WO2008059712A1 - Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d'élément optique - Google Patents

Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d'élément optique Download PDF

Info

Publication number
WO2008059712A1
WO2008059712A1 PCT/JP2007/071108 JP2007071108W WO2008059712A1 WO 2008059712 A1 WO2008059712 A1 WO 2008059712A1 JP 2007071108 W JP2007071108 W JP 2007071108W WO 2008059712 A1 WO2008059712 A1 WO 2008059712A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
antireflection layer
basic
resin
transfer
Prior art date
Application number
PCT/JP2007/071108
Other languages
English (en)
French (fr)
Inventor
Renzaburo Miki
Kazuya Ikuta
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008059712A1 publication Critical patent/WO2008059712A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates

Definitions

  • the present invention relates to an optical element made of synthetic resin on which an antireflection layer is formed, a transfer mold for manufacturing such an optical element, a transfer mold manufacturing method for manufacturing such a transfer mold, and The present invention relates to an optical element manufacturing method for manufacturing such an optical element.
  • a thin film of silicon oxide (SiOx) is provided to prevent reflection on the surface of the optical lens.
  • a thin film of a high refractive index material such as titanium oxide (TiO 2), zirconium oxide (ZrO 2), calcium oxide (CaO 2), tantalum oxide (Ta 2 O 3), or a thin film of a low refractive index material such as a silicon oxide (SiO 2). It has been proposed to provide a multilayer antireflection layer in which and are laminated alternately.
  • a quarter-wave film (hereinafter referred to as a ⁇ / 4 film) made of SiO having a refractive index n of 1.55 or more and a thickness force of 9 nm or less is deposited on the surface of an acrylic lens.
  • a two-layer antireflection layer is proposed in which a film of refractive index n of 1.38 // 4 film made of magnesium fluoride (MgF) is laminated thereon (see, for example, Patent Document 1). .
  • FIG. 9 is a cross-sectional view showing a state of an antireflection layer of an optical component according to an improved conventional example. In order to make the drawing easy to see, hatching is omitted in some cross sections.
  • the synthetic resin lens 130 which is an optical component (optical element), has a high chemical resistance and high adhesion to the synthetic resin.
  • SiOx (2) It is proposed to use a thin film composed mainly of x> l) as the undercoat 131 which does not participate in antireflection properties. This improves the wear resistance of the antireflection multilayer film 132 and improves the chemical resistance and adhesion to the synthetic resin lens 130 (see, for example, Patent Document 4).
  • This synthetic resin lens 130 has sufficiently improved wear resistance and chemical resistance by making the film thickness of the undercoat 131 not less than 200 nm and not more than 300 nm. It also improves durability in harsh environments, making it difficult for cracks and delamination of the antireflection multilayer film 132 to occur.
  • the antireflection multilayer film 132 includes a first antireflection layer 132a made of a high refractive index material, a second antireflection layer 132b made of a low refractive index material, and a third antireflection layer made of a high refractive index material. 132c, and a fourth antireflection layer 1 32d made of a low refractive index material.
  • an optical element using a synthetic resin optical material having heat resistance so as to be compatible with a batch reflow mounting process of a mopile apparatus for an optical element made of a synthetic resin used in the field of mopile equipment in recent years Is desired.
  • the synthetic resin optical material with heat resistance has a larger linear expansion coefficient than the conventional synthetic resin optical material, and the environment for performing the material reflow mounting process. Since the temperature can be as high as 250 to 270 ° C, even if an undercoat (underlayer) based on the technique described in Patent Document 4 is provided, deformation of the antireflection layer (cracks, film peeling, etc.) will occur. There's a problem.
  • Patent Document 1 JP-A-60-98401
  • Patent Document 2 JP-A-60-225101
  • Patent Document 3 Japanese Patent Laid-Open No. 3-116101
  • Patent Document 4 JP-A-6-273601
  • the present invention has been made in view of such a situation, and has a highly reliable optical technology that can suppress deformation of the antireflection layer by providing an antireflection layer divided on the surface of the basic resin portion.
  • An object is to provide an element.
  • the present invention includes a basic resin portion and a fine protrusion by providing a basic transfer portion that resin-molds the basic resin portion and a projection transfer groove that resin-molds the fine protrusion that divides the antireflection layer. It is an object of the present invention to provide a transfer mold that can be molded simultaneously with resin and can manufacture high-precision optical elements with high productivity and low cost.
  • the present invention provides a basic transfer portion forming step for forming a basic transfer portion for resin-molding the basic resin portion, and forming a protrusion transfer groove for resin-molding a fine protrusion portion by patterning the surface of the basic transfer portion.
  • the present invention has an object to provide a transfer mold manufacturing method capable of easily and inexpensively manufacturing a high-precision transfer mold by forming a protrusion transfer groove easily and with high accuracy. To do.
  • the present invention further includes a resin molding step of resin-molding the basic resin portion and the fine protrusions, and an antireflection layer laminating step of laminating an antireflection layer on the surface of the basic resin portion.
  • the antireflection layer can be accurately laminated by forming the part and the fine protrusion at the same time,
  • An object of the present invention is to provide an optical element manufacturing method capable of manufacturing an optical element having excellent optical characteristics with high accuracy and high productivity.
  • the optical element according to the present invention is an optical element made of a synthetic resin in which an antireflection layer is formed on the surface of a basic resin portion formed by resin molding, and the antireflection layer is formed of an inorganic substance. And is divided.
  • the antireflection layer is divided by fine protrusions protruding from the surface of the basic resin part.
  • the expansion direction of the fine protrusions faces the expansion in the in-plane direction of the antireflection layer in a high-temperature environment, so that a compressive force is generated in the in-plane direction of the antireflection layer. It becomes possible to suppress deformation of the antireflection layer.
  • the cross-sectional shape of the fine protrusion in the direction intersecting the length direction of the fine protrusion is any of a semicircle, a triangle, and a trapezoid. It is characterized by being.
  • the bottom width of the cross section is smaller than 2 ⁇ 111, and the height of the cross section is smaller than 2 m.
  • the fine protrusions are arranged symmetrically with respect to the optical axis of the basic resin part.
  • the dividing lines can be arranged symmetrically with respect to the optical axis, so that it is possible to evenly relieve internal stress and to suppress deformation of the antireflection layer evenly and reliably. It becomes possible.
  • the fine protrusions are arranged concentrically and radially with respect to the optical axis of the basic resin part.
  • the fine protrusions are arranged in an outer peripheral region of the basic resin part away from the optical axis.
  • the antireflection layer is a low refractive index layer made of a material having a refractive index lower than that of the basic resin portion.
  • the antireflection layer includes a low refractive index layer made of a material having a refractive index lower than that of the basic resin portion, and a refractive index of the basic resin portion. Further, it is characterized by a laminated structure in which high refractive index layers made of a material having a high refractive index are laminated.
  • an underlayer mainly composed of a key oxide is formed between the antireflection layer and the surface of the basic resin portion.
  • the adhesion of the antireflection layer to the basic resin portion can be improved, and the chemical resistance and abrasion resistance of the optical element can be improved, so that the optical characteristics do not deteriorate.
  • the optical element can be made high.
  • the transfer mold according to the present invention resin-molds an optical element including an antireflection layer separated by fine protrusions formed on the surface of a basic resin portion formed by resin molding.
  • a transfer mold comprising: a basic transfer portion for resin-molding the basic resin portion; and a protrusion transfer groove for resin-molding the fine protrusion portion.
  • the transfer mold manufacturing method according to the present invention also includes a transfer molding of an optical element having an antireflection layer separated by fine protrusions formed on the surface of a basic resin portion formed by resin molding.
  • a transfer mold manufacturing method for manufacturing a mold comprising: a basic transfer portion forming step for forming a basic transfer portion corresponding to the basic resin portion; and a protruding transfer groove corresponding to the fine protrusion portion. And a protrusion transfer groove forming step formed by patterning the surface of the substrate.
  • the protrusion transfer groove can be formed easily and with high accuracy, and a high-precision transfer mold can be manufactured easily and inexpensively.
  • the optical element manufacturing method according to the present invention is an optical element manufacturing method for manufacturing an optical element including an antireflection layer separated by a fine protrusion formed on the surface of a basic resin portion formed by resin molding.
  • a method comprising: a resin molding step of resin-molding the basic resin portion and the fine protrusions; and an antireflection layer laminating step of laminating an antireflection layer on the surface of the basic resin portion. .
  • the basic resin portion and the fine protrusions can be simultaneously formed and the antireflection layer can be accurately laminated, so that an optical element having high accuracy and excellent optical characteristics can be manufactured with high productivity. It becomes possible.
  • the antireflection layer is laminated by vapor deposition.
  • the film thickness of the antireflection layer can be accurately controlled, and an optical element having high-precision optical characteristics can be obtained.
  • the optical element of the present invention since the antireflection layer divided on the surface of the basic resin portion is provided, deformation (cracking, peeling, etc.) of the antireflection layer can be suppressed, and reliability is improved. When it becomes possible, it has a repulsive effect.
  • the basic transfer portion since the basic transfer portion includes a basic transfer portion that resin-molds the basic resin portion, and a protrusion transfer groove that resin-molds a fine protrusion portion that divides the antireflection layer, It is possible to mold the basic resin portion and the fine protrusion at the same time, and it is possible to produce a high-precision optical element with high productivity and low cost.
  • the basic transfer portion forming step for forming the basic transfer portion for resin-molding the basic resin portion and the protrusion transfer groove for resin-molding the fine protrusion portion are basically used.
  • the resin molding step of resin-molding the basic resin portion and the fine protrusions, and the antireflection layer lamination in which the antireflection layer is laminated on the surface of the basic resin portion Process, the basic resin portion and the fine protrusions can be formed at the same time, and the antireflection layer can be accurately laminated, and an optical element having high accuracy and excellent optical characteristics can be produced with high productivity. .
  • FIG. 1 is an explanatory view schematically showing the shape of an optical element according to Embodiment 1 of the present invention
  • FIG. 1 (A) is a perspective view
  • FIG. 1 (B) is an optical axis of the optical element. It is sectional drawing which shows the state which cut
  • FIG. 2 is a cross-sectional view schematically showing a cross section of a fine protrusion of the optical element according to Embodiment 1 of the present invention.
  • FIG. 2 (A) is a semicircular cross section
  • FIG. 2 (B) is a cross section.
  • Fig. 2 (C) shows the case where the cross section is trapezoidal.
  • FIG. 3 is a perspective view schematically showing a modification of the shape of the optical element according to Embodiment 1 of the present invention.
  • FIG. 4 is a sectional view showing an example of the structure of an antireflection layer in an optical element according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view showing another structural example of the antireflection layer in the optical element according to Embodiment 2 of the present invention.
  • FIG. 6 is a perspective view schematically showing the shape of a transfer mold according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing the shape of the transfer mold in each step of the transfer mold manufacturing method according to Embodiment 4 of the present invention, and FIG. 7B shows a state in which the photoresist for forming the protrusion transfer groove is exposed, and FIG. 7C shows a state in which the resist mask is formed.
  • Fig. 7 (D) shows the completed transfer mold, with the mold material etched to form protrusion transfer grooves.
  • FIG. 8A is a cross-sectional view showing a state where a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention is opened.
  • FIG. 8B is a cross-sectional view showing a state in which a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention is clamped and a synthetic resin is injected.
  • FIG. 8C is a cross-sectional view showing a state in which resin molding by a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention is completed and the optical element is released.
  • FIG. 8D is a cross-sectional view showing a state in which an antireflection layer is formed on an optical element resin-molded by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • FIG. 8E is a cross-sectional view showing a state in which the fine antireflection layer adhering to the fine protrusion is removed by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • FIG. 8F is a cross-sectional view showing the state of the optical element completed by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • FIG. 9 is a cross-sectional view showing a state of an antireflection layer of an optical component according to an improved conventional example. Explanation of symbols
  • FIG. 1 is an explanatory view schematically showing the shape of the optical element according to Embodiment 1 of the present invention, in which FIG. 1 (A) is a perspective view and FIG. 1 (B) is the light of the optical element.
  • FIG. 1 (A) is a perspective view
  • FIG. 1 (B) is the light of the optical element.
  • It is sectional drawing which shows the state which cut
  • an antireflection layer 12 (not shown in FIG. 1 (A)) is formed on the surface of the basic resin portion 11 formed by resin molding.
  • the basic resin portion 11 is formed to have a structure (for example, a lens shape) that realizes the optical function of the optical element 1.
  • a synthetic resin constituting the basic resin portion 11 for example, an acrylic resin, a polycarbonate resin, a silicone resin having an alkyl group or a phenyl group, or an inorganic / organic hybrid silicone resin in which a carbon skeleton and a silicone skeleton are hybridized. Can be applied.
  • the antireflection layer 12 is made of an inorganic material and divided.
  • the antireflection layer 12 is divided by fine protrusions 13 protruding from the surface of the basic resin part 11. That is, the fine protrusion 13 is formed with a height that is greater than the thickness of the antireflection layer 12. Therefore, the antireflection layer 12 is divided into appropriate regions on the surface of the optical element 1 corresponding to the arrangement of the fine protrusions 13.
  • the antireflection layer 12 expands in the in-plane direction, but the fine protrusion 13 expands in a direction opposite to the expansion direction. Therefore, a compressive force is generated in the in-plane direction of the antireflection layer 12 and it is possible to suppress deformation of the antireflection layer 12.
  • the optical element 1 expands toward the periphery of the optical element 1 around the optical axis Lax, but the fine protrusions 13 are arranged concentrically around the optical axis Lax.
  • the internal stress is evenly distributed with a simple structure and axial symmetry. (Hereinafter, when it is not necessary to distinguish between the circular protrusion 13c and the linear protrusion 13r, they are simply referred to as the fine protrusion 13).
  • the dividing lines (fine projections 13) can be arranged symmetrically about the optical axis Lax, the internal stress can be evenly distributed with axial symmetry, and the antireflection layer 12 It becomes possible to suppress deformation evenly and reliably.
  • the fine protrusions 13 in a cylindrical shape and a radial shape, the fine protrusions 13 can be easily arranged with axial symmetry, and the antireflection layer 12 is less deformed and has high reliability. Element 1 can be manufactured easily.
  • the same action and effect can be obtained with respect to changes in humidity other than the force temperature described as the high temperature environment.
  • the optical characteristics of the optical element 1 do not deteriorate even in a high temperature environment in the process of mounting the optical element 1 on an electronic device or the like.
  • the batch reflow mounting process is not affected by the high-temperature environment, so that the optical element 1 with high productivity and reliability can be obtained.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of the fine protrusion of the optical element according to Embodiment 1 of the present invention.
  • FIG. 2 (A) is a semicircular cross section
  • FIG. B) shows a triangular cross section
  • Fig. 2 (C) shows a trapezoidal cross section. Note that hatching in the cross section is omitted.
  • the fine protrusion 13 preferably has a shape that gradually changes in order to reduce light scattering by the optical element 1 as much as possible. Further, since the fine protrusion 13 is resin-molded together with the resin molding of the basic resin portion 11 on the surface of the optical element 1 by a transfer mold 2 (see Embodiment 3 and below) described later, the transfer mold It is desirable that the shape does not affect the mold 2 releasability.
  • the cross-sectional shape in the direction intersecting the length direction of the fine protrusions 13 is a semicircular shape, a triangular shape, or a trapezoidal shape (rectangular shape). With this configuration, it is possible to form the fine protrusion 13 with high accuracy while ensuring releasability from the transfer mold 2 in resin molding. It becomes.
  • the dimensions (bottom width W and height H) of the cross-section of the fine protrusions 13 are such that they do not affect the optical characteristics of the optical element 1! /.
  • the length of the shortest wavelength of the wavelength band in which the optical element 1 is used needs to be smaller.
  • the base width W and height H are 400 nm or less.
  • this numerical value is somewhat larger when the reduction in the amount of light in the lens system due to the fine protrusions 13 is taken into account.
  • the optical element 1 when the optical element 1 (lens) is applied to a camera module using an image sensor, the optical surface is positioned at a back focus of 300 m from the image plane with a lens with an aperture of about F3. 4 and a focal length of about 4 mm. If there is, there is almost no effect on the image from experience! /, The size of the base width W and height H that cause a light intensity decrease of about 2% is about 10 Hm.
  • the numerical value of the base width W and height H of the cross section of the fine protrusion 13 has an upper limit of 2 ⁇ m, which is about 1/5, with a sufficient margin for 10 m. I hope that. That is, when the base width W is smaller than 2 H m and the height H is smaller than 2 H m, there is no possibility that the fine protrusion 13 affects the optical characteristics of the optical element 1. Further, the lower limit needs to be larger than the thickness of the antireflection layer 12 because the antireflection layer 12 needs to be divided.
  • the fine protrusion 13 may be formed anywhere as long as it has the shape and size described above, but internal stress generated in the antireflection layer 12 in a high-temperature environment is as efficient as possible. It is desirable to form it so that it can be relaxed well. Therefore, it is desirable to set appropriately using a simulation considering the shape of the optical element 1 (basic resin portion 11) (that is, the lens shape) and the shape of the antireflection layer 12.
  • the desired cross-sectional dimensions (base width W and height H) vary depending on the conditions (wavelength band to be applied) of using the optical element 1, but even in such a case, the cross-sectional dimensions With respect to the dimensions, when the base width W is smaller than 2 m and the height H is smaller than 2 m, scattering by the fine protrusion 13 does not affect the optical characteristics of the optical element 1 at all.
  • FIG. 3 is a perspective view schematically showing a modification of the shape of the optical element according to Embodiment 1 of the present invention.
  • the optical characteristics of the optical element 1 may be deteriorated due to the influence of scattering by the fine protrusions 13.
  • scattering by the fine protrusion 13 affects the low-frequency component of the spatial frequency that the central part of the optical element 1 (the central region 1 li around the optical axis Lax) has, and as a result, There may be a case where the contrast of the image quality is lowered.
  • the fine protrusion 13 is arranged in the outer peripheral area l is (the area located outside the central area l li) of the basic resin part 11 away from the optical axis Lax. It is possible to prevent the degradation of the last (the effect of scattering on the low frequency component of the spatial frequency of optical information). Even in this case, it is desirable from the viewpoint of heat resistance to make the central region l li where the fine protrusions 13 are not provided as small as possible. Therefore, it is desirable that the shape and dimension setting of the optical element 1 be determined in consideration of the balance between the improvement in heat resistance and the influence on the optical characteristics.
  • FIG. 4 is a cross-sectional view showing a structural example of the antireflection layer in the optical element according to Embodiment 2 of the present invention. Note that hatching in the cross section is omitted.
  • the antireflection layer 12 has a low refraction made of a material having a refractive index lower than that of the basic resin portion 11 (synthetic resin applied to resin molding).
  • the refractive index layer 12a is used (if it is not necessary to distinguish the low refractive index layer 12a, it is simply referred to as the antireflection layer 12).
  • the antireflection layer 12 By making the antireflection layer 12 into a single layer structure with the low refractive index layer 12a, deformation (cracking, peeling, etc.) of the antireflection layer 12 in a higher temperature environment can be suppressed.
  • the single-layer structure prevents internal stress from increasing, and also shortens the process time for film formation, simplifying the manufacturing process of the antireflection layer 12 and reducing manufacturing costs. It becomes.
  • the synthetic resin used for optical element 1 (basic resin portion 11) must withstand high temperatures.
  • Heat-resistant resins such as, for example, silicone resins having an Si-O-Si silica bond, such as silicone resins having alkyl groups or phenyl groups, carbon skeletons and silicone skeletons, and hybridized inorganic / organic hybrid silicone resins It is desirable to apply.
  • the film thickness (optical film thickness nd) of the low-refractive index layer 12a is a force S that varies according to the optical characteristics and desired reflection characteristics of the optical element 1, and the material of the antireflection layer 12 as one guideline. It is desirable to set the refractive index n X optical film thickness nd to be 1/4 of the design wavelength.
  • base layer 15 is formed between antireflection layer 12 and the surface of basic resin portion 11.
  • the underlayer 15 is not essential because it does not affect the antireflection characteristics.
  • the base layer 15 made of an inorganic material having good adhesiveness to the material of the basic resin part 11 and excellent chemical resistance and wear resistance is composed of the antireflection layer 12 and the basic resin part 11. Since it is firmly bonded to improve the adhesiveness, it becomes a factor for suppressing peeling of the antireflection layer 12 due to thermal expansion.
  • a thin film structure with a low refractive index material strength of 59 was adopted. This is because the refractive index of the low refractive index material is in the range of the refractive index of the material used as the optical element 1 made of synthetic resin, and the low refractive index material is excellent in chemical resistance and wear resistance. This is because it has good adhesion to the optical element 1 made of synthetic resin and has a small amount of light scattering and light absorption when used as the underlayer 15.
  • the film thickness of the underlayer 15 is too thick or too thin, the heat resistance, adhesion, wear resistance, and chemical resistance cannot be satisfied, so it is empirically about 200 to 300 nm. Set. This makes it possible to obtain a highly reliable optical element 1 that has excellent wear resistance and chemical resistance and does not cause deterioration of optical characteristics.
  • the height H of the fine protrusions 13 needs to be slightly higher than the thickness in which the base layer 15 and the antireflection layer 12 are laminated.
  • FIG. 5 is a cross-sectional view showing another structural example of the antireflection layer in the optical element according to Embodiment 2 of the present invention. Note that hatching in the cross section is omitted.
  • the antireflection layer 12 according to the present embodiment shown in FIG. 5 has a high refraction made of a material having a refractive index higher than that of the basic resin portion 11 (synthetic resin applied to resin molding).
  • the refractive index layer 12b and the low refractive index layer 12c made of a material having a refractive index lower than the refractive index of the basic resin portion 11 are laminated (high refractive index layer 12b and low refractive index layer). If it is not necessary to distinguish 12c, simply use antireflection layer 12).
  • the antireflection characteristics can be further improved as compared with the structure example of Fig. 4 (single-layer structure of the antireflection layer 12). It is necessary to have a very low anti-reflection characteristic of less than%! /, And an excellent anti-reflection characteristic as a reflectance! /, And an excellent anti-reflection characteristic applicable in this case can be realized.
  • the antireflection layer 12 can be further increased in the number of layers depending on the necessary antireflection characteristics shown as a two-layer laminated structure.
  • the high refractive index layer 12b a high refractive index material mainly composed of titanium oxide (TiO 2), zirconium oxide (ZrO 2), or a mixture thereof can be used.
  • the respective film thicknesses (optical film thickness nd) of the high refractive index layer 12b and the low refractive index layer 12c correspond to the optical characteristics and desired reflection characteristics of the optical element 1 as in the case of the low refractive index layer 12a.
  • FIG. 6 is a perspective view schematically showing the shape of the transfer mold according to the third embodiment of the present invention.
  • the transfer mold 2 includes a transfer surface 2s that forms the optical element 1 by transfer (resin molding).
  • the transfer surface 2s includes a basic transfer portion 21 for resin-molding the basic resin portion 11 and a protrusion transfer groove 22 for resin-molding the fine protrusion portion 13.
  • the transfer surface 2s is formed with a shape (basic transfer portion 21) that has a positive-negative relationship with the aspheric shape (basic resin portion 11). It has been done.
  • a projection transfer groove 22 having a positive / negative relationship with the fine projection 13 transferred to the optical element 1 is formed.
  • the fine protrusions 13 can be transferred simultaneously with the resin molding of the basic resin part 11, so that both of them can be transferred separately. Compared with this, the production efficiency is improved, and the alignment between the two is not required, and the highly accurate optical element 1 can be manufactured with high productivity.
  • the shape (basic transfer portion 21 and protrusion transfer groove 22) for forming the basic resin portion 11 and the fine protrusion portion 13 is formed on the transfer surface 2s, the resin molding process is performed once. Since the optical element 1 including the basic resin portion 11 and the fine protrusions 13 can be manufactured, the highly accurate optical element 1 can be formed at low cost.
  • a sintered material such as martensitic stainless steel, oxygen-free copper, or tungsten carbide can be applied.
  • the transfer mold 2 according to Embodiment 3 is also required to be manufactured with high precision and high precision.
  • the transfer mold 2 is provided with the fine protrusions 13, it is necessary to manufacture the transfer mold 2 with higher precision and higher precision, and there is a problem that manufacturing is difficult with normal technology.
  • the transfer mold manufacturing method according to the present embodiment provides a method for easily manufacturing the transfer mold 2 by solving such problems.
  • FIG. 7 is a cross-sectional view schematically showing the shape of the transfer mold in each step of the transfer mold manufacturing method according to Embodiment 4 of the present invention
  • FIG. 7 (A) is a mold material
  • Fig. 7 (B) shows the state of exposing the photoresist for forming the protrusion transfer groove
  • Fig. 7 (C) shows the state using the formed resist mask
  • Fig. 7 (D) shows the completed transfer mold, with the mold material etched and the protrusion transfer groove formed.
  • a mold material for forming the transfer mold 2 (note that the state before completion is also denoted as the transfer mold 2) is prepared (see the left side of FIG. 7 (A)).
  • a basic transfer part 21 is formed on the transfer surface 2s by machining the mold material using an ultra-precision lathe, ultra-precision grinder, etc. (see right of Fig. 7 (A)) (in the basic resin part 11) Basic transfer to form the corresponding basic transfer part 21 Part forming step).
  • Photoresist 25 is applied to the transfer surface 2s on which the basic transfer portion 21 is formed, and pre-beta is performed at a temperature of about 100 ° C (see the left side of Fig. 7 (B)).
  • exposure light Lex is irradiated onto the transfer surface 2s to expose (expose) a portion of the photoresist 25 corresponding to the protruding transfer groove 22 to form a photosensitive resist portion 25a that can be removed to form an exposure mask pattern.
  • the photoresist 25 may be either a positive type or a negative type depending on the exposure method and the shape of the exposure mask pattern corresponding to the protrusion transfer groove 22. In this embodiment, it is described as a positive type.
  • the photoresist 25 (exposure mask pattern) is developed to remove the photosensitive resist portion 25a and form a resist mask 25m having an opening 25w corresponding to the protrusion transfer groove 22. (See Figure 7 (C) left).
  • Etching agent Ect can be applied with a force S that varies depending on the mold material used, and ferric chloride solution can be applied to stainless steel and oxygen-free copper.
  • the resist mask 25m is removed with acetone or the like to complete the transfer mold 2 (see FIG. 7D). Thereafter, a release film (such as gold, CrN, TiN, DLC (diamond-like carbon)) is used on the transfer surface 2s in order to improve releasability from the optical element 1 (molded product) molded by resin molding. (Omitted) It is desirable to form a film with a thickness of several nm to several tens of nm! /.
  • a release film such as gold, CrN, TiN, DLC (diamond-like carbon)
  • the fine protrusion 13 It is possible to easily form the projection transfer groove 22 for resin molding by patterning, and since the machining is not used for forming the projection transfer groove 22, distortion caused by machining ( (Damage) etc. does not occur and does not affect the shape of the transfer surface 2s. It is possible to easily and inexpensively manufacture a transfer mold 2 of a certain degree.
  • FIG. 8A is a cross-sectional view showing a state where a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention is opened.
  • the transfer mold 2 for resin-molding the optical element 1 includes an upper mold 20U, a lower mold 20L, an upper trunk mold 23U, and a lower trunk mold 23L.
  • the upper mold 20U and the lower mold 20L include a basic transfer part 21 that transfers the basic resin part 11, and a protrusion transfer groove 22 that transfers the fine protrusions 13.
  • an upper trunk mold 23U and a lower trunk mold 23L are arranged corresponding to each other.
  • the upper body mold 23U and the lower body mold 23L define the outer peripheral shape of the basic resin portion 11.
  • the upper trunk mold 23U and the lower trunk mold 23L have gates 27 for injecting synthetic resin during resin molding.
  • FIG. 8B is a cross-sectional view showing a state in which a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention is clamped and a synthetic resin is injected.
  • the synthetic resin Res is injected from the gate 27.
  • various methods for injecting synthetic resin and it is desirable to use injection injection in consideration of the precision and mass productivity of force molding.
  • the synthetic resin Res When the synthetic resin Res is thermosetting, the synthetic resin Res in a liquid state of 80 ° C. or less is injected into the transfer mold 2 whose temperature is adjusted to 150 to 200 ° C. The injected liquid synthetic resin Res undergoes a polymerization reaction to form the basic resin portion 11.
  • the fine protrusion 13 is resin-molded simultaneously with the resin molding of the basic resin portion 11, and the optical element 1 in a state where the gate trace 1 lg is connected is formed (the basic resin portion 11). And a resin molding step of resin molding the fine protrusions 13).
  • FIG. 8C shows a transfer mold applied in the optical element manufacturing method according to Embodiment 5 of the present invention. It is sectional drawing which shows the state which complete
  • the optical element 1 that has finished resin molding with the transfer mold 2 is released from the transfer mold 2.
  • FIG. 8D is a cross-sectional view showing a state in which an antireflection layer is formed on an optical element resin-molded by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • the optical element 1 whose gate outline l lg has been removed and whose external shape has been adjusted is placed in a vapor deposition chamber 30, and an antireflection layer 12 made of an inorganic material is formed by vapor deposition.
  • an antireflection layer 12 made of an inorganic material is formed by vapor deposition.
  • deposition chamber one 30 after being evacuated, 1. is maintained in a vacuum state of about OX 10- 4 Torr while introducing O gas, magnesium fluoride as described above, titanium oxide, such as oxide zirconium Yuumu
  • the antireflection layer component target 31 is appropriately heated by a resistance heating method or an electron beam heating method to evaporate the antireflection layer component, and the antireflection layer component vapor RV is applied to the optical element 1 to form the antireflection layer 12.
  • Film (evaporation) is performed (an antireflection layer forming step in which the antireflection layer 12 is laminated on the surface of the basic resin portion 11). After the antireflection layer 12 is formed, the vapor deposition chamber 30 is pressurized to atmospheric pressure, opened, and the optical element 1 is taken out.
  • the underlayer 15 is formed between the antireflection layer 12 and the basic resin part 11, the underlayer 15 is formed before the antireflection layer 12 is formed.
  • a deposition chamber similar to the deposition chamber 30 is applied, and the underlying layer component target such as the above-described silicon oxide is heated to deposit the underlying layer component, and is applied to the optical element 1 to form the underlying layer 15.
  • Film formation (evaporation) is performed (underlayer forming step of laminating underlayer 15 on the surface of basic resin portion 11).
  • the vapor deposition chamber 1 for forming the underlayer 15 and the vapor deposition chamber 30 for forming the antireflection layer 12 are made the same vapor deposition chamber, and the formation of the underlayer 15 and the formation of the antireflection layer 12 are supported by switching the target. It is also possible to make it. Since the formation conditions of the underlayer 15 can be the same as the formation conditions of the antireflection layer 12, a detailed description thereof is omitted.
  • the optical element 1 is temporarily completed as a product, but the antireflection layer 12 formed in the antireflection layer forming step is also formed on the surface of the fine protrusion 13 and the fine antireflection layer 12a (see FIG. 8 Refer to E.).
  • the fine antireflection layer 12a adheres to the surface of the fine protrusion 13
  • the slant surface of the fine protrusion 13 is thin and the adhesion is weak, it may be peeled off during use of the optical element 1 to become dust and affect the optical system. Therefore, it is desirable to remove the fine antireflection layer 12a.
  • FIG. 8E is a cross-sectional view showing a state in which the fine antireflection layer attached to the fine protrusion is removed by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • the optical element 1 with the fine antireflection layer 12a attached thereto is placed in the high temperature chamber 40 and heated at a high temperature, whereby the fine antireflection layer 12a attached to the fine protrusions 13 is thinned.
  • Microcrack MC is generated at the place where Next, the optical element 1 is taken out from the high temperature chamber 40 and subjected to ultrasonic cleaning (not shown), so that the fine antireflection layer 12a can be removed.
  • FIG. 8F is a cross-sectional view showing the state of the optical element completed by the optical element manufacturing method according to Embodiment 5 of the present invention.
  • the optical element 1 By removing the fine antireflection layer 12a, the optical element 1 has the divided antireflection layer 12 on the surface. Further, the antireflection layer 12 is divided by the fine protrusions 13 protruding from the surface of the basic resin part 11.
  • the basic resin part 11 and the fine protrusion part 13 are formed at the same time, and the antireflection layer 12 is laminated on the surface of the basic resin part 11. This makes it possible to manufacture optical elements 1 with excellent optical properties with high productivity.
  • optical element 1 Since the optical element 1 is manufactured using the transfer mold 2, it is possible to manufacture the optical element 1 in large quantities with high productivity, and to reduce the manufacturing cost and to provide the optical element 1 at low cost. Is possible.
  • the present invention can be suitably used for an optical element on which an antireflection layer is formed, a transfer mold for transferring such an optical element, a transfer mold manufacturing method for manufacturing the transfer mold, It can be suitably used for an optical element manufacturing method for manufacturing such an optical element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

明 細 書
光学素子、転写金型、転写金型製造方法、および光学素子製造方法 技術分野
[0001] 本発明は、反射防止層が形成された合成樹脂製の光学素子、このような光学素子 を製造する転写金型、このような転写金型を製造する転写金型製造方法、および、こ のような光学素子を製造する光学素子製造方法に関する。
背景技術
[0002] 従来、プラスチックレンズなどの合成樹脂で形成された合成樹脂製光学レンズなど においては、光学レンズの表面での反射を防止するために、ケィ素酸化物(SiOx) の薄膜を設けること、あるいは、酸化チタン (TiO )、酸化ジルコニウム(ZrO )、酸化 カルシウム(CaO )、酸化タンタル (Ta O )などの高屈折率材料の薄膜とケィ素酸化 物(SiO )などの低屈折率材料の薄膜とを交互に積層した多層膜の反射防止層を設 けることが提案されている。
[0003] 従来例 1として、アクリルレンズの表面に SiOからなる屈折率 nが 1. 55以上で厚さ 力 9nm以下の 4分の 1波長膜 (以下、 λ /4膜という。)を蒸着し、その上にフッ化マ グネシゥム(MgF )からなる屈折率 nが 1. 38のえ /4膜を積層した 2層膜の反射防 止層が提案されている(例えば、特許文献 1参照。)。
[0004] 従来例 2として、第 1層として SiOカゝらなる屈折率 n= l . 47、膜厚 d = 354nm、光 学膜厚 nd=ぇ0 (設計波長 0 = 520nm)の薄膜を真空蒸着によって形成し、その 上に J噴次、 Ta O力、らなる屈折率 η = 2· 05、光学膜厚 nd = 0. 057 λ θの薄膜と、 Si
O力 なる屈折率 n= l . 47、光学膜厚 nd = 0. 11 λ θの薄膜と、 Ta O力 なる屈 折率 n = 2. 05、光学膜厚 nd = 0. 538 λ θの薄膜と、 SiO力、らなる屈折率 n= l . 47 、光学膜厚 nd = 0. 258 λ θの薄膜を積層した 5層膜力もなる反射防止層が提案され ている(例えば、特許文献 2参照。)。
[0005] 従来例 3として、メタクリル樹脂注型基板上に第 1層として SiOxからなる屈折率 η = 1. 60、光学膜厚 nd= ( 0 /4) X 20% (d= 17〜; 18nm)の薄膜を真空蒸着によ つて形成し(設計波長 λ 0 = 550〜570nm)、その上に、 TiO力、らなる屈折率 η= 1 · 95、光学膜厚 nd= ( 0/4) X 20%の薄膜と、 S ^からなる屈折率 n= 1. 45、光 学膜厚 nd= ( λ 0/4) X 40%の薄膜と、 TiO力、らなる屈折率 η = 2· 0、光学膜厚 nd = ( λ θ/4) X 70%の薄膜と、 SiO力 なる屈折率 η= 1 · 45、光学膜厚 nd= ( 0 /4) X 95%の薄膜を積層した 5層膜からなる反射防止層が提案されている(例えば 、特許文献 3参照。)。
[0006] しかしながら、従来例 1〜従来例 3では、居住用空間などの限られた環境で用いる 場合はレ、ずれも著しく性能が劣化するおそれはな!/、が、屋外などにぉレ、て厳しレ、温 度条件に曝されたり、温度や湿度の変化の大きい環境で長期にわたって使用される と、耐摩耗性ゃ耐薬品性が劣化したり、合成樹脂材料と無機反射防止層の線膨張係 数の差からくる合成樹脂の母材の熱歪などによって反射防止層にクラック (膜割れ) が発生し、最悪の状態では反射防止層の剥離を生じる恐れがある。このような状況の もと、従来例 1〜従来例 3の問題を解決するために、改良された従来例が提案されて いる。
[0007] 図 9は、改良された従来例に係る光学部品の反射防止層の状態を示す断面図であ る。なお、図面を見やすくするため、一部の断面にはハッチングを省略している。
[0008] この改良された従来例では、光学部品(光学素子)である合成樹脂製レンズ 130に 、硬度が高ぐ耐薬品性や合成樹脂に対する密着性にすぐれたケィ素酸化物 SiOx ( 2〉x〉l)を主成分とする薄膜を、反射防止特性に関与しないアンダーコート 131と して用いることを提案している。これにより、反射防止多層膜 132の耐摩耗性ゃ耐薬 品性および合成樹脂製レンズ 130に対する密着性を向上させて!/、る(例えば、特許 文献 4参照。)。
[0009] この合成樹脂製レンズ 130は、アンダーコート 131の膜厚を 200nm以上 300nm以 下にすることで、耐摩耗性、耐薬品性を充分に向上させ、加えて、屋外などの温度お よび湿度の厳しい環境における耐久性も向上させ、反射防止多層膜 132のクラック や膜剥離を生じにくくしている。なお、反射防止多層膜 132は、高屈折率材料からな る第 1層反射防止層 132a、低屈折率材料からなる第 2層反射防止層 132b、高屈折 率材料からなる第 3層反射防止層 132c、低屈折率材料からなる第 4層反射防止層 1 32dで構成されている。 [0010] 一方、近年、モパイル機器分野に使用される合成樹脂製の光学素子について、モ パイル機器の一括リフロー実装処理に対応できるように、耐熱性を有する合成樹脂 の光学材料を使用した光学素子が望まれている。し力、しながら、耐熱性を有する合 成樹脂の光学材料は、線膨張係数が従来の合成樹脂の光学材料に比べて大きレ、こ と、および、材料一括リフロー実装処理を行なうための環境温度は 250〜270°Cにも なることから、特許文献 4に記載の技術によるアンダーコート(下地層)を設けても、反 射防止層の変形 (クラックや膜剥離など)が生じてしまうという問題がある。
特許文献 1 :特開昭 60— 98401号公報
特許文献 2:特開昭 60— 225101号公報
特許文献 3:特開平 3— 116101号公報
特許文献 4 :特開平 6— 273601号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明はこのような状況に鑑みてなされたものであり、基本樹脂部の表面に分割し た反射防止層を備えることにより、反射防止層の変形を抑制できる信頼性の高い光 学素子を提供することを目的とする。
[0012] また、本発明は基本樹脂部を樹脂成形する基本転写部と、反射防止層を分割する 微細突起部を樹脂成形する突起転写溝とを備えることにより、基本樹脂部と微細突 起部とを同時に樹脂成形することが可能で、高精度の光学素子を生産性良く安価に 製造することが可能な転写金型を提供することを目的とする。
[0013] さらに、本発明は基本樹脂部を樹脂成形する基本転写部を形成する基本転写部 形成工程と、微細突起部を樹脂成形する突起転写溝を基本転写部の表面をパター ユングして形成する突起転写溝形成工程とを備えることにより、突起転写溝を容易か つ高精度に形成して高精度の転写金型を容易かつ安価に製造できる転写金型製造 方法を提供することを目的とする。
[0014] また、本発明は基本樹脂部および微細突起部を樹脂成形する樹脂成形工程と、基 本樹脂部の表面に反射防止層を積層する反射防止層積層工程とを備えることにより 、基本樹脂部および微細突起部を同時に形成して反射防止層を精度良く積層でき、 高精度で優れた光学特性を有する光学素子を生産性良く製造できる光学素子製造 方法を提供することを目的とする。
課題を解決するための手段
[0015] 本発明に係る光学素子は、樹脂成形により形成された基本樹脂部の表面に反射防 止層が形成された合成樹脂製の光学素子であって、前記反射防止層は無機物で形 成され、分割してあることを特徴とする。
[0016] この構成により、光学素子と反射防止層との線膨張係数の違いにより発生する内部 応力を緩和して、反射防止層の変形を抑制することが可能な信頼性の高い光学素 子となる。
[0017] また、本発明に係る光学素子では、前記反射防止層は、前記基本樹脂部の表面か ら突出した微細突起部により分割されていることを特徴とする。
[0018] この構成により、高温環境での反射防止層の面内方向の膨張に対して微細突起部 の膨張方向が対向することとなるので、反射防止層の面内方向に圧縮力が発生し、 反射防止層の変形を抑制することが可能となる。
[0019] また、本発明に係る光学素子では、前記微細突起部の長さ方向と交差する方向で の前記微細突起部の断面の形状は、半円状、三角形状、台形状のいずれかである ことを特徴とする。
[0020] この構成により、樹脂成形での転写金型との離型性を確保して微細突起部を高精 度で形成することが可能となる。
[0021] また、本発明に係る光学素子では、前記断面の底辺幅は 2 ^ 111より小さぐ前記断 面の高さは 2 mより小さいことを特徴とする。
[0022] この構成により、微細突起部による散乱が光学素子の光学特性に対して影響を生 じさせることを防止すること力 S可倉 となる。
[0023] また、本発明に係る光学素子では、前記微細突起部は、前記基本樹脂部の光軸に 対して軸対称に配置してあることを特徴とする。
[0024] この構成により、光軸を中心として軸対称に分割線を配置できることから、内部応力 の緩和を均等に発生させることが可能となり、反射防止層の変形を均等かつ確実に 抑制することが可能となる。 [0025] また、本発明に係る光学素子では、前記微細突起部は、前記基本樹脂部の光軸に 対して同心円状および放射線状に配置してあることを特徴とする。
[0026] この構成により、内部応力の緩和を軸対称として均等に分布させることが可能となり
、また、簡単な構造で軸対称を実現することが可能となることから、変形の少ない光 学素子を容易に製造すること力 Sできる。
[0027] また、本発明に係る光学素子では、前記微細突起部は、前記光軸から離れた基本 樹脂部の外周領域に配置してあることを特徴とする。
[0028] この構成により、光学素子の光軸周辺の中心領域での光学特性の低下を防止する ことが可能となる。
[0029] また、本発明に係る光学素子では、前記反射防止層は、前記基本樹脂部の屈折率 よりも低い屈折率の材料で構成された低屈折率層としてあることを特徴とする。
[0030] この構成により、より高温環境下での反射防止層の変形を抑制することが可能とな また、単層構造とすることにより、内部応力の増大を防止し、反射防止層の製造工程 を簡略化して製造コストを低減することが可能となる。
[0031] また、本発明に係る光学素子では、前記反射防止層は、前記基本樹脂部の屈折率 よりも低い屈折率の材料で構成された低屈折率層および前記基本樹脂部の屈折率 よりも高い屈折率の材料で構成された高屈折率層を積層した積層構造としてあること を特徴とする。
[0032] この構成により、極めて低い反射率で優れた反射防止特性を有する光学素子とす ること力 S可倉 となる。
[0033] また、本発明に係る光学素子では、前記反射防止層と前記基本樹脂部の表面との 間に、ケィ素酸化物を主成分とする下地層が形成してあることを特徴とする。
[0034] この構成により、反射防止層の基本樹脂部に対する密着性を向上させ、光学素子 の耐薬品性、耐磨耗性を向上させることが可能となり、光学特性の劣化が生じない信 頼性の高レ、光学素子とすることが可能となる。
[0035] また、本発明に係る転写金型は、樹脂成形により形成される基本樹脂部の表面に 形成された微細突起部で分離される反射防止層を備える光学素子を樹脂成形する 転写金型であって、前記基本樹脂部を樹脂成形する基本転写部と、前記微細突起 部を樹脂成形する突起転写溝とを備えることを特徴とする。
[0036] この構成により、基本樹脂部と微細突起部とを同時に樹脂成形することが可能とな り、高精度の光学素子を生産性良く安価に製造することが可能となる。
[0037] また、本発明に係る転写金型製造方法は、樹脂成形により形成される基本樹脂部 の表面に形成された微細突起部で分離される反射防止層を備える光学素子を樹脂 成形する転写金型を製造する転写金型製造方法であって、前記基本樹脂部に対応 する基本転写部を形成する基本転写部形成工程と、前記微細突起部に対応する突 起転写溝を前記基本転写部の表面をパターユングして形成する突起転写溝形成ェ 程とを備えることを特 ί毁とする。
[0038] この構成により、突起転写溝を容易かつ高精度に形成することが可能となり、高精 度の転写金型を容易かつ安価に製造することが可能となる。
[0039] また、本発明に係る光学素子製造方法は、樹脂成形により形成される基本樹脂部 の表面に形成された微細突起部で分離される反射防止層を備える光学素子を製造 する光学素子製造方法であって、前記基本樹脂部および前記微細突起部を樹脂成 形する樹脂成形工程と、前記基本樹脂部の表面に反射防止層を積層する反射防止 層積層工程とを備えることを特徴とする。
[0040] この構成により、基本樹脂部および微細突起部を同時に形成して反射防止層を精 度良く積層できるので、高精度で優れた光学特性を有する光学素子を生産性良く製 造することが可能となる。
[0041] また、本発明に係る光学素子製造方法では、前記反射防止層の積層は、蒸着によ り行われることを特徴とする。
[0042] この構成により、精度良く反射防止層の膜厚を制御することが可能となり、高精度の 光学特性を有する光学素子とすることが可能となる。
発明の効果
[0043] 本発明に係る光学素子によれば、基本樹脂部の表面に分割した反射防止層を備 えることから、反射防止層の変形 (割れ、剥離など)を抑制でき、信頼性を向上させる ことが可能となるとレ、う効果を奏する。 [0044] また、本発明に係る転写金型によれば、基本樹脂部を樹脂成形する基本転写部と 、反射防止層を分割する微細突起部を樹脂成形する突起転写溝とを備えることから 、基本樹脂部と微細突起部とを同時に樹脂成形することが可能で、高精度の光学素 子を生産性良く安価に製造することが可能となるという効果を奏する。
[0045] また、本発明に係る転写金型製造方法によれば、基本樹脂部を樹脂成形する基本 転写部を形成する基本転写部形成工程と、微細突起部を樹脂成形する突起転写溝 を基本転写部の表面をパターユングして形成する突起転写溝形成工程とを備えるこ とから、突起転写溝を容易かつ高精度に形成して高精度の転写金型を容易かつ安 価に製造できるとレ、う効果を奏する。
[0046] また、本発明に係る光学素子製造方法によれば、基本樹脂部および微細突起部を 樹脂成形する樹脂成形工程と、基本樹脂部の表面に反射防止層を積層する反射防 止層積層工程とを備えることから、基本樹脂部および微細突起部を同時に形成して 反射防止層を精度良く積層でき、高精度で優れた光学特性を有する光学素子を生 産性良く製造できるという効果を奏する。
図面の簡単な説明
[0047] [図 1]本発明の実施の形態 1に係る光学素子の形状を模式的に示す説明図であり、 図 1 (A)は斜視図、図 1 (B)は光学素子の光軸を含む平面で微細突起部(円状突起 部)を切断した状態を示す断面図である。
[図 2]本発明の実施の形態 1に係る光学素子の微細突起部の断面を模式的に示す 断面図であり、図 2 (A)は断面が半円状、図 2 (B)は断面が三角形状、図 2 (C)は断 面が台形状の場合を示す。
[図 3]本発明の実施の形態 1に係る光学素子の形状の変形例を模式的に示す斜視 図である。
[図 4]本発明の実施の形態 2に係る光学素子での反射防止層の構造例を示す断面 図である。
[図 5]本発明の実施の形態 2に係る光学素子での反射防止層の他の構造例を示す 断面図である。
[図 6]本発明の実施の形態 3に係る転写金型の形状を模式的に示す斜視図である。 [図 7]本発明の実施の形態 4に係る転写金型製造方法の各工程での転写金型の形 状を模式的に示す断面図であり、図 7 (A)は金型素材を加工して基本転写部を形成 する状態を示し、図 7 (B)は突起転写溝を形成するためのフォトレジストを露光する状 態を示し、図 7 (C)は形成したレジストマスクを用いて金型素材をエッチングし突起転 写溝を形成する状態を示し、図 7 (D)は完成した転写金型を示す。
[図 8A]本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型を型開 きした状態で示す断面図である。
[図 8B]本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型を型締 めし合成樹脂を注入した状態で示す断面図である。
[図 8C]本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型による 樹脂成形を終了し光学素子を離型する状態を示す断面図である。
[図 8D]本発明の実施の形態 5に係る光学素子製造方法で樹脂成形された光学素子 に反射防止層を形成する状態を示す断面図である。
[図 8E]本発明の実施の形態 5に係る光学素子製造方法で微細突起部に付着した微 細反射防止層を除去する状態を示す断面図である。
[図 8F]本発明の実施の形態 5に係る光学素子製造方法で完成した光学素子の状態 を示す断面図である。
[図 9]改良された従来例に係る光学部品の反射防止層の状態を示す断面図である。 符号の説明
1 光学素子
2 転写金型
2s 転写面
11 基本樹脂部
l lg ゲート痕
Hi 中心領域
l is 外周領域
12 反射防止層
12a 低屈折率層 12b 高屈折率層
12c 低屈折率層
13 微細突起部
13c 円状突起部
13r 線状突起部
15 下地層
20U 上型
20L 下型
23U 上胴型
23L 下胴型
27 ゲート
21 基本転写部
22 突起転写溝
25 フォトレジスト
25a 感光レジスト部
25m レジストマスク
25w 開口部
30 蒸着チャンバ一
40 高温チャンバ一
Ect エッチング斉 IJ
Lax 光車由
Lex ife光光
MC マイクロクラック
RV 反射防止層成分蒸気
発明を実施するための最良の形態
[0049] 以下、本発明の実施の形態を図面に基づいて説明する。
[0050] <実施の形態 1〉
本発明の実施の形態 1に係る光学素子について図 1〜図 3を参照しつつ説明する [0051] 図 1は、本発明の実施の形態 1に係る光学素子の形状を模式的に示す説明図であ り、図 1 (A)は斜視図、図 1 (B)は光学素子の光軸を含む平面で微細突起部(円状突 起部)を切断した状態を示す断面図である。なお、図面を見やすくするため、図 1 (B) における断面を示すハッチングは省略してある。
[0052] 本実施の形態に係る光学素子 1は、樹脂成形により形成された基本樹脂部 11の表 面に反射防止層 12 (図 1 (A)では図示を省略している。)が形成された合成樹脂製 の例えばプラスチックレンズとして構成してある。基本樹脂部 11は、光学素子 1の光 学機能を実現する構造 (例えば、レンズ形状としてある。)を有するように形成される。 また、基本樹脂部 11を構成する合成樹脂として、例えば、アクリル樹脂、ポリカーボ ネート樹脂、アルキル基あるいはフエニール基を持つシリコーン樹脂、または炭素骨 格とシリコーン骨格がハイブリッドされた無機 ·有機ハイブリッドシリコーン樹脂などを 適用することカできる。なお、反射防止層 12は、無機物で形成され、分割してある。
[0053] この構成により、光学素子 1が高温環境にさらされた場合に、光学素子 1と反射防 止層 12との線膨張係数の違いから光学素子 1の全体にわたって発生する内部応力 を、緩和することが可能となり、反射防止層 12の割れや剥離などの変形を抑制するこ と力 Sできる。
[0054] 反射防止層 12は、基本樹脂部 11の表面から突出した微細突起部 13により分割さ れている。つまり、微細突起部 13は、反射防止層 12の厚さよりも厚い高さで形成され ている。したがって、反射防止層 12は、光学素子 1の表面で微細突起部 13の配置に 対応して適宜の領域に分割されて!/、る。
[0055] なお、高温環境の下では、反射防止層 12が面内方向に膨張するが、この膨張方 向に対向する方向で微細突起部 13が膨張することとなる。したがって、反射防止層 1 2の面内方向には圧縮力が発生し、反射防止層 12の変形を抑制することが可能とな
[0056] また、微細突起部 13を基本樹脂部 11の表面の全域で光学素子 1 (基本樹脂部 11 )が有する光軸 Laxに対して軸対称に配置することにより、熱膨張による反射防止層 12の変形を軸対称に対応させてバランスさせることが可能となり、均等かつ確実に変 形を抑制することが可能となる。
[0057] 高温環境下では、光学素子 1は光軸 Laxを中心に光学素子 1の周辺に向かって膨 張するが、微細突起部 13を、光軸 Laxを中心にして同心円状に配置された円状突 起部 13cと、光軸 Laxを中心にして放射線状に配置された線状突起部 13rとを有す る構成とすることにより、簡単な構造で内部応力を軸対称として均等に分布させること が可能となる(以下、円状突起部 13cと線状突起部 13rとを特に区別する必要がない 場合は、単に微細突起部 13とする。)。
[0058] つまり、光軸 Laxを中心として軸対称に分割線 (微細突起部 13)を配置できることか ら、内部応力の緩和を軸対称として均等に分布させることが可能となり、反射防止層 12の変形を均等かつ確実に抑制することが可能となる。
[0059] また、微細突起部 13を円筒状および放射線状とすることにより、微細突起部 13を 軸対称で容易に配置することが可能となり、反射防止層 12の変形が少なく信頼性の 高い光学素子 1を容易に製造することができる。
[0060] なお、周囲環境を高温環境として説明した力 温度以外の湿度の変化に対しても 同様の作用効果を奏する。また、光学素子 1を電子機器などに実装する工程での高 温環境によっても光学素子 1の光学特性が劣化することは生じない。例えば一括リフ ロー実装処理工程などについても、高温環境の影響を受けないので、生産性と信頼 性の高い光学素子 1とすることが可能となる。
[0061] 図 2は、本発明の実施の形態 1に係る光学素子の微細突起部の断面を模式的に示 す断面図であり、図 2 (A)は断面が半円状、図 2 (B)は断面が三角形状、図 2 (C)は 断面が台形状の場合を示す。なお、断面でのハッチングは省略してある。
[0062] 微細突起部 13は、光学素子 1での光の散乱を極力減らすために緩やかに変化し ていく形状が望ましい。また、微細突起部 13は、後述する転写金型 2 (実施の形態 3 以下を参照。 )により光学素子 1の表面に基本樹脂部 11の樹脂成形と併せて樹脂成 形することから、転写金型 2の離型性に影響を及ぼさない形状であることが望ましい。
[0063] したがって、微細突起部 13の長さ方向と交差する方向での断面の形状は、半円状 、三角形状または台形状 (矩形状)であることが望ましい。この構成により、樹脂成形 での転写金型 2との離型性を確保して微細突起部 13を高精度で形成することが可能 となる。
[0064] 微細突起部 13の断面の寸法(底辺幅 Wおよび高さ H)は、光学素子 1の光学特性 に影響を及ぼさなレ、大きさであることが望まし!/、。完全に影響の無レ、寸法とするため には、光学素子 1が使用される波長帯域の最短波長の長さよりも小さい必要がある。 例えば使用される波長帯域が可視光域 (短波長側: 380〜400 m。長波長側: 75 0〜800 111)である場合、底辺幅 Wおよび高さ Hは 400nm以下となる。ただし、この 数値は、微細突起部 13によるレンズ系の光量低下を考慮した場合には、多少さらに 大きくなる。
[0065] 例えば、撮像素子を使用したカメラモジュールに光学素子 1 (レンズ)を適用する場 合、絞り F3. 4、焦点距離 4mm程度のレンズで撮像面からのバックフォーカス 300 mの位置に光学面があった場合、経験上画像にほとんど影響を及ぼさな!/、2%程度 の光量低下を起こす底辺幅 Wおよび高さ Hの大きさは、およそ 10 H m程度である。
[0066] したがって、微細突起部 13の断面の底辺幅 Wおよび高さ Hの数値は、 10 mに対 して十分な余裕を持たせた値として 1/5程度の 2 μ mを上限とすることが望ましレ、。 つまり、底辺幅 Wは 2 H mより小さく、高さ Hは 2 H mより小さい寸法とすることにより、 微細突起部 13が光学素子 1の光学特性に影響を及ぼす恐れは全く生じない。また、 下限は、反射防止層 12を分割する必要があることから、反射防止層 12の厚さより大 きいことが必要である。
[0067] なお、微細突起部 13の形成位置としては、上述した形状や大きさであれば、何処 に形成されても良いが、高温環境下における反射防止層 12に発生する内部応力を できるだけ効率良く緩和できるように形成することが望ましい。したがって、光学素子 1 (基本樹脂部 11 )の形状 (つまり、レンズ形状)や反射防止層 12の形状を考慮した シミュレーションなどを用いて適宜設定することが望ましレ、。
[0068] また、望ましい断面の寸法(底辺幅 Wおよび高さ H)は、上述したとおり、光学素子 1 を使用する条件 (適用する波長帯域)により変動するが、そのような場合でも、断面の 寸法は、底辺幅 Wを 2 mより小さぐ高さ Hを 2 mより小さくすることにより、微細突 起部 13による散乱が光学素子 1の光学特性に影響を及ぼすことは全くない。
[0069] 図 3は、本発明の実施の形態 1に係る光学素子の形状の変形例を模式的に示す斜 視図である。
[0070] 上述したとおり、微細突起部 13による光学素子 1の光学特性への影響を排除する ことは十分可能である。しかしながら、光学素子 1の使用状況によっては、光学素子 1 の光学特性が微細突起部 13による散乱の影響を受けて低下する場合がある。例え ば、上述したカメラモジュールでは、微細突起部 13による散乱により光学素子 1の中 央部分(光軸 Lax周辺の中心領域 1 li)が受け持つ空間周波数の低周波成分に影 響を与え、結果として画質のコントラストが低くなつてしまう場合が考えられる。
[0071] このような場合の対策として、光軸 Laxから離れた基本樹脂部 11の外周領域 l is ( 中心領域 l liの外側に位置する領域)に微細突起部 13を配置することにより、コント ラストの低下 (散乱が光情報の空間周波数の低周波成分に及ぼす影響)を防止する ことが可能となる。なお、この場合でも、微細突起部 13を設けない中心領域 l liはで きるだけ小さくすることが耐熱性の観点から望ましい。したがって、光学素子 1の形状 および寸法設定は、耐熱性の向上と光学特性への影響とのバランスを考慮して決定 されることが望ましい。
[0072] <実施の形態 2〉
本発明の実施の形態 2に係る光学素子について図 4および図 5を参照しつつ説明 する。
[0073] 図 4は、本発明の実施の形態 2に係る光学素子での反射防止層の構造例を示す断 面図である。なお、断面でのハッチングは省略してある。
[0074] 図 4に示す本実施の形態に係る反射防止層 12は、基本樹脂部 11 (樹脂成形に適 用した合成樹脂)の屈折率よりも低い屈折率を有する材料で構成された低屈折率層 12aとしてある(低屈折率層 12aを区別する必要がない場合は、単に反射防止層 12 とする。)。なお、低屈折率層 12aの材料として、屈折率 η= 1 · 38のフッ化マグネシゥ ム(MgF )を適用した。
[0075] 反射防止層 12を低屈折率層 12aとして単層構造とすることにより、より高温環境下 での反射防止層 12の変形 (割れ、剥離など)を抑制することが可能となる。また、単 層構造とすることにより、内部応力の増大を防止し、また、成膜のためのプロセス時間 を短縮して反射防止層 12の製造工程を簡略化させ製造コストを低減することが可能 となる。
[0076] なお、フッ化マグネシウムを蒸着するためには 200°C以上の蒸着温度が必要となる ことから、光学素子 1 (基本樹脂部 11)に使用する合成樹脂は高温に耐える必要があ り、例えば、 Si— O— Siのシリカ結合を持つ例えば、アルキル基やフエニール基を持 つシリコーン樹脂や、炭素骨格とシリコーン骨格カ 、イブリツドされた無機 ·有機ハイ プリッドシリコーン樹脂などの耐熱性樹脂を適用することが望ましい。
[0077] 低屈折率層 12aの膜厚 (光学膜厚 nd)は、光学素子 1の光学特性および所望の反 射特性に対応して変動する力 S、一つの目安として反射防止層 12の材料が有する屈 折率 n X光学膜厚 ndが設計波長えの 1/4となるように設定することが望ましい。
[0078] なお、本実施の形態に係る光学素子 1では、反射防止層 12と基本樹脂部 11の表 面との間に、下地層 15が形成してある。下地層 15は反射防止特性に影響を及ぼす ものではないため、必須ではない。しかし、基本樹脂部 11の材料に対して良好な密 着性を有し、かつ耐薬品性、および耐摩耗性にすぐれた無機材料による下地層 15 は、反射防止層 12と基本樹脂部 11を強固に結び付けて接着性を向上させることか ら、熱膨張による反射防止層 12の剥離を抑制する要因となる。
[0079] 下地層 15は、ケィ素酸化物(SiOx (2〉x〉l) )を主成分とする屈折率 n= l . 49〜
1. 59の低屈折率材料力もなる薄膜構成とした。これは、低屈折率材料の屈折率が 合成樹脂製の光学素子 1として使用される材料の屈折率の範囲にあること、および、 低屈折率材料が耐薬品性ゃ耐摩耗性にすぐれており合成樹脂製の光学素子 1に対 して良好な密着性を有し、かつ、下地層 15として用いた場合に光散乱量および光吸 収量が少ないからである。
[0080] また、下地層 15の膜厚はあまり厚くても、また、あまり薄くても耐熱性、密着性、耐摩 耗性、耐薬品性を満足できないことから、経験的に 200〜300nm程度に設定した。 これにより、耐摩耗性、耐薬品性に優れ、光学特性の劣化が生じない信頼性の高い 光学素子 1とすることが可能となる。なお、微細突起部 13の高さ Hは、下地層 15およ び反射防止層 12を積層した厚みよりも少し高くする必要がある。
[0081] 図 5は、本発明の実施の形態 2に係る光学素子での反射防止層の他の構造例を示 す断面図である。なお、断面でのハッチングは省略してある。 [0082] 図 5に示す本実施の形態に係る反射防止層 12は、基本樹脂部 11 (樹脂成形に適 用した合成樹脂)の屈折率よりも高い屈折率を有する材料で構成された高屈折率層 12bと、基本樹脂部 11の屈折率よりも低い屈折率を有する材料で構成された低屈折 率層 12cとを交互に積層した積層構造としてある(高屈折率層 12bと低屈折率層 12c を区別する必要がない場合は、単に反射防止層 12とする。)。
[0083] この構成により、図 4の構造例(反射防止層 12の単層構造)の場合に比較してさら に反射防止特性を改善でき、例えば、光学素子 1が適用される波長帯域で 1 %以下 の極めて低!/、反射率として優れた反射防止特性を持たせることが必要と!/、つた場合 に適用可能な優れた反射防止特性を実現することが可能となる。また、反射防止層 1 2は、 2層の積層構造として示している力 必要な反射防止特性によってはさらに積 層する層数を増加させることも可能である。
[0084] 高屈折率層 12bとしては、酸化チタン (TiO )、酸化ジルコニウム(ZrO )、またはこ れらの混合物を主成分とする高屈折率材料を適用することが可能である。
[0085] 高屈折率層 12b、低屈折率層 12cの各膜厚(光学膜厚 nd)は、低屈折率層 12aの 場合と同様、光学素子 1の光学特性および所望の反射特性に対応して変動するが 一つの目安として、反射防止層 12の材料が有する屈折率 n X光学膜厚 ndが設計波 長えの 1/4となるように設定することが望ましい。
[0086] <実施の形態 3〉
本発明の実施の形態 3に係る転写金型について図 6を参照しつつ説明する。
[0087] 図 6は、本発明の実施の形態 3に係る転写金型の形状を模式的に示す斜視図であ
[0088] 本実施の形態に係る転写金型 2は、転写 (樹脂成形)して光学素子 1を形成する転 写面 2sを備える。転写面 2sには、基本樹脂部 11を樹脂成形するための基本転写部 21と、微細突起部 13を樹脂成形するための突起転写溝 22とを備える。つまり、光学 素子 1が非球面レンズ (基本樹脂部 11)である場合には、転写面 2sには非球面形状 (基本樹脂部 11 )とポジネガの関係になる形状 (基本転写部 21 )が形成されてレ、る。 また、同様に、光学素子 1に転写される微細突起部 13とポジネガ関係になる突起転 写溝 22が形成されている。 [0089] この構成により、転写金型 2を適用して光学素子 1を樹脂成形する場合、基本樹脂 部 11の樹脂成形と同時に微細突起部 13を転写できることから、両者を別々に転写 する場合に比較して生産効率が向上し、また両者の位置合わせが不要となり高精度 の光学素子 1を生産性良く製造することが可能となる。つまり、転写面 2sに、基本樹 脂部 11および微細突起部 13を形成するための形状(基本転写部 21および突起転 写溝 22)を形成してあることから、 1回の樹脂成形工程で基本樹脂部 11および微細 突起部 13を備えた光学素子 1を製造することができるので、高精度の光学素子 1を 安価に形成することができる。
[0090] なお、転写金型 2の金型素材としては、マルテンサイト系ステンレス鋼、無酸素銅、 タングステンカーバイトなどの焼結材料を適用することが可能である。
[0091] <実施の形態 4〉
一般的に金型の製造は非常に高精度、高精細の技術を要求されることから、実施 の形態 3に係る転写金型 2も同様に高精度、高精細に製造することが要求される。ま た、転写金型 2は微細突起部 13を備えることからさらに高精度、高精細に製造するこ とが必要となり、通常の技術では製造に困難を伴うという問題が生じる。本実施の形 態に係る転写金型製造方法は、このような問題を解消して容易に転写金型 2を製造 する方法を提供する。
[0092] 本発明の実施の形態 4に係る転写金型製造方法について図 7を参照しつつ説明 する。
[0093] 図 7は、本発明の実施の形態 4に係る転写金型製造方法の各工程での転写金型 の形状を模式的に示す断面図であり、図 7 (A)は金型素材を加工して基本転写部を 形成する状態を示し、図 7 (B)は突起転写溝を形成するためのフォトレジストを露光 する状態を示し、図 7 (C)は形成したレジストマスクを用いて金型素材をエッチングし 突起転写溝を形成する状態を示し、図 7 (D)は完成した転写金型を示す。
[0094] まず、転写金型 2を形成する金型素材(なお、完成前の状態についても、転写金型 2として符号を付す。)を準備する(図 7 (A)左参照)。超精密旋盤、超精密研削盤な どを用いて金型素材を機械加工することにより、転写面 2sに基本転写部 21を形成す る(図 7 (A)右参照)(基本樹脂部 11に対応する基本転写部 21を形成する基本転写 部形成工程)。
[0095] 基本転写部 21を形成した転写面 2sにフォトレジスト 25を塗布し 100°C程度の温度 でプリベータを行なう(図 7 (B)左参照)。次に、露光光 Lexを転写面 2sに照射して突 起転写溝 22に対応するフォトレジスト 25の一部分を感光(露光)させ除去可能な感 光レジスト部 25aを形成して露光マスクパターンを形成する(図 7 (B)右参照)。フォト レジスト 25は、露光方法、突起転写溝 22に対応する露光マスクパターンの形状によ り、ポジ型またはネガ型どちらかを選択すれば良い。本実施の形態ではポジ型として 説明している。
[0096] 露光後、フォトレジスト 25 (露光マスクパターン)に対して現像処理を施すことにより 、感光レジスト部 25aを除去し、突起転写溝 22に対応した開口部 25wを有するレジ ストマスク 25mを形成する(図 7 (C)左参照)。現像後、純水などでリンスし、 100-20 0°Cの温度でポストベータを行なってレジストマスク 25m (未感光レジスト部)の耐食性 を向上させる(図 7 (C)左参照)。
[0097] 耐食性を向上させたレジストマスク 25mをマスクとしてエッチング剤 Ectに転写金型
2を浸漬することにより、転写面 2s (金型素材の表面)をエッチング (パターユング)し て突起転写溝 22を形成する(図 7 (C)右参照)(微細突起部 13に対応する突起転写 溝 22を基本転写部 21の表面をパターユングして形成する突起転写溝形成工程)。 エッチング剤 Ectは適用する金型素材により変動する力 S、ステンレス鋼や無酸素銅な どであれば塩化第 2鉄溶液などを適用することができる。
[0098] レジストマスク 25mをアセトンなどで除去し、転写金型 2を完成する(図 7 (D)参照) 。その後、転写面 2sには樹脂成形で成形する光学素子 1 (成形物)との離型性を向 上させるために、金、 CrN、 TiN、 DLC (ダイヤモンドライクカーボン)などの離型膜( 図示省略)を数 nm〜数十 nm厚程度成膜することが望まし!/、。
[0099] 本実施の形態に係る転写金型製造方法では、光学素子 1 (基本樹脂部 11)の表面 形状が曲面であることから対応する転写面 2sが曲面であっても、微細突起部 13を樹 脂成形するための突起転写溝 22をパターユングにより容易に形成することが可能で あり、また、突起転写溝 22の形成に機械加工を用いていないことから、機械加工によ る歪(ダメージ)などが発生せず、転写面 2sの形状に影響を及ぼすことが無ぐ高精 度の転写金型 2を容易かつ安価に製造することが可能となる。
[0100] <実施の形態 5〉
本発明の実施の形態 5に係る光学素子製造方法について図 8A〜図 8Fを参照し つつ説明する。
[0101] 図 8Aは、本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型を 型開きした状態で示す断面図である。
[0102] 光学素子 1を樹脂成形するための転写金型 2は、上型 20U、下型 20L、上胴型 23 U、下胴型 23Lを備える。上型 20U、下型 20Lは、基本樹脂部 11を転写する基本転 写部 21と、微細突起部 13を転写する突起転写溝 22とを備える。上型 20U、下型 20 Lの外周には、上胴型 23U、下胴型 23Lがそれぞれ対応させて配置してある。上胴 型 23U、下胴型 23Lは、基本樹脂部 11の外周形状を画定する。上胴型 23U、下胴 型 23Lは、樹脂成形の際の合成樹脂を注入するためのゲート 27を有する。
[0103] 図 8Bは、本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型を 型締めし合成樹脂を注入した状態で示す断面図である。
[0104] 転写金型 2を型締めした後、ゲート 27から合成樹脂 Resを注入する。合成樹脂の注 入方法としては、種々の方法がある力 成形の精度および量産性を考慮して射出注 入とすることが望ましい。
[0105] 合成樹脂 Resが熱可塑性の場合は、 80°C程度に温度調整された転写金型 2に、 1 50°C程度の溶融された合成樹脂 Resが注入される。注入された溶融状態の合成樹 脂 Resは転写金型 2に接触した時点から冷却、固化が始まり、基本樹脂部 11を形成 する。
[0106] また、合成樹脂 Resが熱硬化性の場合は、 150〜200°Cに温度調整された転写金 型 2に、 80°C以下の液体状態の合成樹脂 Resが注入される。注入された液体状態の 合成樹脂 Resは重合反応が進み、基本樹脂部 11を形成する。
[0107] 転写金型 2の構造から、基本樹脂部 11の樹脂成形と同時に微細突起部 13が樹脂 成形され、ゲート痕 1 lgが連結した状態の光学素子 1を形成する(基本樹脂部 11お よび微細突起部 13を樹脂成形する樹脂成形工程)。
[0108] 図 8Cは、本発明の実施の形態 5に係る光学素子製造方法で適用する転写金型に よる樹脂成形を終了し光学素子を離型する状態を示す断面図である。
[0109] 転写金型 2による樹脂成形を終了した光学素子 1は、転写金型 2から離型される。
その後、ゲート痕 l lgは除去される。
[0110] 図 8Dは、本発明の実施の形態 5に係る光学素子製造方法で樹脂成形された光学 素子に反射防止層を形成する状態を示す断面図である。
[0111] ゲート痕 l lgを除去されて外形を整えられた光学素子 1は、蒸着チャンバ一 30の中 に配置され、無機材料の反射防止層 12が蒸着により形成される。蒸着で形成するこ とにより、精度良く反射防止層 12の膜厚を制御することが可能となり、高精度の光学 特性を有する光学素子 1とすることができる。
[0112] 蒸着チャンバ一 30は真空引きされた後、 Oガスを導入した状態で 1. O X 10— 4Torr 程度の真空状態に維持され、上述したフッ化マグネシウム、酸化チタン、酸化ジルコ ユウムなどの反射防止層成分ターゲット 31を適宜、抵抗加熱法、電子ビーム加熱法 などにより加熱して反射防止層成分を蒸発させ、反射防止層成分蒸気 RVを光学素 子 1に当てて反射防止層 12を成膜 (蒸着)する(基本樹脂部 11の表面に反射防止層 12を積層する反射防止層形成工程)。反射防止層 12を形成した後、蒸着チャンバ 一 30を大気圧まで昇圧し、開放して光学素子 1を取り出す。
[0113] なお、反射防止層 12と基本樹脂部 11との間に下地層 15を形成する場合は、反射 防止層 12を形成する前に下地層 15を形成しておく。つまり、蒸着チャンバ一 30と同 様の蒸着チャンバ一を適用し、上述したケィ素酸化物などの下地層成分ターゲットを 加熱して下地層成分を蒸着させ、光学素子 1に当てて下地層 15を成膜 (蒸着)する( 基本樹脂部 11の表面に下地層 15を積層する下地層形成工程)。下地層 15を形成 する蒸着チャンバ一と反射防止層 12を形成する蒸着チャンバ一 30とを同一の蒸着 チャンバ一とし、ターゲットを切り替えることにより下地層 15の形成と反射防止層 12の 形成とに対応させることも可能である。下地層 15の形成条件は、反射防止層 12の形 成条件と同様とすることが可能であるので詳細な説明は省略する。
[0114] 光学素子 1は、この状態で製品として一応の完成状態となるが、反射防止層形成ェ 程で形成した反射防止層 12が微細突起部 13の表面にも微細反射防止層 12a (図 8 E参照。)として付着している。微細反射防止層 12aは、微細突起部 13の表面に付着 していること、また、微細突起部 13の斜面では薄くなつて密着力が弱いことなどから、 光学素子 1の使用中に剥がれてゴミとなり光学系に影響を及ぼすことが考えられる。 したがって、微細反射防止層 12aは、除去することが望ましい。
[0115] 図 8Eは、本発明の実施の形態 5に係る光学素子製造方法で微細突起部に付着し た微細反射防止層を除去する状態を示す断面図である。
[0116] 微細反射防止層 12aが付着した状態の光学素子 1を高温チャンバ一 40の中に配 置し、高温加熱することにより、微細突起部 13に付着した微細反射防止層 12aの薄 くなつている箇所でマイクロクラック MCを発生させる。次に、高温チャンバ一 40から 光学素子 1を取り出し、超音波洗浄(図示省略)することにより、微細反射防止層 12a を除去することが可能となる。
[0117] 図 8Fは、本発明の実施の形態 5に係る光学素子製造方法で完成した光学素子の 状態を示す断面図である。
[0118] 微細反射防止層 12aを除去することにより、光学素子 1は、分割された反射防止層 12を表面に有することとなる。また、反射防止層 12は、基本樹脂部 11の表面から突 出した微細突起部 13により分割されることとなる。
[0119] 本実施の形態に係る光学素子製造方法によれば、基本樹脂部 11および微細突起 部 13を同時に形成し、反射防止層 12を基本樹脂部 11の表面に積層することから、 高精度で優れた光学特性を有する光学素子 1を生産性良く製造することが可能とな
[0120] 転写金型 2を用いて光学素子 1を製造することから、光学素子 1を量産性良く大量 に製造することが可能となり、製造コストを低減し、安価に光学素子 1を提供すること が可能となる。
[0121] 本発明は、その主旨または主要な特徴から逸脱することなぐ他のいろいろな形で 実施すること力 Sできる。そのため、前記の実施の形態はあらゆる点で単なる例示にす ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示す ものであって、明細書本文にはなんらの拘束もされない。さらに、特許請求の範囲の 均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
[0122] なお、この出願 (ま、 曰本で 2006年 11月 17曰 ίこ出願された特願 2006— 312001 号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み 込まれるものである。また、本明細書に引用された文献は、これに言及することにより 、その全部が具体的に組み込まれるものである。
産業上の利用可能性
本発明は、反射防止層が形成された光学素子に好適に利用することができ、また、 このような光学素子を転写する転写金型、その転写金型を製造する転写金型製造方 法、およびこのような光学素子を製造する光学素子製造方法に好適に利用すること ができる。

Claims

請求の範囲
[1] 樹脂成形により形成された基本樹脂部の表面に反射防止層が形成された合成樹 脂製の光学素子であって、
前記反射防止層は無機物で形成され、分割してあることを特徴とする光学素子。
[2] 請求項 1に記載の光学素子において、
前記反射防止層は、前記基本樹脂部の表面から突出した微細突起部により分割さ れて!/、ることを特徴とする光学素子。
[3] 請求項 2に記載の光学素子において、
前記微細突起部の長さ方向と交差する方向での前記微細突起部の断面の形状は 、半円状、三角形状、台形状のいずれかであることを特徴とする光学素子。
[4] 請求項 3に記載の光学素子において、
前記微細突起部の断面の底辺幅は 2 mより小さぐ前記微細突起部の断面の高 さは 2 mより小さいことを特徴とする光学素子。
[5] 請求項 2に記載の光学素子において、
前記微細突起部は、前記基本樹脂部の光軸に対して軸対称に配置してあることを 特徴とする光学素子。
[6] 請求項 5に記載の光学素子において、
前記微細突起部は、前記基本樹脂部の光軸に対して同心円状および放射線状に 配置してあることを特徴とする光学素子。
[7] 請求項 5に記載の光学素子において、
前記微細突起部は、前記基本樹脂部の光軸から離れた基本樹脂部の外周領域に 配置してあることを特徴とする光学素子。
[8] 請求項 1に記載の光学素子において、
前記反射防止層と前記基本樹脂部の表面との間に、ケィ素酸化物を主成分とする 下地層が形成してあることを特徴とする光学素子。
[9] 請求項;!〜 8のいずれか一つの請求項に記載の光学素子において、
前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成さ れた低屈折率層としてあることを特徴とする光学素子。
[10] 請求項;!〜 8のいずれか一つの請求項に記載の光学素子において、 前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成さ れた低屈折率層および前記基本樹脂部の屈折率よりも高い屈折率の材料で構成さ れた高屈折率層を積層した積層構造としてあることを特徴とする請求項 1ないし請求 項 7の!/、ずれか一つに記載の光学素子。
[11] 樹脂成形により形成される基本樹脂部の表面に形成された微細突起部で分離され る反射防止層を備える光学素子を樹脂成形する転写金型であって、
前記基本樹脂部を樹脂成形する基本転写部と、前記微細突起部を樹脂成形する 突起転写溝とを備えることを特徴とする転写金型。
[12] 樹脂成形により形成される基本樹脂部の表面に形成された微細突起部で分離され る反射防止層を備える光学素子を樹脂成形する転写金型を製造する転写金型製造 方法であって、
前記基本樹脂部に対応する基本転写部を形成する基本転写部形成工程と、 前記微細突起部に対応する突起転写溝を前記基本転写部の表面をパターユング して形成する突起転写溝形成工程と
を備えることを特徴とする転写金型製造方法。
[13] 樹脂成形により形成される基本樹脂部の表面に形成された微細突起部で分離され る反射防止層を備える光学素子を製造する光学素子製造方法であって、
前記基本樹脂部および前記微細突起部を樹脂成形する樹脂成形工程と、 前記基本樹脂部の表面に反射防止層を積層する反射防止層積層工程と を備えることを特徴とする光学素子製造方法。
[14] 請求項 13に記載の光学素子製造方法において、
前記反射防止層の積層は、蒸着により行われることを特徴とする光学素子製造方 法。
PCT/JP2007/071108 2006-11-17 2007-10-30 Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d'élément optique WO2008059712A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006312001A JP4108722B2 (ja) 2006-11-17 2006-11-17 光学素子および光学素子製造方法
JP2006-312001 2006-11-17

Publications (1)

Publication Number Publication Date
WO2008059712A1 true WO2008059712A1 (fr) 2008-05-22

Family

ID=39401521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071108 WO2008059712A1 (fr) 2006-11-17 2007-10-30 Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d'élément optique

Country Status (2)

Country Link
JP (1) JP4108722B2 (ja)
WO (1) WO2008059712A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104311B (zh) 2014-03-13 2018-04-10 富士胶片株式会社 光学组件、红外线照相机及光学组件的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990103A (ja) * 1995-09-19 1997-04-04 Denso Corp 遮光膜の形成方法
JPH11344603A (ja) * 1998-06-01 1999-12-14 Sti Technology Kk ブラックマスク、カラーフィルター、液晶ディスプレイ及びブラックマスクの製造方法
JP2000275417A (ja) * 1999-03-25 2000-10-06 Canon Inc 光学素子
JP2002280534A (ja) * 2001-03-16 2002-09-27 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2003142775A (ja) * 2001-10-31 2003-05-16 Hitachi Ltd 近接場光プローブ集積半導体レーザ及びそれを用いた光記録装置
JP2003241199A (ja) * 2001-12-12 2003-08-27 Dainippon Printing Co Ltd 光硬化性樹脂組成物、液晶パネル用基板、及び、液晶パネル
JP2003528349A (ja) * 2000-03-17 2003-09-24 ゾグラフ エルエルシー 高明瞭度レンズシステム
JP2005336247A (ja) * 2004-05-25 2005-12-08 Konica Minolta Opto Inc 樹脂材料及びプラスチック製光学素子
JP2006267561A (ja) * 2005-03-24 2006-10-05 Seiko Epson Corp 光学素子およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990103A (ja) * 1995-09-19 1997-04-04 Denso Corp 遮光膜の形成方法
JPH11344603A (ja) * 1998-06-01 1999-12-14 Sti Technology Kk ブラックマスク、カラーフィルター、液晶ディスプレイ及びブラックマスクの製造方法
JP2000275417A (ja) * 1999-03-25 2000-10-06 Canon Inc 光学素子
JP2003528349A (ja) * 2000-03-17 2003-09-24 ゾグラフ エルエルシー 高明瞭度レンズシステム
JP2002280534A (ja) * 2001-03-16 2002-09-27 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2003142775A (ja) * 2001-10-31 2003-05-16 Hitachi Ltd 近接場光プローブ集積半導体レーザ及びそれを用いた光記録装置
JP2003241199A (ja) * 2001-12-12 2003-08-27 Dainippon Printing Co Ltd 光硬化性樹脂組成物、液晶パネル用基板、及び、液晶パネル
JP2005336247A (ja) * 2004-05-25 2005-12-08 Konica Minolta Opto Inc 樹脂材料及びプラスチック製光学素子
JP2006267561A (ja) * 2005-03-24 2006-10-05 Seiko Epson Corp 光学素子およびその製造方法

Also Published As

Publication number Publication date
JP4108722B2 (ja) 2008-06-25
JP2008129197A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4281773B2 (ja) 微細成形モールド及び微細成形モールドの再生方法
JP2005157119A (ja) 反射防止光学素子及びこれを用いた光学系
TWI432788B (zh) 膜懸置光學元件與相關方法
WO2005092588A1 (ja) 微細凹凸構造を有する曲面金型の製造方法及びこの金型を用いた光学素子の製造方法
JP4714627B2 (ja) 表面に微細な凹凸構造を有する構造体の製造方法
JP2013526729A (ja) 2次元高分子光導波路の製造方法
WO2008059712A1 (fr) Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d&#39;élément optique
JP2001030306A (ja) 樹脂正立レンズアレイおよびその製造方法
US6770162B2 (en) Method of manufacturing a disk and transfer method for the disk
JP4973367B2 (ja) レプリカ回折格子及びその製造方法
JP2016002665A (ja) モールド製造用構造体の製造方法、およびモールドの製造方法
US11644683B2 (en) Optical element including at least two diffractive layers
JP4463775B2 (ja) X線リソグラフィー用マスク、その製造方法、それを用いた光反射防止構造体の製造方法、光反射防止構造を有する光学素子を製造するための成形型の製造方法、並びに光反射防止構造を有するガラス被成形物若しくは樹脂被成形物の製造方法
JP4820871B2 (ja) 反射防止構造体及びその製造方法
KR100985568B1 (ko) 스탬프를 이용한 렌즈 제조 방법
JP5303889B2 (ja) レプリカ回折格子
JP2016002664A (ja) モールド製造用構造体、モールド、モールド製造用構造体の製造方法、およびモールドの製造方法
JP4814938B2 (ja) 反射防止構造体及びその製造方法
TWI398670B (zh) 鏡片陣列製造方法
JP7464415B2 (ja) 接着層、およびこの接着層を用いたメタルマスク
JP2005283814A (ja) 反射防止処理を施した光学素子及びその金型並びに金型の製造方法
JP2008027506A (ja) 多層光記録媒体の製造方法
JP2005208187A (ja) 導波路構造を有する光学デバイスとその製造方法
JP2009015015A (ja) 高分子光導波路及びその製造方法
JP3734174B2 (ja) 光学デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830842

Country of ref document: EP

Kind code of ref document: A1