JP4108722B2 - 光学素子および光学素子製造方法 - Google Patents

光学素子および光学素子製造方法 Download PDF

Info

Publication number
JP4108722B2
JP4108722B2 JP2006312001A JP2006312001A JP4108722B2 JP 4108722 B2 JP4108722 B2 JP 4108722B2 JP 2006312001 A JP2006312001 A JP 2006312001A JP 2006312001 A JP2006312001 A JP 2006312001A JP 4108722 B2 JP4108722 B2 JP 4108722B2
Authority
JP
Japan
Prior art keywords
optical element
antireflection layer
resin portion
refractive index
basic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312001A
Other languages
English (en)
Other versions
JP2008129197A (ja
Inventor
錬三郎 三木
和也 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006312001A priority Critical patent/JP4108722B2/ja
Priority to PCT/JP2007/071108 priority patent/WO2008059712A1/ja
Publication of JP2008129197A publication Critical patent/JP2008129197A/ja
Application granted granted Critical
Publication of JP4108722B2 publication Critical patent/JP4108722B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明は、反射防止層が形成された合成樹脂製の光学素子、および、このような光学素子を製造する光学素子製造方法に関する。
従来、プラスチックレンズなどの合成樹脂で形成された合成樹脂製光学レンズなどにおいては、光学レンズの表面での反射を防止するために、ケイ素酸化物(SiOx)の薄膜を設けること、あるいは、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化カルシウム(CaO2)、酸化タンタル(Ta25)などの高屈折率材料の薄膜とケイ素酸化物(SiO2)などの低屈折率材料の薄膜とを交互に積層した多層膜の反射防止層を設けることが提案されている。
従来例1として、アクリルレンズの表面にSiOからなる屈折率nが1.55以上で厚さが89nm以下の4分の1波長膜(以下、λ/4膜という。)を蒸着し、その上にフッ化マグネシウム(MgF2)からなる屈折率nが1.38のλ/4膜を積層した2層膜の反射防止層が提案されている(例えば、特許文献1参照。)。
従来例2として、第1層としてSiO2からなる屈折率n=1.47、膜厚d=354nm、光学膜厚nd=λ0(設計波長λ0=520nm)の薄膜を真空蒸着によって形成し、その上に順次、Ta25からなる屈折率n=2.05、光学膜厚nd=0.057λ0の薄膜と、SiO2からなる屈折率n=1.47、光学膜厚nd=0.11λ0の薄膜と、Ta25からなる屈折率n=2.05、光学膜厚nd=0.538λ0の薄膜と、SiO2からなる屈折率n=1.47、光学膜厚nd=0.258λ0の薄膜を積層した5層膜からなる反射防止層が提案されている(例えば、特許文献2参照。)。
従来例3として、メタクリル樹脂注型基板上に第1層としてSiOxからなる屈折率n=1.60、光学膜厚nd=(λ0 /4)×20%(d=17〜18nm)の薄膜を真空蒸着によって形成し(設計波長λ0=550〜570nm)、その上に、TiO2からなる屈折率n=1.95、光学膜厚nd=(λ0/4)×20%の薄膜と、SiO2からなる屈折率n=1.45、光学膜厚nd=(λ0/4)×40%の薄膜と、TiO2からなる屈折率n=2.0、光学膜厚nd=(λ0/4)×70%の薄膜と、SiO2からなる屈折率n=1.45、光学膜厚nd=(λ0/4)×95%の薄膜を積層した5層膜からなる反射防止層が提案されている(例えば、特許文献3参照。)。
しかしながら、従来例1ないし従来例3では、居住用空間などの限られた環境で用いる場合はいずれも著しく性能が劣化するおそれはないが、屋外などにおいて厳しい温度条件に曝されたり、温度や湿度の変化の大きい環境で長期にわたって使用されると、耐摩耗性や耐薬品性が劣化したり、合成樹脂材料と無機反射防止層の線膨張係数の差からくる合成樹脂の母材の熱歪などによって反射防止層にクラック(膜割れ)が発生し、最悪の状態では反射防止層の剥離を生じる恐れがある。このような状況のもと、従来例1ないし従来例3の問題を解決するために、改良された従来例が提案されている。
図9は、改良された従来例に係る光学部品の反射防止層の状態を示す断面図である。なお、一部の断面は、ハッチングを省略してある。
改良された従来例では、光学部品(光学素子)である合成樹脂製レンズ130に、硬度が高く、耐薬品性や合成樹脂に対する密着性にすぐれたケイ素酸化物SiOx(2>x>1)を主成分とする薄膜を、反射防止特性に関与しないアンダーコート131として用いることを提案している。これにより、反射防止多層膜132の耐摩耗性や耐薬品性および合成樹脂製レンズ130に対する密着性を向上させている(例えば、特許文献4参照。)。
アンダーコート131の膜厚を200nm以上300nm以下にすることで、耐摩耗性、耐薬品性を充分に向上させ、加えて、屋外などの温度、湿度の厳しい環境における耐久性も向上させ、反射防止多層膜132のクラックや膜剥離を生じにくくしている。なお、反射防止多層膜132は、高屈折率材料からなる第1層反射防止層132a、低屈折率材料からなる第2層反射防止層132b、高屈折率材料からなる第3層反射防止層132c、低屈折率材料からなる第4層反射防止層132dで構成してある。
一方、近年、モバイル機器分野に使用される合成樹脂製の光学素子について、モバイル機器の一括リフロー実装処理に対応できるように、耐熱性を有する合成樹脂の光学材料を使用した光学素子が望まれている。しかしながら、耐熱性を有する合成樹脂の光学材料は、線膨張係数が従来の合成樹脂の光学材料に比べて大きいこと、および、材料一括リフロー実装処理を行なうための環境温度は250〜270℃にもなることから、特許文献4に記載の技術によるアンダーコート(下地層)を設けても、反射防止層の変形(クラックや膜剥離など)が生じてしまうという問題がある。
特開昭60−98401号公報 特開昭60−225101号公報 特開平3−116101号公報 特開平6−273601号公報
本発明はこのような状況に鑑みてなされたものであり、基本樹脂部の表面に分割した反射防止層を備えることにより、反射防止層の変形を抑制できる信頼性の高い光学素子を提供することを目的とする。
また、本発明は基本樹脂部および微細突起部を樹脂成形する樹脂成形工程と、基本樹脂部の表面に反射防止層を積層する反射防止層積層工程とを備えることにより、基本樹脂部および微細突起部を同時に形成して反射防止層を精度良く積層でき、高精度で優れた光学特性を有する光学素子を生産性良く製造できる光学素子製造方法を提供することを他の目的とする。
本発明に係る光学素子は、樹脂成形により形成された基本樹脂部の表面に反射防止層が形成された合成樹脂製の光学素子であって、前記反射防止層は無機物で形成され、前記基本樹脂部の表面から突出し前記基本樹脂部の光軸に対して同心円状および放射線状に配置された微細突起部によって分割してあることを特徴とする。
この構成により、光学素子と反射防止層との線膨張係数の違いにより発生する内部応力を緩和して、反射防止層の変形を抑制することが可能な信頼性の高い光学素子となる。また、高温環境での反射防止層の面内方向の膨張に対して微細突起部の膨張方向が対向することとなるので、反射防止層の面内方向に圧縮力が発生し、反射防止層の変形を抑制することが可能となる。また、内部応力の緩和を軸対称として均等に分布させることが可能となり、簡単な構造で軸対称を実現することが可能となることから、変形の少ない光学素子を容易に製造することができる。
また、本発明に係る光学素子では、前記微細突起部の長さ方向と交差する方向での前記微細突起部の断面の形状は、半円状、三角形状、台形状のいずれかであることを特徴とする。
この構成により、樹脂成形での転写金型との離型性を確保して微細突起部を高精度で形成することが可能となる。
また、本発明に係る光学素子では、前記断面の底辺幅は2μmより小さく、前記断面の高さは2μmより小さいことを特徴とする。
この構成により、微細突起部による散乱が光学素子の光学特性に対して影響を生じさせることを防止することが可能となる。
また、本発明に係る光学素子では、前記微細突起部は、前記基本樹脂部の光軸に対して軸対称に配置してあることを特徴とする。
この構成により、光軸を中心として軸対称に分割線を配置できることから、内部応力の緩和を均等に発生させることが可能となり、反射防止層の変形を均等かつ確実に抑制することが可能となる。
また、本発明に係る光学素子では、前記微細突起部は、前記光軸から離れた基本樹脂部の外周領域に配置してあることを特徴とする。
この構成により、光学素子の光軸周辺の中心領域での光学特性の低下を防止することが可能となる。
また、本発明に係る光学素子では、前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成された低屈折率層としてあることを特徴とする。
この構成により、より高温環境下での反射防止層の変形を抑制することが可能となる。また、単層構造とすることにより、内部応力の増大を防止し、反射防止層の製造工程を簡略化して製造コストを低減することが可能となる。
また、本発明に係る光学素子では、前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成された低屈折率層および前記基本樹脂部の屈折率よりも高い屈折率の材料で構成された高屈折率層を積層した積層構造としてあることを特徴とする。
この構成により、極めて低い反射率で優れた反射防止特性を有する光学素子とすることが可能となる。
また、本発明に係る光学素子では、前記反射防止層と前記基本樹脂部の表面との間に、ケイ素酸化物を主成分とする下地層が形成してあることを特徴とする。
この構成により、反射防止層の基本樹脂部に対する密着性を向上させ、光学素子の耐薬品性、耐磨耗性を向上させることが可能となり、光学特性の劣化が生じない信頼性の高い光学素子とすることが可能となる。
また、本発明に係る光学素子製造方法は、樹脂成形により形成される基本樹脂部の表面に突出させて形成された微細突起部で分離される反射防止層を備える光学素子を製造する光学素子製造方法であって、前記基本樹脂部と前記基本樹脂部の光軸に対して同心円状および放射線状に配置された前記微細突起部を樹脂成形する樹脂成形工程と、前記基本樹脂部の表面に反射防止層を積層する反射防止層積層工程とを備えることを特徴とする。
この構成により、基本樹脂部および微細突起部を同時に形成して反射防止層を精度良く積層できるので、高精度で優れた光学特性を有する光学素子を生産性良く製造することが可能となる。
また、本発明に係る光学素子製造方法では、前記反射防止層の積層は、蒸着により行われることを特徴とする。
この構成により、精度良く反射防止層の膜厚を制御することが可能となり、高精度の光学特性を有する光学素子とすることが可能となる。
本発明に係る光学素子によれば、基本樹脂部の表面に分割した反射防止層を備えることから、反射防止層の変形(割れ、剥離など)を抑制でき、信頼性を向上させることが可能となるという効果を奏する。
また、本発明に係る光学素子製造方法によれば、基本樹脂部および微細突起部を樹脂成形する樹脂成形工程と、基本樹脂部の表面に反射防止層を積層する反射防止層積層工程とを備えることから、基本樹脂部および微細突起部を同時に形成して反射防止層を精度良く積層でき、高精度で優れた光学特性を有する光学素子を生産性良く製造できるという効果を奏する。
以下、本発明の実施の形態を図面に基づいて説明する。
<実施の形態1>
図1ないし図3に基づいて、本発明の実施の形態1に係る光学素子について説明する。
図1は、本発明の実施の形態1に係る光学素子の形状を模式的に示す説明図であり、(A)は斜視図、(B)は光学素子の光軸を含む平面で微細突起部(円状突起部)を切断した状態を示す断面図である。なお、断面でのハッチングは省略してある。
本実施の形態に係る光学素子1は、樹脂成形により形成された基本樹脂部11の表面に反射防止層12(同図(A)では図示を省略している。)が形成された合成樹脂製の例えばプラスチックレンズとして構成してある。基本樹脂部11は、光学素子1の光学機能を実現する構造(例えば、レンズ形状としてある。)を有するように形成される。また、基本樹脂部11を構成する合成樹脂として、例えばアクリル樹脂、ポリカーボネート樹脂、またはアルキル基やフェニール基を持つシリコーン樹脂や、炭素骨格とシリコーン骨格がハイブリッドされた無機・有機ハイブリッドシリコーン樹脂などを適用することができる。なお、反射防止層12は、無機物で形成され、分割してある。
この構成により、光学素子1が高温環境にさらされた場合に、光学素子1と反射防止層12との線膨張係数の違いから光学素子1の全体にわたって発生する内部応力を緩和することが可能となり、反射防止層12の割れ、剥離などの変形を抑制することができる。
反射防止層12は、基本樹脂部11の表面から突出した微細突起部13により分割されている。つまり、微細突起部13は、反射防止層12の厚さよりも厚い高さで形成されている。したがって、反射防止層12は、光学素子1の表面で微細突起部13の配置に対応して適宜の領域に分割されている。
なお、高温環境の下では、反射防止層12が面内方向に膨張するが、この膨張方向に対向する方向で微細突起部13が膨張することとなる。したがって、反射防止層12の面内方向には圧縮力が発生し、反射防止層12の変形を抑制することが可能となる。
また、微細突起部13を基本樹脂部11の表面の全域で光学素子1(基本樹脂部11)が有する光軸Laxに対して軸対称に配置することにより、熱膨張による反射防止層12の変形を軸対称に対応させてバランスさせることが可能となり、均等かつ確実に変形を抑制することが可能となる。
高温環境下では、光学素子1は光軸Laxを中心に光学素子1の周辺に向かって膨張するが、微細突起部13を、光軸Laxを中心にして同心円状に配置された円状突起部13cと、光軸Laxを中心にして放射線状に配置された線状突起部13rとを有する構成とすることにより、簡単な構造で内部応力を軸対称として均等に分布させることが可能となる(以下、円状突起部13cと線状突起部13rとを特に区別する必要がない場合は、単に微細突起部13とする。)。
つまり、光軸Laxを中心として軸対称に分割線(微細突起部13)を配置できることから、内部応力の緩和を軸対称として均等に分布させることが可能となり、反射防止層12の変形を均等かつ確実に抑制することが可能となる。
また、微細突起部13を円筒状および放射線状とすることにより、微細突起部13を軸対称で容易に配置することが可能となり、反射防止層12の変形が少なく信頼性の高い光学素子1を容易に製造することができる。
なお、周囲環境を高温環境として説明したが、温度以外の湿度の変化に対しても同様の作用効果を奏する。また、光学素子1を電子機器などに実装する工程での高温環境によっても光学素子1の光学特性が劣化することは生じない。例えば一括リフロー実装処理工程などについても、高温環境の影響を受けないので、生産性と信頼性の高い光学素子1とすることが可能となる。
図2は、本発明の実施の形態1に係る光学素子の微細突起部の断面を模式的に示す断面図であり、(A)は断面が半円状、(B)は断面が三角形状、(C)は断面が台形状の場合を示す。なお、断面でのハッチングは省略してある。
微細突起部13は、光学素子1での光の散乱を極力減らすために緩やかに変化していく形状が望ましい。また、微細突起部13は、後述する転写金型2(実施の形態3以下を参照。)により光学素子1の表面に基本樹脂部11の樹脂成形と併せて樹脂成形することから、転写金型2の離型性に影響を及ぼさない形状であることが望ましい。
したがって、微細突起部13の長さ方向と交差する方向での断面の形状は、半円状、三角形状または台形状(矩形状)であることが望ましい。この構成により、樹脂成形での転写金型2との離型性を確保して微細突起部13を高精度で形成することが可能となる。
微細突起部13の断面の寸法(底辺幅Wおよび高さH)は、光学素子1の光学特性に影響を及ぼさない大きさであることが望ましい。完全に影響の無い寸法とするためには、光学素子1が使用される波長帯域の最短波長の長さよりも小さい必要がある。例えば使用される波長帯域が可視光域(短波長側:380〜400μm。長波長側:750〜800μm)である場合、底辺幅Wおよび高さHは400nm以下となる。ただし、この数値は、微細突起部13によるレンズ系の光量低下を考慮した場合には、多少さらに大きくなる。
例えば、撮像素子を使用したカメラモジュールに光学素子1(レンズ)を適用する場合、絞りF3.4、焦点距離4mm程度のレンズで撮像面からのバックフォーカス300μmの位置に光学面があった場合、経験上画像にほとんど影響を及ぼさない2%程度の光量低下を起こす底辺幅Wおよび高さHの大きさは、およそ10μm程度である。
したがって、微細突起部13の断面の底辺幅Wおよび高さHの数値は、10μmに対して十分な余裕を持たせた値として1/5程度の2μmを上限とすることが望ましい。つまり、底辺幅Wは2μmより小さく、高さHは2μmより小さい寸法とすることにより、微細突起部13が光学素子1の光学特性に影響を及ぼす恐れは全く生じない。また、下限は、反射防止層12を分割する必要があることから、反射防止層12の厚さより大きいことが必要である。
なお、微細突起部13の形成位置としては、上述した形状や大きさであれば、何処に形成されても良いが、高温環境下における反射防止層12に発生する内部応力をできるだけ効率良く緩和できるように形成することが望ましい。したがって、光学素子1(基本樹脂部11)の形状(つまり、レンズ形状)や反射防止層12の形状を考慮したシミュレーションなどを用いて適宜設定することが望ましい。
また、望ましい断面の寸法(底辺幅Wおよび高さH)は、上述したとおり、光学素子1を使用する条件(適用する波長帯域)により変動するが、そのような場合でも、断面の寸法は、底辺幅Wを2μmより小さく、高さHを2μmより小さくすることにより、微細突起部13による散乱が光学素子1の光学特性に影響を及ぼすことは全くない。
図3は、本発明の実施の形態1に係る光学素子の形状の変形例を模式的に示す斜視図である。
上述したとおり、微細突起部13による光学素子1の光学特性への影響を排除することは十分可能である。しかしながら、光学素子1の使用状況によっては、光学素子1の光学特性が微細突起部13による散乱の影響を受けて低下する場合がある。例えば、上述したカメラモジュールでは、微細突起部13による散乱により光学素子1の中央部分(光軸Lax周辺の中心領域11i)が受け持つ空間周波数の低周波成分に影響を与え、結果として画質のコントラストが低くなってしまう場合が考えられる。
このような場合の対策として、光軸Laxから離れた基本樹脂部11の外周領域11s(中心領域11iの外側に位置する領域)に微細突起部13を配置することにより、コントラストの低下(散乱が光情報の空間周波数の低周波成分に及ぼす影響)を防止することが可能となる。なお、この場合でも、微細突起部13を設けない中心領域11iはできるだけ小さくすることが耐熱性の観点から望ましい。したがって、耐熱性の向上と光学特性への影響とのバランスを考慮した形状(寸法設定)とすることが望ましい。
<実施の形態2>
図4および図5に基づいて、本発明の実施の形態2に係る光学素子について説明する。
図4は、本発明の実施の形態2に係る光学素子での反射防止層の構造例を示す断面図である。なお、断面でのハッチングは省略してある。
図4に示す本実施の形態に係る反射防止層12は、基本樹脂部11(樹脂成形に適用した合成樹脂)の屈折率よりも低い屈折率を有する材料で構成された低屈折率層12aとしてある(低屈折率層12aを区別する必要がない場合は、単に反射防止層12とする。)。なお、低屈折率層12aの材料として、屈折率n=1.38のフッ化マグネシウム(MgF2)を適用した。
反射防止層12を低屈折率層12aとして単層構造とすることにより、より高温環境下での反射防止層12の変形(割れ、剥離など)を抑制することが可能となる。また、単層構造とすることにより、内部応力の増大を防止し、また、成膜のためのプロセス時間を短縮して反射防止層12の製造工程を簡略化させ製造コストを低減することが可能となる。
なお、フッ化マグネシウムを蒸着するためには200℃以上の蒸着温度が必要となることから、光学素子1(基本樹脂部11)に使用する合成樹脂は高温に耐える必要があり、例えば、Si−O−Siのシリカ結合を持つ例えば、アルキル基やフェニール基を持つシリコーン樹脂や、炭素骨格とシリコーン骨格がハイブリッドされた無機・有機ハイブリッドシリコーン樹脂などの耐熱性樹脂を適用することが望ましい。
低屈折率層12aの膜厚(光学膜厚nd)は、光学素子1の光学特性および所望の反射特性に対応して変動するが、一つの目安として反射防止層12の材料が有する屈折率n×光学膜厚ndが設計波長λの1/4となるように設定することが望ましい。
なお、本実施の形態に係る光学素子1では、反射防止層12と基本樹脂部11の表面との間に、下地層15が形成してある。下地層15は反射防止特性に影響を及ぼすものではないため、必須ではない。しかし、基本樹脂部11の材料に対して良好な密着性を有し、かつ耐薬品性、および耐摩耗性にすぐれた無機材料による下地層15は、反射防止層12と基本樹脂部11を強固に結び付けて接着性を向上させることから、熱膨張による反射防止層12の剥離を抑制する要因となる。
下地層15は、ケイ素酸化物(SiOx(2>x>1))を主成分とする屈折率n=1.49〜1.59の低屈折率材料からなる薄膜構成とした。これは、低屈折率材料の屈折率が合成樹脂製の光学素子1として使用される材料の屈折率の範囲にあること、および、低屈折率材料が耐薬品性や耐摩耗性にすぐれており合成樹脂製の光学素子1に対して良好な密着性を有し、かつ、下地層15として用いた場合に光散乱量および光吸収量が少ないからである。
また、下地層15の膜厚はあまり厚くても、また、あまり薄くても耐熱性、密着性、耐摩耗性、耐薬品性を満足できないことから、経験的に200〜300nm程度に設定した。これにより、耐摩耗性、耐薬品性に優れ、光学特性の劣化が生じない信頼性の高い光学素子1とすることが可能となる。なお、微細突起部13の高さHは、下地層15および反射防止層12を積層した厚みよりも少し高くする必要がある。
図5は、本発明の実施の形態2に係る光学素子での反射防止層の他の構造例を示す断面図である。なお、断面でのハッチングは省略してある。
図5に示す本実施の形態に係る反射防止層12は、基本樹脂部11(樹脂成形に適用した合成樹脂)の屈折率よりも高い屈折率を有する材料で構成された高屈折率層12bと、基本樹脂部11の屈折率よりも低い屈折率を有する材料で構成された低屈折率層12cとを交互に積層した積層構造としてある(高屈折率層12bと低屈折率層12cを区別する必要がない場合は、単に反射防止層12とする。)。
この構成により、図4の構造例(反射防止層12の単層構造)の場合に比較してさらに反射防止特性を改善でき、例えば、光学素子1が適用される波長帯域で1%以下の極めて低い反射率として優れた反射防止特性を持たせることが必要といった場合に適用可能な優れた反射防止特性を実現することが可能となる。また、反射防止層12は、2層の積層構造として示しているが、必要な反射防止特性によってはさらに積層する層数を増加させることも可能である。
高屈折率層12bとしては、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、またはこれらの混合物を主成分とする高屈折率材料を適用することが可能である。
高屈折率層12b、低屈折率層12cの各膜厚(光学膜厚nd)は、低屈折率層12aの場合と同様、光学素子1の光学特性および所望の反射特性に対応して変動するが一つの目安として、反射防止層12の材料が有する屈折率n×光学膜厚ndが設計波長λの1/4となるように設定することが望ましい。
<実施の形態3>
図6に基づいて、本発明の実施の形態3に係る転写金型について説明する。
図6は、本発明の実施の形態3に係る転写金型の形状を模式的に示す斜視図である。
本実施の形態に係る転写金型2は、転写(樹脂成形)して光学素子1を形成する転写面2sを備える。転写面2sには、基本樹脂部11を樹脂成形するための基本転写部21と、微細突起部13を樹脂成形するための突起転写溝22とを備える。つまり、光学素子1が非球面レンズ(基本樹脂部11)である場合には、転写面2sには非球面形状(基本樹脂部11)とポジネガの関係になる形状(基本転写部21)が形成されている。また、同様に、光学素子1に転写される微細突起部13とポジネガ関係になる突起転写溝22が形成されている。
この構成により、転写金型2を適用して光学素子1を樹脂成形する場合、基本樹脂部11の樹脂成形と同時に微細突起部13を転写できることから、両者を別々に転写する場合に比較して生産効率が向上し、また両者の位置合わせが不要となり高精度の光学素子1を生産性良く製造することが可能となる。つまり、転写面2sに、基本樹脂部11および微細突起部13を形成するための形状(基本転写部21および突起転写溝22)を形成してあることから、1回の樹脂成形工程で基本樹脂部11および微細突起部13を備えた光学素子1を製造することができるので、高精度の光学素子1を安価に形成することができる。
なお、転写金型2の金型素材としては、マルテンサイト系ステンレス鋼、無酸素銅、タングステンカーバイトなどの焼結材料を適用することが可能である。
<実施の形態4>
一般的に金型の製造は非常に高精度、高精細の技術を要求されることから、実施の形態3に係る転写金型2も同様に高精度、高精細に製造することが要求される。また、転写金型2は微細突起部13を備えることからさらに高精度、高精細に製造することが必要となり、通常の技術では製造に困難を伴うという問題が生じる。本実施の形態に係る転写金型製造方法は、このような問題を解消して容易に転写金型2を製造する方法を提供する。
図7に基づいて、本発明の実施の形態4に係る転写金型製造方法について説明する。
図7は、本発明の実施の形態4に係る転写金型製造方法の各工程での転写金型の形状を模式的に示す断面図であり、(A)は金型素材を加工して基本転写部を形成する状態を示し、(B)は突起転写溝を形成するためのフォトレジストを露光する状態を示し、(C)は形成したレジストマスクを用いて金型素材をエッチングし突起転写溝を形成する状態を示し、(D)は完成した転写金型を示す。
まず、転写金型2を形成する金型素材(なお、完成前の状態についても、転写金型2として符号を付す。)を準備する(同図A左)。超精密旋盤、超精密研削盤などを用いて金型素材を機械加工することにより、転写面2sに基本転写部21を形成する(同図A右)(基本樹脂部11に対応する基本転写部21を形成する基本転写部形成工程)。
基本転写部21を形成した転写面2sにフォトレジスト25を塗布し100℃程度の温度でプリベークを行なう(同図B左)。次に、露光光Lexを転写面2sに照射して突起転写溝22に対応するフォトレジスト25の一部分を感光(露光)させ除去可能な感光レジスト部25aを形成して露光マスクパターンを形成する(同図B右)。フォトレジスト25は、露光方法、突起転写溝22に対応する露光マスクパターンの形状により、ポジ型またはネガ型どちらかを選択すれば良い。本実施の形態ではポジ型として説明している。
露光後、フォトレジスト25(露光マスクパターン)に対して現像処理を施すことにより、感光レジスト部25aを除去し、突起転写溝22に対応した開口部25wを有するレジストマスク25mを形成する(同図C左)。現像後、純水などでリンスし、100〜200℃の温度でポストベークを行なってレジストマスク25m(未感光レジスト部)の耐食性を向上させる(同図C左)。
耐食性を向上させたレジストマスク25mをマスクとしてエッチング剤Ectに転写金型2を浸漬することにより、転写面2s(金型素材の表面)をエッチング(パターニング)して突起転写溝22を形成する(同図C右)(微細突起部13に対応する突起転写溝22を基本転写部21の表面をパターニングして形成する突起転写溝形成工程)。エッチング剤Ectは適用する金型素材により変動するが、ステンレス鋼や無酸素銅などであれば塩化第2鉄溶液などを適用することができる。
レジストマスク25mをアセトンなどで除去し、転写金型2を完成する(同図D)。その後、転写面2sには樹脂成形で成形する光学素子1(成形物)との離型性を向上させるために、金、CrN、TiN、DLC(ダイヤモンドライクカーボン)などの離型膜(不図示)を数nm〜数十nm厚程度成膜することが望ましい。
本実施の形態に係る転写金型製造方法では、光学素子1(基本樹脂部11)の表面形状が曲面であることから対応する転写面2sが曲面であっても、微細突起部13を樹脂成形するための突起転写溝22をパターニングにより容易に形成することが可能であり、また、突起転写溝22の形成に機械加工を用いていないことから、機械加工による歪(ダメージ)などが発生せず、転写面2sの形状に影響を及ぼすことが無く、高精度の転写金型2を容易かつ安価に製造することが可能となる。
<実施の形態5>
図8Aないし図8Fに基づいて、本発明の実施の形態5に係る光学素子製造方法について説明する。
図8Aは、本発明の実施の形態5に係る光学素子製造方法で適用する転写金型を型開きした状態で示す断面図である。
光学素子1を樹脂成形するための転写金型2は、上型20U、下型20L、上胴型23U、下胴型23Lを備える。上型20U、下型20Lは、基本樹脂部11を転写する基本転写部21と、微細突起部13を転写する突起転写溝22とを備える。上型20U、下型20Lの外周には、上胴型23U、下胴型23Lがそれぞれ対応させて配置してある。上胴型23U、下胴型23Lは、基本樹脂部11の外周形状を画定する。上胴型23U、下胴型23Lは、樹脂成形の際の合成樹脂を注入するためのゲート27を有する。
図8Bは、本発明の実施の形態5に係る光学素子製造方法で適用する転写金型を型締めし合成樹脂を注入した状態で示す断面図である。
転写金型2を型締めした後、ゲート27から合成樹脂Resを注入する。合成樹脂の注入方法としては、種々の方法があるが、成形の精度および量産性を考慮して射出注入とすることが望ましい。
合成樹脂Resが熱可塑性の場合は、80℃程度に温度調整された転写金型2に、150℃程度の溶融された合成樹脂Resが注入される。注入された溶融状態の合成樹脂Resは転写金型2に接触した時点から冷却、固化が始まり、基本樹脂部11を形成する。
また、合成樹脂Resが熱硬化性の場合は、150〜200℃に温度調整された転写金型2に、80℃以下の液体状態の合成樹脂Resが注入される。注入された液体状態の合成樹脂Resは重合反応が進み、基本樹脂部11を形成する。
転写金型2の構造から、基本樹脂部11の樹脂成形と同時に微細突起部13が樹脂成形され、ゲート痕11gが連結した状態の光学素子1を形成する(基本樹脂部11および微細突起部13を樹脂成形する樹脂成形工程)。
図8Cは、本発明の実施の形態5に係る光学素子製造方法で適用する転写金型による樹脂成形を終了し光学素子を離型する状態を示す断面図である。
転写金型2による樹脂成形を終了した光学素子1は、転写金型2から離型される。その後、ゲート痕11gは除去される。
図8Dは、本発明の実施の形態5に係る光学素子製造方法で樹脂成形された光学素子に反射防止層を形成する状態を示す断面図である。
ゲート痕11gを除去されて外形を整えられた光学素子1は、蒸着チャンバー30の中に配置され、無機材料の反射防止層12が蒸着により形成される。蒸着で形成することにより、精度良く反射防止層12の膜厚を制御することが可能となり、高精度の光学特性を有する光学素子1とすることができる。
蒸着チャンバー30は真空引きされた後、O2ガスを導入した状態で1.0×10-4Torr程度の真空状態に維持され、上述したフッ化マグネシウム、酸化チタン、酸化ジルコニウムなどの反射防止層成分ターゲット31を適宜、抵抗加熱法、電子ビーム加熱法などにより加熱して反射防止層成分を蒸発させ、反射防止層成分蒸気RVを光学素子1に当てて反射防止層12を成膜(蒸着)する(基本樹脂部11の表面に反射防止層12を積層する反射防止層形成工程)。反射防止層12を形成した後、蒸着チャンバー30を大気圧まで昇圧し、開放して光学素子1を取り出す。
なお、反射防止層12と基本樹脂部11との間に下地層15を形成する場合は、反射防止層12を形成する前に下地層15を形成しておく。つまり、蒸着チャンバー30と同様の蒸着チャンバーを適用し、上述したケイ素酸化物などの下地層成分ターゲットを加熱して下地層成分を蒸着させ、光学素子1に当てて下地層15を成膜(蒸着)する(基本樹脂部11の表面に下地層15を積層する下地層形成工程)。下地層15を形成する蒸着チャンバーと反射防止層12を形成する蒸着チャンバー30とを同一の蒸着チャンバーとし、ターゲットを切り替えることにより下地層15の形成と反射防止層12の形成とに対応させることも可能である。下地層15の形成条件は、反射防止層12の形成条件と同様とすることが可能であるので詳細な説明は省略する。
光学素子1は、この状態で製品として一応の完成状態となるが、反射防止層形成工程で形成した反射防止層12が微細突起部13の表面にも微細反射防止層12a(図8E参照。)として付着している。微細反射防止層12aは、微細突起部13の表面に付着していること、また、微細突起部13の斜面では薄くなって密着力が弱いことなどから、光学素子1の使用中に剥がれてゴミとなり光学系に影響を及ぼすことが考えられる。したがって、微細反射防止層12aは、除去することが望ましい。
図8Eは、本発明の実施の形態5に係る光学素子製造方法で微細突起部に付着した微細反射防止層を除去する状態を示す断面図である。
微細反射防止層12aが付着した状態の光学素子1を高温チャンバー40の中に配置し、高温加熱することにより、微細突起部13に付着した微細反射防止層12aの薄くなっている箇所でマイクロクラックMCを発生させる。次に、高温チャンバー40から光学素子1を取り出し、超音波洗浄(不図示)することにより、微細反射防止層12aを除去することが可能となる。
図8Fは、本発明の実施の形態5に係る光学素子製造方法で完成した光学素子の状態を示す断面図である。
微細反射防止層12aを除去することにより、光学素子1は、分割された反射防止層12を表面に有することとなる。また、反射防止層12は、基本樹脂部11の表面から突出した微細突起部13により分割されることとなる。
本実施の形態に係る光学素子製造方法によれば、基本樹脂部11および微細突起部13を同時に形成し、反射防止層12を基本樹脂部11の表面に積層することから、高精度で優れた光学特性を有する光学素子1を生産性良く製造することが可能となる。
転写金型2を用いて光学素子1を製造することから、光学素子1を量産性良く大量に製造することが可能となり、製造コストを低減し、安価に光学素子1を提供することが可能となる。
本発明の実施の形態1に係る光学素子の形状を模式的に示す説明図であり、(A)は斜視図、(B)は光学素子の光軸を含む平面で微細突起部(円状突起部)を切断した状態を示す断面図である。 本発明の実施の形態1に係る光学素子の微細突起部の断面を模式的に示す断面図であり、(A)は断面が半円状、(B)は断面が三角形状、(C)は断面が台形状の場合を示す。 本発明の実施の形態1に係る光学素子の形状の変形例を模式的に示す斜視図である。 本発明の実施の形態2に係る光学素子での反射防止層の構造例を示す断面図である。 本発明の実施の形態2に係る光学素子での反射防止層の他の構造例を示す断面図である。 本発明の実施の形態3に係る転写金型の形状を模式的に示す斜視図である。 本発明の実施の形態4に係る転写金型製造方法の各工程での転写金型の形状を模式的に示す断面図であり、(A)は金型素材を加工して基本転写部を形成する状態を示し、(B)は突起転写溝を形成するためのフォトレジストを露光する状態を示し、(C)は形成したレジストマスクを用いて金型素材をエッチングし突起転写溝を形成する状態を示し、(D)は完成した転写金型を示す。 本発明の実施の形態5に係る光学素子製造方法で適用する転写金型を型開きした状態で示す断面図である。 本発明の実施の形態5に係る光学素子製造方法で適用する転写金型を型締めし合成樹脂を注入した状態で示す断面図である。 本発明の実施の形態5に係る光学素子製造方法で適用する転写金型による樹脂成形を終了し光学素子を離型する状態を示す断面図である。 本発明の実施の形態5に係る光学素子製造方法で樹脂成形された光学素子に反射防止層を形成する状態を示す断面図である。 本発明の実施の形態5に係る光学素子製造方法で微細突起部に付着した微細反射防止層を除去する状態を示す断面図である。 本発明の実施の形態5に係る光学素子製造方法で完成した光学素子の状態を示す断面図である。 改良された従来例に係る光学部品の反射防止層の状態を示す断面図である。
符号の説明
1 光学素子
2 転写金型
2s 転写面
11 基本樹脂部
11g ゲート痕
11i 中心領域
11s 外周領域
12 反射防止層
12a 低屈折率層
12b 高屈折率層
12c 低屈折率層
13 微細突起部
13c 円状突起部
13r 線状突起部
15 下地層
20U 上型
20L 下型
23U 上胴型
23L 下胴型
27 ゲート
21 基本転写部
22 突起転写溝
25 フォトレジスト
25a 感光レジスト部
25m レジストマスク
25w 開口部
30 蒸着チャンバー
40 高温チャンバー
Ect エッチング剤
Lax 光軸
Lex 露光光
MC マイクロクラック
RV 反射防止層成分蒸気

Claims (10)

  1. 樹脂成形により形成された基本樹脂部の表面に反射防止層が形成された合成樹脂製の光学素子であって、
    前記反射防止層は、無機物で形成され、前記基本樹脂部の表面から突出し前記基本樹脂部の光軸に対して同心円状および放射線状に配置された微細突起部によって分割してあることを特徴とする光学素子。
  2. 前記微細突起部の長さ方向と交差する方向での前記微細突起部の断面の形状は、半円状、三角形状、台形状のいずれかであることを特徴とする請求項1に記載の光学素子。
  3. 前記断面の底辺幅は2μmより小さく、前記断面の高さは2μmより小さいことを特徴とする請求項2に記載の光学素子。
  4. 前記微細突起部は、前記光軸に対して軸対称に配置してあることを特徴とする請求項1ないし請求項3のいずれか一つに記載の光学素子。
  5. 前記微細突起部は、前記光軸から離れた基本樹脂部の外周領域に配置してあることを特徴とする請求項1ないし請求項4のいずれか一つに記載の光学素子。
  6. 前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成された低屈折率層としてあることを特徴とする請求項1ないし請求項5のいずれか一つに記載の光学素子。
  7. 前記反射防止層は、前記基本樹脂部の屈折率よりも低い屈折率の材料で構成された低屈折率層および前記基本樹脂部の屈折率よりも高い屈折率の材料で構成された高屈折率層を積層した積層構造としてあることを特徴とする請求項1ないし請求項5のいずれか一つに記載の光学素子。
  8. 前記反射防止層と前記基本樹脂部の表面との間に、ケイ素酸化物を主成分とする下地層が形成してあることを特徴とする請求項1ないし請求項7のいずれか一つに記載の光学素子。
  9. 樹脂成形により形成される基本樹脂部の表面に突出させて形成された微細突起部で分離される反射防止層を備える光学素子を製造する光学素子製造方法であって、
    前記基本樹脂部と前記基本樹脂部の光軸に対して同心円状および放射線状に配置された前記微細突起部とを樹脂成形する樹脂成形工程と、
    前記基本樹脂部の表面に反射防止層を積層する反射防止層積層工程と
    を備えることを特徴とする光学素子製造方法
  10. 前記反射防止層の積層は、蒸着により行われることを特徴とする請求項9に記載の光学素子製造方法
JP2006312001A 2006-11-17 2006-11-17 光学素子および光学素子製造方法 Expired - Fee Related JP4108722B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006312001A JP4108722B2 (ja) 2006-11-17 2006-11-17 光学素子および光学素子製造方法
PCT/JP2007/071108 WO2008059712A1 (fr) 2006-11-17 2007-10-30 Élément optique, moule de transfert, procédé de fabrication de moule de transfert et procédé de fabrication d'élément optique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312001A JP4108722B2 (ja) 2006-11-17 2006-11-17 光学素子および光学素子製造方法

Publications (2)

