WO2011038680A1 - 一种利用透明陶瓷制备led的方法 - Google Patents

一种利用透明陶瓷制备led的方法 Download PDF

Info

Publication number
WO2011038680A1
WO2011038680A1 PCT/CN2010/077458 CN2010077458W WO2011038680A1 WO 2011038680 A1 WO2011038680 A1 WO 2011038680A1 CN 2010077458 W CN2010077458 W CN 2010077458W WO 2011038680 A1 WO2011038680 A1 WO 2011038680A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
transparent ceramic
fluorescent
phosphor
preparing
Prior art date
Application number
PCT/CN2010/077458
Other languages
English (en)
French (fr)
Inventor
雷牧云
李祯
娄载亮
赵艳民
宋庆海
***
Original Assignee
烁光特晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烁光特晶科技有限公司 filed Critical 烁光特晶科技有限公司
Priority to US13/497,824 priority Critical patent/US8932887B2/en
Publication of WO2011038680A1 publication Critical patent/WO2011038680A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to the field of LEDs, and more particularly to a method of fabricating LEDs using transparent ceramics. Background technique
  • the LED preparation technology that uses more LEDs is to package LED chips such as blue or ultraviolet light with a phosphor layer and an epoxy resin shell, and to emit red, orange, yellow, by adjusting the type of the chip, the composition and proportion of the phosphor, Green, blue and other colors and white light.
  • LED packaging materials are epoxy or silicone.
  • the application of phosphors in LEDs is mainly as follows: The phosphor is mixed with the epoxy resin or silicone as a matrix, and then coated on the surface of the LED chip. Finally, an epoxy or silicone material casing is used to encapsulate it.
  • the refractive index of epoxy resin and silicone material is generally less than 1.5, and the refractive index difference with LED chip (refractive index 2-4) is large, which easily leads to total reflection, which seriously affects the brightness of LED, and the price of organic silicon expensive.
  • one way is to mix the phosphor with the epoxy resin or the silicone, and further add 0.1-1% of the inorganic fine powder (such as silica powder) which does not react with it. .
  • This method can obtain a white LED with uniform light color, but there is still a problem that the temperature rises due to the continuous illumination of the blue LED, the wavelength conversion material is degraded, and the light efficiency is not high.
  • the transparent ceramic material of the present invention such as magnesium aluminum spinel (MA), yttrium aluminum garnet (YAG), yttrium oxide, aluminum oxynitride, etc.
  • MA magnesium aluminum spinel
  • YAG yttrium aluminum garnet
  • yttrium oxide aluminum oxynitride, etc.
  • the strength characteristics, its excellent performance can make the device made of it adaptable to the environment, wear resistance and impact resistance.
  • the transparent ceramic material has less surface damage and can maintain high transmittance, making it an ideal packaging optical material. While alumina and other materials can also be used as transparent ceramics, the material of the hexagonal crystal structure determines that the current technology can only be translucent, so the material is difficult to use here.
  • Chinese patent CN100565000C slammed the "method of preparing white LEDs using YAG transparent ceramics".
  • the patent does not encapsulate the LED with a fire-transparent transparent ceramic, but only the rare earth doped YAG ceramic powder is used to coat the LED chip in order to avoid problems such as yellow aperture and blue aperture.
  • the difference between this method and the conventional method is that the rare earth doped YAG transparent ceramic particles are used instead of the phosphor, but the heat dissipation and light uniformity of the LED are not improved.
  • Chinese patent CN100389504C reports "a YAG wafer type white light emitting diode and its packaging method". It converts part of the blue light emitted by the GaN-based inorganic semiconductor LED chip into light of another wavelength band by using a YAG single chip, and then the remaining unconverted blue light emitted by the LED chip is mixed with the light of the ideal wavelength after the single wafer conversion. Produce white light. Utilizing the uniformity of the single wafer itself, obtaining a single, high-quality white light, solving the traditional white LED device technology ⁇ control the dispersion of the phosphor powder in the silicone grease or resin sealant and ultimately leading to the white light of the LED device Uneven technical problems. However, since the growth cycle of the YAG single wafer is long and the cost is high, and the doping of the rare earth element is difficult to control, it is difficult to apply to production. Summary of the invention
  • the object of the present invention is to provide a method for preparing an LED by using a transparent ceramic, which solves the problem that the current LED device has poor uniformity of light emission and poor heat conduction, and replaces the existing LED technology such as a packaged phosphor layer and an epoxy resin case, High reliability of process operation.
  • the present invention provides a method for preparing an LED using a transparent ceramic, which is specifically:
  • the phosphor powder is incorporated in a ratio of 0.01 to 100 wt%;
  • the phosphor in the step 1) includes a yellow phosphor, a red phosphor, and a green One or more of phosphors, orange phosphors, blue phosphors, and purple phosphors are mixed in a set ratio.
  • the material of the transparent ceramic powder in the step 1) is magnesium aluminum spinel, 4 aluminum aluminum garnet, oxidized 4 ethane, aluminum oxynitride, zinc sulfide, zirconium oxide, cerium oxide, strontium ruthenate, oxidation Magnesium, cerium oxide, cerium oxide-zirconium dioxide, gallium arsenide, zinc sulfide, zinc, magnesium fluoride, calcium fluoride, cerium oxide, cerium oxide, cerium oxide.
  • the raw materials are mixed and separated into a wet method and a dry method, and the raw materials after the wet mixing are subjected to a drying treatment.
  • the ceramic preparation process in the step 2) includes vacuum hot pressing, vacuum sintering, pressureless sintering, microwave sintering, SPS or laser sintering.
  • the ceramic preparation process further includes annealing, hot isostatic pressing treatment after sintering treatment. Further, the preliminary treatment in the step 3) includes rough grinding, fine grinding, and polishing.
  • the semiconductor chip in the step 4) comprises a blue LED chip, an ultraviolet LED chip, a green LED chip, a red LED chip or a yellow LED chip, and the semiconductor chip with different illumination colors and the fluorescence of different illumination colors are selected. Powder, which makes it illuminate into a variety of shades.
  • the invention integrates the fluorescent transparent ceramic and the LED chip into a novel LED device by replacing the phosphor layer and the epoxy resin encapsulation casing in the conventional LED with the fluorescent transparent ceramic, and the fluorescent transparent ceramic has the dual function of the package casing and the fluorescent material, so that the The performance of the LED device produced by the method of the present invention is even more excellent.
  • Figure 1 is a photograph of a fluorescent transparent ceramic obtained in Example 2;
  • Fig. 2 is a spectrum diagram of the LED obtained in Example 2. detailed description
  • the invention provides a method for preparing an LED by using a transparent ceramic.
  • an appropriate amount of phosphor powder is added to the transparent ceramic powder for thorough mixing, wherein the phosphor includes a yellow phosphor, a red phosphor, a green phosphor, a blue phosphor, and a purple color.
  • the transparent ceramic powder includes magnesium aluminum spinel, yttrium aluminum garnet, yttria, aluminum oxynitride, zinc sulfide, zirconium oxide, cerium oxide.
  • a known ceramic preparation process such as vacuum hot pressing, true Empty sintering, pressureless sintering, microwave sintering, hot isostatic pressing, SPS or laser sintering, etc., depending on the actual material, annealing, hot isostatic pressing may be performed after sintering to prepare a fluorescent transparent ceramic.
  • the prepared fluorescent transparent ceramic and semiconductor chip are assembled to form an LED device, which replaces the existing phosphor coating process applied to the resin or glass layer.
  • the semiconductor chip comprises a blue LED chip, an ultraviolet LED chip, a green LED chip or a red LED chip, etc., and the luminescent light is mixed into a plurality of color lights by selecting semiconductor chips of different illuminating colors and phosphors of different illuminating colors.
  • Transparent ceramic materials such as MA (magnesium aluminum spinel), YAG (yttrium aluminum garnet), yttrium oxide, etc.
  • MA magnesium aluminum spinel
  • YAG yttrium aluminum garnet
  • yttrium oxide etc.
  • these materials have good corrosion resistance and insulation, high thermal conductivity, high melting point, high hardness, high Excellent strength and excellent light transmission performance, its excellent performance can make the device made of it have strong environmental adaptability, wear resistance and impact resistance. After long-term use, the transparent ceramic material has less surface damage and can remain high. Transmittance is the ideal packaging optical material.
  • the light emitted by the LED chip is used to excite the fluorescent component in the fluorescent transparent ceramic, such as the blue light emitted by the blue LED chip, and the yellow phosphor in the magnesium aluminum spinel fluorescent transparent ceramic is excited to emit yellow of 550-580 nm. Light, the yellow light and the remaining blue light passing through the MA transparent ceramic are mixed into white light.
  • the transparent ceramic powder to be doped with luminescent ions serves as both a luminescent material and a ceramic substrate, and the transparent ceramic prepared by using the powder can be directly used for LED packaging, for example, Ce YAG transparent ceramics and blue light chips are directly used for white LED packaging.
  • the germanium ion content is from 0.01 to . % to 30 a t. %, and the thickness of the ceramic body can be adjusted at the same time according to requirements.
  • the emission wavelength, the required color, color temperature and other requirements, the absorption peak and emission peak of the phosphor are selected to obtain different light output.
  • the type of phosphor can be changed. With different chips, the LEDs produced are not limited to emitting white light, adjusting the proportion of phosphors and the thickness and shape of the ceramics (sheet, lens, etc.) to adjust performance parameters.
  • Fluorescent transparent ceramics replace the phosphor layers and epoxy encapsulants in conventional LEDs, and they are assembled into new LED devices with LED chips.
  • the fluorescent transparent ceramic has a dual identity: 1. a sealed outer casing; 2. a fluorescent material. This new type of LED device will perform better, as shown in the following aspects:
  • Fluorescent conversion materials are uniformly distributed in transparent ceramics, which fully guarantees the uniformity of light emission, and at the same time, accurate control of the doping amount of phosphors and ceramic layers
  • the thickness is accurately controlled, and the parameters such as the color temperature of the LED product are effectively controlled, which greatly improves the consistency of the performance of the LED product.
  • the fluorescent performance of the fluorescent transparent ceramic is superior to that of the fluorescent powder, and the uniformity is improved, so that the luminescent property of the LED device can be improved.
  • Transparent ceramics have high thermal conductivity, which can increase the working current and improve the LED luminous intensity.
  • Transparent ceramics are resistant to high temperatures, chemical corrosion and aging, which improve the stability and service life of LED devices.
  • High light extraction efficiency The refractive index of transparent ceramics is high (1.6-2. 1). Studies have shown that when the refractive index of the packaging material is increased from 1.5 to 1. 7, the light output efficiency can be improved by nearly 30%.
  • Transparent ceramics have good mechanical properties and high chemical stability, which makes the device more resistant to wear and impact. After long-term use, it has less surface damage, maintains high transmittance, and has a long service life. It can be used in many harsh environments, greatly expanding the range of LED use.
  • Example 1 The transparent ceramics described in the present invention are not only related to the above-mentioned several types, but it is easy to understand that other types of transparent ceramics are equally applicable to the present invention.
  • Example 1 The transparent ceramics described in the present invention are not only related to the above-mentioned several types, but it is easy to understand that other types of transparent ceramics are equally applicable to the present invention.
  • a white LED is prepared by using MA (magnesium aluminum spinel) transparent ceramic.
  • Powder preparation 2wt ° /. Ce: YAG (C content 1 at %)
  • the yellow phosphor is added to the MA transparent ceramic powder, thoroughly mixed by wet ball milling, and dried to obtain a fluorescent transparent ceramic powder; if dry preparation is used in the powder preparation process The mixture does not need to be dried, and after it is thoroughly mixed, a fluorescent transparent ceramic powder is obtained.
  • the fluorescent transparent ceramic powder to which the sintering aid is added is subjected to vacuum hot press forming to obtain a fluorescent transparent ceramic sintered body; the above sintered body is annealed in a certain temperature range, and then hot isostatic pressing is performed, and then Rough grinding, fine grinding, polishing, that is, obtaining MA fluorescent transparent ceramics;
  • LED package The prepared MA fluorescent transparent ceramic and blue semiconductor chip are assembled to form an LED device.
  • the blue light emitted by the blue LED chip is used to excite the Ce:YAG phosphor in the fluorescent transparent ceramic to emit yellow light of 550-580 nm, which is mixed with the remaining blue light of the transparent ceramic to form white light.
  • the white light of different correlated color temperature and color rendering index can be generated by adjusting the phosphor chemical composition and doping amount in the fluorescent transparent ceramic and the thickness of the ceramic sheet.
  • the emission wavelength, the required color, color temperature and other requirements, the absorption peak and emission peak of the phosphor are selected to obtain different light output.
  • the type of phosphor can be changed, and with different chips, the LEDs produced are not limited to emitting white light.
  • the preparation process of the fluorescent transparent ceramic in the present invention is not limited to the preparation method of hot press sintering or hot isostatic pressing.
  • Example 2
  • a white LED is prepared by using MA transparent ceramics.
  • Powder preparation 7wt ° /.
  • the commercially available yellow phosphor is added to the MA transparent ceramic powder to be sufficiently mixed to obtain a fluorescent transparent ceramic powder.
  • LED package The prepared MA fluorescent transparent ceramic and blue LED chip are assembled to form an LED device. Achieve white light output.
  • the optical language diagram of the LED device is shown in Figure 2.
  • a three-wavelength white LED is prepared by using MA transparent ceramics.
  • Powder preparation According to the ratio of 0.4 wt%, 2 wt%, 0.2 wt e / ⁇ , commercially available green, yellow, and red phosphors are added to the MA transparent ceramic powder to be fully mixed to obtain fluorescent transparency. Ceramic powder.
  • LED package The prepared MA fluorescent transparent ceramic and blue LED chip are assembled to form an LED device.
  • Powder preparation The red phosphor was added to the MA transparent ceramic powder and mixed well in a ratio of 0.5 wt% to obtain a fluorescent transparent ceramic powder.
  • LED package The prepared MA fluorescent transparent ceramic and ultraviolet LED chip are assembled to form a red LED device.
  • Example 5 The prepared MA fluorescent transparent ceramic and ultraviolet LED chip are assembled to form a red LED device.
  • a white LED is prepared by using Ce: YAG transparent ceramic.
  • Ce YAG transparent ceramics are directly used in LED packaging, and Ce: YAG transparent ceramics and blue LED chips are assembled to form white LED devices.
  • a white LED is prepared by using yttria transparent ceramics.
  • Powder preparation 3wt»/.
  • a commercially available yellow phosphor is added to the cerium oxide transparent ceramic powder to be sufficiently mixed to obtain a fluorescent transparent ceramic powder.
  • the fluorescent transparent ceramic powder to which the sintering aid is added is subjected to vacuum hot press forming to obtain a fluorescent transparent ceramic sintered body; the above sintered body is annealed in a certain temperature range, and then hot isostatic pressing is performed, and then The cerium oxide fluorescent transparent ceramic is obtained by cutting and polishing.
  • LED package The prepared yttria fluorescent transparent ceramic and blue LED chip assembly shape LED device t

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Description

一种利用透明陶瓷制备 LED的方法
技术领域
本发明涉及 LED领域, 尤其是一种利用透明陶瓷制备 LED的方法。 背景技术
目前,使用较多的 LED制备技术是将蓝光或紫外光等 LED芯片与荧光粉 层、 环氧树脂外壳进行封装, 通过调整芯片的种类、 荧光粉的成分和比例, 发出红、 橙、 黄、 绿、 蓝等多种色光以及白色光。
对现有技术而言, LED的组成和结构, 存在一些关键问题急需解决。 当前, 绝大多数 LED的封装材料都是环氧树脂或有机硅。 荧光粉在 LED 中的应用形式主要为: 将荧光粉与作为基质的环氧树脂或有机硅液态下搅 拌混合, 再将其涂覆在 LED 芯片表面。 最后应用环氧树脂或有机硅材料外 壳将其封装。
上述荧光粉应用方法以及封装材料存在一些问题:
( 1 )由于荧光粉与硅胶在液态下机械混合,难免会产生荧光粉的沉降, 且荧光粉的粒径越大沉降越明显。
( 2 ) 由于使用过程中伴随元件温度的升高, 而环氧树脂的软化点很低 ( 55 °C - 95 °C )、 导热性较差, 容易发生 "黄化", 影响透明性, 降低 LED 的性能及寿命。
( 3 ) 由于荧光粉是直接沉积在 LED芯片表面, 出光过程中会产生光的 后向散射, 从而引起光损失 (20%- 30% ), 影响 LED 的性能稳定并缩短其使 用寿命。
( 4 ) 环氧树脂和有机硅材料折射率一般小于 1. 5 , 与 LED芯片 (折射 率 2-4 )的折射率差别较大, 容易导致全反射, 严重影响 LED的亮度, 且有 机娃价格昂贵。
为解决上述技术问题, 一种途径是将荧光粉与环氧树脂或有机硅混合, 另外加入 0. 1-1 0%的且不会与其反应的无机物细粉末(如二氧化硅粉料)。 该方法能够获得光色均一的白光 LED ,但是仍然存在由于蓝光 LED持续点亮 造成温度升高、 波长转换材料发生退化以及光效率不高的问题。
本发明所述透明陶瓷材料, 如镁铝尖晶石 (MA )、 钇铝石榴石 (YAG )、 氧化钇、 氮氧化铝等, 由于该类材料具有立方结构, 所以能够做成透明陶 瓷, 而且具有良好的耐腐蚀性和绝缘性、 高热导率、 高熔点、 高硬度、 高 强度的特点, 其优异的性能可使由其制成的器件环境适应性强, 耐磨损、 抗冲击。 经过长时间使用, 透明陶瓷材料表面损伤少, 仍可保持高透过率, 是理想的封装光学材料。 而氧化铝等材料虽然也能做透明陶瓷, 但由于自 身的六方晶体结构决定了当前技术只能做到半透明, 所以该材料 4艮难用在 此处。
中国专利 CN100565000C 艮道了 "利用 YAG透明陶瓷制备白光 LED的方 法"。 但该专利并没有利用烧制成型的透明陶瓷对 LED进行封装, 而只是应 用稀土掺杂的 YAG陶瓷粉体对 LED芯片进行涂覆, 以期避免黄色光圏、 蓝 色光圈等问题。 该方法与传统方法的区别仅仅是用稀土掺杂的 YAG透明陶 瓷颗粒代替了荧光粉, 但并没有改善 LED的散热、 出光均匀性等。
中国专利 CN100389504C报道了 "一种 YAG晶片式白光发光二极管及其 封装方法"。 其利用 YAG单晶片将 GaN基无机半导体 LED芯片发出的部分蓝 光转换为另外一种或多种波段的光, 然后 LED 芯片发出的剩余未被转换的 蓝光与单晶片转换后的理想波段的光混合产生白光。 利用单晶片自身具有 的均匀性, 获得专一、 高质量白光, 解决了传统白光 LED 器件技术 ^^控 制荧光体粉末在硅脂类或树脂类密封胶中的分散性而最终导致 LED 器件的 白光不均匀的技术问题。 但由于 YAG单晶片的生长周期较长、 成本高, 而 且稀土元素的掺杂不易控制, 所以较难应用于生产。 发明内容
本发明的目的在于提供一种利用透明陶瓷制备 LED 的方法, 其解决了 当前 LED 器件出光均匀性差、 导热不好的问题, 替代了封装荧光粉层和环 氧树脂外壳等现有 LED技术, 具有工艺操作可靠性高等优点。
为实现上述目的, 本发明提供一种利用透明陶瓷制备 LED 的方法, 具 体为:
1 ) 将设定量的荧光粉加入到透明陶瓷粉体中, 荧光粉的掺入比例为 0. 01到 100wt%;
2 ) 将上述原料充分混合后, 采用公知的陶瓷制备工艺制备出荧光透 明陶瓷;
3 ) 将得到的荧光透明陶瓷进行切割和前期处理, 将其加工成器件所 需的形状及尺寸;
4 ) 将加工后的荧光透明陶瓷和半导体芯片组装形成 LED器件。
进一步, 所述步驟 1 ) 中的荧光粉包括黄色荧光粉、 红色荧光粉、 绿色 荧光粉、 橙色荧光粉、 蓝色荧光粉、 紫色荧光粉中的一种、 或多种按设定 比例混合而成。
进一步, 所述步骤 1 )中透明陶瓷粉体的材质为镁铝尖晶石、 4乙铝石榴 石、 氧化 4乙、 氮氧化铝、 硫化锌、 氧化锆、 氧化镧钇、 铪酸锶、 氧化镁、 氧化铍、 氧化钇 -二氧化锆、 砷化镓、 硫化锌、 化锌、 氟化镁、 氟化钙、 氧化钪、 氧化镥、 氧化钆中的一种。
进一步, 所述步骤 2 )中原料混合分湿法和干法, 湿法混合后的原料需 进行干燥处理。
进一步, 所述步骤 2 ) 中的陶瓷制备工艺包括真空热压、 真空烧结、 无 压烧结、 微波烧结、 SPS或激光烧结。
进一步, 所述陶瓷制备工艺还包括烧结处理后的退火、 热等静压处理。 进一步, 所述步骤 3 ) 中的前期处理包括粗磨、 细磨、 抛光。
进一步, 所述步骤 4 ) 中的半导体芯片包括蓝光 LED芯片、 紫外光 LED 芯片、 绿光 LED芯片、 红光 LED芯片或黄光 LED芯片, 通过选择不同发光颜 色的半导体芯片与不同发光颜色的荧光粉, 使其发光混合成多种色光。
本发明通过用荧光透明陶瓷取代传统 LED 中的荧光粉层和环氧树脂封 装外壳, 将荧光透明陶瓷和 LED芯片组装成新型 LED器件, 荧光透明陶瓷 具有封装外壳和荧光材料的双重作用, 使得通过本发明方法制作的 LED 器 件性能会更加优异。 附图说明
图 1为实施例 2得到荧光透明陶瓷照片;
图 2为实施例 2中得到 LED的光譜图。 具体实施方式
本发明一种利用透明陶瓷制备 LED 的方法, 首先将适量荧光粉加入到 透明陶瓷粉体中进行充分混合, 其中荧光粉包括黄色荧光粉、 红色荧光粉、 绿色荧光粉、 蓝色荧光粉、 紫色荧光粉中的一种、 或多种按设定比例混合 而成, 透明陶瓷粉体包括镁铝尖晶石、 钇铝石榴石、 氧化钇、 氮氧化铝、 硫化锌、 氧化锆、 氧化镧钇、 铪酸锶、 氧化镁、 氧化铍、 氧化钇 -二氧化锆、 砷化镓、 硫化锌、 化锌、 氟化镁、 氟化钙、 氧化钪、 氧化镥、 氧化钆等, 并且荧光粉的掺入比例为 0. 01到 100wt%。
将上述原料充分混合后, 采用公知的陶瓷制备工艺, 如真空热压、 真 空烧结、 无压烧结、 微波烧结、 热等静压、 SPS或激光烧结等, 还可根据实 际材料的情况, 选择在烧结后进行退火、 热等静压处理, 以制备出荧光透 明陶瓷。 将制备出的荧光透明陶瓷和半导体芯片组装形成 LED 器件, 取代 现有的荧光粉涂覆到树酯或玻璃层的封装工艺。
半导体芯片包括蓝光 LED芯片、 紫外光 LED芯片、绿光 LED芯片或红光 LED 芯片等, 通过选择不同发光颜色的半导体芯片与不同发光颜色的荧光 粉, 使其发光混合成多种色光。
透明陶瓷材料, 如 MA (镁铝尖晶石)、 YAG (钇铝石榴石)、 氧化钇等, 该类材料具有良好的耐腐蚀性和绝缘性, 高热导率、 高熔点、 高硬度、 高 强度、 以及透光性能优良的特点, 其优异的性能可使由其制成的器件环境 适应性强, 耐磨损、 抗冲击, 经过长时间使用, 透明陶瓷材料表面损伤少, 仍可保持高透过率, 是理想的封装光学材料。
本发明中利用 LED 芯片发出的光激发荧光透明陶瓷中的荧光成分, 如 利用蓝光 LED 芯片发出的蓝光, 激发镁铝尖晶石荧光透明陶瓷中的黄色荧 光粉, 使其发射 550-580nm的黄光, 该黄光和通过 MA透明陶瓷的剩余蓝光 混合成白光。
当荧光粉的掺入比例为 100%时, 即将掺杂发光离子的透明陶瓷粉既作 为发光物质, 又充当陶瓷基体, 可将此粉体制备出的透明陶瓷直接用于 LED 封装, 例如将 Ce: YAG透明陶瓷与蓝光芯片直接用于白光 LED封装, 此时, 铈离子含量从 0. 01 a t . %到 30 a t. % , 使用时根据要求可同时调节陶瓷体的 厚度。
可根据芯片的功率、 发射波长、 所需的色品、 色温等要求, 选取荧光 粉的吸收峰值和发射峰值, 得到不同出光。
可以改变荧光粉的种类, 配合不同的芯片, 制成的 LED 不局限于发射 白光, 调节荧光粉的比例和制成陶瓷的厚度以及形状 (片式、 透镜式等) 调节性能参数。
用荧光透明陶瓷取代传统 LED 中的荧光粉层和环氧树脂封装外壳 , 它 和 LED芯片组装成新型 LED器件。 这里荧光透明陶瓷具有双重身份: 1.封 装外壳; 2.荧光材料。 这种新型的 LED 器件性能会更加优异, 具体表现在 如下方面:
( 1 )作为荧光转换材料:
具有均勾性、 一致性好的优点: 荧光转换物质在透明陶瓷中均勾分布, 充分保证了出光的均匀性, 同时, 通过荧光粉掺杂量的准确控制和陶瓷层 的厚度精确控制, 有效控制 LED产品色温等参数, 极大提高 LED产品性能 的一致性。 荧光透明陶瓷的荧光性能比荧光粉的更加优异, 提高了均匀性, 因而可以提高 LED器件的发光性能。
导热性好: 透明陶瓷热导率较高, 可提高工作电流, 提高 LED发光强 度。
( 2 )作为外壳:
性能稳定、 使用寿命长: 透明陶瓷与有机材料相比耐高温、 耐化学腐 蚀、 不易老化, 可提高 LED器件的稳定性和使用寿命。
出光效率高: 透明陶瓷的折射率高 (1. 6-2. 1 ), 研究表明当封装材料 的折射率从 1. 5 提升至 1. 7 时, 光输出效率可提升近 30%。
环境适应性强, 使用范围宽: 透明陶瓷力学性能好、 化学稳定性高, 使器件更耐磨损、 抗冲击, 经过长时间使用, 表面损伤少, 保持高透过率, 使用寿命长, 并且可以在许多恶劣环境下使用, 极大的拓宽了 LED 的使用 范围。
本发明所描述的透明陶瓷不仅仅涉及上述提出的几种, 专业认识很容 易理解其他种类的透明陶瓷同样适用于本发明。 实施例 1 :
以利用 MA (镁铝尖晶石)透明陶瓷制备白光 LED为例。
1 )粉体制备: 将 2wt°/。的 Ce: YAG ( Ce含量 1 a t % ) 黄色荧光粉加入到 MA透明陶瓷粉体中, 通过湿法球磨充分混合, 干燥后获得荧光透明陶瓷粉 体; 在粉体制备过程中如果采用干法制备混合物, 就不需要经过干燥处理, 将其充分混合后即得到荧光透明陶瓷粉体。
2 ) 成型过程: 将添加助烧剂的荧光透明陶瓷粉体进行真空热压成型, 得到荧光透明陶瓷烧结体; 将以上烧结体在一定温度范围内退火处理, 之 后实施热等静压, 然后进行粗磨、 细磨、 抛光, 即得到 MA荧光透明陶瓷;
3 ) LED封装: 将制备出的 MA荧光透明陶瓷和蓝光半导体芯片组装形成 LED器件。
电光源测试结果:
色品坐标: x=0. 346, y=0. 353
色温: Tc=316 3 K
显色指数: Ra= 72
光效率: η = 66. 8 lm/ 利用蓝光 LED芯片发出的蓝光,激发荧光透明陶瓷中的 Ce: YAG荧光粉, 使其发射 550― 580nm的黄光, 该黄光和通过透明陶瓷的剩余蓝光混合成白 光。 可通过调节荧光透明陶瓷中的荧光粉化学成分和掺杂量以及陶瓷片的 厚度, 用以产生不同相关色温和显色指数的白光。
可根据芯片的功率、 发射波长、 所需的色品、 色温等要求, 选取荧光 粉的吸收峰值和发射峰值, 得到不同的出光。
可以改变荧光粉的种类, 配合不同的芯片, 制成的 LED 不局限于发射 白光。
本发明中的荧光透明陶瓷制备工艺不限于热压烧结、 热等静压的制备 方法。 实施例 2
以利用 MA透明陶瓷制备白光 LED为例。
1 )粉体制备: 将 7wt°/。的市售黄色荧光粉加入到 MA透明陶瓷粉体中充 分混合, 获得荧光透明陶瓷粉体。
2 ) 成型过程: 将添加助烧剂的荧光透明陶瓷粉体进行真空热压成型, 得到荧光透明陶瓷烧结体; 将以上烧结体在一定温度范围内退火处理, 之 后实施热等静压, 然后进行切割及抛光处理, 即得到 MA荧光透明陶瓷, 如 图 1所示。
3 ) LED封装: 将制备出的 MA荧光透明陶瓷和蓝光 LED芯片组装形成 LED器件。 实现白光输出。 得到 LED器件的光语图如图 2所示
电光源测试结果:
色品坐标: x=0. 269, y=0. 258
相关色温: Tc=7949
显色指数: Ra= 73. 1
光效率: η = 60. 4 lm/W 实施例 3
以利用 MA透明陶瓷制备三波长白光 LED为例。
1 )粉体制备: 按 0. 4 wt%、 2 wt%、 0. 2 wte/^ 比例, 将市售绿色、 黄 色、 红色荧光粉加入到 MA透明陶瓷粉体中充分混合, 获得荧光透明陶瓷粉 体。
2 ) 成型过程: 将添加助烧剂的荧光透明陶瓷粉体进行真空热压成型, 得到荧光透明陶瓷烧结体, 将以上烧结体在一定温度范围内退火处理, 之 后实施热等静压, 然后进行切割及抛光处理, 即得到 MA荧光透明陶瓷。
3 ) LED封装: 将制备出的 MA荧光透明陶瓷和蓝光 LED芯片组装形成 LED器件。 实施例 4
以利用 MA透明陶瓷制备红色 LED为例。
1 )粉体制备: 按 0. 5wt%的比例, 将红色荧光粉加入到 MA透明陶瓷粉 体中充分混合, 获得荧光透明陶瓷粉体。
2 ) 成型过程: 将添加助烧剂的荧光透明陶瓷粉体进行真空热压成型, 得到荧光透明陶瓷烧结体, 之后实施热等静压, 然后进行切割及抛光处理, 即得到 MA荧光透明陶瓷。
3 ) LED封装: 将制备出的 MA荧光透明陶瓷和紫外 LED芯片组装形成红色 LED器件。 实施例 5
以利用 Ce: YAG透明陶瓷制备白光 LED为例。
将含铈元素 0. la t»/。的 Ce: YAG透明陶瓷直接用于 LED封装, Ce: YAG透 明陶瓷与蓝光 LED芯片组装形成白光 LED器件。
电光源测试:
色品坐标: x=0. 339, y=0. 325
色温: Tc=5179 K
显色指数: Ra=73
光效率: η = 30 lm/W 实施例 6
以利用氧化钇透明陶瓷制备白光 LED为例。
1 )粉体制备: 将 3wt»/。市售黄色荧光粉加入到氧化钇透明陶瓷粉体中充 分混合, 获得荧光透明陶瓷粉体。
2 ) 成型过程: 将添加助烧剂的荧光透明陶瓷粉体进行真空热压成型, 得到荧光透明陶瓷烧结体; 将以上烧结体在一定温度范围内退火处理, 之 后实施热等静压, 然后进行切割及抛光处理, 即得到氧化钇荧光透明陶瓷。
3 ) LED封装: 将制备出的氧化钇荧光透明陶瓷和蓝光 LED芯片组装形 成 LED器件 t

Claims

权利 要求 、 一种利用透明陶瓷制备 LED的方法, 其特征在于, 该方法具体为:
1 ) 将设定量的荧光粉加入到透明陶瓷粉体中 , 荧光粉的掺入比例为 0. 01到 100wt%;
2 ) 将上述原料充分混合后, 釆用公知的陶瓷制备工艺制备出荧光透 明陶瓷;
3 ) 将得到的荧光透明陶瓷进行切割和前期处理, 将其加工成器件所 需的形状及尺寸;
4 ) 将加工后的荧光透明陶瓷和半导体芯片组装形成 LED器件。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 1 ) 中的荧光粉包括黄色荧光粉、 红色荧光粉、 绿色荧光粉、 橙 色荧光粉、 蓝色荧光粉、 紫色荧光粉中的一种、 或多种按设定比例混 合而成。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 1 )中透明陶瓷粉体的材质为镁铝尖晶石、钇铝石榴石、氧化钇、 氮氧化铝、 硫化锌、 氧化锆、 氧化镧钇、 铪酸锶、 氧化镁、 氧化铍、 氧化钇 -二氧化锆、 砷化镓、 硫化锌、 化锌、 氟化镁、 氟化钙、 氧化 钪、 氧化镥、 氧化札中的一种。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 2 )中原料混合分湿法和干法, 湿法混合后的原料需进行干燥处 理。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 2 ) 中的陶瓷制备工艺包括真空热压、 真空烧结、 无压烧结、 微 波烧结、 SPS或激光烧结。
、 如权利要求 5所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述陶瓷制备工艺还包括烧结处理后的退火、 热等静压处理。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 3 ) 中的前期处理包括粗磨、 细磨、 抛光。
、 如权利要求 1所述的利用透明陶瓷制备 LED的方法, 其特征在于, 所 述步骤 4 ) 中的半导体芯片包括蓝光 LED芯片、 紫外光 LED芯片、 绿光 LED芯片、 红光 LED芯片或黄光 LED芯片 , 通过选择不同发光颜色的半 导体芯片与不同发光颜色的荧光粉, 使其发光混合成多种色光。
PCT/CN2010/077458 2009-09-30 2010-09-29 一种利用透明陶瓷制备led的方法 WO2011038680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/497,824 US8932887B2 (en) 2009-09-30 2010-09-29 Method for manufacturing LED with transparent ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910235312.XA CN101697367B (zh) 2009-09-30 2009-09-30 一种利用透明陶瓷制备led的方法
CN200910235312.X 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011038680A1 true WO2011038680A1 (zh) 2011-04-07

Family

ID=42142461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077458 WO2011038680A1 (zh) 2009-09-30 2010-09-29 一种利用透明陶瓷制备led的方法

Country Status (3)

Country Link
US (1) US8932887B2 (zh)
CN (1) CN101697367B (zh)
WO (1) WO2011038680A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143645A1 (de) * 2012-03-29 2013-10-03 Merck Patent Gmbh Kompositkeramik, die einen konversionsleuchtstoff und ein mit einem negativen thermischen ausdehnungskoeffizienten material enthält
EP4120029A1 (fr) * 2021-07-16 2023-01-18 Omega SA Dispositif de dewar comprenant un élément d'habillage transparent

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697367B (zh) * 2009-09-30 2014-04-02 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN102130108A (zh) * 2010-12-14 2011-07-20 黄金鹿 一种透明陶瓷封装的led光源
CN102153348A (zh) * 2010-12-14 2011-08-17 黄金鹿 一种荧光粉和透明陶瓷共烧结的工艺方法
CN102324424A (zh) * 2011-09-22 2012-01-18 华南师范大学 一种荧光透明陶瓷透镜封装的白光led
US9134595B2 (en) 2011-09-29 2015-09-15 Casio Computer Co., Ltd. Phosphor device, illumination apparatus and projector apparatus
JP5862677B2 (ja) * 2011-11-17 2016-02-16 株式会社ニコン CaF2系透光性セラミックスおよびその製造方法
CN103319095B (zh) * 2012-03-19 2016-09-21 中山大学 低温玻璃荧光体及其制法
CN102718492A (zh) * 2012-05-21 2012-10-10 苏州晶品光电科技有限公司 一种led用透明陶瓷荧光基板的制备方法
CN102723424B (zh) * 2012-05-25 2015-01-21 苏州晶品光电科技有限公司 一种led用荧光薄片的制备方法
CN102832328B (zh) * 2012-07-19 2016-02-17 中国科学院福建物质结构研究所 一种白光led及其制备方法
CN103258938B (zh) * 2013-05-03 2016-04-13 杭州耀迪科技有限公司 一种含荧光粉的导热led灯条封装基板的制作方法
JP2015088636A (ja) 2013-10-31 2015-05-07 セイコーエプソン株式会社 蛍光発光素子、光源装置、およびプロジェクター
JP6715773B2 (ja) * 2014-02-27 2020-07-01 ルミレッズ ホールディング ベーフェー 波長変換発光デバイスを形成する方法
US11111433B2 (en) 2014-03-06 2021-09-07 National University Corporation Yokohama National University Transparent fluorescent sialon ceramic and method of producing same
CN103855260A (zh) * 2014-03-20 2014-06-11 杭州耀迪科技有限公司 一种高散热高透光led照明用光转换器件的制作方法
CN103956421A (zh) * 2014-04-22 2014-07-30 中国科学院上海光学精密机械研究所 基于透明荧光陶瓷的led灯
CN105439561A (zh) * 2014-08-14 2016-03-30 清华大学 一种硫氧化钆闪烁陶瓷制备方法
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
CN105895777A (zh) * 2014-11-21 2016-08-24 黄波 一种led集成光源封装方法及led集成光源
CN104505449A (zh) * 2014-12-16 2015-04-08 福建中科芯源光电科技有限公司 一种大功率白光led及其封装方法
CN104529453B (zh) * 2014-12-18 2016-09-14 徐州和光照明科技有限公司 一种ZnS透明陶瓷的制备方法
CN105805699B (zh) * 2014-12-30 2019-01-08 深圳市光峰光电技术有限公司 波长转换装置的制备方法
CN107200588B (zh) * 2016-03-18 2020-10-20 深圳光峰科技股份有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746B (zh) * 2016-04-12 2020-07-07 深圳光峰科技股份有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN105742420A (zh) * 2016-04-13 2016-07-06 厦门大学 一种用发光片降低已制成的冷白光led色温的方法
CN105884368A (zh) * 2016-04-13 2016-08-24 厦门大学 一种氮化物发光陶瓷及其制备方法
CN105826457B (zh) * 2016-05-18 2018-01-09 中国人民大学 用于照明或显示的激光白光发光装置
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN106565219A (zh) * 2016-11-07 2017-04-19 安徽中威光电材料有限公司 一种大功率led用掺杂氟化镁的、可荧光陶瓷基座及其制备方法
CN107046090B (zh) * 2017-03-31 2023-04-21 华南理工大学 一种基于真空吸附的图形化远程荧光片制备方法
CN107195743B (zh) * 2017-05-19 2023-05-16 广东工业大学 一种紫外led倒装芯片
CN107266046A (zh) * 2017-06-26 2017-10-20 江门市凯昌科技发展有限公司 一种氧化铝荧光陶瓷片及其制备方法和应用
CN109896843A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于激光照明的复相陶瓷阵列、制备方法及光源装置
CN108002426B (zh) * 2018-01-05 2019-12-10 昆明凯航光电科技有限公司 一种提高热压硫化锌透过率的方法
CN110386820B (zh) * 2018-04-19 2021-02-26 深圳光峰科技股份有限公司 一种氮氧化铝基体的荧光陶瓷及其制备方法
CN108753296B (zh) * 2018-07-19 2020-05-22 东北大学 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
JP7260740B2 (ja) * 2018-12-07 2023-04-19 日亜化学工業株式会社 セラミックス複合体、それを用いた発光装置及びセラミックス複合体の製造方法
CN111286329B (zh) * 2018-12-07 2023-08-08 上海航空电器有限公司 铈离子掺杂YAG与铬离子掺杂LuAG混晶材料及其制备方法
CN109437860A (zh) * 2018-12-10 2019-03-08 江苏师范大学 一种白光led用黄色复相荧光陶瓷及其制备方法
CN113135737A (zh) * 2020-01-17 2021-07-20 中国科学院福建物质结构研究所 一种装载荧光粉的透明陶瓷材料及其制备方法与应用
WO2021248445A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种透明复相荧光陶瓷及其制备方法
WO2021248446A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种纳米倍半氧化物荧光陶瓷及其制备方法
CN112110729A (zh) * 2020-09-15 2020-12-22 湖州市汉新科技有限公司 高热导荧光陶瓷、制备方法及在led或激光照明中应用
CN112266239B (zh) * 2020-10-19 2022-11-25 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN114477989B (zh) * 2020-11-11 2023-05-16 中国科学院福建物质结构研究所 一种石墨烯改性的绿光透明陶瓷材料及其制备方法和应用
CN112760092B (zh) * 2020-12-31 2022-08-16 东华大学 一种基于氧吸附硫空位荧光发射的ZnS基固溶体荧光材料及其制备方法和应用
US11994646B2 (en) * 2021-03-12 2024-05-28 Baker Hughes Oilfield Operations Llc Garnet scintillator compositions for downhole oil and gas explorations
CN112979162A (zh) * 2021-04-26 2021-06-18 烟台布莱特光电材料有限公司 一种汽车照明用Ra大于80的玻璃陶瓷荧光片的制备方法
CN114044668A (zh) * 2021-12-22 2022-02-15 江苏铁锚玻璃股份有限公司 掺铈钇铝石榴石透明陶瓷原料及制备方法
CN114479859B (zh) * 2022-01-05 2023-08-15 浙江大学 一种多色可调锗酸盐荧光玻璃陶瓷及其制备方法
CN114940901A (zh) * 2022-07-05 2022-08-26 兰州大学 一种黄色复合荧光颜料及其制备方法
CN115180948B (zh) * 2022-07-12 2023-08-18 江苏师范大学 一种激光照明用高光效复相荧光陶瓷及其制备方法
CN116462510A (zh) * 2023-04-10 2023-07-21 东华大学 一种氟化钙基荧光陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200916557A (en) * 2007-09-03 2009-04-16 Showa Denko Kk Phosphor, production method thereof, and light-emitting apparatus using phosphor
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777235B2 (en) * 2003-05-05 2010-08-17 Lighting Science Group Corporation Light emitting diodes with improved light collimation
JP5490407B2 (ja) * 2005-03-14 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ 多結晶セラミック構造の蛍光体、及び前記蛍光体を有する発光素子
US8159126B2 (en) * 2005-11-07 2012-04-17 Koninklijke Philips Electronics N.V. Light emitting device with an improved CaAlSiN light converting material
CN101017815A (zh) * 2006-02-06 2007-08-15 亿光电子工业股份有限公司 二合一发光二极管封装结构
US20090284948A1 (en) * 2006-07-05 2009-11-19 Ube Industries, Ltd., A Corporation Of Japan Sialon-based oxynitride phosphor and production method thereof
US20100012964A1 (en) * 2006-11-10 2010-01-21 Koninklijke Philips Electronics N.V. Illumination system comprising monolithic ceramic luminescence converter
CN101123289A (zh) * 2007-09-05 2008-02-13 昌鑫光电(东莞)有限公司 双向发光散热的发光二极管
US7963817B2 (en) * 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US7888691B2 (en) * 2008-08-29 2011-02-15 Koninklijke Philips Electronics N.V. Light source including a wavelength-converted semiconductor light emitting device and a filter
CN102130274A (zh) * 2010-12-14 2011-07-20 黄金鹿 一种透明荧光陶瓷封装的白光led光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
TW200916557A (en) * 2007-09-03 2009-04-16 Showa Denko Kk Phosphor, production method thereof, and light-emitting apparatus using phosphor
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143645A1 (de) * 2012-03-29 2013-10-03 Merck Patent Gmbh Kompositkeramik, die einen konversionsleuchtstoff und ein mit einem negativen thermischen ausdehnungskoeffizienten material enthält
US9567519B2 (en) 2012-03-29 2017-02-14 Merck Patent Gmbh Composite ceramic which comprises a conversion phosphor and a material having a negative coefficient of thermal expansion
EP4120029A1 (fr) * 2021-07-16 2023-01-18 Omega SA Dispositif de dewar comprenant un élément d'habillage transparent

Also Published As

Publication number Publication date
CN101697367B (zh) 2014-04-02
CN101697367A (zh) 2010-04-21
US20120178193A1 (en) 2012-07-12
US8932887B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
WO2011038680A1 (zh) 一种利用透明陶瓷制备led的方法
Yang et al. Designed glass frames full color in white light-emitting diodes and laser diodes lighting
Liu et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices
EP2075288B1 (en) Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
CN106479500B (zh) 一种发光玻璃陶瓷及其制法与在led照明器件中的应用
CN104609848B (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN111574062B (zh) 一种氮化物红光玻璃及其应用
TWI576410B (zh) 矽酸鹽磷光體
CN106800371B (zh) 一种高导热系数硼硅酸盐荧光玻璃材料及其制备方法
CN104177079B (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
JP2017501264A (ja) Eu2+活性化蛍光体
JP5232783B2 (ja) 一種の珪素を含む蛍光粉及びその製造方法並びにそれを用いた発光器具
CN107892487A (zh) 一种基于低熔点硼硅酸盐玻璃粉的远程荧光片的制备方法
CN113249125B (zh) Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用
CN107602109A (zh) 一种Cr3+掺杂富铝镁铝尖晶石荧光透明陶瓷及其制备方法
CN103043908A (zh) 一种新型荧光玻璃及其制备方法
CN114920455B (zh) LED用(BaSr)2SiO4:Eu2+荧光玻璃及复合荧光玻璃的制备和应用
CN106986626B (zh) 一种羟基磷灰石基荧光陶瓷材料及其制备方法
CN114772926A (zh) 一种白光LED用色温可调谐的Ce/Eu掺杂硅酸盐发光玻璃
TW201302986A (zh) 螢光層及其製造方法與用途
CN108314332A (zh) 一种远红光型荧光玻璃陶瓷、其制备方法和植物灯
KR101593582B1 (ko) 양자점이 형성된 색변환용 유리 복합체, 이의 제조방법 및 백색광 led 소자
CN107098582B (zh) 一种热稳定性高的硼酸盐基质led用白光发光玻璃及其制备方法
Weng et al. Color tunable white LEDs based on low sintering temperature Phosphor− in− Glass
CN114574206B (zh) 一种可用于白色发光二极管的荧光粉及其合成方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497824

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10819909

Country of ref document: EP

Kind code of ref document: A1