WO2012077248A1 - 自動二輪車 - Google Patents

自動二輪車 Download PDF

Info

Publication number
WO2012077248A1
WO2012077248A1 PCT/JP2011/001731 JP2011001731W WO2012077248A1 WO 2012077248 A1 WO2012077248 A1 WO 2012077248A1 JP 2011001731 W JP2011001731 W JP 2011001731W WO 2012077248 A1 WO2012077248 A1 WO 2012077248A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
state
detected
heating
motorcycle
Prior art date
Application number
PCT/JP2011/001731
Other languages
English (en)
French (fr)
Inventor
誠吾 高橋
石上 英俊
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP11846636.6A priority Critical patent/EP2650198B1/en
Priority to BR112013004232-0A priority patent/BR112013004232B1/pt
Priority to JP2012547670A priority patent/JP5493013B2/ja
Priority to US13/812,191 priority patent/US9097201B2/en
Publication of WO2012077248A1 publication Critical patent/WO2012077248A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J37/00Arrangements of fuel supply lines, taps, or the like, on motor cycles or engine-assisted cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/125Fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/007Layout or arrangement of systems for feeding fuel characterised by its use in vehicles, in stationary plants or in small engines, e.g. hand held tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0082Devices inside the fuel tank other than fuel pumps or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a motorcycle capable of heating fuel when starting an engine.
  • the fuel in the fuel pipe is heated by the heater.
  • the degree of fuel heating by the heater is determined based on the temperature of the cooling water and the standing time from the stop of the engine to the restart of the engine. Thereby, overheating of the fuel at the time of starting is prevented.
  • An object of the present invention is to provide a motorcycle capable of improving engine starting characteristics while preventing overheating of fuel.
  • a motorcycle includes a main body that supports front wheels and rear wheels, an engine provided in the main body, a fuel injection device provided in the engine, a fuel tank provided in the main body, A fuel pump having a suction port in the fuel tank and supplying the fuel in the fuel tank to the fuel injection device through the fuel pipe, a fuel heating device for heating the fuel in the fuel pipe, and an inclination for detecting the inclination of the main body
  • the fuel in the fuel tank is sucked from the suction port in the fuel tank by the fuel pump and supplied to the fuel injection device through the fuel pipe.
  • the fuel in the fuel pipe is heated by the fuel heating device.
  • the fuel at the suction port of the fuel pump may be insufficient due to the inclination of the main body.
  • air may be mixed into the fuel in the fuel pipe, and the amount of fuel in the fuel pipe may be reduced.
  • the inclination of the main body is detected by the inclination detector.
  • the control unit Based on the detection result of the inclination detection unit, the control unit detects a first state where fuel is present at the suction port of the fuel pump and a second state where fuel is insufficient at the suction port of the fuel pump. When the second state is detected, the operation of the fuel heating device is prohibited by the control unit. Thereby, the fuel in the fuel pipe is not heated.
  • control unit detects the transition from the second state to the first state, whether or not a predetermined amount of fuel has been injected from the fuel injection device after the transition to the first state. And the operation of the fuel heating device may be prohibited until a predetermined amount of fuel is injected.
  • the fuel at the suction port of the fuel pump is insufficient.
  • air may be sucked into the fuel pipe from the suction port.
  • the air in the fuel pipe is discharged by injecting a predetermined amount of fuel from the fuel injection device. Therefore, the operation of the fuel heating device is prohibited until a predetermined amount of fuel is injected from the fuel injection device after the transition to the first state. Thereby, it is possible to reliably prevent the fuel in the fuel pipe from being overheated.
  • the motorcycle includes a side stand that supports the main body in an inclined state with respect to the ground, a side stand state detection unit that detects whether the side stand is in a grounded state or a non-grounded state, and a fuel remaining in the fuel tank.
  • a fuel remaining amount detection unit that detects the amount of fuel, and the control unit detects a ground state by the side stand state detection unit and a first amount of fuel that is detected by the fuel remaining amount detection unit.
  • a second threshold value in which a case where it is equal to or less than a threshold value is detected as a second state, a non-ground state is detected by the side stand state detection unit, and a remaining fuel amount detected by the remaining fuel amount detection unit is predetermined The following cases may be detected as the second state.
  • the fuel tank is tilted together with the main body. Therefore, whether the side stand is grounded or not is different depending on whether fuel is present or insufficient at the suction port of the fuel pump. Therefore, when the side stand is in the grounded state, the case where the fuel remaining amount in the fuel tank is less than or equal to the first threshold is detected as the second state, and in the non-grounded state of the side stand, the fuel remaining amount in the fuel tank is The case where it is below the second threshold is detected as the second state. Thereby, it is accurately determined whether fuel is present or insufficient at the suction port of the fuel pump according to the grounding state and the non-grounding state of the side stand. As a result, it is possible to reliably prevent the fuel in the fuel pipe from being overheated.
  • the motorcycle may further include a fall detection unit that detects the fall of the motorcycle, and the control unit may detect when the fall detection unit detects a fall as the second state.
  • the motorcycle further includes an ambient temperature detection unit that detects a temperature around the fuel injected from the fuel injection device, and the control unit detects a temperature detected by the ambient temperature detection unit equal to or higher than a predetermined temperature. In such a case, the operation of the fuel heating device is prohibited, and the operation of the fuel heating device is permitted when the temperature detected by the ambient temperature detection unit is lower than the predetermined temperature and the first state is detected. Good.
  • the fuel in the fuel pipe is not heated. Further, when the temperature around the fuel injected from the fuel injection device is lower than a predetermined temperature and the fuel is present at the suction port of the fuel pump, the fuel in the fuel pipe is heated. As a result, it is possible to improve engine starting characteristics while reliably preventing overheating of the fuel.
  • the ambient temperature detection unit may detect at least one of the temperature of the engine and the temperature of the air taken into the engine as the ambient temperature.
  • FIG. 1 is a schematic side view showing a motorcycle according to the present embodiment.
  • FIG. 2 is an enlarged view of a part of the motorcycle shown in FIG.
  • FIG. 3 is a cross-sectional view showing the internal configuration of the fuel tank.
  • FIG. 4 is a cross-sectional view showing the internal configuration of the fuel tank.
  • FIG. 5 is a cross-sectional view showing the internal configuration of the fuel tank.
  • FIG. 6 is a block diagram showing a configuration of a control system of the motorcycle shown in FIG.
  • FIG. 7 is a flowchart showing the control operation of the fuel heating device by the ECU after the main switch is turned on.
  • FIG. 8 is a flowchart showing the fuel heating prohibition determination process of FIG.
  • FIG. 9 is a flowchart showing the remaining fuel amount determination process of FIG.
  • FIG. 10 is a flowchart showing the heating return process of FIG.
  • FIG. 11 is a flowchart showing the heating prohibition process of FIG.
  • FIG. 1 is a schematic side view showing a motorcycle according to the present embodiment.
  • FIG. 2 is an enlarged view of a part of the motorcycle shown in FIG.
  • a head pipe 102 is provided at the front end of the main body frame 101.
  • a front fork 103 is attached to the head pipe 102. In this state, the front fork 103 is rotatable within a predetermined angle range around the axis of the head pipe 102.
  • a front wheel 104 is rotatably supported at the lower end of the front fork 103.
  • a handle 105 is provided at the upper end of the head pipe 102.
  • the rear arm 106 is connected to the main body frame 101 so as to extend rearward from the main body frame 101.
  • the rear arm 106 rotatably holds the rear wheel driven sprocket 107 and the rear wheel 108.
  • a chain 109 is attached to the rear wheel driven sprocket 107.
  • the engine 110 is provided at the center of the main body frame 101.
  • An intake pipe 111 and an exhaust pipe 112 are attached to an intake port and an exhaust port of the engine 110, respectively.
  • One end of the side stand 120 is attached to the lower end of the main body frame 101 so as to be rotatable about the shaft 120a.
  • the side stand 120 is switched between a substantially horizontal state (hereinafter referred to as a non-grounded state) in which the tip is separated from the ground and a substantially vertical state in which the tip is in contact with the ground (hereinafter referred to as a grounded state).
  • a substantially horizontal state hereinafter referred to as a non-grounded state
  • a substantially vertical state in which the tip is in contact with the ground
  • a fuel tank 130 is provided above the engine 110, and a seat 121 is provided behind the fuel tank 130.
  • an air cleaner 113 is provided upstream of the intake pipe 111.
  • a fuel injection device 115 is attached to the intake pipe 111.
  • a fuel pump 131 is provided in the fuel tank 130. The fuel pump 131 is connected to the fuel injection device 115 through the fuel pipe 132 and the fuel heating device 114. The fuel heating device 114 is attached so that the fuel in the fuel pipe 132 can be heated.
  • a muffler 116 is attached to the downstream end of the exhaust pipe 112.
  • an ECU (Electronic Control Unit) 150 is provided below the sheet 121.
  • An engine temperature sensor SE1 for detecting the temperature of the engine 110 is attached to the side surface of the engine 110.
  • An intake air temperature sensor SE ⁇ b> 2 that detects the temperature of air taken into the engine 110 is attached to the intake pipe 111.
  • the seat 121 is provided with a fall sensor SE3 that detects whether or not the motorcycle 1 has fallen.
  • a fuel remaining amount sensor SE4 for detecting the remaining fuel in the fuel tank 130 is attached.
  • An oxygen sensor SE5 that detects the concentration of oxygen in the gas exhausted from the engine 110 is attached to the exhaust pipe 112.
  • a side stand switch SW is attached to the shaft 120 a of the side stand 120. The side stand switch SW is turned on and off when the side stand 120 is switched between a grounded state and a non-grounded state.
  • a plane passing through the center of the main body frame 101, the head pipe 102, the front wheel 104, and the rear wheel 108 of the motorcycle 1 is referred to as a symmetry plane.
  • the motorcycle 1 is said to be in a vertical state when the plane of symmetry of the motorcycle 1 is parallel to the direction of gravity, and the motorcycle 1 is said to be in an inclined state when the plane of symmetry of the motorcycle 1 is not parallel to the direction of gravity.
  • the motorcycle 1 is in a vertical state when the side stand 120 is in an ungrounded state, and that the motorcycle 1 is in an inclined state when the side stand 120 is in a grounded state.
  • FIGS. 3, 4 and 5 are sectional views showing the internal configuration of the fuel tank 130.
  • FIG. 3 and 4 show a longitudinal section perpendicular to the front-rear direction of the motorcycle 1
  • FIG. 5 shows a longitudinal section parallel to the front-rear direction of the motorcycle 1.
  • 3 shows a state inside the fuel tank 130 when the motorcycle 1 is in a vertical state
  • FIG. 4 shows a state inside the fuel tank 130 when the motorcycle 1 is overturned.
  • the front-rear direction of the motorcycle 1 is indicated by an arrow FW
  • the direction parallel to the direction of gravity is indicated by an arrow Z.
  • a fuel pump 131 a fuel filter 133, and a fuel remaining amount sensor SE4 are provided inside the fuel tank 130.
  • the fuel tank 130 is filled with fuel FL.
  • a mixed fuel of gasoline and alcohol is used as the fuel FL.
  • the suction port 134 of the fuel pump 131 is disposed at the lower part of the fuel tank 130.
  • the fuel pipe 132 of FIG. 2 is attached to the discharge port 135 of the fuel pump 131.
  • the fuel FL is sucked into the fuel pump 131 from the suction port 134 through the fuel filter 133.
  • the fuel pump 131 supplies the fuel FL from the discharge port 135 to the fuel injection device 115 through the fuel pipe 132 shown in FIG.
  • the fuel remaining amount sensor SE4 has a float and detects the level of the fuel FL in the fuel tank 130 as the fuel remaining amount.
  • the side stand 120 when the side stand 120 is in a grounded state and the fuel FL in the fuel tank 130 is small, the fuel FL below the fuel tank 130 is not sucked into the fuel pump 131 from the suction port 134. Further, when the side stand 120 is not grounded and the motorcycle 1 is in a vertical state and the fuel FL in the fuel tank 130 is further reduced, the fuel FL below the fuel tank 130 is sucked into the fuel pump 131 from the suction port 134. I can't. Also in these cases, air is sucked into the fuel pump 131 from the suction port 134 and air is mixed into the fuel in the fuel pipe 132 and the fuel injection device 115 as in the case where the motorcycle 1 is overturned.
  • FIG. 6 is a block diagram showing the configuration of the control system of the motorcycle 1 of FIG.
  • the ECU 150 includes I / Fs (interfaces) 501 and 505, a CPU (central processing unit) 502, a ROM (read only memory) 503, and a RAM (random access memory) 504.
  • I / Fs interfaces
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the detected values of the engine temperature sensor SE1, the intake air temperature sensor SE2, the fall sensor SE3, the remaining fuel amount sensor SE4 and the oxygen sensor SE5 and the state of the side stand switch SW are given to the CPU 502 via the I / F 501 of the ECU 150.
  • the ROM 503 of the ECU 150 stores a program for performing a control operation described later.
  • the CPU 502 performs a control operation by executing a control operation program stored in the ROM 503 on the RAM 504.
  • the CPU 502 controls the fuel heating device 114 based on the detected values of the engine temperature sensor SE1, the intake air temperature sensor SE2, the falling sensor SE3 and the remaining fuel amount sensor SE4 and the state of the side stand switch SW.
  • the CPU 502 controls the fuel injection device 115 so that the air-fuel ratio of the air-fuel mixture in the engine 110 becomes the stoichiometric air-fuel ratio based on the detection value of the oxygen sensor SE5.
  • FIG. 7 is a flowchart showing the control operation of the fuel heating device 114 by the ECU 150 after the main switch is turned on.
  • the CPU 502 of the ECU 150 determines whether or not the fuel heating device 114 should be driven after the driver turns on the main switch, and drives or does not drive the fuel heating device 114 based on the determination result. .
  • the driver turns on the starter switch at an arbitrary timing after turning on the main switch. When the starter switch is turned on, fuel injection from the fuel injection device 115 is started.
  • an engine temperature threshold value and an intake air temperature threshold value are stored in advance.
  • the CPU 502 detects the temperature of the engine 110 by acquiring the detection value of the engine temperature sensor SE1 (step S1). Next, the CPU 502 determines whether or not the detected temperature of the engine 110 is lower than the engine temperature threshold value stored in the RAM 504 (step S2).
  • the CPU 502 detects the intake air temperature by acquiring the detected value of the intake air temperature sensor SE2 (step S3). Next, the CPU 502 determines whether or not the detected intake air temperature is lower than the intake air temperature threshold value stored in the RAM 504 (step S4).
  • the CPU 502 determines that the fuel heating condition is satisfied (step S5). In this case, the CPU 502 performs a fuel heating prohibition determination process (step S6). Details of the fuel heating prohibition determination process will be described later.
  • the result of the fuel heating prohibition determination process is stored in the RAM 504.
  • the CPU 502 determines whether or not the result of the fuel heating prohibition determination process stored in the RAM 504 is heating permission (step S7). If the result of the fuel heating prohibition determination process is heating permission, the CPU 502 determines that the fuel heating condition is satisfied and heating is permitted (step S8). In this case, the CPU 502 drives the fuel heating device 114 (step S9). Thereafter, the CPU 502 returns to the process of step S1.
  • step S2 determines that the fuel heating condition is It is determined that it has not been established (step S10). In this case, the CPU 502 does not drive the fuel heating device 114 (step S11) and returns to the process of step S1.
  • step S7 If the result of the fuel heating prohibition determination process is heating prohibition in step S7, the CPU 502 does not drive the fuel heating device 114 (step S11) and returns to the process of step S1.
  • the fuel heating condition is satisfied when the temperature of the engine 110 is lower than the engine threshold and the intake air temperature is lower than the intake air temperature threshold, and is not satisfied in other cases.
  • the fuel heating device 114 operates when the fuel heating condition is satisfied and the result of the fuel heating prohibition determination process is heating permission. Thereby, the fuel FL in the fuel pipe 132 is heated.
  • the fuel heating device 114 when the fuel heating condition is not established or when the result of the fuel heating prohibition determination process is heating prohibition, the fuel heating device 114 does not operate. Thereby, the fuel FL in the fuel pipe 132 is not heated.
  • FIG. 8 is a flowchart showing the fuel heating prohibition determination process of FIG.
  • CPU502 acquires the detected value of fall sensor SE3 (step S21).
  • the CPU 502 determines whether or not the motorcycle 1 has fallen based on the detection value of the fall sensor SE3 (step S22).
  • the CPU 502 performs a fuel remaining amount determination process (step S23).
  • the remaining fuel amount determination process permission or prohibition is stored in the RAM 504 as the remaining fuel amount determination result.
  • the remaining amount of fuel FL in the fuel tank 130 is less than or equal to a predetermined value, the fuel remaining amount determination result is prohibited.
  • the remaining amount of the fuel FL in the fuel tank 130 is greater than a predetermined value, the fuel remaining amount determination result is permitted. Details of the remaining fuel amount determination process will be described later.
  • the CPU 502 determines whether or not the fuel remaining amount determination result stored in the RAM 504 is permitted (step S24).
  • the CPU 502 performs a heating return process (step S25).
  • the RAM 504 stores information indicating that the heating recovery process has been executed or is being executed.
  • the result of the fuel heating prohibition determination process (steps S27 and S28) returns from the heating prohibition to the heating permission, a certain amount of fuel is injected from the fuel injection device 115.
  • the heating return processing state is being executed, and after the injection of a certain amount of fuel is completed, the heating return processing state is already executed. Details of the heating return process will be described later.
  • the CPU 502 determines whether or not the heating return processing state stored in the RAM 504 has been performed (step S26).
  • the CPU 502 stores heating permission in the RAM 504 as a result of the fuel heating prohibition determination processing (step S27), and proceeds to the processing in step S7 in FIG.
  • step S28 When the motorcycle 1 is overturned at step S22 and when the remaining fuel amount determination result is prohibited at step S24, the CPU 502 performs a heating inhibition process (step S28).
  • “in-progress” is stored in the RAM 504 as the heating recovery process state. Details of the heating inhibition process will be described later.
  • the CPU 502 stores the prohibition in the RAM 504 as a result of the fuel heating prohibition determination process (step S29), and proceeds to the process of step S7 in FIG.
  • step S26 When the heating return processing state is being implemented in step S26, the CPU 502 stores the prohibition in the RAM 504 as a result of the fuel heating prohibition determination process (step S29), and proceeds to the process of step S7 in FIG.
  • FIG. 9 is a flowchart showing the remaining fuel amount determination process of FIG. First and second threshold values described later are stored in advance in the ROM 503 or the RAM 504.
  • the CPU 502 detects the remaining amount of fuel in the fuel tank 130 by acquiring the detection value of the remaining fuel amount sensor SE4 (step S31).
  • the CPU 502 detects the state of the side stand 120 by acquiring the state of the side stand switch SW (step S32), and determines whether or not the side stand 120 is in a grounded state (step S33).
  • the CPU 502 determines whether or not the detected remaining fuel amount is greater than the first threshold value (step S34).
  • the first threshold value is stored in advance in the ROM 503 or the RAM 504.
  • the CPU 502 stores permission in the RAM 504 as the remaining fuel amount determination result (step S35).
  • the CPU 502 stores prohibition in the RAM 504 as the fuel remaining amount determination result (step S37).
  • step S36 the CPU 502 determines whether or not the detected remaining fuel amount is greater than the second threshold value (step S36).
  • the CPU 502 stores permission in the RAM 504 as the remaining fuel amount determination result (step S35).
  • the CPU 502 stores prohibition in the RAM 504 as the fuel remaining amount determination result (step S37).
  • the first threshold value is more constant than the detected value of the fuel remaining amount sensor SE4 when the side stand 120 is in a grounded state and the liquid level of the fuel FL in the fuel tank 130 is at the upper end of the suction port 134. It is set larger by the margin of.
  • the second threshold value is the remaining amount of fuel when the side stand 120 is not grounded, the motorcycle 1 is vertical, and the level of the fuel FL in the fuel tank 130 is at the upper end of the suction port 134. It is set larger by a certain margin than the detection value of the sensor SE4.
  • the liquid level of the fuel FL in the fuel tank 130 is set regardless of whether the motorcycle 1 is in a vertical state or in an inclined state. It is determined whether or not it is above the suction port 134. Thereby, it is determined whether or not there is a possibility that air is mixed into the fuel in the fuel pipe 132 or the fuel injection device 115.
  • FIG. 10 is a flowchart showing the heating return process of FIG.
  • the RAM 504 stores a heating return injection amount counter value. After clearing the heating return injection amount counter value, the CPU 502 integrates the amount of fuel injected from the fuel injection device 115 and stores the integration result in the RAM 504 as a count heating return injection amount counter value. In addition, a heating return injection amount to be described later is stored in advance in the ROM 503 or the RAM 504.
  • the CPU 502 reads the heating return processing state from the RAM 504 (step S41), and determines whether or not the read heating return processing state is being executed (step S42).
  • step S43 it is determined whether or not the heating return counter value is equal to or greater than the heating return injection amount.
  • the heating return injection amount is an injection amount of fuel necessary for discharging air mixed in the fuel in the fuel pipe 132 and the fuel heating device 114 from the fuel injection device 115.
  • the CPU 502 stores the completion as the heating return processing state in the RAM 504 (step S44), and proceeds to step S26 in FIG.
  • the CPU 502 stores the current state as the heating return processing state in the RAM 504 (step S45), and proceeds to step S26 in FIG.
  • step S42 If the heating return processing state has been executed in step S42, the CPU 502 stores the completion in the RAM 504 as the heating return processing state (step S44), and proceeds to step S26 in FIG.
  • FIG. 11 is a flowchart showing the heating prohibition process of FIG.
  • the CPU 502 clears the heating return injection amount counter value stored in the RAM 504 (step S51). As described above, after clearing the heating return injection amount counter value, the CPU 502 integrates the amount of fuel injected from the fuel injection device 115 and stores the integration result in the RAM 504 as a count heating return injection amount counter value. Next, the CPU 502 stores the heat recovery process state in progress in the RAM 504 (step S52), and proceeds to the process of step S29 in FIG.
  • the fuel pipe 132 is provided when the fuel heating condition is satisfied and the result of the fuel heating prohibition determination process is heating permission.
  • the fuel inside is heated by the fuel heating device 114. Thereby, the starting characteristic of the engine 110 is improved.
  • the result of the fuel heating prohibition determination process is heating prohibition.
  • the fuel heating device 114 does not operate, the fuel in the fuel pipe 132 is not heated.
  • the fuel remaining amount determination result is prohibited when the side stand 120 is in a grounded state and the remaining amount of fuel in the fuel tank 130 is equal to or lower than the first threshold value.
  • the fuel remaining amount in the fuel tank 130 is equal to or smaller than the second threshold value in the non-grounded state of 120, the fuel remaining amount determination result is prohibited.
  • the result of the fuel heating prohibition determination process is the heating prohibition, and the fuel heating device 114 does not operate. Therefore, the fuel in the fuel pipe 132 is not heated. In this case, it is accurately determined whether fuel is present or insufficient at the suction port 134 of the fuel pump 131 according to the grounding state and the non-grounding state of the side stand 120.
  • the remaining fuel amount is determined.
  • the result returns from prohibition to permission.
  • the remaining fuel amount determination result is permitted from the prohibition.
  • the side stand 120 is brought into the non-grounded state and the fuel remaining amount in the fuel tank 130 is the second remaining amount.
  • the remaining fuel amount determination result returns from prohibition to permission.
  • the result of the fuel heating prohibition determination process is prohibited from heating until the fuel of the heating return injection amount is injected from the fuel injection device 115. Thereby, it is possible to prevent the fuel in the fuel pipe 132 from being heated by the fuel heating device 114 in a state where air is mixed into the fuel in the fuel pipe 132.
  • the fuel heating condition is not satisfied. Thereby, it is possible to prevent the temperature of the fuel injected into the engine 110 from becoming excessively high.
  • the starting characteristics of the engine 110 can be improved and the fuel in the fuel pipe 132 can be reliably prevented from being overheated.
  • the inclination of the motorcycle 1 is detected based on whether the motorcycle 1 is overturned and the state of the side stand 120.
  • the present invention is not limited to this.
  • the inclination of the motorcycle 1 may be detected based only on whether the motorcycle 1 has fallen over, or the inclination of the motorcycle 1 may be detected based only on the state of the side stand 120.
  • the inclination of the motorcycle 1 may be detected by another detection unit such as an acceleration sensor, and the fuel heating device 114 may be controlled based on the detection result.
  • the fuel heating device 114 is controlled based on the fuel heating condition and the result of the fuel heating prohibition determination process, but the present invention is not limited to this.
  • the fuel heating device 114 may be controlled based on the result of the fuel heating prohibition determination process without determining the fuel heating condition.
  • the fuel heating condition is determined based on the temperature of the engine 110 and the intake air temperature, but the present invention is not limited to this.
  • the fuel heating condition may be determined based on other temperatures such as the exhaust temperature.
  • the main body frame 101 is an example of the main body
  • the engine 110 is an example of the engine
  • the fuel injection device 115 is an example of the fuel injection device
  • the fuel tank 130 is an example of the fuel tank
  • the suction port 134 is an example of a suction port
  • the fuel pump 131 is an example of a fuel pump
  • the side stand 120 or the fall sensor SE3 is an example of a tilt detection unit
  • the ECU 150 is an example of a control unit.
  • the heating return injection amount is an example of a predetermined amount
  • the side stand 120 is an example of a side stand
  • the side stand switch SW is an example of a side stand state detection unit
  • the fuel remaining amount sensor SE4 is a fuel remaining amount detection unit.
  • the fall sensor SE3 is an example of a fall detection unit
  • the engine temperature sensor SE1 or the intake air temperature sensor SE2 is an example of an ambient temperature detection unit
  • the temperature of the engine 110 or the intake air temperature is injected by the fuel injection device. This is an example of the temperature around the fuel.
  • the present invention can be used for a motorcycle having a function of heating fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 ECU(電子制御ユニット)のCPU(中央演算処理装置)は、燃料加熱条件が成立しかつ燃料加熱禁止判定処理の結果が加熱許可である場合に燃料加熱装置を駆動する。一方、CPUは、燃料加熱条件が未成立である場合または燃料加熱禁止判定処理の結果が加熱禁止である場合には、燃料加熱装置を駆動しない。燃料加熱禁止判定処理では、CPUは、自動二輪車の傾斜状態を検出し、検出結果に基づいて燃料加熱装置による燃料配管内の燃料の加熱を禁止または許可する。

Description

自動二輪車
 本発明は、エンジンの始動時に燃料の加熱が可能な自動二輪車に関する。
 近年、ガソリンとアルコールとの混合燃料を利用可能なエンジンを備えた車両が開発されている。混合燃料中のアルコールはガソリンに比べて気化しにくいため、燃料中のアルコール濃度が高いほど、エンジンの始動特性が悪化する。特に、低温環境下ではエンジンの始動特性がより悪化する傾向にある。
 そのため、低温始動時に燃料配管内の燃料を加熱することにより低温始動特性を向上させる始動装置が提案されている(例えば特許文献1参照)。
特開2008-274825号公報
 上記の特許文献1の始動装置においては、ヒータにより燃料配管内の燃料が加熱される。冷却水の温度、およびエンジンの停止からエンジンの再始動までの放置時間に基づいて、ヒータによる燃料の加熱度合いが決定される。それにより、始動時の燃料の過加熱が防止される。
 しかしながら、自動二輪車では、自動四輪車と異なる種々の状況で燃料配管内の燃料不足が発生する。燃料配管内に燃料が不足する状態でヒータが作動すると、燃料配管内の燃料が過加熱される。この場合、燃料配管内にベーパが発生することにより、要求される量の燃料の供給が不可能になりやすい。また、燃料の温度が要求される温度よりも上昇することにより、燃料の温度の制御性が悪化する。
 本発明の目的は、燃料の過加熱を防止しつつエンジンの始動特性を向上させることが可能な自動二輪車を提供することである。
 (1)本発明の一局面に従う自動二輪車は、前輪および後輪を支持する本体部と、本体部に設けられるエンジンと、エンジンに設けられる燃料噴射装置と、本体部に設けられる燃料タンクと、燃料タンク内に吸い込み口を有し、燃料タンク内の燃料を燃料配管を通して燃料噴射装置に供給する燃料ポンプと、燃料配管内の燃料を加熱する燃料加熱装置と、本体部の傾斜を検出する傾斜検出部と、燃料加熱装置を制御する制御部とを備え、制御部は、傾斜検出部の検出結果に基づいて、燃料ポンプの吸い込み口に燃料が存在する第1の状態と燃料ポンプの吸い込み口の燃料が不足する第2の状態とを検出し、第2の状態を検出した場合に燃料加熱装置の作動を禁止するものである。
 その自動二輪車においては、燃料タンク内の燃料が燃料ポンプにより燃料タンク内の吸い込み口から吸い込まれ、燃料配管を通して燃料噴射装置に供給される。燃料配管内の燃料は燃料加熱装置により加熱される。それにより、エンジンの始動特性が向上する。
 本体部が傾斜することにより燃料ポンプの吸い込み口の燃料が不足する場合がある。この場合には、燃料配管内の燃料に空気が混入し、燃料配管内の燃料の量が少なくなる可能性がある。この自動二輪車においては、本体部の傾斜が傾斜検出部により検出される。傾斜検出部の検出結果に基づいて、燃料ポンプの吸い込み口に燃料が存在する第1の状態と燃料ポンプの吸い込み口の燃料が不足する第2の状態とが制御部により検出される。第2の状態が検出された場合には、制御部により燃料加熱装置の作動が禁止される。それにより、燃料配管内の燃料が加熱されない。
 これらの結果、燃料の過加熱を防止しつつエンジンの始動特性を向上させることが可能となる。
 (2)制御部は、第2の状態から第1の状態への移行を検出した場合に、第1の状態への移行後に燃料噴射装置から予め定められた量の燃料が噴射されたか否かを判定し、予め定められた量の燃料が噴射されるまで燃料加熱装置の作動を禁止してもよい。
 第2の状態では、燃料ポンプの吸い込み口の燃料が不足する。自動二輪車が第2の状態から第1の状態へ移行した場合、吸い込み口から燃料配管内に空気が吸い込まれている可能性がある。この場合、燃料噴射装置から予め定められた量の燃料が噴射されることにより、燃料配管内の空気が排出される。したがって、第1の状態への移行後に燃料噴射装置から予め定められた量の燃料が噴射されまで燃料加熱装置の作動が禁止される。それにより、燃料配管内の燃料が過加熱されることを確実に防止することができる。
 (3)自動二輪車は、本体部を地面に対して傾斜状態で支持するサイドスタンドと、サイドスタンドが接地状態であるか非接地状態であるかを検出するサイドスタンド状態検出部と、燃料タンク内の燃料残量を検出する燃料残量検出部とをさらに備え、制御部は、サイドスタンド状態検出部により接地状態が検出されかつ燃料残量検出部により検出される燃料残量が予め定められた第1のしきい値以下である場合を第2の状態として検出し、サイドスタンド状態検出部により非接地状態が検出されかつ燃料残量検出部により検出される燃料残量が予め定められた第2のしきい値以下である場合を第2の状態として検出してもよい。
 サイドスタンドが接地状態にある場合には燃料タンクが本体部とともに傾斜する。したがって、サイドスタンドが接地状態である場合とサイドスタンドが非接地状態である場合とで、燃料ポンプの吸い込み口に燃料が存在するか不足するかの状態が異なる。そこで、サイドスタンドの接地状態では、燃料タンク内の燃料残量が第1のしきい値以下である場合が第2の状態として検出され、サイドスタンドの非接地状態では、燃料タンク内の燃料残量が第2のしきい値以下である場合が第2の状態として検出される。それにより、サイドスタンドの接地状態および非接地状態に応じて燃料ポンプの吸い込み口に燃料が存在するか不足するかが正確に判定される。その結果、燃料配管内の燃料が過加熱されることを確実に防止することができる。
 (4)自動二輪車は、自動二輪車の転倒を検出する転倒検出部をさらに備え、制御部は、転倒検出部により転倒が検出された場合を第2の状態として検出してもよい。
 自動二輪車が転倒している場合には、燃料タンクが横向きとなるので、燃料ポンプの吸い込み口の燃料が不足する可能性がある。そこで、転倒が検出された場合が第2の状態として検出される。それにより、自動二輪車が転倒している場合に、燃料配管内の燃料が過加熱されることを確実に防止することができる。
 (5)自動二輪車は、燃料噴射装置から噴射される燃料の周囲の温度を検出する周囲温度検出部をさらに備え、制御部は、周囲温度検出部により検出される温度が予め定められた温度以上の場合に燃料加熱装置の作動を禁止し、周囲温度検出部により検出される温度が予め定められた温度よりも低くかつ第1の状態を検出した場合に燃料加熱装置の作動を許可してもよい。
 この場合、燃料噴射装置から噴射される燃料の周囲の温度が予め定められた温度以上の場合には燃料配管内の燃料が加熱されない。また、燃料噴射装置から噴射される燃料の周囲の温度が予め定められた温度よりも低くかつ燃料ポンプの吸い込み口に燃料が存在する場合に燃料配管内の燃料が加熱される。それにより、燃料の過加熱を確実に防止しつつエンジンの始動特性を向上させることが可能となる。
 (6)周囲温度検出部は、周囲の温度としてエンジンの温度およびエンジンに吸入される空気の温度の少なくとも一方を検出してもよい。
 この場合、エンジンの温度またはエンジンに吸入される空気の温度が予め定められた温度以上の場合には燃料配管内の燃料が加熱されない。それにより、エンジン内に噴射された燃料の温度が過度に高くなることを防止することができる。
 本発明によれば、燃料の過加熱を防止しつつエンジンの始動特性を向上させることが可能となる。
図1は本実施の形態に係る自動二輪車を示す概略側面図である。 図2は図1の自動二輪車の一部の拡大図である。 図3は燃料タンクの内部の構成を示す断面図である。 図4は燃料タンクの内部の構成を示す断面図である。 図5は燃料タンクの内部の構成を示す断面図である。 図6は図1の自動二輪車の制御系の構成を示すブロック図である。 図7はメインスイッチがオンされた後のECUによる燃料加熱装置の制御動作を示すフローチャートである。 図8は図7の燃料加熱禁止判定処理を示すフローチャートである。 図9は図8の燃料残量判定処理を示すフローチャートである。 図10は図8の加熱復帰処理を示すフローチャートである。 図11は図8の加熱禁止処理を示すフローチャートである。
 (1)自動二輪車の概略構成
 図1は本実施の形態に係る自動二輪車を示す概略側面図である。図2は図1の自動二輪車の一部の拡大図である。
 図1の自動二輪車1においては、本体フレーム101の前端にヘッドパイプ102が設けられる。ヘッドパイプ102にフロントフォーク103が取り付けられる。この状態で、フロントフォーク103は、ヘッドパイプ102の軸心を中心として所定の角度範囲内で回転可能となっている。フロントフォーク103の下端に前輪104が回転可能に支持される。ヘッドパイプ102の上端にはハンドル105が設けられる。
 本体フレーム101から後方に延びるように本体フレーム101にリアアーム106が接続される。リアアーム106は、後輪ドリブンスプロケット107および後輪108を回転可能に保持する。後輪ドリブンスプロケット107には、チェーン109が取り付けられる。
 本体フレーム101の中央部には、エンジン110が設けられる。エンジン110の吸気ポートおよび排気ポートには、それぞれ吸気管111および排気管112が取り付けられる。
 本体フレーム101の下端部にはサイドスタンド120の一端が軸120aを中心として回転可能に取り付けられる。サイドスタンド120は、運転者の操作により先端が地面から離れる略水平な状態(以下、非接地状態と呼ぶ)と先端が地面に接触する略垂直な状態(以下、接地状態と呼ぶ)とに切り替えられる。サイドスタンド120が接地状態にある場合には、自動二輪車1は地面に対して傾斜した状態となる。
 エンジン110の上部には燃料タンク130が設けられ、燃料タンク130の後方にはシート121が設けられる。
 図2に示すように、吸気管111の上流にエアクリーナ113が設けられる。また、吸気管111には、燃料噴射装置115が取り付けられる。燃料タンク130内には、燃料ポンプ131が設けられる。燃料ポンプ131は、燃料配管132および燃料加熱装置114を通して燃料噴射装置115に接続される。燃料加熱装置114は燃料配管132内の燃料を加熱可能に取り付けられる。排気管112の下流端には、マフラー116が取り付けられる。
 シート121の下部には、ECU(Electronic Control Unit;電子制御ユニット)150が設けられる。
 エンジン110の側面には、エンジン110の温度を検出するエンジン温度センサSE1が取り付けられる。吸気管111には、エンジン110に吸入される空気の温度を検出する吸気温度センサSE2が取り付けられる。シート121には、自動二輪車1が転倒しているか否かを検出する転倒センサSE3が取り付けられる。燃料タンク130内には、燃料タンク130内の燃料の残留を検出する燃料残量センサSE4が取り付けられる。排気管112には、エンジン110から排出される気体中の酸素の濃度を検出する酸素センサSE5が取り付けられる。また、サイドスタンド120の軸120aには、サイドスタンドスイッチSWが取り付けられる。サイドスタンドスイッチSWは、サイドスタンド120が接地状態と非接地状態とに切り替わることによりオンおよびオフする。
 以下、自動二輪車1の本体フレーム101、ヘッドパイプ102、前輪104および後輪108の中心を通る面を対称面と呼ぶ。自動二輪車1の対称面が重力方向に平行である場合に自動二輪車1が垂直状態にあるといい、自動二輪車1の対称面が重力方向に平行でない場合に自動二輪車1が傾斜状態にあるという。
 サイドスタンド120が非接地状態である場合に自動二輪車1が垂直状態にあるとし、サイドスタンド120が接地状態である場合に自動二輪車1が傾斜状態にあるとする。
 (2)燃料タンク130の内部の構成
 図3、図4および図5は燃料タンク130の内部の構成を示す断面図である。図3および図4は自動二輪車1の前後方向に垂直な縦断面を示し、図5は自動二輪車1の前後方向に平行な縦断面を示す。また、図3は自動二輪車1が垂直状態にある場合の燃料タンク130の内部の状態を示し、図4は自動二輪車1が転倒している場合の燃料タンク130の内部の状態を示す。図3~図5において、自動二輪車1の前後方向を矢印FWで示し、重力方向に平行な方向を矢印Zで示す。
 図3および図4に示すように、燃料タンク130の内部には、燃料ポンプ131、燃料フィルタ133および燃料残量センサSE4が設けられる。燃料タンク130内には燃料FLが充填される。本実施の形態では、燃料FLとして、ガソリンとアルコールとの混合燃料が使用される。
 図3および図5に示すように、燃料ポンプ131の吸い込み口134は、燃料タンク130の下部に配置される。図3および図4に示すように、燃料ポンプ131の排出口135には、図2の燃料配管132が取り付けられる。燃料FLは、燃料フィルタ133を通して吸い込み口134から燃料ポンプ131内に吸い込まれる。燃料ポンプ131は、燃料FLを排出口135から図2の燃料配管132を通して燃料噴射装置115に供給する。
 燃料残量センサSE4は、浮きを有し、燃料タンク130内の燃料FLの液面レベルを燃料残量として検出する。
 図3に示すように、自動二輪車1が垂直状態にある場合には、燃料タンク130の下部の燃料FLは吸い込み口134から燃料ポンプ131に吸い込まれる。一方、図4に示すように、自動二輪車1が転倒している場合には、燃料タンク130の下部の燃料FLは吸い込み口134から燃料ポンプ131に吸い込まれない。この場合、空気が吸い込み口134から燃料ポンプ131に吸い込まれ、燃料配管132内および燃料噴射装置115内の燃料に空気が混入する。このような状態で燃料加熱装置114が作動した場合には、燃料配管132内の燃料の量が少なくなっているので、燃料配管132内の燃料が過加熱される可能性がある。
 また、サイドスタンド120が接地状態にありかつ燃料タンク130内の燃料FLが少ない場合には、燃料タンク130の下部の燃料FLは吸い込み口134から燃料ポンプ131に吸い込まれない。さらに、サイドスタンド120が非接地状態で自動二輪車1が垂直状態でありかつ燃料タンク130内の燃料FLがさらに少ない場合には、燃料タンク130の下部の燃料FLは吸い込み口134から燃料ポンプ131に吸い込まれない。これらの場合にも、自動二輪車1が転倒している場合と同様に、空気が吸い込み口134から燃料ポンプ131に吸い込まれ、燃料配管132内および燃料噴射装置115内の燃料に空気が混入する。
 (3)自動二輪車の制御系の構成
 図6は図1の自動二輪車1の制御系の構成を示すブロック図である。図6に示すように、ECU150は、I/F(インターフェース)501,505、CPU(中央演算処理装置)502、ROM(リードオンリメモリ)503およびRAM(ランダムアクセスメモリ)504を含む。
 エンジン温度センサSE1、吸気温度センサSE2、転倒センサSE3、燃料残量センサSE4および酸素センサSE5の検出値およびサイドスタンドスイッチSWの状態はECU150のI/F501を介してCPU502に与えられる。
 ECU150のROM503には、後述する制御動作を行うためのプログラムが記憶される。CPU502は、ROM503に記憶された制御動作プログラムをRAM504上で実行することにより制御動作を行う。それにより、CPU502は、エンジン温度センサSE1、吸気温度センサSE2、転倒センサSE3および燃料残量センサSE4の検出値ならびにサイドスタンドスイッチSWの状態に基づいて燃料加熱装置114を制御する。また、CPU502は、酸素センサSE5の検出値に基づいてエンジン110内の混合気の空燃比が理論空燃比燃になるように燃料噴射装置115を制御する。
 (4)燃料加熱装置の制御動作
 図7はメインスイッチがオンされた後のECU150による燃料加熱装置114の制御動作を示すフローチャートである。
 以下の処理では、ECU150のCPU502は、運転者がメインスイッチをオンした後、燃料加熱装置114を駆動すべきか否かを判定し、判定結果に基づいて燃料加熱装置114を駆動するかまたは駆動しない。一方、運転者は、メインスイッチをオンした後、任意のタイミングでスタータスイッチをオンする。スタータスイッチがオンされると、燃料噴射装置115からの燃料の噴射が開始される。
 ECU150のRAM504には、予めエンジン温度しきい値および吸気温度しきい値が記憶される。
 メインスイッチがオンされた後、CPU502は、エンジン温度センサSE1の検出値を取得することによりエンジン110の温度を検出する(ステップS1)。次に、CPU502は、検出されたエンジン110の温度がRAM504に記憶されたエンジン温度しきい値よりも低いか否かを判定する(ステップS2)。
 検出されたエンジン110の温度がエンジン温度しきい値よりも低い場合には、CPU502は、吸気温度センサSE2の検出値を取得することにより吸気温度を検出する(ステップS3)。次に、CPU502は、検出された吸気温度がRAM504に記憶された吸気温度しきい値よりも低いか否かを判定する(ステップS4)。
 検出された吸気温度が吸気温度しきい値よりも低い場合には、CPU502は燃料加熱条件が成立していると判定する(ステップS5)。この場合、CPU502は燃料加熱禁止判定処理を行う(ステップS6)。燃料加熱禁止判定処理の詳細については後述する。燃料加熱禁止判定処理の結果はRAM504に記憶される。
 その後、CPU502は、RAM504に記憶された燃料加熱禁止判定処理の結果が加熱許可であるか否かを判定する(ステップS7)。燃料加熱禁止判定処理の結果が加熱許可である場合には、CPU502は燃料加熱条件が成立しかつ加熱が許可されていると判定する(ステップS8)。この場合、CPU502は燃料加熱装置114を駆動する(ステップS9)。その後、CPU502はステップS1の処理に戻る。
 一方、ステップS2で検出されたエンジン110の温度がエンジン温度しきい値以上の場合、およびステップS4で検出された吸気温度が吸気温度しきい値以上の場合には、CPU502は、燃料加熱条件が未成立であると判定する(ステップS10)。この場合、CPU502は燃料加熱装置114を駆動せずに(ステップS11)、ステップS1の処理に戻る。
 また、ステップS7で燃料加熱禁止判定処理の結果が加熱禁止である場合には、CPU502は燃料加熱装置114を駆動せずに(ステップS11)、ステップS1の処理に戻る。
 上記のように、燃料加熱条件は、エンジン110の温度がエンジンしきい値よりも低くかつ吸気温度が吸気温度しきい値よりも低い場合に成立し、その他の場合に不成立となる。燃料加熱条件が成立しかつ燃料加熱禁止判定処理の結果が加熱許可である場合に燃料加熱装置114が作動する。それにより、燃料配管132内の燃料FLが加熱される。
 一方、燃料加熱条件が未成立である場合または燃料加熱禁止判定処理の結果が加熱禁止である場合には、燃料加熱装置114は作動しない。それにより、燃料配管132内の燃料FLが加熱されない。
 図8は図7の燃料加熱禁止判定処理を示すフローチャートである。
 CPU502は、転倒センサSE3の検出値を取得する(ステップS21)。CPU502は、転倒センサSE3の検出値に基づいて自動二輪車1が転倒しているか否かを判定する(ステップS22)。
 自動二輪車1が転倒していない場合には、CPU502は、燃料残量判定処理を行う(ステップS23)。燃料残量判定処理では、燃料残量判定結果として許可または禁止がRAM504に記憶される。燃料タンク130内の燃料FLの残量が所定値以下の場合には、燃料残量判定結果は禁止となる。一方、燃料タンク130内の燃料FLの残量が所定値よりも多い場合には、燃料残量判定結果は許可となる。燃料残量判定処理の詳細については後述する。
 その後、CPU502は、RAM504に記憶された燃料残量判定結果が許可であるか否かを判定する(ステップS24)。燃料残量判定結果が許可である場合には、CPU502は、加熱復帰処理を行う(ステップS25)。加熱復帰処理では、加熱復帰処理状態として実施済または実施中がRAM504に記憶される。燃料加熱禁止判定処理の結果(ステップS27,S28)が加熱禁止から加熱許可に復帰する際には、燃料噴射装置115から一定量の燃料が噴射される。一定量の燃料の噴射中には加熱復帰処理状態が実施中となり、一定量の燃料の噴射の完了後には加熱復帰処理状態が実施済となる。加熱復帰処理の詳細については後述する。
 その後、CPU502は、RAM504に記憶される加熱復帰処理状態が実施済であるか否かを判定する(ステップS26)。RAM504に記憶される加熱復帰処理状態が実施済である場合には、CPU502は燃料加熱禁止判定処理の結果として加熱許可をRAM504に記憶し(ステップS27)、図7のステップS7の処理に進む。
 ステップS22で自動二輪車1が転倒している場合およびステップS24で燃料残量判定結果が禁止の場合には、CPU502は加熱禁止処理を行う(ステップS28)。加熱禁止処理では、加熱復帰処理状態として実施中がRAM504に記憶される。加熱禁止処理の詳細については後述する。
 その後、CPU502は、燃料加熱禁止判定処理の結果として禁止をRAM504に記憶し(ステップS29)、図7のステップS7の処理に進む。
 ステップS26で加熱復帰処理状態が実施中の場合には、CPU502は燃料加熱禁止判定処理の結果として禁止をRAM504に記憶し(ステップS29)、図7のステップS7の処理に進む。
 図9は図8の燃料残量判定処理を示すフローチャートである。後述する第1および第2のしきい値がROM503またはRAM504に予め記憶される。
 まず、CPU502は、燃料残量センサSE4の検出値を取得することにより燃料タンク130内の燃料残量を検出する(ステップS31)。次に、CPU502は、サイドスタンドスイッチSWの状態を取得することによりサイドスタンド120の状態を検出し(ステップS32)、サイドスタンド120が接地状態であるか否かを判定(ステップS33)する。
 サイドスタンド120が接地状態である場合には、CPU502は検出された燃料残量が第1のしきい値よりも多いか否かを判定する(ステップS34)。第1のしきい値はROM503またはRAM504に予め記憶される。
 燃料残量が第1のしきい値よりも多い場合には、CPU502は燃料残量判定結果として許可をRAM504に記憶する(ステップS35)。一方、燃料残量が第1のしきい値以下の場合には、CPU502は燃料残量判定結果として禁止をRAM504に記憶する(ステップS37)。
 ステップS33でサイドスタンド120が非接地状態である場合には、CPU502は検出された燃料残量が第2のしきい値よりも多いか否かを判定する(ステップS36)。
 燃料残量が第2のしきい値よりも多い場合には、CPU502は燃料残量判定結果として許可をRAM504に記憶する(ステップS35)。一方、燃料残量が第1のしきい値以下の場合には、CPU502は燃料残量判定結果として禁止をRAM504に記憶する(ステップS37)。
 上記の第1のしきい値は、サイドスタンド120が接地状態でありかつ燃料タンク130内の燃料FLの液面レベルが吸い込み口134の上端にある場合の燃料残量センサSE4の検出値よりも一定の余裕度分大きく設定される。
 上記の第2のしきい値は、サイドスタンド120が非接地状態で自動二輪車1が垂直状態でありかつ燃料タンク130内の燃料FLの液面レベルが吸い込み口134の上端にある場合の燃料残量センサSE4の検出値よりも一定の余裕度分大きく設定される。
 このように、第1および第2のしきい値が設定されることにより、自動二輪車1が垂直状態にあるか傾斜状態にあるかにかかわらず、燃料タンク130内の燃料FLの液面レベルが吸い込み口134よりも上にあるか否かが判定される。それにより、燃料配管132または燃料噴射装置115内の燃料に空気が混入する可能性があるか否かが判定される。
 図10は図8の加熱復帰処理を示すフローチャートである。RAM504には、加熱復帰噴射量カウンタ値が記憶される。CPU502は、加熱復帰噴射量カウンタ値をクリアした後、燃料噴射装置115から噴射された燃料の量を積算し、積算結果をカウント加熱復帰噴射量カウンタ値としてRAM504に記憶する。また、後述する加熱復帰噴射量がROM503またはRAM504に予め記憶される。
 まず、CPU502は、RAM504から加熱復帰処理状態を読み込み(ステップS41)、読み込んだ加熱復帰処理状態が実施中であるか否かを判定する(ステップS42)。
 加熱復帰処理状態が実施中である場合には、加熱復帰カウンタ値が加熱復帰噴射量以上であるか否かを判定する(ステップS43)。
 ここで、加熱復帰噴射量は、燃料配管132および燃料加熱装置114内の燃料に混入した空気を燃料噴射装置115から排出させるために必要な燃料の噴射量である。
 加熱復帰カウンタ値が加熱復帰噴射量以上である場合には、CPU502は加熱復帰処理状態として実施済をRAM504に記憶し(ステップS44)、図8のステップS26に進む。一方、加熱復帰カウンタ値が加熱復帰噴射量よりも少ない場合には、CPU502は加熱復帰処理状態として実施中をRAM504に記憶し(ステップS45)、図8のステップS26に進む。
 ステップS42で加熱復帰処理状態が実施済である場合には、CPU502は加熱復帰処理状態として実施済をRAM504に記憶し(ステップS44)、図8のステップS26に進む。
 図11は図8の加熱禁止処理を示すフローチャートである。CPU502は、RAM504に記憶された加熱復帰噴射量カウンタ値をクリアする(ステップS51)。上記のように、CPU502は、加熱復帰噴射量カウンタ値をクリアした後、燃料噴射装置115から噴射された燃料の量を積算し、積算結果をカウント加熱復帰噴射量カウンタ値としてRAM504に記憶する。次に、CPU502は、加熱復帰処理状態として実施中をRAM504に記憶し(ステップS52)、図8のステップS29の処理に進む。
 (5)実施の形態の効果
 上記のように、本実施の形態に係る自動二輪車1においては、燃料加熱条件が成立しかつ燃料加熱禁止判定処理の結果が加熱許可である場合に、燃料配管132内の燃料が燃料加熱装置114により加熱される。それにより、エンジン110の始動特性が向上する。
 また、自動二輪車1が転倒している場合には、燃料加熱禁止判定処理の結果が加熱禁止となる。それにより、燃料加熱装置114が作動しないので、燃料配管132内の燃料が加熱されない。
 また、自動二輪車1が転倒していない場合には、サイドスタンド120の接地状態で燃料タンク130内の燃料残量が第1のしきい値以下である場合に燃料残量判定結果が禁止となり、サイドスタンド120の非接地状態で燃料タンク130内の燃料残量が第2のしきい値以下である場合に燃料残量判定結果が禁止となる。それにより、燃料加熱禁止判定処理の結果が加熱禁止となり、燃料加熱装置114が作動しない。したがって、燃料配管132内の燃料が加熱されない。この場合、サイドスタンド120の接地状態および非接地状態に応じて燃料ポンプ131の吸い込み口134に燃料が存在するか不足するかが正確に判定される。
 さらに、自動二輪車1が転倒した後に自動二輪車1が起立されてサイドスタンド120が接地状態になりかつ燃料タンク130内の燃料残量が第1のしきい値よりも多い場合には、燃料残量判定結果が禁止から許可に復帰する。また、自動二輪車1が転倒した後に自動二輪車1が垂直状態に起立されかつ燃料タンク130内の燃料残量が第2のしきい値よりも多い場合にも、燃料残量判定結果が禁止から許可に復帰する。さらに、サイドスタンド120が接地状態でありかつ燃料タンク130内の燃料残量が第1のしきい値以下である状態からサイドスタンド120が非接地状態になりかつ燃料タンク130内の燃料残量が第2のしきい値よりも多い場合にも、燃料残量判定結果が禁止から許可に復帰する。これらの場合には、燃料噴射装置115から加熱復帰噴射量の燃料が噴射されるまで、燃料加熱禁止判定処理の結果が加熱禁止となる。それにより、燃料配管132内の燃料に空気が混入した状態で燃料加熱装置114により燃料配管132内の燃料が加熱されることを防止することができる。
 また、エンジン110の温度がエンジン温度しきい値以上の場合または吸気温度が吸気温度しきい値以上の場合には、燃料加熱条件が未成立となる。それにより、エンジン110内に噴射された燃料の温度が過度に高くなることを防止することができる。
 これらの結果、エンジン110の始動特性を向上させるとともに燃料配管132内の燃料が過加熱されることを確実に防止することができる。
 (6)他の実施の形態
 上記実施の形態では、自動二輪車1の傾斜が自動二輪車1の転倒の有無およびサイドスタンド120の状態に基づいて検出されるが、これに限定されない。例えば、自動二輪車1の傾斜が自動二輪車1の転倒の有無のみに基づいて検出されてもよく、自動二輪車1の傾斜がサイドスタンド120の状態のみに基づいて検出されてもよい。
 また、自動二輪車1の傾斜が加速度センサ等の他の検出部により検出され、その検出結果に基づいて燃料加熱装置114が制御されてもよい。
 さらに、上記実施の形態では、燃料加熱条件および燃料加熱禁止判定処理の結果に基づいて燃料加熱装置114が制御されるが、これに限定されない。燃料加熱条件が判定されることなく、燃料加熱禁止判定処理の結果に基づいて燃料加熱装置114が制御されてもよい。
 また、上記実施の形態では、エンジン110の温度および吸気温度に基づいて燃料加熱条件が判定されるが、これに限定されない。例えば、排気温度等の他の温度に基づいて燃料加熱条件が判定されてもよい。
 (7)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態では、本体フレーム101が本体部の例であり、エンジン110がエンジンの例であり、燃料噴射装置115が燃料噴射装置の例であり、燃料タンク130が燃料タンクの例であり、吸い込み口134が吸い込み口の例であり、燃料ポンプ131が燃料ポンプの例であり、サイドスタンド120または転倒センサSE3が傾斜検出部の例であり、ECU150が制御部の例である。
 また、加熱復帰噴射量が予め定められた量の例であり、サイドスタンド120がサイドスタンドの例であり、サイドスタンドスイッチSWがサイドスタンド状態検出部の例であり、燃料残量センサSE4が燃料残量検出部の例であり、転倒センサSE3が転倒検出部の例であり、エンジン温度センサSE1または吸気温度センサSE2が周囲温度検出部の例であり、エンジン110の温度または吸気温度が燃料噴射装置により噴射された燃料の周囲の温度の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、燃料を加熱する機能を有する自動二輪車に利用することができる。

Claims (6)

  1. 前輪および後輪を支持する本体部と、
     前記本体部に設けられるエンジンと、
     前記エンジンに設けられる燃料噴射装置と、
     前記本体部に設けられる燃料タンクと、
     前記燃料タンク内に吸い込み口を有し、前記燃料タンク内の燃料を燃料配管を通して前記燃料噴射装置に供給する燃料ポンプと、
     前記燃料配管内の燃料を加熱する燃料加熱装置と、
     前記本体部の傾斜を検出する傾斜検出部と、
     前記燃料加熱装置を制御する制御部とを備え、
     前記制御部は、前記傾斜検出部の検出結果に基づいて、前記燃料ポンプの前記吸い込み口に燃料が存在する第1の状態と前記燃料ポンプの前記吸い込み口の燃料が不足する第2の状態とを検出し、前記第2の状態を検出した場合に前記燃料加熱装置の作動を禁止する、自動二輪車。
  2. 前記制御部は、
     前記第2の状態から前記第1の状態への移行を検出した場合に、前記第1の状態への移行後に前記燃料加熱装置から予め定められた量の燃料が噴射されたか否かを判定し、予め定められた量の燃料が噴射されるまで前記燃料加熱装置の作動を禁止する、請求項1記載の自動二輪車。
  3. 前記本体部を地面に対して傾斜状態で支持するサイドスタンドと、
     前記サイドスタンドが接地状態であるか非接地状態であるかを検出するサイドスタンド状態検出部と、
     前記燃料タンク内の燃料残量を検出する燃料残量検出部とをさらに備え、
     前記制御部は、
     前記サイドスタンド状態検出部により前記接地状態が検出されかつ前記燃料残量検出部により検出される燃料残量が予め定められた第1のしきい値以下である場合を前記第2の状態として検出し、前記サイドスタンド状態検出部により前記非接地状態が検出されかつ前記燃料残量検出部により検出される燃料残量が予め定められた第2のしきい値以下である場合を前記第2の状態として検出する、請求項1記載の自動二輪車。
  4. 前記自動二輪車の転倒を検出する転倒検出部をさらに備え、
     前記制御部は、
     前記転倒検出部により転倒が検出された場合を前記第2の状態として検出する、請求項1記載の自動二輪車。
  5. 前記燃料噴射装置から噴射される燃料の周囲の温度を検出する周囲温度検出部をさらに備え、
     前記制御部は、
     前記周囲温度検出部により検出される温度が予め定められた温度以上の場合に前記燃料加熱装置の作動を禁止し、前記周囲温度検出部により検出される温度が予め定められた温度よりも低くかつ前記第1の状態を検出した場合に前記燃料加熱装置の作動を許可する、請求項1記載の自動二輪車。
  6. 前記周囲温度検出部は、前記周囲の温度として前記エンジンの温度および前記エンジンに吸入される空気の温度の少なくとも一方を検出する、請求項1記載の自動二輪車。
PCT/JP2011/001731 2010-12-06 2011-03-24 自動二輪車 WO2012077248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11846636.6A EP2650198B1 (en) 2010-12-06 2011-03-24 Automatic two-wheeled vehicle
BR112013004232-0A BR112013004232B1 (pt) 2010-12-06 2011-03-24 Motocicleta com aquecimento de combustível
JP2012547670A JP5493013B2 (ja) 2010-12-06 2011-03-24 自動二輪車
US13/812,191 US9097201B2 (en) 2010-12-06 2011-03-24 Motorcycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-271454 2010-12-06
JP2010271454 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077248A1 true WO2012077248A1 (ja) 2012-06-14

Family

ID=46206766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001731 WO2012077248A1 (ja) 2010-12-06 2011-03-24 自動二輪車

Country Status (5)

Country Link
US (1) US9097201B2 (ja)
EP (1) EP2650198B1 (ja)
JP (1) JP5493013B2 (ja)
BR (1) BR112013004232B1 (ja)
WO (1) WO2012077248A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066416A (ja) * 2019-10-22 2021-04-30 童浩 電動バイクが横転するときの安全保護装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313943B2 (ja) 2013-09-30 2018-04-18 株式会社ケーヒン 残燃料量算出装置
JP6545283B2 (ja) 2015-12-26 2019-07-17 アルプスアルパイン株式会社 サイドスタンド付き車両
CN113247154B (zh) * 2021-04-07 2022-09-30 江门市大长江集团有限公司 油量显示方法、装置、设备和存储介质
CN116291915A (zh) * 2023-03-31 2023-06-23 长城灵魂科技有限公司 摩托车发动机控制方法、装置及摩托车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030544A (ja) * 2006-07-26 2008-02-14 Yamaha Motor Co Ltd 車両の情報出力装置、及び自動二輪車
JP2008274825A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp フレキシブル・フューエル車両の始動装置
JP2010235076A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd メインスタンドの状態検出装置及びメインスタンドの状態検出装置を備える自動2輪車

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250295A (ja) * 1985-08-29 1987-03-04 Sanshin Ind Co Ltd 船外機の燃料供給装置
JP4423824B2 (ja) 2001-07-04 2010-03-03 株式会社デンソー 内燃機関用制御装置
JP4381246B2 (ja) 2004-07-21 2009-12-09 本田技研工業株式会社 車載内燃機関の制御装置
TWI396324B (zh) 2005-12-28 2013-05-11 Yamaha Motor Co Ltd 燃料電池系統及其運轉方法
JP5366360B2 (ja) 2005-12-28 2013-12-11 ヤマハ発動機株式会社 燃料電池システムおよびその運転方法
US20080060620A1 (en) * 2006-09-08 2008-03-13 Brian Friedman Diesel engine conversion to use alternative fuels
JP2008162512A (ja) 2006-12-28 2008-07-17 Yamaha Motor Co Ltd 鞍乗型車両
JP5112266B2 (ja) 2007-11-30 2013-01-09 ヤマハ発動機株式会社 自動車両用酸素センサの制御装置およびそれを備えた空燃比制御装置ならびに自動車両
JP2009241922A (ja) 2007-12-28 2009-10-22 Yamaha Motor Co Ltd 鞍乗型車両
JP2009185717A (ja) 2008-02-06 2009-08-20 Yamaha Motor Co Ltd 燃料噴射制御装置および車両
JP4889669B2 (ja) 2008-03-06 2012-03-07 本田技研工業株式会社 燃料供給装置
EP2361347A1 (en) * 2008-04-16 2011-08-31 Mitja Victor Hinderks New reciprocating machines and other devices
JP2010265774A (ja) 2009-05-12 2010-11-25 Nippon Soken Inc 内燃機関の始動装置およびその始動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030544A (ja) * 2006-07-26 2008-02-14 Yamaha Motor Co Ltd 車両の情報出力装置、及び自動二輪車
JP2008274825A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp フレキシブル・フューエル車両の始動装置
JP2010235076A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd メインスタンドの状態検出装置及びメインスタンドの状態検出装置を備える自動2輪車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650198A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066416A (ja) * 2019-10-22 2021-04-30 童浩 電動バイクが横転するときの安全保護装置

Also Published As

Publication number Publication date
BR112013004232B1 (pt) 2018-03-20
EP2650198B1 (en) 2016-08-31
US20130191009A1 (en) 2013-07-25
EP2650198A4 (en) 2015-03-25
BR112013004232A2 (pt) 2016-07-05
EP2650198A1 (en) 2013-10-16
JP5493013B2 (ja) 2014-05-14
JPWO2012077248A1 (ja) 2014-05-19
US9097201B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
JP5493013B2 (ja) 自動二輪車
US7523744B2 (en) Apparatus and method for controlling an internal combustion engine
JP4962625B2 (ja) オイル希釈抑制装置及び方法
CN103562526B (zh) 发动机控制装置
US8544449B2 (en) Fuel supply device
CN101446242A (zh) 机动车辆用氧传感器的控制装置和具备它的空燃比控制装置以及机动车辆
JP2005248921A (ja) エンジン始動制御装置
JP4121126B2 (ja) 燃料噴射制御装置
CN100337018C (zh) 一种发动机启动控制***及其方法
JP2013002305A (ja) 鞍乗型車両
WO2012032859A1 (ja) 鞍乗り型車両、エンジンユニット及び制御装置
JP4958867B2 (ja) エンジンセッティングシステムを備えた自動二輪車
JP2005146973A (ja) 車載型燃料分離システム
EP2530288B1 (en) Activation determining system for oxygen sensor
JP2006063959A (ja) 車両の燃料残量推定装置及び車両制御装置
JP2008075467A (ja) 内燃機関の燃料制御装置
JP4238821B2 (ja) 内燃機関の始動異常回避誘導システム
JP2012031754A (ja) 加熱機能付燃料供給装置
TWI762132B (zh) 空燃比感知器的加熱器控制裝置以及空燃比感知器的加熱器控制方法
JP4475256B2 (ja) エンジン制御装置
EP2149692B1 (en) Starting system for an internal combustion engine with two fuels
JP5653889B2 (ja) 内燃機関の始動制御装置
JP2013209952A (ja) 自動二輪車のアイドルストップ制御装置
JP5097667B2 (ja) エンジン制御装置及びエンジン制御方法
JP2007024014A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13812191

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012547670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011846636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011846636

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013004232

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013004232

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130222