Publication Number Publication Date
JP2008129197A JP2008129197A (ja) 2008-06-05
JP4108722B2 true JP4108722B2 (ja) 2008-06-25

Family

ID=39401521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312001A Expired - Fee Related JP4108722B2 (ja) 2006-11-17 2006-11-17 光学素子および光学素子製造方法

Country Status (2)

Country Link
JP (1) JP4108722B2 (ja)
WO (1) WO2008059712A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046860B2 (ja) * 2014-03-13 2016-12-21 富士フイルム株式会社 光学部品,赤外線カメラおよび光学部品の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990103A (ja) * 1995-09-19 1997-04-04 Denso Corp 遮光膜の形成方法
JPH11344603A (ja) * 1998-06-01 1999-12-14 Sti Technology Kk ブラックマスク、カラーフィルター、液晶ディスプレイ及びブラックマスクの製造方法
JP3335134B2 (ja) * 1999-03-25 2002-10-15 キヤノン株式会社 光学素子
US6490094B2 (en) * 2000-03-17 2002-12-03 Zograph, Llc High acuity lens system
JP2002280534A (ja) * 2001-03-16 2002-09-27 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP3962240B2 (ja) * 2001-10-31 2007-08-22 株式会社日立製作所 近接場光プローブ集積半導体レーザ及びそれを用いた光記録装置
JP4488674B2 (ja) * 2001-12-12 2010-06-23 大日本印刷株式会社 光硬化性樹脂組成物、液晶パネル用基板、及び、液晶パネル
JP4710248B2 (ja) * 2004-05-25 2011-06-29 コニカミノルタオプト株式会社 樹脂材料及びプラスチック製光学素子
JP2006267561A (ja) * 2005-03-24 2006-10-05 Seiko Epson Corp 光学素子およびその製造方法

Also Published As

Publication number Publication date
JP2008129197A (ja) 2008-06-05
WO2008059712A1 (fr) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5024047B2 (ja) 微小構造体の製造方法
JP4281773B2 (ja) 微細成形モールド及び微細成形モールドの再生方法
JP4404898B2 (ja) 微細凹凸構造を有する曲面金型の製造方法及びこの金型を用いた光学素子の製造方法
JP2005157119A (ja) 反射防止光学素子及びこれを用いた光学系
JP2006337985A (ja) ハイサグレンズの製作方法及びこれを利用し製作されたレンズ
JP2008242186A (ja) 回折光学素子及びそれを用いた光学系
WO2019124353A1 (ja) 眼鏡レンズ成形型の製造方法及び眼鏡レンズの製造方法
TWI607247B (zh) Optical element and its manufacturing method
US6523963B2 (en) Hermetically sealed diffraction optical element and production method thereof
JP4714627B2 (ja) 表面に微細な凹凸構造を有する構造体の製造方法
EP1474851B1 (en) Method of manufacturing an optical device by means of a replication method
JP2006235195A (ja) 反射防止構造体を有する部材の製造方法
JP4108722B2 (ja) 光学素子および光学素子製造方法
WO2013150742A1 (ja) 光学素子、それを備えた撮像装置及び光学素子の製造方法
JP2001030306A (ja) 樹脂正立レンズアレイおよびその製造方法
US9310528B2 (en) Optical element, imaging apparatus including the same, and method for fabricating the same
JP4820871B2 (ja) 反射防止構造体及びその製造方法
US20210397012A1 (en) Optical element
JP2009031615A (ja) レプリカ回折格子及びその製造方法
JPH1130711A (ja) 回折光学素子及びその製造方法及び光学機器
JP4814938B2 (ja) 反射防止構造体及びその製造方法
JP2016002664A (ja) モールド製造用構造体、モールド、モールド製造用構造体の製造方法、およびモールドの製造方法
JP2005283814A (ja) 反射防止処理を施した光学素子及びその金型並びに金型の製造方法
JP2005329685A (ja) 金型及びその製造方法
JP2009092687A (ja) レプリカ回折格子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees