reduction in SCR
US20070149385A1 (en) 2005-12-23 2007-06-28 Ke Liu Catalyst system for reducing nitrogen oxide emissions
EP1993980B1 (en) * 2006-03-10 2015-02-25 ExxonMobil Chemical Patents Inc. Lowering nitrogen-containing lewis bases in molecular sieve oligomerisation
US8383079B2 (en) * 2006-04-17 2013-02-26 Exxonmobil Chemical Patents Inc. Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions
US8383080B2 (en) 2006-06-09 2013-02-26 Exxonmobil Chemical Patents Inc. Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins
US20080003909A1 (en) 2006-06-29 2008-01-03 Hien Nguyen Non-woven structures and methods of making the same
CN101121532A (zh) 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 一种小孔磷硅铝分子筛的金属改性方法
DE102006037314A1 (de) * 2006-08-08 2008-02-14 Süd-Chemie AG Verwendung eines Katalysators auf Basis von Zeolithen bei der Umsetzung von Oxygenaten zu niederen Olefinen sowie Verfahren hierzu
US7829751B2 (en) * 2006-10-27 2010-11-09 Exxonmobil Chemical Patents, Inc. Processes for converting oxygenates to olefins using aluminosilicate catalysts
US7815712B2 (en) * 2006-12-18 2010-10-19 Uop Llc Method of making high performance mixed matrix membranes using suspensions containing polymers and polymer stabilized molecular sieves
CN101687143B (zh) 2007-01-31 2013-01-02 巴斯福催化剂公司 包含多孔壁蜂窝体的气体催化剂
KR20170089936A (ko) * 2007-02-27 2017-08-04 바스프 카탈리스트 엘엘씨 선택적 암모니아 산화를 위한 이원기능 촉매
MX2009009095A (es) 2007-02-27 2009-09-14 Basf Catalysts Llc Catalizadores de zeolita cha de cobre.
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US7645718B2 (en) 2007-03-26 2010-01-12 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
CN101730575B (zh) 2007-04-26 2013-01-02 约翰逊马西有限公司 过渡金属/沸石scr催化剂
DE102007063604A1 (de) 2007-05-24 2008-12-04 Süd-Chemie AG Metalldotierter Zeolith und Verfahren zu dessen Herstellung
DE102007030895A1 (de) * 2007-07-03 2009-01-08 Süd-Chemie AG Abgaskatalysator für Salzsäure-haltige Abgase
JP6176891B2 (ja) 2007-08-13 2017-08-09 ピーキュー コーポレイション 新規鉄含有アルミノケイ酸塩ゼオライト、ならびにその作製方法および使用方法
US20090056319A1 (en) * 2007-09-04 2009-03-05 Warner Jay V Exhaust Aftertreatment System with Pre-Catalysis
CN101952224B (zh) 2007-11-30 2013-08-21 康宁股份有限公司 沸石基蜂窝体
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8232550B2 (en) * 2008-06-11 2012-07-31 3M Innovative Properties Company Mixed solvent systems for deposition of organic semiconductors
US8225597B2 (en) * 2008-09-30 2012-07-24 Ford Global Technologies, Llc System for reducing NOx in exhaust
GB0903262D0 (en) 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
EP4112168A1 (en) 2009-04-17 2023-01-04 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalyst durable against lean/rich aging for the reduction of nitrogen oxides
DE102010007626A1 (de) 2010-02-11 2011-08-11 Süd-Chemie AG, 80333 Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse
US8017097B1 (en) 2010-03-26 2011-09-13 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US9221015B2 (en) 2010-07-15 2015-12-29 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx
US8956992B2 (en) * 2011-10-27 2015-02-17 GM Global Technology Operations LLC SCR catalysts preparation methods
CN104736243A (zh) * 2012-10-19 2015-06-24 巴斯夫公司 混合金属8环小孔分子筛催化剂组合物、催化制品、体系和方法
US10018070B2 (en) * 2013-09-30 2018-07-10 Siemens Aktiengesellschaft Method for operating a turbomachine, wherein an efficiency characteristic value of a stage is determined, and turbomachine having a device for carrying out the method
US10711674B2 (en) * 2017-10-20 2020-07-14 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867954A (en) * 1988-04-07 1989-09-19 Uop Catalytic reduction of nitrogen oxides
EP0624393A1 (en) * 1993-05-10 1994-11-17 Sakai Chemical Industry Co., Ltd., Catalyst for catalytic reduction of nitrogen oxides
DE10036476A1 (de) * 2000-07-25 2002-02-07 Basf Ag Katalysatorsystem zur Zersetzung von N20
WO2006064805A1 (ja) * 2004-12-17 2006-06-22 Munekatsu Furugen ディーゼルエンジンの排気ガス用電気式処理方法およびその装置
DE102005010221A1 (de) * 2005-03-05 2006-09-07 S&B Industrial Minerals Gmbh Verfahren zum Herstellen eines katalytisch wirkenden Minerals auf Basis eines Gerüstsilikates
EP1852174A1 (de) * 2006-05-02 2007-11-07 Argillon GmbH Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
KR20190003863A (ko) 2019-01-09
KR20100017347A (ko) 2010-02-16
EP3626329B1 (en) 2021-10-27
KR101965943B1 (ko) 2019-04-04
KR20180043406A (ko) 2018-04-27
BRPI0810133B1 (pt) 2023-01-17
EP2786796A1 (en) 2014-10-08
EP2517774A2 (en) 2012-10-31
CA2939726A1 (en) 2008-11-06
DK3300791T3 (da) 2019-06-11
US20150118121A1 (en) 2015-04-30
EP2517778B2 (en) 2020-12-09
EP2517776B2 (en) 2019-08-07
US20230001353A1 (en) 2023-01-05
CN102974390A (zh) 2013-03-20
US20150110682A1 (en) 2015-04-23
US8906820B2 (en) 2014-12-09
EP3278863B1 (en) 2019-11-27
JP2019076895A (ja) 2019-05-23
EP3981502A1 (en) 2022-04-13
EP2150328B1 (en) 2015-03-11
EP2517773A2 (en) 2012-10-31
KR102089480B1 (ko) 2020-03-17
JP2015027673A (ja) 2015-02-12
US20120301378A1 (en) 2012-11-29
DK2517776T3 (da) 2014-09-22
DK2150328T5 (da) 2015-06-29
EP2517777A2 (en) 2012-10-31
EP2517775B1 (en) 2016-12-21
US11478748B2 (en) 2022-10-25
JP6855432B2 (ja) 2021-04-07
JP2010524677A (ja) 2010-07-22
EP3300791A1 (en) 2018-04-04
WO2008132452A3 (en) 2009-02-26
EP3300791B1 (en) 2019-03-27
CN101730575A (zh) 2010-06-09
DK2517778T4 (da) 2021-03-08
EP2517777A3 (en) 2013-01-09
JP6053734B2 (ja) 2016-12-27
EP2517778A1 (en) 2012-10-31
JP2016195992A (ja) 2016-11-24
DK2786796T3 (en) 2017-12-18
US20150118114A1 (en) 2015-04-30
US20180272279A1 (en) 2018-09-27
DK3278863T3 (da) 2020-02-17
WO2008132452A2 (en) 2008-11-06
US20110250127A1 (en) 2011-10-13
US20120301381A1 (en) 2012-11-29
EP2517776A1 (en) 2012-10-31
EP2517774A3 (en) 2013-09-25
KR20160142411A (ko) 2016-12-12
EP2517773B2 (en) 2019-08-07
US20160367939A1 (en) 2016-12-22
DK2517778T3 (da) 2014-05-19
EP2517775A2 (en) 2012-10-31
EP2150328A2 (en) 2010-02-10
EP3626329A1 (en) 2020-03-25
DK2517775T3 (en) 2017-04-03
CA2685009C (en) 2018-08-28
US20120301379A1 (en) 2012-11-29
CA2939726C (en) 2019-06-18
US20150078968A1 (en) 2015-03-19
US8603432B2 (en) 2013-12-10
EP2517773B1 (en) 2016-05-11
BRPI0810133A2 (pt) 2014-10-29
EP2517775A3 (en) 2014-05-21
EP2786796B1 (en) 2017-09-06
EP2517776B1 (en) 2014-07-16
EP2517778B1 (en) 2014-03-12
CN102974391A (zh) 2013-03-20
EP3278863A1 (en) 2018-02-07
JP6822812B2 (ja) 2021-01-27
US20120301380A1 (en) 2012-11-29
RU2009143682A (ru) 2011-06-10
MX2009011443A (es) 2010-01-18
KR101589760B1 (ko) 2016-01-28
CA2685009A1 (en) 2008-11-06
MY180938A (en) 2020-12-13
DK2150328T3 (da) 2015-06-08
JP6387039B2 (ja) 2018-09-05
RU2506989C2 (ru) 2014-02-20
JP5777339B2 (ja) 2015-09-09
US20150118115A1 (en) 2015-04-30
US20100290963A1 (en) 2010-11-18
EP2517773A3 (en) 2013-09-25
JP2017060944A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
CN101730575B (zh) 过渡金属/沸石scr催化剂
KR20150052335A (ko) 전이 금속/제올라이트 scr 촉매

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant