WO2016113865A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2016113865A1
WO2016113865A1 PCT/JP2015/050799 JP2015050799W WO2016113865A1 WO 2016113865 A1 WO2016113865 A1 WO 2016113865A1 JP 2015050799 W JP2015050799 W JP 2015050799W WO 2016113865 A1 WO2016113865 A1 WO 2016113865A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
trench
layer
semiconductor substrate
well region
Prior art date
Application number
PCT/JP2015/050799
Other languages
English (en)
French (fr)
Inventor
鈴木 健司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580073503.4A priority Critical patent/CN107534053A/zh
Priority to PCT/JP2015/050799 priority patent/WO2016113865A1/ja
Priority to JP2016569163A priority patent/JPWO2016113865A1/ja
Priority to DE112015006006.5T priority patent/DE112015006006T5/de
Priority to US15/511,650 priority patent/US20170309704A1/en
Publication of WO2016113865A1 publication Critical patent/WO2016113865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present invention relates to a structure and a manufacturing method of an insulated gate bipolar transistor (IGBT: “Insulated Gate Bipolar Transistor”).
  • IGBT Insulated Gate Bipolar Transistor
  • IGBTs are used in power modules for variable speed control of three-phase motors in the fields of general-purpose inverters and AC servos.
  • IGBT there is a trade-off relationship among switching loss, on-voltage, and SOA (Safe Operating Area), but a device with low switching loss / on-voltage and wide SOA is required.
  • CSTBT Carrier Stored Trench Gate Bipolar Transistor
  • IEGT Insertion Enhanced Gate Transistor
  • an n + type layer is provided under the p type base layer.
  • the n + -type layer, n - the diffusion potential formed by the type drift layer and the n + -type layer the holes from the back side n - is accumulated in the type drift layer, it is possible to reduce the on-voltage.
  • the carrier accumulation effect is enhanced, the on-voltage is lowered and the characteristics are improved, but there is a problem that the breakdown voltage is lowered.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor device and a method for manufacturing the same that can improve a withstand voltage while ensuring a low on-voltage.
  • a semiconductor device is formed under an n-type semiconductor substrate, a p-type base layer formed on the surface side of the n-type semiconductor substrate, and below the p-type base layer on the surface side of the n-type semiconductor substrate.
  • An emitter electrode formed on the emitter layer and electrically connected thereto; a p-type collector layer formed on the back side of the n-type semiconductor substrate; a collector electrode connected to the p-type collector layer;
  • On the surface side of the n-type semiconductor substrate A p-type well region formed, wherein a distance between the first trench and the second trench is narrower than a distance between the second trench and the third trench, and the n-type emitter layer is the first trench.
  • the p-type well region is formed in a dummy region between the second trench and the third trench, and the n-type region is formed in the dummy region.
  • the outermost surface of the semiconductor substrate is only p-type, and the p-type well region is deeper than the first, second, and third trenches.
  • a p-type well region deeper than the trench is formed in the inter-trench region wider than the MOS region.
  • 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention. It is sectional drawing which shows the semiconductor device which concerns on Embodiment 1 of this invention. 1 is an enlarged plan view of a part of a semiconductor device according to a first embodiment of the present invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention.
  • FIG. FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention.
  • a termination region 2 for maintaining a withstand voltage is formed on the outer periphery of the transistor region 1 of the IGBT.
  • a voltage is applied between the emitter and collector of the IGBT, a depletion layer extends in the lateral direction in the termination region 2, and the electric field at the end of the transistor region 1 is relaxed.
  • FIG. 2 is a sectional view showing the semiconductor device according to the first embodiment of the present invention.
  • a p-type base layer 4 is formed on the surface side of the n-type semiconductor substrate 3 in the entire transistor region 1 excluding the ineffective region such as the termination region 2, and an n + -type layer 5 is formed under the p-type base layer 4. ing.
  • the n + type layer 5 has a higher impurity concentration than the n type semiconductor substrate 3.
  • An n + type emitter layer 6 and a p + type contact layer 7 are formed on the p type base layer 4.
  • trenches 8, 9 and 10 are formed on the surface side of the n-type semiconductor substrate 3, and penetrate the p-type base layer 4 and the n + -type layer 5.
  • a p-type well region 11 is formed on the surface side of the n-type semiconductor substrate 3.
  • a trench gate electrode 13 is formed in the trenches 8, 9, 10 via an insulating film 12.
  • An emitter electrode 14 is formed on the p-type base layer 4 and the n + -type emitter layer 6 and is electrically connected to each.
  • the p-type well region 11 and the emitter electrode 14 are insulated and separated by the interlayer insulating film 15.
  • An n + type buffer layer 16 and a p + type collector layer 17 are formed on the back side of the n type semiconductor substrate 3.
  • a collector electrode 18 is connected to the p + -type collector layer 17.
  • the distance between the trench 8 and the trench 9 is narrower than the distance between the trench 9 and the trench 10.
  • the n + -type emitter layer 6 and the p + -type contact layer 7 are formed in the cell region between the narrower trench 8 and the trench 9 to form the channel of the MOS transistor.
  • the p-type well region 11 is formed in a dummy region between the wider trench 9 and the trench 10. In the dummy region, the outermost surface of the n-type semiconductor substrate 3 is only p-type.
  • the p-type well region 11 is deeper than the trenches 8, 9 and 10. However, they are arranged so as not to affect the characteristics of the MOS transistor formed in the narrower inter-trench region.
  • FIG. 3 is an enlarged plan view of a part of the semiconductor device according to the first embodiment of the present invention.
  • a plurality of p-type well regions 11 exist in regions separated from each other, and are connected to each other so as to surround the ends of the trenches 8, 9, and 10.
  • 4 to 10 are cross-sectional views illustrating the method of manufacturing the semiconductor device according to the first embodiment of the present invention.
  • a p-type impurity such as B is implanted into the surface of the n-type semiconductor substrate 3 by using a photoengraving technique and an implantation technique, so that the p-type well region 11 becomes a transistor region 1 and a termination region 2.
  • the p-type well region 11 requires a deep diffusion depth of 5 ⁇ m or more, impurities are implanted using a MeV implanter so that a concentration peak can be formed inside the substrate with a high energy of 1 MeV or more.
  • a p-type impurity such as B is implanted into the entire transistor region 1 by using a photoengraving technique and an implantation technique to form a p-type base layer 4 and an n-type impurity such as P. Is implanted to form the n + -type layer 5.
  • a photoengraving technique and an implantation technique to form a p-type base layer 4 and an n-type impurity such as P.
  • the p-type base layer 4 and the n + -type layer 5 by impurity implantation using the same mask.
  • an n + -type emitter layer 6 is formed by selectively implanting an n-type impurity such as As.
  • trenches 8, 9, and 10 penetrating the p-type base layer 4 and the n + -type layer 5 are formed on the surface side of the n-type semiconductor substrate 3 by dry etching.
  • a trench gate electrode 13 is formed by burying doped polysilicon in the trenches 8, 9, 10 via the insulating film 12 by CVD or the like.
  • ap type impurity such as B is implanted to selectively form ap + type contact layer 7.
  • a contact pattern is formed.
  • the emitter electrode 14 is selectively formed of Al or AlSi.
  • the n-type semiconductor substrate 3 is ground from the back surface so as to have a desired thickness, an n + -type buffer layer 16 and a p + -type collector layer 17 are formed by implantation and activation annealing, and finally a collector electrode 18 is formed.
  • FIG. 11 is a cross-sectional view showing a semiconductor device according to a comparative example.
  • the p-type well region 11 does not exist.
  • FIG. 12 is a diagram showing the relationship between the cell size of the IGBT and the on-voltage investigated by device simulation.
  • FIG. 13 is a diagram showing the relationship between the cell size and breakdown voltage of the IGBT investigated by device simulation.
  • FIG. 14 is a diagram showing an electric field distribution at the time of holding the withstand voltage of the IGBT according to the comparative example investigated by the device simulation.
  • FIG. 15 is a diagram showing an electric field distribution when maintaining the breakdown voltage of the IGBT according to the first embodiment investigated by device simulation.
  • the p-type well region 11 deeper than the trench is formed in the dummy region wider than the cell region.
  • the presence of the p-type well region 11 as shown in FIG. 15 reduces the concentration of the electric field between the trenches as compared with the comparative example of FIG. For this reason, even if the cell size increases, the breakdown voltage can be improved while securing a low on-voltage as shown in FIGS.
  • the p-type well region 11 and the emitter electrode 14 are insulated and separated by the interlayer insulating film 15 to block the passage of holes. As a result, carriers are easily accumulated in the n-type semiconductor substrate 3 in the ON state, and the ON voltage can be reduced.
  • the p-type well region 11 surrounds the ends of the trenches 8, 9, and 10, the electric field at the bottom of the trenches is alleviated, so that the breakdown voltage can be improved.
  • the p-type well region 11 which is a deep impurity diffusion layer first.
  • the p-type well region 11 in the termination region 2 arranged so as to surround the transistor region 1 and the p-type well region 11 between the trench 9 and the trench 10 are formed by the same process. Thereby, manufacturing cost can be reduced by process reduction.
  • the heat treatment time can be reduced by increasing the ion range and implanting impurities with a high energy of 1 MeV or more to form the p-type well region 11, lateral diffusion of the p-type well region 11 can be reduced. Can be reduced.
  • FIG. FIG. 16 is a cross-sectional view showing a method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • the recess 19 is formed on the surface of the n-type semiconductor substrate 3 by etching.
  • a p-type well region 11 is formed by implanting impurities into the formation portion of the recess 19.
  • the p-type well region 11 can be formed deeply, and the breakdown voltage can be improved.
  • the recess 19 is formed, the heat treatment time for obtaining a desired depth from the surface can be reduced, so that the lateral diffusion of the p-type well region 11 can be reduced. Therefore, even if there are manufacturing variations in the p-type well region 11 and the photoengraving of the trenches, it is difficult for impurities to diffuse into the narrow MOS transistor region, so that variations in the electrical characteristics of the transistors can be suppressed.
  • FIG. 17 is a cross-sectional view showing a semiconductor device according to the third embodiment of the present invention.
  • the n + -type emitter layer 6 is formed on both sides of the trench 8, and the emitter electrode 14 is electrically connected to the p-type base layer 4 and the n + -type emitter layer 6 on both sides of the trench 8.
  • the feedback capacitance determined by the gate-collector capacitance can be reduced as compared with the first embodiment, so that the switching speed can be increased and the switching loss can be reduced.
  • a dermy trench gate electrode 21 is formed in the trenches 9 and 10 via an insulating film 20 and is electrically connected to the emitter electrode 14.
  • FIG. FIG. 18 is a cross-sectional view showing a semiconductor device according to Embodiment 4 of the present invention. An opening is provided in the interlayer insulating film 15, and the p-type well region 11 is electrically connected to the emitter electrode 14.
  • the latch-up is a transitional situation such as when the IGBT is switched, and the npn transistor formed by the n + -type emitter layer 6, the p-type base layer 4 and the n-type semiconductor substrate 3 on the surface operates. appear. In order to prevent this operation, it is effective to reduce the hole current from the back surface flowing in the p-type base layer 4 immediately below the n + -type emitter layer 6.
  • the hole current flows not to the MOS transistor side but to the p-type well region 11 side.
  • the on-voltage increases, but the latch-up resistance is improved.
  • the impurity concentration of the p-type well region 11 is higher than the impurity concentration of the p-type base layer 4. As a result, the hole current easily flows into the p-type well region 11 having a low resistance, so that the latch-up resistance can be further improved.
  • the semiconductor substrate is not limited to being formed of silicon, but may be formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor is, for example, silicon carbide, a gallium nitride-based material, or diamond.
  • a semiconductor device formed of such a wide band gap semiconductor has high voltage resistance and high allowable current density, and thus can be miniaturized.
  • a semiconductor module incorporating this device can also be miniaturized.
  • the heat resistance of the semiconductor device is high, the heat dissipating fins of the heat sink can be reduced in size, and the water cooling part can be cooled in the air, so that the semiconductor module can be further reduced in size.
  • the power loss of the device is low and the efficiency is high, the efficiency of the semiconductor module can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 トレンチ(8,9,10)がn型半導体基板(3)の表面側に形成され、p型ベース層(4)及びn型層(5)を貫通する。トレンチ(8)とトレンチ(9)の間隔はトレンチ(9)とトレンチ(10)の間隔より狭い。n型エミッタ層(6)がトレンチ(8)とトレンチ(9)の間のセル領域に形成されている。p型ウェル領域(11)がトレンチ(9)とトレンチ(10)の間のダミー領域に形成されている。ダミー領域においてn型半導体基板(3)の最表面はp型のみである。p型ウェル領域(11)はトレンチ(8,9,10)よりも深さが深い。

Description

半導体装置及びその製造方法
 本発明は、絶縁ゲートバイポーラトランジスタ(IGBT: Insulated Gate Bipolar Transistor)の構造及び製造方法に関する。
 省エネの観点から、汎用インバータ・ACサーボ等の分野で三相モータの可変速制御を行なうためのパワーモジュール等にIGBTが使用されている。IGBTではスイッチング損失、オン電圧、SOA(Safe Operating Area)との間にはトレードオフの関係があるが、スイッチング損失・オン電圧が低く、SOAの広いデバイスが求められている。
 オン電圧の大半は耐圧保持に必要な厚いn型ドリフト層の抵抗であり、その抵抗を低減させるためには、裏面からのホールをn型ドリフト層に蓄積させて、伝導度変調を活発にし、n型ドリフト層の抵抗を低減させることが有効である。IGBTのオン電圧を低減させたデバイスとして、CSTBT(Carrier Stored Trench Gate Bipolar Transistor)やIEGT(Injection Enhanced Gate Transistor)などがある。CSTBTの例としては特許文献1などに、IEGTの例としては特許文献2などに開示されている。
日本特許第3288218号公報 日本特許第2950688号公報
 トレンチ型IGBTの一つであるCSTBTではp型ベース層の下にn型層を設けている。n型層を入れることで、n型ドリフト層とn型層で形成される拡散電位によって、裏面からのホールをn型ドリフト層に蓄積させ、オン電圧を低減させることができる。しかし、セルサイズが大きくなると、キャリア蓄積効果が高まり、オン電圧は低下して特性は良好になるが、逆に耐圧は低下してしまうという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、その目的は低いオン電圧を確保しながら、耐圧を向上させることができる半導体装置及びその製造方法を得るものである。
 本発明に係る半導体装置は、n型半導体基板と、前記n型半導体基板の表面側に形成されたp型ベース層と、前記n型半導体基板の表面側において前記p型ベース層の下に形成され、前記n型半導体基板より高い不純物濃度を持つn型層と、前記p型ベース層上に形成されたn型エミッタ層と、前記n型半導体基板の表面側に形成され、前記p型ベース層及び前記n型層を貫通する第1、第2及び第3のトレンチと、前記第1のトレンチ内に絶縁膜を介して形成されたトレンチゲート電極と、前記p型ベース層と前記n型エミッタ層上に形成されそれぞれと電気的に接続されたエミッタ電極と、前記n型半導体基板の裏面側に形成されたp型コレクタ層と、前記p型コレクタ層に接続されたコレクタ電極と、前記n型半導体基板の表面側に形成されたp型ウェル領域とを備え、前記第1のトレンチと前記第2のトレンチの間隔は前記第2のトレンチと前記第3のトレンチの間隔より狭く、前記n型エミッタ層は前記第1のトレンチと前記第2のトレンチの間のセル領域に形成され、前記p型ウェル領域は前記第2のトレンチと前記第3のトレンチの間のダミー領域に形成され、前記ダミー領域において前記n型半導体基板の最表面はp型のみであり、前記p型ウェル領域は前記第1、第2及び第3のトレンチよりも深さが深いことを特徴とする。
 本発明では、MOS領域よりも広いトレンチ間領域にトレンチよりも深いp型ウェル領域を形成する。これにより、低いオン電圧を確保しながら、耐圧を向上させることができる。
本発明の実施の形態1に係る半導体装置を示す平面図である。 本発明の実施の形態1に係る半導体装置を示す断面図である。 本発明の実施の形態1に係る半導体装置の一部を拡大した平面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。 比較例に係る半導体装置を示す断面図である。 デバイスシミュレーションで調査したIGBTのセルサイズとオン電圧の関係を示す図である。 デバイスシミュレーションで調査したIGBTのセルサイズと耐圧の関係を示す図である。 デバイスシミュレーションで調査した比較例に係るIGBTの耐圧保持時の電界分布を示す図である。 デバイスシミュレーションで調査した実施の形態1に係るIGBTの耐圧保持時の電界分布を示す図である。 本発明の実施の形態2に係る半導体装置の製造方法を示す断面図である。 本発明の実施の形態3に係る半導体装置を示す断面図である。 本発明の実施の形態4に係る半導体装置を示す断面図である。
 本発明の実施の形態に係る半導体装置及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体装置を示す平面図である。IGBTのトランジスタ領域1の外周に、耐圧を保持するための終端領域2が形成されている。IGBTのエミッタ-コレクタ間に電圧が印加された時に、終端領域2では横方向に空乏層が伸び、トランジスタ領域1の端の電界を緩和させる。
 図2は、本発明の実施の形態1に係る半導体装置を示す断面図である。終端領域2などの無効領域を除いたトランジスタ領域1全体においてn型半導体基板3の表面側にp型ベース層4が形成され、そのp型ベース層4の下にn型層5が形成されている。n型層5はn型半導体基板3より高い不純物濃度を持つ。p型ベース層4上にn型エミッタ層6とp型コンタクト層7が形成されている。トランジスタ領域1においてn型半導体基板3の表面側にトレンチ8,9,10が形成され、p型ベース層4及びn型層5を貫通する。n型半導体基板3の表面側にp型ウェル領域11が形成されている。
 トレンチ8,9,10内に絶縁膜12を介してトレンチゲート電極13が形成されている。エミッタ電極14がp型ベース層4とn型エミッタ層6上に形成され、それぞれと電気的に接続されている。層間絶縁膜15によりp型ウェル領域11とエミッタ電極14を絶縁分離している。n型半導体基板3の裏面側にn型バッファ層16とp型コレクタ層17が形成されている。コレクタ電極18がp型コレクタ層17に接続されている。
 トレンチ8とトレンチ9の間隔はトレンチ9とトレンチ10の間隔より狭い。n型エミッタ層6とp型コンタクト層7は、狭い方のトレンチ8とトレンチ9の間のセル領域に形成され、MOSトランジスタのチャネルが形成される。p型ウェル領域11は、広い方のトレンチ9とトレンチ10の間のダミー領域に形成されている。ダミー領域においてn型半導体基板3の最表面はp型のみである。p型ウェル領域11はトレンチ8,9,10よりも深さが深い。ただし、狭い方のトレンチ間領域に形成されたMOSトランジスタの特性に影響を与えないように配置されている。
 また、図3は、本発明の実施の形態1に係る半導体装置の一部を拡大した平面図である。n型半導体基板3の表面に垂直な平面視において、互いに分離した領域に複数のp型ウェル領域11が存在し、トレンチ8,9,10の端部を囲んで互いに接続されている。
 続いて、本実施の形態に係る半導体装置の製造方法を説明する。図4から図10は本発明の実施の形態1に係る半導体装置の製造方法を示す断面図である。
 まず、図4に示すように、写真製版技術及び注入技術を用いて、Bなどのp型不純物をn型半導体基板3の表面に注入してp型ウェル領域11をトランジスタ領域1及び終端領域2に選択的に形成する。p型ウェル領域11は5μm以上の深い拡散深さが必要であることから、MeV注入機を用いて1MeV以上の高エネルギーで基板内部に濃度のピークができるように不純物を注入する。
 次に、図5に示すように、写真製版技術及び注入技術を用いて、トランジスタ領域1全体にBなどのp型不純物を注入してp型ベース層4を形成し、Pなどのn型不純物を注入してn型層5を形成する。工程削減により製造コストを低減するために、p型ベース層4とn型層5を同一マスクを用いた不純物注入で形成することが好ましい。次に、図6に示すように、Asなどのn型不純物を選択的に注入してn型エミッタ層6を形成する。
 次に、図7に示すように、n型半導体基板3の表面側に、p型ベース層4及びn型層5を貫通するトレンチ8,9,10をドライエッチングにより形成する。トレンチ8,9,10内に絶縁膜12を介してドープドポリシリコンをCVD等で埋め込んでトレンチゲート電極13を形成する。
 次に、図8に示すように、Bなどのp型不純物を注入してp型コンタクト層7を選択的に形成する。次に、図9に示すように、層間絶縁膜15を形成した後、コンタクトのパターンを形成する。次に、図10に示すように、Al又はAlSiなどでエミッタ電極14を選択的に形成する。その後、所望の厚みになるように裏面からn型半導体基板3を研削し、n型バッファ層16とp型コレクタ層17を注入及び活性化のアニールで形成し、最後にコレクタ電極18を形成する。
 続いて、本実施の形態の効果を比較例と比較して説明する。図11は、比較例に係る半導体装置を示す断面図である。比較例にはp型ウェル領域11が存在しない。図12は、デバイスシミュレーションで調査したIGBTのセルサイズとオン電圧の関係を示す図である。図13は、デバイスシミュレーションで調査したIGBTのセルサイズと耐圧の関係を示す図である。図14は、デバイスシミュレーションで調査した比較例に係るIGBTの耐圧保持時の電界分布を示す図である。図15は、デバイスシミュレーションで調査した実施の形態1に係るIGBTの耐圧保持時の電界分布を示す図である。
 比較例では、セルサイズが大きくなると、キャリア蓄積効果が高まり、オン電圧は低下し、特性は良好になるが、逆に耐圧は低下してしまう。この原因を図14を用いて説明する。図14において点線で囲っているように、トレンチゲート9から離れたp型ベース層4とn型層5のジャンクションで電界が高くなっている。そのため、セルサイズが大きくなると、トレンチ間の電界が高くなり、耐圧が低下していく。
 一方、本実施の形態ではセル領域よりも広いダミー領域にトレンチよりも深いp型ウェル領域11を形成する。図15に示すようにp型ウェル領域11が有ることで、図14の比較例に比べてトレンチ間の電界の集中が緩和されている。このため、セルサイズが大きくなっても図12,13に示すように低いオン電圧を確保しながら、耐圧を向上させることができる。
 また、層間絶縁膜15によりp型ウェル領域11とエミッタ電極14を絶縁分離して、ホールの抜け道を塞いでいる。これにより、オン状態でキャリアがn型半導体基板3内部に蓄積しやすくなり、オン電圧を低減させることができる。
 また、p型ウェル領域11がトレンチ8,9,10の端部を囲むことで端部のトレンチ底での電界が緩和されるため、耐圧を向上させることができる。
 また、トレンチ8,9,10を形成する前に、p型ウェル領域11、p型ベース層4、n型層5を順に形成する。このように深い不純物拡散層であるp型ウェル領域11を先に形成することで特性を安定化させることができる。
 また、トランジスタ領域1を囲むように配置された終端領域2のp型ウェル領域11と、トレンチ9とトレンチ10の間のp型ウェル領域11とを同一のプロセスで形成する。これにより、工程削減により製造コストを低減することができる。
 また、イオンの飛程を大きくして1MeV以上の高エネルギーで不純物を注入してp型ウェル領域11を形成することにより熱処理時間を低減することができるため、p型ウェル領域11の横拡散を低減することができる。
実施の形態2.
 図16は、本発明の実施の形態2に係る半導体装置の製造方法を示す断面図である。本実施の形態ではn型半導体基板3の表面にエッチングにより凹部19を形成する。この凹部19の形成部分に不純物を注入することでp型ウェル領域11を形成する。
 n型半導体基板3の表面に凹部19を形成することでp型ウェル領域11を深く形成することができ、耐圧を向上させることができる。
 また、凹部19が形成されている分、表面から所望の深さを得るための熱処理時間を低減することができるため、p型ウェル領域11の横拡散を低減することができる。従って、p型ウェル領域11やトレンチの写真製版などで製造ばらつきがあっても、狭いMOSトランジスタ領域へ不純物が拡散し難いため、トランジスタの電気特性のばらつきを抑えることができる。
実施の形態3.
 図17は、本発明の実施の形態3に係る半導体装置を示す断面図である。n型エミッタ層6はトレンチ8の両サイドに形成され、トレンチ8の両サイドでエミッタ電極14はp型ベース層4とn型エミッタ層6に電気的に接続されている。これにより、実施の形態1よりもゲート-コレクタ間の容量で決まる帰還容量を低減できるため、スイッチング速度が上がり、スイッチング損失を低減することができる。
 また、トレンチ9,10内に絶縁膜20を介してダーミートレンチゲート電極21が形成され、エミッタ電極14と電気的に接続されている。セル領域と耐圧を保持するダミー領域をダーミートレンチゲート電極21で分離することにより、トランジスタの動作を安定化させることができる。
実施の形態4.
 図18は、本発明の実施の形態4に係る半導体装置を示す断面図である。層間絶縁膜15に開口が設けられ、p型ウェル領域11がエミッタ電極14に電気的に接続されている。
 ここで、ラッチアップはIGBTがスイッチングする時などの過渡的な状況で、表面のn型エミッタ層6、p型ベース層4、n型半導体基板3で形成されるnpnトランジスタが動作することで発生する。その動作を防止するためには、n型エミッタ層6直下のp型ベース層4に流れる裏面からのホール電流を低減することが効果的である。
 そこで、本実施の形態にようにp型ウェル領域11をエミッタ電極14に接続させることで、ホール電流がMOSトランジスタ側ではなく、p型ウェル領域11側に流れるようになる。これにより、オン電圧は増加してしまうが、ラッチアップ耐量は向上する。
 また、p型ウェル領域11の不純物濃度をp型ベース層4の不純物濃度よりも高くすることが好ましい。これにより、ホール電流が低抵抗のp型ウェル領域11に流れ易くなるため、更にラッチアップ耐量を向上させることができる。
 なお、半導体基板は、珪素によって形成されたものに限らず、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものでもよい。ワイドバンドギャップ半導体は、例えば、炭化珪素、窒化ガリウム系材料、又はダイヤモンドである。このようなワイドバンドギャップ半導体によって形成された半導体装置は、耐電圧性や許容電流密度が高いため、小型化できる。この小型化された半導体装置を用いることで、この装置を組み込んだ半導体モジュールも小型化できる。また、半導体装置の耐熱性が高いため、ヒートシンクの放熱フィンを小型化でき、水冷部を空冷化できるので、半導体モジュールを更に小型化できる。また、装置の電力損失が低く高効率であるため、半導体モジュールを高効率化できる。
1 トランジスタ領域、2 終端領域、3 n型半導体基板、4 p型ベース層、5 n型層、6 n型エミッタ層、8,9,10 トレンチ、11 p型ウェル領域、12,20 絶縁膜、13 トレンチゲート電極、14 エミッタ電極、15 層間絶縁膜、17 p型コレクタ層、18 コレクタ電極、19 凹部、21 ダーミートレンチゲート電極

Claims (13)

  1.  n型半導体基板と、
     前記n型半導体基板の表面側に形成されたp型ベース層と、
     前記n型半導体基板の表面側において前記p型ベース層の下に形成され、前記n型半導体基板より高い不純物濃度を持つn型層と、
     前記p型ベース層上に形成されたn型エミッタ層と、
     前記n型半導体基板の表面側に形成され、前記p型ベース層及び前記n型層を貫通する第1、第2及び第3のトレンチと、
     前記第1のトレンチ内に絶縁膜を介して形成されたトレンチゲート電極と、
     前記p型ベース層と前記n型エミッタ層上に形成されそれぞれと電気的に接続されたエミッタ電極と、
     前記n型半導体基板の裏面側に形成されたp型コレクタ層と、
     前記p型コレクタ層に接続されたコレクタ電極と、
     前記n型半導体基板の表面側に形成されたp型ウェル領域とを備え、
     前記第1のトレンチと前記第2のトレンチの間隔は前記第2のトレンチと前記第3のトレンチの間隔より狭く、
     前記n型エミッタ層は前記第1のトレンチと前記第2のトレンチの間のセル領域に形成され、
     前記p型ウェル領域は前記第2のトレンチと前記第3のトレンチの間のダミー領域に形成され、
     前記ダミー領域において前記n型半導体基板の最表面はp型のみであり、
     前記p型ウェル領域は前記第1、第2及び第3のトレンチよりも深さが深いことを特徴とする半導体装置。
  2.  前記n型半導体基板の表面に垂直な平面視において、互いに分離した領域に複数の前記p型ウェル領域が存在し、前記第1、第2及び第3のトレンチの端部を囲んで互いに接続されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記n型エミッタ層は前記第1のトレンチの両サイドに形成され、前記第1のトレンチの両サイドで前記エミッタ電極は前記p型ベース層と前記n型エミッタ層に電気的に接続されていることを特徴とする請求項1又は2に記載の半導体装置。
  4.  前記第2及び第3のトレンチ内に絶縁膜を介して形成され、前記エミッタ電極と電気的に接続されたダーミートレンチゲート電極を更に備えることを特徴とする請求項1~3の何れか1項に記載の半導体装置。
  5.  前記p型ウェル領域と前記エミッタ電極を絶縁分離する層間絶縁膜を更に備えることを特徴とする請求項1~4の何れか1項に記載の半導体装置。
  6.  前記p型ウェル領域は前記エミッタ電極に電気的に接続されていることを特徴とする請求項1~4の何れか1項に記載の半導体装置。
  7.  前記p型ウェル領域の不純物濃度は前記p型ベース層の不純物濃度よりも高いことを特徴とする請求項6に記載の半導体装置。
  8.  n型半導体基板の表面側にp型ベース層を形成する工程と、
     前記n型半導体基板の表面側において前記p型ベース層の下に、前記n型半導体基板より高い不純物濃度を持つn型層を形成する工程と、
     前記p型ベース層上にn型エミッタ層を形成する工程と、
     前記n型半導体基板の表面側に、前記p型ベース層及び前記n型層を貫通する第1、第2及び第3のトレンチを形成する工程と、
     前記第1のトレンチ内に絶縁膜を介してトレンチゲート電極を形成する工程と、
     前記p型ベース層と前記n型エミッタ層上にそれぞれと電気的に接続されたエミッタ電極を形成する工程と、
     前記n型半導体基板の裏面側にp型コレクタ層を形成する工程と、
     前記p型コレクタ層に接続されたコレクタ電極を形成する工程と、
     前記n型半導体基板の表面側にp型ウェル領域を形成する工程とを備え、
     前記第1のトレンチと前記第2のトレンチの間隔は前記第2のトレンチと前記第3のトレンチの間隔より狭く、
     前記n型エミッタ層は前記第1のトレンチと前記第2のトレンチの間のセル領域に形成され、
     前記p型ウェル領域は前記第2のトレンチと前記第3のトレンチの間のダミー領域に形成され、
     前記ダミー領域において前記n型半導体基板の最表面はp型のみであり、
     前記p型ウェル領域は前記第1、第2及び第3のトレンチよりも深さが深いことを特徴とする半導体装置の製造方法。
  9.  前記n型半導体基板の表面にエッチングにより凹部を形成する工程と、
     前記n型半導体基板の前記凹部の形成部分に不純物を注入することで前記p型ウェル領域を形成する工程とを備えることを特徴とする請求項8に記載の半導体装置の製造方法。
  10.  前記第1、第2及び第3のトレンチを形成する前に、前記p型ウェル領域、前記p型ベース層、前記n型層を順に形成することを特徴とする請求項8又は9に記載の半導体装置の製造方法。
  11.  前記p型ベース層と前記n型層を同一マスクを用いた不純物注入で形成することを特徴とする請求項8~10の何れか1項に記載の半導体装置の製造方法。
  12.  トランジスタ領域を囲むように配置された終端領域のp型ウェル領域と、前記第2のトレンチと前記第3のトレンチの間の前記p型ウェル領域とを同一のプロセスで形成することを特徴とする請求項8~11の何れか1項に記載の半導体装置の製造方法。
  13.  1MeV以上のエネルギーで不純物を注入して前記p型ウェル領域を形成することを特徴とする請求項8~12の何れか1項に記載の半導体装置の製造方法。
PCT/JP2015/050799 2015-01-14 2015-01-14 半導体装置及びその製造方法 WO2016113865A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580073503.4A CN107534053A (zh) 2015-01-14 2015-01-14 半导体装置及其制造方法
PCT/JP2015/050799 WO2016113865A1 (ja) 2015-01-14 2015-01-14 半導体装置及びその製造方法
JP2016569163A JPWO2016113865A1 (ja) 2015-01-14 2015-01-14 半導体装置及びその製造方法
DE112015006006.5T DE112015006006T5 (de) 2015-01-14 2015-01-14 Halbleitervorrichtung und verfahren zum herstellen dieser
US15/511,650 US20170309704A1 (en) 2015-01-14 2015-01-14 Semiconductor device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050799 WO2016113865A1 (ja) 2015-01-14 2015-01-14 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016113865A1 true WO2016113865A1 (ja) 2016-07-21

Family

ID=56405428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050799 WO2016113865A1 (ja) 2015-01-14 2015-01-14 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US20170309704A1 (ja)
JP (1) JPWO2016113865A1 (ja)
CN (1) CN107534053A (ja)
DE (1) DE112015006006T5 (ja)
WO (1) WO2016113865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659351A (zh) * 2017-10-10 2019-04-19 Abb瑞士股份有限公司 绝缘栅双极晶体管
JP7428211B2 (ja) 2016-10-14 2024-02-06 富士電機株式会社 半導体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143085B2 (ja) * 2018-01-31 2022-09-28 三菱電機株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP6996461B2 (ja) * 2018-09-11 2022-01-17 株式会社デンソー 半導体装置
CN110265300B (zh) * 2019-06-18 2022-11-08 龙腾半导体股份有限公司 增强微元胞结构igbt短路能力的方法
CN117637831A (zh) * 2023-11-20 2024-03-01 海信家电集团股份有限公司 半导体装置和半导体装置的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288218B2 (ja) * 1995-03-14 2002-06-04 三菱電機株式会社 絶縁ゲート型半導体装置およびその製造方法
JP2008244466A (ja) * 2007-02-27 2008-10-09 Matsushita Electric Ind Co Ltd 半導体装置
JP4310017B2 (ja) * 1999-02-17 2009-08-05 株式会社日立製作所 半導体装置及び電力変換装置
JP4575713B2 (ja) * 2004-05-31 2010-11-04 三菱電機株式会社 絶縁ゲート型半導体装置
JP5287835B2 (ja) * 2010-04-22 2013-09-11 株式会社デンソー 半導体装置
JP2014132600A (ja) * 2011-04-12 2014-07-17 Renesas Electronics Corp 半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
JPH10321848A (ja) * 1997-05-22 1998-12-04 Nissan Motor Co Ltd 半導体装置の製造方法
JP3400348B2 (ja) * 1998-05-19 2003-04-28 株式会社東芝 絶縁ゲート型半導体装置
KR100745557B1 (ko) * 1999-02-17 2007-08-02 가부시키가이샤 히타치세이사쿠쇼 Igbt 및 전력변환 장치
JP3927111B2 (ja) * 2002-10-31 2007-06-06 株式会社東芝 電力用半導体装置
JP2008227251A (ja) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp 絶縁ゲート型トランジスタ
JP4644730B2 (ja) * 2008-08-12 2011-03-02 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP5423018B2 (ja) * 2009-02-02 2014-02-19 三菱電機株式会社 半導体装置
US9099522B2 (en) * 2010-03-09 2015-08-04 Fuji Electric Co., Ltd. Semiconductor device
JP2011204935A (ja) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp 半導体装置とその製造方法
JP5789928B2 (ja) * 2010-08-02 2015-10-07 富士電機株式会社 Mos型半導体装置およびその製造方法
GB2506075B (en) * 2011-07-07 2015-09-23 Abb Technology Ag Insulated gate bipolar transistor
JP6190206B2 (ja) * 2012-08-21 2017-08-30 ローム株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288218B2 (ja) * 1995-03-14 2002-06-04 三菱電機株式会社 絶縁ゲート型半導体装置およびその製造方法
JP4310017B2 (ja) * 1999-02-17 2009-08-05 株式会社日立製作所 半導体装置及び電力変換装置
JP4575713B2 (ja) * 2004-05-31 2010-11-04 三菱電機株式会社 絶縁ゲート型半導体装置
JP2008244466A (ja) * 2007-02-27 2008-10-09 Matsushita Electric Ind Co Ltd 半導体装置
JP5287835B2 (ja) * 2010-04-22 2013-09-11 株式会社デンソー 半導体装置
JP2014132600A (ja) * 2011-04-12 2014-07-17 Renesas Electronics Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428211B2 (ja) 2016-10-14 2024-02-06 富士電機株式会社 半導体装置
CN109659351A (zh) * 2017-10-10 2019-04-19 Abb瑞士股份有限公司 绝缘栅双极晶体管
CN109659351B (zh) * 2017-10-10 2023-05-09 日立能源瑞士股份公司 绝缘栅双极晶体管

Also Published As

Publication number Publication date
CN107534053A (zh) 2018-01-02
JPWO2016113865A1 (ja) 2017-07-13
US20170309704A1 (en) 2017-10-26
DE112015006006T5 (de) 2017-10-26

Similar Documents

Publication Publication Date Title
JP7105752B2 (ja) 絶縁ゲート型炭化珪素半導体装置
JP6418340B2 (ja) 逆導通型絶縁ゲートバイポーラトランジスタの製造方法および逆導通型絶縁ゲートバイポーラトランジスタ
US11094810B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5787853B2 (ja) 電力用半導体装置
JP7279770B2 (ja) 半導体装置
JP5605073B2 (ja) 半導体装置
WO2016113865A1 (ja) 半導体装置及びその製造方法
JP2021048423A (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
JP2015179707A (ja) 半導体装置およびその製造方法
JP6089818B2 (ja) 半導体装置及びその製造方法
US10490655B2 (en) Insulated gate bipolar transistor (IGBT) with high avalanche withstand
JP2015207784A (ja) 電力半導体素子及びその製造方法
JP2023099104A (ja) 半導体装置
JP2013012568A (ja) 半導体装置およびその製造方法
JP2002353452A (ja) 電力用半導体素子
JP2009043782A (ja) 半導体装置及びその製造方法
JP2014187200A (ja) 半導体装置の製造方法
KR101550798B1 (ko) 래치업 억제구조를 가지는 전력용 반도체 장치 및 그 제조방법
KR20150061201A (ko) 전력 반도체 소자 및 그 제조 방법
JP2011018809A (ja) 半導体装置およびその製造方法
TW201907564A (zh) 具有改善的傳導性和高反向偏壓效能的垂直功率電晶體
KR100555444B1 (ko) 트렌치 게이트형 전력용 반도체 소자 및 그 제조 방법
KR101928395B1 (ko) 전력 반도체 소자 및 그 제조 방법
KR102319595B1 (ko) 반도체 소자 및 그 제조 방법
JP2024046362A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569163

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15511650

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006006

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877818

Country of ref document: EP

Kind code of ref document: A1