WO1999034377A1 - Plaque d'acier au silicium a grains orientes a tres faible perte dite dans le fer et procede de fabrication de ladite plaque - Google Patents

Plaque d'acier au silicium a grains orientes a tres faible perte dite dans le fer et procede de fabrication de ladite plaque Download PDF

Info

Publication number
WO1999034377A1
WO1999034377A1 PCT/JP1998/005817 JP9805817W WO9934377A1 WO 1999034377 A1 WO1999034377 A1 WO 1999034377A1 JP 9805817 W JP9805817 W JP 9805817W WO 9934377 A1 WO9934377 A1 WO 9934377A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
silicon steel
ultra
treatment
iron loss
Prior art date
Application number
PCT/JP1998/005817
Other languages
English (en)
French (fr)
Inventor
Yukio Inokuchi
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to DE69838419T priority Critical patent/DE69838419T2/de
Priority to EP98961483A priority patent/EP0971374B1/en
Priority to US09/367,671 priority patent/US6287703B1/en
Priority to KR10-1999-7007650A priority patent/KR100479353B1/ko
Publication of WO1999034377A1 publication Critical patent/WO1999034377A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to an ultra-low iron loss unidirectional silicon steel sheet and a method for producing the same, and particularly to an ultra-thin silicon steel sheet having a finish-annealed surface or a finish-annealed silicon steel sheet having a linear concave region.
  • Grain oriented silicon steel sheet is represented mainly utilized as cores for transformers and other electrical equipment, high (as represented by 8 value B) flux density as the magnetization characteristics, iron loss (W 1 7/5. In ) Is required to be low.
  • NP Goss proposed a basic manufacturing technology for single-step cold rolling of unidirectional silicon steel sheets, many improvements have been made to the manufacturing technology, and the magnetic flux density of the unidirectional silicon steel sheets has increased. And iron loss values have improved over the years.
  • 62-42968 discloses a method in which Mo is added to the material in a complex manner. in addition to improvements such as a quenching treatment after the intermediate annealing in the final cold rolling immediately before applying, B 8 is at a high magnetic flux density of more than 1.90T, and iron loss W 17/5. It is disclosed that a low iron loss of 1.05 W / kg (product thickness: 0.30 mm) or less can be obtained, but there is still room for improvement in sufficiently reducing iron loss .
  • this technique has a drawback that it cannot withstand annealing at high temperatures, and has a problem that its application is limited to a laminated iron core transformer that does not require strain relief annealing.
  • a magnetic domain refining technology that can withstand strain relief annealing, finish the unidirectional silicon steel sheet, introduce linear grooves on the steel sheet surface after annealing, and apply the demagnetizing effect of the grooves to subdivide the magnetic domains.
  • Japanese Patent Publication No. 55-19976 Japanese Patent Application Laid-Open No. 56-127749 and Japanese Patent Application Laid-Open No. Alloys are drawing attention as materials for ordinary power transformers and high-frequency transformers.
  • such an amorphous material can provide extremely excellent iron loss characteristics as compared with a normal grain-oriented silicon steel sheet, but lacks thermal stability, has a low space factor, and is easy to cut.
  • it is too thin and brittle to have many disadvantages in practical use, such as a large cost for the assembly time of the transformer. Therefore, at present, it has not been used in large quantities.
  • Japanese Patent Publication No. 52-24499 discloses a method comprising removing a forsterite undercoat formed after finish annealing of a silicon steel sheet, polishing the steel sheet surface, and then applying a metal plating to the steel sheet surface. Has been proposed.
  • this method has the drawback that although low iron loss can be obtained at low temperatures, the metal is diffused into the silicon steel sheet when subjected to high temperature treatment, and iron loss is rather deteriorated.
  • This manufacturing method has made it possible to obtain extremely excellent iron loss characteristics as a material for power transformers and high-frequency transformers. Nevertheless, despite the recent demand for lower iron loss, It was hard to say that I was responding enough.
  • the inventors conducted a fundamental reexamination from all viewpoints in order to further reduce iron loss compared to the past. That is, the inventor applied an ultra-low iron by forming one or more tension coatings selected from various nitrides and carbides on the surface of a grain-oriented silicon steel sheet smoothed in a stable process. Pursuing the assemblage of silicon steel sheet, recognizing that fundamental review from the raw material composition of the grain-oriented silicon steel sheet to the final processing step is necessary to obtain a product with loss From then on, we conducted intensive studies up to the smoothness of the steel sheet surface and the final CVD and PVD processing steps.
  • the role of TiN is more important in the role of adhesion to the silicon steel sheet, in addition to the addition of tension specific to ceramics. That is, in the transmission electron microscope observation of the TiN cross section (see Iguchi, J. Journal of the Japan Institute of Metals, 60 (1996), pp. 781-786), horizontal stripes of 10 nm are observed, which are in the [011] direction of the silicon steel sheet. Fe—equivalent to five atomic layers of Fe atoms.
  • Grooves are formed by subjecting the final cold-rolled silicon steel sheet to local electrolytic etching, and the steel sheet surface after secondary recrystallization is smoothed by polishing.
  • the ceramic film is coated, in addition to the magnetic domain segmentation caused by the demagnetizing field effect caused by the introduced groove, the iron loss is effectively reduced by the addition of tension by the ceramic film.
  • the inventor repeated numerous experiments and studies to achieve the intended purpose, and as a result, the silicon steel sheet having a smooth surface and the silicon steel sheet having a linear groove introduced therein.
  • a new grain-oriented silicon steel sheet with extremely low iron loss was newly developed (Japanese Patent Application No. 9-1328042).
  • the grain-oriented silicon steel sheet thus obtained is not only capable of achieving ultra-low iron loss, but also has a very thin and high-strength ceramic film with a tensile coating, which has excellent adhesion. In addition, it has an excellent space factor, making it an ideal silicon steel sheet.
  • processing under a high plasma atmosphere in a vacuum is indispensable, and such a method cannot form a high-speed ceramic film.
  • productivity was low, there was a problem that the cost would increase when industrialized.
  • iron loss value 7/5 of the silicon steel sheet according to this method Is about 0.77 to 0.83 W / kg for a product with a thickness of 0.2 mm, and even though the product thickness is small, there is still room for improvement with this reached iron loss value. I have to say that is left. Disclosure of the invention
  • the inventors again examined the surface state of the silicon steel sheet and the tension insulating film formed on the surface.
  • magnetostriction characteristics the compressive stress characteristics of magnetostriction (hereinafter simply referred to as magnetostriction characteristics).
  • magnetostriction of a silicon steel sheet is a phenomenon in which the steel sheet expands and contracts when it is magnetized, and is the largest cause of transformer noise.
  • This magnetostrictive behavior is due to the fact that the magnetization process of the steel sheet includes 90 ° domain wall motion and rotational magnetization, and the magnetostriction increases according to the compressive stress applied to the steel sheet.
  • the compressive stress of the steel sheet is inevitably applied. Therefore, applying tension to the steel sheet in advance is advantageous in terms of magnetostrictive compressive stress characteristics.
  • the application of tension to the steel sheet effectively contributes to the improvement of iron loss of the grain-oriented silicon steel sheet.
  • one or more elements selected from Fe, Si, A1 and B, particularly Si are deposited in an active state, and are preferably subsequently exposed to an N-containing non-oxidizing atmosphere, It has been found that it is effective to perform a heat treatment in a non-oxidizing atmosphere to form an extremely thin nitride-oxide layer containing Si on the surface of the steel sheet.
  • the coating solution for the tension insulating film Prior to forming a tension insulating film mainly composed of phosphate and colloidal silicide, the coating solution for the tension insulating film is diluted with water, and Fe, Si is contained in the diluted solution.
  • Inorganic compounds containing one or more selected from A, B and A After applying a thin coating of the added processing solution and attaching a small amount of an inorganic compound containing Fe or the like to the surface of the steel sheet, and then subjecting it to a heat treatment for a short time, preferably in a non-oxidizing atmosphere, it will basically provide tension insulation.
  • a diluting solution obtained by diluting a coating solution for a tensile insulating coating mainly composed of phosphate and colloidal silicide with water was selected from Fe, Si, A1, and B1.
  • a treatment solution containing a trace amount of an inorganic compound containing one or more species Prior to application of a treatment solution containing a trace amount of an inorganic compound containing one or more species, a unidirectional silicon steel sheet is immersed in an aqueous solution of a SiC or a chloride mainly composed of SiC. If the surface of the ground iron is melted and the smoothing treatment and the pickling treatment preceding it are performed using an aqueous solution containing SiC, the adhesion of the undercoat to the steel sheet is further improved. I also found out.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows.
  • the surface is provided with a tensile insulating coating mainly composed of phosphate and colloidal silicide.
  • a tensile insulating coating mainly composed of phosphate and colloidal silicide.
  • -A finish-annealed unidirectional silicon steel sheet having a thickness of 0.05 to 0.5 mm, and Characterized by having an interface layer containing one or more nitride oxides selected from among Fe, Si, A1 and B at the interface between the surface of the base iron and the tensile insulating coating.
  • Low iron loss unidirectional silicon steel sheet Low iron loss unidirectional silicon steel sheet.
  • One or more compounds selected from the group consisting of Fe, Si, Al, and B are applied to the surface of the grain-annealed unidirectional silicon steel sheet with a thickness of 0.05 to 0.5.
  • a solution containing at least one or more nitrides and oxides selected from at least trace amounts of Fe, Si, Al and B A method for producing an ultra-low iron loss unidirectional silicon steel sheet, comprising forming a tension insulating film.
  • a method for producing an ultra-low iron loss unidirectional silicon steel sheet comprising:
  • a method for producing an ultra-low iron loss unidirectional silicon steel sheet comprising:
  • a small amount of an inorganic compound containing at least one selected from the group consisting of a treatment solution and a treatment solution applied to the surface of a unidirectional silicon steel sheet and dried to form a trace of Fe, Si A method for producing an ultra-low iron loss unidirectional silicon steel sheet, comprising adhering an inorganic compound containing at least one selected from A, B and A1.
  • a coating liquid for tension insulating coating mainly composed of phosphate and colloidal silica was selected from among Fe, Si, A1 and B in a diluent diluted with water.
  • a treatment solution containing a trace amount of an inorganic compound containing at least one species or two or more species one or more selected from trace amounts of Fe, Si, A1 and B can be applied to the surface of the grain-oriented silicon steel sheet.
  • heat treatment is performed for a short time in a non-oxidizing atmosphere, and one of the components selected from the group consisting of Fe, Si, A1 and B is included in the tensile insulating coating on the surface of the steel sheet.
  • a method for producing an ultra-low iron loss unidirectional silicon steel sheet comprising forming an ultra-thin undercoating in which two or more nitride oxides are finely dispersed.
  • the coating liquid for tension insulating coating mainly composed of phosphate and colloidal silica is selected from Fe, Si, A1 and B in a diluting liquid diluted with water.
  • the grain-oriented silicon steel sheet Prior to applying a treatment solution containing a trace amount of an inorganic compound containing one or more than one type, the grain-oriented silicon steel sheet is immersed in an aqueous solution of chloride containing SiCl 4 or SiC as a main component, and the surface of the ground iron A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized by dissolving iron.
  • a method for producing an ultra-low iron loss unidirectional silicon steel sheet comprising:
  • Claim 18 is characterized in that, after performing a smoothing treatment or an pickling treatment using an aqueous solution containing SiC, the steel plate surface is exposed to an N-containing non-oxidizing atmosphere. For producing ultra low iron loss unidirectional silicon steel sheet.
  • these 1 and steel sheet 2 is, after the decarburization and primary recrystallization annealing in wet of H 2 840 ° C, the surface of the steel sheet MgO (20%), A1 2 0 3 (75%), After applying an annealing separator having a composition of CaSiO, (5%) by slurry coating, and then annealing at 850 ° C for 15 hours, the temperature was raised from 850 ° C to 1150 ° C at a rate of 10 ° C / h. after the secondary recrystallization grains strongly integrated in the Goss orientation to develop, and purification treatment in dry of H 2 1200 ° C.
  • the surface coating of the product thus obtained was removed, and the surface of the silicon steel sheet was smoothed by chemical polishing, and then subjected to the following three treatments.
  • a tensile insulating coating (about 2 m thick) composed mainly of colloidal silica and phosphate was applied to the steel sheet surface and baked at 800 ° C.
  • the use of the PVA method (A) and the CVD method (B) as a method of forming a Si film on the surface of a silicon steel sheet increases the cost in industrial production. Since the coating thickness can be extremely thin, the cost can be reduced more than before.
  • JP-60- one hundred thirty-one thousand nine hundred seventy-six No. in JP-9 -78252 No. JP-called Contact No. Hei 6- 184762, an external oxidation type on the polished silicon steel sheet surfaces of the Si0 2 film A method for forming an oxide layer has been proposed.
  • Si compound used as a base coating material is an oxide form such as Si0 2, adhesion to the steel sheet surface, hard binder one effect against the other words the surface of the steel sheet is to say that sufficient Therefore, as good as the present invention, it is not possible to obtain the coating adhesion as good as possible, and thus the effect of improving iron loss.
  • This hot-rolled sheet was subjected to homogenizing annealing at 1000 ° (:, 3 minutes), and then subjected to one rolling with intermediate annealing at 1020 ° C to obtain a final cold-rolled sheet having a sheet thickness of 0.23 face.
  • the silicon steel sheet thus obtained was subjected to strain relief annealing at 800 ° C for 2 hours to obtain a product sheet.
  • Fig. 1 shows the results of examining the magnetostrictive compressive stress characteristics of each product plate.
  • the conventional material In c
  • the compressive stress is 0.35 kg / mm 2 or more
  • the magnetostriction; I PP increases sharply
  • the compressive stress is 0.50 kg / mm 2
  • the magnetostrictive PP shows a large value of 3.2 x 10 6 .
  • Unagi It is considered that the reason why the compressive stress characteristic of magnetostriction is improved by forming an ultra-thin nitride / oxide layer containing Si prior to the formation of the tensile insulating film according to the present invention is as follows.
  • a silicon steel plate in which a very thin Si-containing oxide layer containing Si is formed on the surface of the base iron to give a strong binder effect and an insulating film is firmly adhered to the silicon steel plate
  • the tension can be applied directly to the steel sheet, so that the compressive stress characteristics of magnetostriction are effectively improved.
  • the tensile stress applied to such a silicon steel sheet is effective not only for improving magnetostriction but also for improving iron loss, especially in the case of a high magnetic flux density unidirectional silicon steel sheet strongly integrated in the Goss orientation. In, the effect is remarkable.
  • An etching resist containing alkyd resin as a main component The tri-ink was applied by gravure offset printing so that the non-applied part remained linearly at a right angle to the rolling direction with a width of 200 m and a spacing of 4 in a linear manner, and was baked at 200 ° C for 3 minutes.
  • the resist thickness at this time was 2 wm.
  • electrolytic etching By applying electrolytic etching to the steel sheet coated with the etching resist in this manner, a linear groove having a width of 200 um and a depth of 20 wm is formed, and then the resist is immersed in an organic solvent. Removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of current density: 10 k / dm, processing time: 20 seconds.
  • the surface coating of the product thus obtained was removed, and then the surface of the silicon steel sheet was smoothed by chemical polishing, followed by the following six treatments.
  • the silicon steel sheet was immersed in the treated solution at 80 ° C for 20 seconds, washed with water and dried.
  • Coating solution for tension insulating coating consisting mainly of phosphate and colloidal silicide: 250 cc diluted with 1500 cc of distilled water, and further diluted with the diluted solution to 50 cc
  • the silicon steel sheet was immersed in the treated solution at 80 ° C for 20 seconds, washed with water and dried.
  • the silicon steel sheet subjected to the treatments (A) to (E) was subjected to a heat treatment at 950 ° C. for 10 minutes in a mixed gas of N 2 (509 + H 2 (505).
  • a tensile insulating coating (about 2 thickness) consisting mainly of magnesium phosphate and colloidal silica was formed on these steel sheet surfaces (800 ° C).
  • Table 2 shows the results of examining the magnetic properties and adhesion of each product thus obtained.
  • tension insulation with the addition of a small amount of inorganic compounds containing Fe, Si, Al, and B
  • the subsequent annealing treatment was omitted, and a tension insulating coating mainly composed of phosphate and Kodidasiri force was immediately formed in accordance with a conventional method.
  • excellent iron loss properties and film adhesion comparable to those of the above-mentioned 1A to 1D could be obtained.
  • FIG. 3 shows a comparison of the coating structure between the conventional unidirectional silicon steel sheet (FIGS. (A) and (b)) and the unidirectional silicon steel sheet according to the present invention (FIG. (C)).
  • FIG. 3 shows the tension simply consisting of phosphate and colloidal Si force on the surface of a finish-annealed unidirectional silicon steel sheet as disclosed in JP-A-5-31 1353. This is the case where an insulating coating is formed, but in this case, the adhesion between the silicon steel sheet and the insulating coating is a major problem, and it is difficult to use it as a practical product.
  • FIG. 2B shows that the surface of a grain-oriented unidirectional silicon steel sheet as disclosed in JP-B-63-35686 is coated with TiN or CrN by CVD or PVD. This is the case where an ultra-thin ceramic coating such as that described above is formed, and then a tensile insulation coating is formed on the surface.In this case, although it is very effective in reducing iron loss, As described above, the plasma processing in a high vacuum is required, which has the disadvantage of increasing costs.
  • nitride oxide such as Fe, Si, Al, and B was finely formed on the interface between the grain-oriented silicon steel sheet and the tensile insulating film. Dispersed ultra-thin undercoat Since the film is formed, the adhesion with the silicon steel sheet is remarkably improved, and it is considered that the tension is more effectively applied by the tension insulating film.
  • the undercoat is firmly adhered to silicon steel ground iron,
  • the main component of this undercoat is the same as that of the tensile insulation film formed thereon, the adhesion between the undercoat and the overcoat tension insulation film is good. Therefore, by interposing such an undercoat, the overcoat is formed.
  • the function of imparting tension to the tension insulating coating can be fully exerted, and as a result, the effect of further improving iron loss can be achieved. Therefore, this ultra-thin undercoat film has both good adhesion to the silicon steel sheet iron and adhesion to the tension insulation coating, and has a role as a binder between the silicon steel sheet iron and the tension insulation coating. I can say.
  • the processing solution is a raw material. It is important to use a normal coating solution for tensile insulating coatings as a diluent diluted with water so that inorganic compounds including Fe, Si, A1 and B can easily become nitrides and oxides. It is important that the film thickness also satisfies the required thickness and is as thin as possible.
  • Table 3 shows the analysis values of Fe, Si, N, and 0 on the surface of the silicon steel sheet before applying the tensile insulating film, measured using an X-ray photoelectron microscope (X-ray Photoelectron Spectroscopy, XPS method).
  • the present invention is characterized in that a large amount of Fe, N, 0 is observed, and the amount of ⁇ ⁇ is large despite the treatment in a non-oxidizing atmosphere. Observed, indicating that Fe also easily binds to oxygen. In this case, the amount of Si also increased slightly, which is considered to be due to the colloidal Siri force in the undercoat.
  • the oxide formed by this method is mainly FeSi0 3 (Clinoferrosilite) and it is noted Fe 2 Si0 have summer from 4 (fayalite) (tail, strictly speaking, towards FeSi0 3 generation amount is larger than the Fe 2 Si0 4).
  • the oxide as described above unlike the Si0 2 subscale from conventional, is extremely dense, to a Such dense oxide produces together with fine nitride, compared to the conventional It is considered that the adhesion is improved.
  • an etching resist ink containing an alkyd resin as a main component is printed by gravure offset printing, so that the non-applied part is almost perpendicular to the rolling direction, width: 200 um, interval: 4
  • the coating was applied so as to remain in a linear shape, and then baked at 200 ° C for 3 minutes.
  • the resist thickness at this time was 2 wm.
  • electrolytic etching a linear groove having a width of 200 ⁇ m and a depth of 20 wm is formed, and then the resist is immersed in an organic solvent. Removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • the product was treated in the following steps.
  • Step 0 Silicon steel sheet is SiC in 1500 cc of distilled water and immersed in an aqueous solution of 20 cc and 10 g of FeCl 3 at 80 ° C for 1 to 90 seconds.
  • tension insulating film for coated ring solution mainly containing salts and colloidal silica force 250 cc of SiCl 4 solution to the diluted solution diluted with distilled water 1500cc: 25 cc and FeCl 3: 15 g and AlP0 4: 10g and H 3 P0 3: the 10g in the treatment liquid at 80 ° C for complexed added immersed 1-90 seconds, washed with water, and dried.
  • the tension insulating film for Koti ring solution mainly composed of Li phosphate salts and colloidal silica coating. After drying, put can burn in an N 2 gas 800 ° C , A 2.0 thick tensile insulation coating was applied.
  • Figure 5 shows the results of a study on the relationship between (W / kg) and the thickness reduction (both sides) before the application of the coating liquid for tension insulating coating.
  • the iron loss W I 7/50 (W / kg) of the silicon steel sheet is the same for (A), (B) and (0 processes) when the thickness reduction is in the range of 0.01 to 3.0 m. It can be seen that the reduction effect is remarkable.
  • the steel sheet prior to forming a base coat on a silicon steel sheet, the steel sheet is immersed in an aqueous solution of chloride containing SiC or SiC as a main component to promote the surface reaction of the steel sheet and to reduce the Fe component on the steel sheet surface.
  • an aqueous solution of chloride containing SiC or SiC as a main component to promote the surface reaction of the steel sheet and to reduce the Fe component on the steel sheet surface.
  • the activated steel sheet surface is also firmly coated with fine nitride oxides such as Fe, Si, A1 and B in the undercoat. These fine nitrided oxides act as anchors. Not only improves the adhesion between the silicon steel sheet and the undercoat, but also enhances the effect of imparting tension from the overlying tensile insulating coating on the steel sheet, so that an ultra-low iron loss can be obtained. .
  • a reduction in the thickness of the silicon steel sheet from 0.01 to 3.0 due to the chloride solution corresponds to a reduction in the weight from 0.0005 to 0.15 g.
  • the final cold-rolled sheet was processed as follows.
  • an etching resist ink containing an alkyd resin as a main component is printed by gravure offset printing, so that the uncoated portion is almost perpendicular to the rolling direction, width: 200 im, interval: 4
  • the coating was applied so as to remain in a linear shape in the joint, and then baked at 200 ° C for 3 minutes.
  • the resist thickness at this time was 2 wm.
  • Step 0 The steel sheet surface was oxidized for 1 minute by immersion in an aqueous solution (80 ° C) in which 50 cc of HC1 was added to 1500 cc of distilled water to remove oxides.
  • Table 4 shows the iron loss characteristics W 17/50 (W / kg) and the adhesion of the products thus obtained.
  • Kaken invention After mixing with liquid junior high abrasion, Kaken invention
  • the silicon steel sheet treated in the steps (A), ( ⁇ ′), ( ⁇ ) and ( ⁇ ) according to the present invention has an iron loss W 17/5 . (W / kg) It is noteworthy that an ultra-low iron loss of 0.56 0.65 W / kg can be obtained and the adhesion is good.
  • a unidirectional silicon steel sheet without a forsterite undercoating is immersed in an aqueous solution containing SiC and then subjected to pickling treatment to provide a unidirectional silicon steel sheet with ultra-low iron loss and excellent adhesion. It is noted that the production of steel sheets is possible. In addition, especially good The results were obtained when the pickling treatment and the chemical polishing treatment as in the step (E) were performed. However, even when the chemical polishing was not performed, the processes (A) and ( ⁇ ') resulted in W 17, respectively. / 5 . It is noteworthy that ultra-low iron loss of 0.63 W / kg and 0.61 W / kg can be obtained at (W / kg).
  • a unidirectional silicon steel sheet having no forsterite undercoat is immersed in an aqueous solution containing SiCl 4 and subjected to pickling treatment to provide a unidirectional silicon steel sheet having an extremely low iron loss and excellent adhesion. It is noteworthy that a conductive silicon steel sheet can be obtained at extremely low cost.
  • Figure 6 shows that the steel sheet after finish annealing was subjected to SiC, immersed in a solution (80 ° C), and then exposed to an N atmosphere according to the ( ⁇ ') process.
  • the present invention provides one or more types selected from Fe, Si, A1 and B at the interface between the ground iron surface of the silicon steel sheet and the tensile insulating coating.
  • An ultra-thin underlayer in which one or more nitrides or oxides selected from the group consisting of Fe, Si, A1 and B are finely dispersed in the same coating components as the nitrided oxide layer and the tensile insulation coating By forming an interfacial layer such as that described above, and even before forming such an interfacial layer, the surface of the ferrous iron is dissolved by immersion in an aqueous solution of chloride mainly composed of SiC.
  • any of the conventionally known component compositions are suitable, but typical compositions are as follows.
  • the content of C is less than 0.0 ⁇ %, the suppression of hot rolled texture is insufficient and large elongated grains are formed, resulting in deterioration of magnetic properties. Since decarburization takes time and is not economical, it is preferable to set the content to about 0.01 to 0.08 wt%.
  • S i is less than 2. ( ⁇ %, Sufficient electrical resistance cannot be obtained, so eddy current loss increases and iron loss deteriorates. On the other hand, if it exceeds 4.0 vvt%, brittleness occurs during cold rolling. Since cracks are likely to occur, the content is preferably in the range of about 2.0 to 4.0 wt%.
  • Mn is an important component that determines MnS or MnSe as a dispersed precipitation phase that affects the primary recrystallization of a grain-oriented silicon steel sheet. If the amount of Mn is less than 0.01 wt%, the absolute amount of Mn S etc. necessary for secondary recrystallization is insufficient, and when incomplete secondary recrystallization occurs, surface defects called blisters increase. I do. On the other hand, if the content exceeds 0.2 wt%, even if dissociated solid solution of Mn S or the like is performed during slab heating or the like, the dispersed precipitate phase precipitated during hot rolling tends to become coarse, and the optimum size distribution desired as an inhibitor is reduced. Since Mn is deteriorated and magnetic properties deteriorate, it is preferable that Mn be about 0.01 to 0.2 wt%.
  • Each of S and Se is preferably 0.1 wt% or less, more preferably, S is in the range of 0.008 to 0.1 wt%, and Se is in the range of 0.003 to 0.1 wt%. This is because if these contents exceed 0.1wt%, the hot and cold workability will deteriorate, while if they do not reach the lower limit, the primary grain growth suppression function as MnS.MnSe will have a special effect. Because there is no. In addition, complex addition of Al, Sb, Cu, Sn, B, etc., which are conventionally known as inhibitors However, this does not impair the effects of the present invention.
  • any conventionally known method may be used, for example, an LD converter, It can be added to molten steel at the end of RH degassing or during ingot making.
  • the continuous slab is heated to a temperature of 1300 ° C or higher to dissociate the inhibitor in the slab. Thereafter, the slab is subjected to hot rough rolling and then hot finish rolling to form a hot-rolled sheet having a thickness of about 1.3 to 3.3 mm.
  • the hot-rolled sheet is subjected to two cold rolling steps with intermediate annealing in the temperature range of 850 to 1100 ° C as necessary to obtain the final sheet thickness.
  • intermediate annealing in the temperature range of 850 to 1100 ° C as necessary to obtain the final sheet thickness.
  • the upper limit of the product thickness was set to 0.5 band, and the lower limit of the sheet thickness was set to 0.05 mm to avoid the adverse effect of the hysteresis loss.
  • the width of the concave region is less than 50 wm, it is difficult to use the demagnetizing effect.On the other hand, if it exceeds 500 111, the magnetic flux density decreases and it is not economical. Limited to a range of 500 m.
  • the depth of the concave region is utilized and less than 0. LZM demagnetizing field effectively, while the magnetic flux density exceeds 50 W m is no longer reduced economical, the recessed region The depth was limited to the range of 0.1 to 50 m.
  • a method of applying an etching resist on the surface of the final cold-rolled sheet by printing, baking, etching, and then removing the resist is a conventional method.
  • the method is advantageous in that it can be performed industrially stably and that iron loss can be more effectively reduced by tensile tension.
  • the steel sheet is subjected to decarburization annealing.
  • This annealing is harmful when the cold-rolled structure becomes the primary recrystallized structure and, at the same time, secondary recrystallized grains of ⁇ 110 ⁇ ⁇ 001> orientation develop in the final annealing (also called finish annealing).
  • the treatment is performed in wet hydrogen at 750 to 880 ° C for the purpose of removing carbon.
  • Final annealing is performed to sufficiently develop secondary recrystallized grains of the ⁇ 111 ⁇ ⁇ 001> orientation.
  • box annealing immediately raises the temperature to 1000 ° C or more, This is done by holding.
  • the final annealing is usually performed by applying an annealing separating agent such as magnesia, and an undercoat called forsterite is formed on the surface at the same time.
  • an annealing separating agent that does not form such a forsterite undercoat is more advantageous because the undercoat is removed in the next step. . That is, to reduce the content ratio of MgO to form Forusuterai preparative underlying film (50%), behalf not form Kakaru coating CaO, high A 1 2 0 3, CaSiOs, Si0 2, PbCl 3 content of such (50% or more) annealed separators are advantageous.
  • annealing in order to develop a secondary recrystallized structure highly integrated in the ⁇ 110 ⁇ ⁇ 001> orientation, it is advantageous to carry out annealing at a low temperature of 820 ° C to 900 ° C.
  • slow annealing at a heating rate of about 0.5 to 15 ° C./h may be used.
  • the forsterite base film and oxide film on the steel sheet surface are removed by a known chemical method such as pickling, a mechanical method such as cutting and polishing, or a combination thereof, and the steel sheet surface is removed. Is smoothed.
  • the center line average roughness Ra is 0.4 by conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as puff polishing, or a combination thereof. Smooth the steel sheet surface to about um or less.
  • chemical polishing such as chemical polishing and electrolytic polishing
  • mechanical polishing such as puff polishing, or a combination thereof.
  • Smooth the steel sheet surface to about um or less.
  • a concave groove can be introduced into the steel sheet surface.
  • the groove can be introduced by the same method as that used for the surface of the final cold-rolled sheet or the steel sheet before and after the secondary recrystallization.
  • one or more nitrides selected from Fe, Si, A1 and B are used as the interface layer.
  • an oxide layer is formed, it is performed on a steel sheet that has been subjected to the above treatment.
  • the most suitable as such a nitride-oxide layer is an ultra-thin nitride-oxide layer containing Si.
  • a particularly suitable method for forming such a nitrided oxide layer containing Si is to apply a solution containing a Si compound, for example, a dilute aqueous solution containing SiC to the surface of a steel sheet.
  • a solution containing a Si compound for example, a dilute aqueous solution containing SiC
  • a small amount of Si is deposited in an active state, and then a short-time heat treatment is performed in a non-oxidizing atmosphere.
  • a high-cost and long-time treatment such as a treatment in a high-plasma atmosphere in a vacuum is not required, so that a desired film can be obtained extremely inexpensively and in a short time.
  • the atmosphere in the short-time heat treatment for forming the nitrided / oxidized layer of Si is preferably an N-containing non-oxidizing atmosphere in order to promote nitriding, and particularly preferably. (N 2 + H 2 ) mixed gas atmosphere.
  • the processing temperature is preferably about 80 to 1200 ° C (preferably about 500 to 1100 ° C), and the processing time is preferably about 1 to 100 minutes (preferably about 3 to 30 minutes).
  • a preferred method is to immerse the steel sheet in a solution containing a Si compound, attach a small amount of Si to the surface in an active state, and then expose the steel sheet to a N-containing non-oxidizing atmosphere. Since such immersion treatment is usually performed at a bath temperature of around 90 ° C, even after immersion, simply exposing it to a N-containing non-oxidizing atmosphere will cause the steel sheet surface to contain nitride containing extremely thin Si. ⁇ An oxide layer is formed.
  • the subsequent heat treatment during the formation of the insulating film forms the above-mentioned nitrided oxide layer containing Si preferentially on the steel sheet surface. This is because that.
  • the thickness of the nitride-oxide layer containing Si is preferably about 0.001 to 0.1. The reason is that if the film thickness is less than O.OOlwm, sufficient adhesion and, consequently, the effect of reducing iron loss will not be obtained.On the other hand, if the film thickness exceeds 0, the amount of Si will be too large. This is because it is difficult to form an oxide layer, and as a result, it is not possible to expect improvement in not only magnetic properties but also film adhesion.
  • the amount of the solution containing the Si compound to be applied to the surface of the steel sheet is preferably about 0.001 to 2.0 g / m 2 , though it depends on the concentration. More preferably, it is in the range of 0.01 to 1.0 g / m 2 .
  • any of a known method such as a dipping method in which a steel sheet itself is dipped in a solution, and an electrolytic treatment method can be used.
  • the processing temperature may be normal temperature, but it is preferable to perform the treatment in a warm solution of about 50 to 100 ° C for more effective adhesion.
  • Si compound any compound capable of attaching Si in an active state can be used.
  • a particularly suitable and particularly preferred compound is SiC.
  • the Si film may be either crystalline or amorphous.
  • the Si film only needs to be in an active state capable of bonding with N or ⁇ .
  • a coating solution for a tension insulating coating mainly composed of phosphate and colloidal silica is applied to the surface of the silicon steel sheet according to a conventional method, and then baked at 500 to 1000 ° C to form a tensile insulating coating (film thickness). : 0.5 to 5 m thick).
  • a coating liquid for a tensile insulating film mainly composed of phosphate and colloidal silica for example, a colloidal silica force: 4 to 16 wt.% As disclosed in JP-B-53-28375. %, Aluminum phosphate: 3 to 24% by weight, chromic anhydride and / or chromate: 0.2 to 4.5% by weight.
  • colloidal silica 7 to 24 wt%, magnesium phosphate: 5 to 30 wt% (provided that the molar ratio of magnesium phosphate to colloidal silica: 20/80 to 30/70) )
  • a coating solution to which chromic anhydride, chromate and / or dichromate: 0.01 to 5 wt% is added is advantageously suitable.
  • one or more selected from Fe, Si, A1, and B in the same coating composition as the tensile insulating coating as an interface layer is suitable for forming an ultra-thin undercoating in which two or more nitride oxides are finely dispersed. Will be described.
  • a coating solution for a tension insulating coating mainly composed of phosphate and colloidal silica is diluted with water, and Fe, S A treatment solution containing a trace amount of an inorganic compound containing one or more selected from i, Al and B is used.
  • such a treatment solution When applying to the surface of the steel sheet, such a treatment solution may be applied directly to the surface of the silicon steel sheet.However, an aqueous solution to which an inorganic compound such as Fe, Si, Al, and B is added in advance is applied to the surface of the steel sheet. After that, the treatment liquid may be applied.
  • Coating solutions as disclosed are advantageously suitable.
  • the coating solution is diluted to about 0.1 to 60%, preferably 1 to 20% (for example, about 10 to 1000 cc of an aqueous solution of 10 to 1000 cc of the coating solution). Is preferred.
  • an inorganic compound such as Fe, Si, Al and B contained in the undercoat treatment solution is nitrided and oxidized.
  • the concentration of the underlayer treatment solution is too high, the inorganic compound is successfully nitrided in the treatment atmosphere (preferably, a mixed gas atmosphere of N 2 (509O + H 2 (503 ⁇ 4i))). This is because it is difficult to change to an oxide, and dilution with an appropriate amount of water is effective to effectively promote such nitridation and oxidation.
  • the amount of the inorganic compound containing one or more selected from Fe, Si, Al and B in the diluent should be about 5 to 500 g (0.001 g). ⁇ 0.5 mol / l).
  • A1C1 3 are Al as including an inorganic compound.
  • Al (N0 3) A1P0 4 etc., H 3 B0 3, Na 2 B 4 0 7 or the like as the inorganic compound is particularly advantageously adapted including B.
  • the steel sheet surface is coated and dried.
  • heat treatment is preferably performed for a short time, preferably in a non-oxidizing atmosphere, so that the surface of the steel sheet is subjected to a tensile insulating coating component.
  • the short-time heat treatment as described above is not always necessary. This is because even without such a short-time heat treatment, the heat treatment at the time of forming the insulating film makes it possible to finely form the above nitrided oxides such as Fe, Si, Al and B on the steel sheet surface. This is because the dispersed ultra-thin undercoat is preferentially formed.
  • Examples of the coating method include coating with a normal roll coater or the like, dipping the steel sheet itself in a processing liquid, spraying or spraying the processing liquid directly on the steel sheet surface, and electrolytic processing. Any known method such as the method can be used.
  • the treatment temperature may be normal temperature, but it is preferable to perform the treatment in a warm solution of about 50 to 100 ° C for more effective adhesion.
  • immersion treatment is used, the immersion time is desirably about 1 to 100 seconds.
  • a short heat treatment is preferably performed in a non-oxidizing atmosphere to form fine nitrided oxides such as Fe, Si, Al and B on the surface of the steel sheet. .
  • the processing atmosphere is preferably an N-containing non-oxidizing atmosphere in order to promote nitriding.
  • N-containing non-oxidizing atmosphere for example, a (N 2 + H 2 ) mixed gas atmosphere and an ammonia-containing (NH 3 + H 2 ) atmosphere
  • a mixed atmosphere is particularly preferred.
  • the processing temperature is preferably about 200 to 1200 ° C (preferably about 500 to 1000 ° C), and the processing time is about 1 to 100 minutes (preferably about 3 to 30 minutes).
  • the coating amount of the undercoating liquid is 0.1 is preferably set to 001 ⁇ 0. 5 g / m 2 approximately, by the heat treatment was coated the amount of this degree, finally from 0.001 to 3 It is possible to obtain an ultrathin undercoat having a preferable thickness of about 0.07 urn.
  • a coating liquid for a tension insulating coating mainly composed of the above-mentioned colloidal silica and phosphate is applied to the surface of the above-mentioned ultrathin undercoat, and then baked at a temperature of 500 to 1000 ° C. Form a tension insulating film (0.5 to 5 thickness).
  • the ultra-thin base film and the tensile insulating film formed thereon are of the same quality, their adhesion is extremely high, and as a result, as a result, the adhesion is remarkably superior to the conventional one.
  • a tensile insulating coating can be formed on the surface of the steel sheet, and thus a unidirectional silicon steel sheet with extremely low iron loss can be obtained with good productivity and at low cost.
  • an insulating coating containing no phosphate and chromic acid as a main component without adding colloidal silica in the coating can be used as the insulating coating.
  • the silicon steel sheet is immersed in an aqueous solution of chloride mainly composed of SiCl 4 or Si The case where the surface is dissolved to some extent will be described.
  • the reason for performing such pretreatment is, as described above, to improve the activity of the surface of the steel surface and the adhesion by dissolving the Fe component on the surface of the steel surface to some extent.
  • the preferred amount of dissolved base steel surface as shown supra Figure 5, in the range of about 0.01 to 3.0 in thickness reduction amount (0.0005 to 0.15 about 8 weight loss).
  • the amount of reduction in sheet thickness is determined only by this pre-treatment when chloride such as SiC is not used as an inorganic compound to be added to the processing solution during the formation of the subsequent undercoating film.
  • chloride such as SiC
  • the base iron is somewhat dissolved by the application of the undercoat-forming treatment solution. Shall be evaluated.
  • chloride other than by S M g Cl 2, CaC , SrCl 2, BaCl 2 or the like is adapted advantageously, TiCl 3, ZrCl 4 if very small amount, NbCh, TaCl 5, CrCl 3 , CoCl 3) NiCl CuCl 2, ZnCl 2) T1C1 3 etc. can be used.
  • such a chloride aqueous solution may be sprayed or sprayed on the steel sheet surface.
  • an annealing treatment may be performed in a non-oxidizing atmosphere at 500 ° C. or higher.
  • one or more nitrides selected from Fe, Si, A1 and B were used as the undercoating in the same coating composition as the tension insulating coating mainly composed of phosphate and Kodidasiri force.
  • An ultra-thin film in which oxides are finely dispersed is formed by the method described above.
  • the base of the above-mentioned ultrathin film does not necessarily need to be a tension insulating film mainly composed of phosphate and colloidal silicide, and is usually composed mainly of phosphate and chromic acid. May be used.
  • a tension insulating film mainly composed of phosphate and colloidal silicide mainly composed of phosphate and colloidal silicide, and is usually composed mainly of phosphate and chromic acid. May be used.
  • the concentration of SiC in the aqueous solution used is desirably about 0.001 to 5.0 mol / 1. A concentration higher than this is not economical, while a lower concentration results in less effective treatment.
  • H 2 S0 such as used by mixing HF or the like, or other chloride compound combination does not preclude the addition of a small amount of in example example FeCl 3 or A1C1 3, or the like.
  • the aqueous solution containing SiC in this case is also effective as an electrolytic solution, and the surface of the silicon steel sheet can be subjected to weak electrolytic treatment. Instead of immersion or electrolytic treatment, this aqueous solution can be directly sprayed or sprayed onto the steel sheet.
  • an annealing treatment may be performed in a non-oxidizing atmosphere at 500 ° C. or higher.
  • one or more nitrides selected from Fe, Si, A1 and B were used as the undercoating in the same coating composition as the tension insulating coating mainly composed of phosphate and Kodidasiri force.
  • An ultra-thin film in which oxides are finely dispersed is formed by the method described above.
  • the base of the above-mentioned ultra-thin film does not necessarily need to be a tension insulating film mainly composed of phosphate and colloidal silicide, but is mainly composed of phosphate and coumic acid. It may be a normal insulating coating.
  • Fig. 1 is a graph showing the magnetostriction characteristics of a silicon steel sheet between the invention example and the conventional example
  • Fig. 2 is a graph showing the current unidirectional silicon steel sheet (a in the same figure) and the ultra-thin silicon according to the present invention.
  • Fig. 3 shows a conventional unidirectional silicon steel sheet in which the surface of a finish-annealed unidirectional silicon steel sheet is simply coated with a phosphate and a tensile insulating coating mainly composed of Kodida-Siri force (Fig. )
  • Fig. 3 A conventional unidirectional silicon steel sheet in which an ultra-thin ceramic coating such as TiN or ON is formed on the surface of a smoothed unidirectional silicon steel sheet, and then a tensile insulating coating is formed on the surface.
  • FIG. 4 is a schematic diagram comparing the cross section near the surface of a grain-oriented silicon steel sheet (Fig. C) according to Fig. 4.
  • Fig. 4 shows the oxide composition in the nitride and oxide of Si dispersed in the ultra-thin undercoat. The figure shown,
  • FIG. 6 is a graph showing a comparison between the surface N concentrations of the chemical polishing material and the SiCl material.
  • the silicon steel sheet, SiCl 4 (0.3 mol / 1 ) aqueous solution (80 ° C) was immersed for 10 minutes in 10 minutes at 950 ° C, ⁇ 2 (50 ⁇ 1 ⁇ 2 ) + ⁇ 2 (50%) mixed gas Processed in.
  • the surface of the steel sheet was coated with a tension insulating film (about 2 thickness) mainly composed of colloidal silica and magnesium phosphate, and baked at 800 ° C.
  • the magnetic properties, adhesion and compressive stress properties of magnetostriction of the product thus obtained were as follows.
  • Adhesion Diameter Even when bent at 180 ° on a 20iMi round bar, there was no separation and it was good.
  • the silicon steel sheet is immersed in an aqueous solution of SiCl 4 (0.5 mol / 1) (80 ° C) for 10 seconds, and then at 900 ° C for 10 minutes in a mixed gas of N 2 (503 ⁇ 4) + H 2 (503 ⁇ 4). Processed. After that, the surface of the steel sheet was coated with a tensile insulating film (about 2 " ⁇ thick) mainly composed of colloidal silica and phosphate, and baked at 800 ° C.
  • Adhesion Diameter Excellent even with 180 ° bending on a 20mni round bar without peeling.
  • an gravure offset printing of an etching resist tongue containing alkyd resin as the main component was applied, and the non-applied part was in a direction almost perpendicular to the rolling direction: width: 200 um, rolling direction Interval: 4 mm, applied so as to remain linear, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching to the steel sheet coated with the etching resist in this way, a linear groove having a width of 200 m and a depth of 20; uin is formed, and then immersed in an organic solvent. The registry was removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing. After that, using a magnetic mouth sputtering method, a 0.05 im thick layer of Si was formed and treated at 1000 ° C for 15 minutes in a mixed atmosphere of H 2 (50%) + N 2 (50%). A tension insulating film (about 2 win thick) consisting mainly of colloidal silica and phosphate was formed on the surface and baked at 800 ° C.
  • the magnetic properties and adhesion of the product thus obtained were as follows.
  • Adhesion Diameter Excellent even when bent 180 ° on a round rod of 20 rigidity without any separation.
  • Adhesiveness Diameter Even if it was bent at 180 ° on a round bar of 20 bars, there was no separation and it was good.
  • Adhesion Diameter Even if 180 ° bending on a round bar of 20 marauders, there was no separation and it was good.
  • an gravure offset printing of an etching resist tongue containing an alkyd resin as the main component was applied, and the uncoated part was in a direction almost perpendicular to the rolling direction: width: 200 m, rolling direction Interval: 4 mm And baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching to the steel sheet coated with the etching resist in this way, a linear groove having a width of 200 and a depth of 20 im is formed and then immersed in an organic solvent to form a resist. The bird was removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing.
  • the silicon steel sheet was immersed in an aqueous solution of SiCl 4 (0.8 mol / 1) (90 ° C) for 10 seconds while flowing N 2 gas into the box using a vacuum glove box. Thereafter, exposure treatment was performed for 5 seconds in a nitrogen atmosphere. After performing this method three times in a row, a tensile insulation film (about 2 m thick) consisting mainly of colloidal silica and phosphate was applied to the surface of the steel sheet and baked at 820 ° C. .
  • Adhesion Diameter Even when bent at 180 ° on a 20 mm round bar, there was no separation and it was good.
  • the silicon steel sheet is diluted with 1500 cc of distilled water of 250 cc of a coating solution for a tensile insulating film mainly composed of magnesium phosphate and colloidal silica, and further, SiC is added to the diluted solution: 20 cc, FeC: 20 g, Al ( ⁇ 0 3 ) 3 : Immerse in a treatment solution (80 ° C) containing 10 g for 20 seconds, then at 950 ° C for 7 minutes in a N 2 (50 + H 2 (503 ⁇ 4i) mixed gas) Then, an ultra-thin undercoat with a thickness of 0.2 m was applied, and then a tension insulating coating (about 2 wm thick) mainly composed of colloidal silica and magnesium phosphate was applied to the steel sheet surface, and 800 ° A baking process was performed with C.
  • the magnetic properties, adhesion and magnetostriction properties of the product thus obtained were as follows.
  • Adhesion Diameter Even when bent at 180 ° on a 25 tnm round bar, there was no separation and it was good.
  • Adhesion Diameter Even when bent 180 ° on a 25 bar round bar, there was no separation and it was good.
  • the steel sheet surface was subjected to slurry coating with an annealing separator containing MgO as the main component, and then 850 ° C. After 15 hours of annealing at 850 ° C to 118CTC at a rate of 10 ° C / h to develop secondary recrystallized grains that strongly accumulate in Goss orientation, dry H 2 at 1200 ° C After that, a tension insulation film (about 2 ⁇ m thick) consisting mainly of colloidal silica and magnesium phosphate is formed on the forsterite undercoating at 800 ° C.
  • the magnetic properties, adhesion, and magnetostrictive compressive stress properties of the grain-oriented silicon steel sheet obtained by the baking treatment were as follows.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing. Then, the silicon steel sheet, and SiC in water 1500cc: after immersion for 10 seconds in an aqueous solution of dissolved to 80 ° C to 20 cc, 950 t at ⁇ 2 (503 ⁇ 4) + ⁇ 2 (50%) mixed gas Treated for 3 minutes.
  • the tension insulating film for Koti ring liquid composed mainly of Raniri magnesium phosphate and colloidal silica force: 250 cc was diluted with distilled water 1500cc, further SiC into this diluted solution: 20cc, A1P0 4 : 15g, H 3 B0 3: After dipped for 20 seconds in a treatment solution with the addition of 10g (80 ° C), 10 minutes at 900 ° C, and treated with N 2 (93W + H 2 ( 73 ⁇ 4 mixed gas, An ultra-thin undercoat with a thickness of 0.4 um was applied, and then a tensile insulation coating (about 2 m thick) consisting mainly of colloidal silica and magnesium phosphate was applied to the surface of the steel sheet and baked at 800 ° C. Processing was performed.
  • Adhesion Diameter Even when bent at 180 ° on a 20 mm round bar, there was no separation and it was good.
  • a steel plate that has not been subjected to chemical polishing and that has been subjected to pickling treatment is subjected to distillation of 250 cc to 1500 cc of a coating solution for tension insulating coating mainly composed of magnesium phosphate and colloidal silicide.
  • a coating solution for tension insulating coating mainly composed of magnesium phosphate and colloidal silicide.
  • the magnetic properties and adhesion of the product obtained by applying the tension insulating film were as follows.
  • Adhesion Diameter Even if it was bent at 180 ° on a round bar having a thickness of 25, no separation was observed, which was favorable.
  • This product plate was also examined for magnetic properties after strain relief annealing at 800 ° C for 3 hours.
  • an gravure offset printing of an etching resist tongue containing alkyd resin as the main component was applied, and the non-applied part was in a direction almost perpendicular to the rolling direction: width: 200 um, rolling direction Interval: 4 mm, applied so as to remain linear, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching to the steel sheet coated with the etching resist in this way, a linear groove having a width of 200 and a depth of 20 m is formed, and then immersed in an organic solvent to form a resist. was removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • this silicon steel sheet is diluted with 1500 cc of distilled water of 250 cc of a coating solution for a tension insulating film mainly composed of aluminum phosphate and colloidal silicide force.
  • a treatment liquid 80 ° C
  • 50cc added for 20 seconds it was treated at 950 ° C for 10 minutes in a mixed gas of N 2 (503 ⁇ 4) + H 2 (503 ⁇ 4), and the thickness was 0.6 m.
  • a thin undercoat was applied.
  • a tensile insulating coating (about 1 um thick) consisting mainly of colloidal silica and aluminum phosphate was applied to the surface of the steel sheet and baked at 800 ° C.
  • Adhesion Diameter Excellent even with 180 ° bending on a 25iMi round bar.
  • an ultra-thin tension coating in which Si oxide is finely dispersed is formed on the surface of the steel plate which has not been chemically polished and has been pickled as above, and then an aluminum phosphate-based
  • the magnetic properties and adhesion of the product obtained by applying the tensile insulating coating were as follows.
  • Adhesiveness Diameter No exfoliation even when bent at 180 ° on a round bar with 20 bars.
  • an gravure offset printing of an etching resist tongue containing an alkyd resin as the main component was applied, and the uncoated part was rolled in a direction almost perpendicular to the rolling direction, width: 200, rolling Direction spacing: 4 mm, applied so as to remain linear, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching to the steel sheet coated with the etching resist in this way, a linear groove having a width of 200 um and a depth of 20 m is formed, and then immersed in an organic solvent. The resist was removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • annealing separator composed of the composition of CaSi0 3 (10
  • the slurry was coated with a slurry, then annealed at 850 ° C for 15 hours, and then heated from 850 ° C to 1100 ° C at a rate of 12 ° C / h to form a secondary reflow that was strongly integrated in the goss orientation. after developing the grain, it was subjected to purification treatment in dry of H 2 1200 ° C.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing. Then, the silicon steel sheet, and SiC in water 1500cc: 25 cc and A1N0 3: was immersed for 40 seconds in an aqueous solution of by dissolving 5 g 90 ° C. After that, 250 cc of the coating solution for tension insulating coating mainly composed of magnesium phosphate and colloidal force is diluted with 1500 cc of distilled water, and the diluted solution further contains 20 cc of SiCl 4. , A1P0 15g, H 3 B0 3 : was immersed for 20 seconds in a 10 g treatment liquid having added thereto a (80 ° C). After that, a tensile insulating coating (about 1.5 m thick) consisting mainly of colloidal silica and magnesium phosphate was formed on the steel sheet surface and baked at 800 ° C.
  • Adhesion Diameter Even when bent at 180 ° on a 20 mm round bar, there was no separation and it was good.
  • a coating solution for tensile insulation coating mainly composed of magnesium phosphate and colloidal silicide is applied and dried on the surface of the steel sheet, and then baked at 800 ° C to form a tension insulation coating with a thickness of about 2 m. Completed.
  • the magnetic properties, adhesion and magnetostriction properties of the product thus obtained were as follows.
  • Adhesion Diameter Excellent even when bent 180 ° on a 15-imn round bar.
  • Adhesion Diameter good, no separation even when bent 180 ° on a 15mm round bar Met.
  • an gravure offset printing of an etching resist stick mainly composed of an alkyd resin was applied, and the non-applied part was in the direction almost perpendicular to the rolling direction: width: 200 um, rolling direction Interval: 4 Hidden, applied in a linear fashion, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching to the steel sheet coated with the etching resist in this way, a linear groove with a width of 200 win and a depth of 20 m is formed, and then immersed in an organic solvent. The resist was removed.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing.
  • the silicon steel sheet was immersed for 10 seconds in an aqueous solution at 85 ° C mixed with 15 cc of SiC in 1500 cc of distilled water and 10 g of FeCl 3 , and then N 2 (50: H 2 (50W Treated in a mixed gas.
  • a coating solution for tension insulating film consisting mainly of magnesium phosphate and colloidal silicide is applied and dried on the steel plate surface, and baked at 800 ° C to form a tension insulating film with a thickness of about 1.5 wm. Completed.
  • Adhesiveness Diameter Even when bent 180 ° on 10 round bars, there was no separation and it was good.
  • the magnetic properties and adhesion of the product obtained by subjecting the surface of the steel sheet, which has not been chemically polished, to an as-picked steel sheet, to a pretreatment, a base coat treatment, and a tension insulation coat treatment under the same conditions as above. was as follows.
  • Adhesion Diameter Even if it was bent at 180 ° on a round bar of 10 members, there was no separation and it was good.
  • an gravure offset printing of an etching resist tonk mainly composed of alkyd resin was applied, and the uncoated portion was 200 m wide in a direction almost perpendicular to the rolling direction. Interval in the rolling direction: 4 mm, applied so as to remain linear, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2 wm.
  • the annealing separator was applied Sula rie of one Ide 850 ° after C in not reached emitting secondary recrystallized grains strongly integrated in the Goss orientation by retaining annealing of 50 hours, 1200 ° C in dry H 2 For purification treatment.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing.
  • the silicon steel sheet, and SiC in distilled water 1500cc After immersion for 15 seconds in an aqueous solution of contaminating 90 ° C to 15 cc, of 900 ° C N 2 (50: H z (503 ⁇ 4) mixed gas Then, a coating solution for tension insulating film consisting mainly of aluminum phosphate and colloidal silicide: 100 cc diluted with 1500 cc of distilled water in a diluted solution of 15 cc of SiCl 4 A1C1 3: 5 g, H3BO4: weight loss 5 g composite added with treatment liquid (85 ° C) the c was immersed for 15 seconds when in about 0.08 g i.e. sheet thickness reduction amount was about 1.6 im.
  • a coating liquid for a tensile insulating film consisting mainly of colloidal silica and phosphate is applied to the surface of the steel sheet, dried, and baked at 800 ° C to form a tensile insulating film with a thickness of about 2.5 wm. did.
  • Adhesiveness Diameter Good, with no peeling even when bent 180 ° on a round bar of 15 pieces.
  • the silicon steel sheet withstands strain relief annealing.
  • the magnetic properties and adhesion of the product obtained by subjecting the surface of the steel sheet, which has not been chemically polished, to an as-picked steel sheet to a pre-treatment, an undercoat treatment, and a tension insulation coating treatment in the same manner as described above, are as follows. It was as follows.
  • Adhesion Diameter Even when bent 180 ° on a round bar of 10 marauders, there was no separation and it was good.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing.
  • the silicon steel sheet was immersed for 10 seconds in an aqueous solution at 85 ° C. mixed with 15 cc of SiC and 5 g of FeCl 3 in 1500 cc of distilled water.
  • a coating liquid for insulating coating containing magnesium phosphate and chromic acid as main components is formed to a thickness of 0.5 m, and then colloidal silica and magnesium phosphate as main components are further formed thereon.
  • the magnetic properties and adhesion of the product thus obtained were as follows.
  • Adhesion Diameter Even if it was bent at 180 ° on a 10 mm round bar, there was no separation and it was good.
  • the magnetic properties and adhesion of the products obtained by subjecting the surface of the steel sheet, which has not been chemically polished, to an as-picked steel sheet, to a pretreatment, a base coat treatment and an insulation coat treatment under the same conditions as described above, are as follows. It was as follows.
  • Adhesion Diameter Even if it was bent at 180 ° on a 10 mm round bar, there was no separation and it was good.
  • an gravure offset printing of an etching resist tongue containing an alkyd resin as a main component is performed, and the uncoated portion has a width of 200: um in a direction substantially perpendicular to the rolling direction.
  • the resist thickness at this time was 2 m.
  • the steel sheet coated with the etching resist in this way is subjected to electrolytic etching to form a linear groove having a width of 200 and a depth of 20 m, and then immersed in an organic solvent to make the resist. Was removed.
  • the electrolytic etching is performed in a NaCl electrolytic solution. Degree: 10 A / dm 2. Processing time: 20 seconds.
  • the surface of the unidirectional silicon steel sheet was smoothed by chemical polishing.
  • the silicon steel sheet was processed in a vacuum glove box in an N 2 gas atmosphere.
  • a coating liquid for a tensile insulating film consisting mainly of magnesium phosphate and colloidal silicide is applied to the surface of the steel sheet, dried, and baked at 800 ° C to obtain a thickness of about 1.5 (11 tensile insulating film). Completed.
  • Adhesion Diameter Even when bent at 180 ° on a 20 mm round bar, there was no separation and it was good.
  • the thus obtained silicon steel sheet without a forsterite base coat is subjected to an acid washing treatment in which the SiC is dissolved in 1500 cc of distilled water and immersed in a 50 cc aqueous solution of 80 ° C for 60 seconds. Te, after removal of the oxide surface was treated with 5 minutes N 2 (503 ⁇ 4) + H 2 (50 in the gas mixture at 950 ° C.
  • the tension insulating film for co one tee ing solution mainly composed of Li phosphate Maguneshiumu colloidal silica force: and SiC in the diluted solution diluted with 250 cc of distilled water 1500cc: 20cc, A1P0 4: 10g , H 3 B0 4: 10 g of the composite addition was treated liquid (80 ° C) After immersed for 20 seconds in, N 2 (93i3 ⁇ 4) + H 2 (7 subjected to a heat treatment for 5 minutes at 900 ° C in a mixed gas, Thickness: An undercoat of 0.3 ⁇ m was formed.
  • a coating solution for magnesium phosphate and a tensile insulating coating mainly composed of colloidal silicide is applied to the surface of the steel sheet, dried and baked for 800 tons to form a tensile insulating coating with a thickness of about 2 ⁇ m. Done.
  • the magnetic properties, adhesion and magnetostriction properties of the product thus obtained were as follows.
  • the surface of the silicon steel sheet on which the forsterite-based coating thus obtained is not formed is The treatment was performed under the following two conditions.
  • a coating liquid for a tensile insulating film consisting mainly of magnesium phosphate and colloidal silicide is applied to the surface of the steel sheet, dried and baked at 800 ° C to form a tensile insulating film with a thickness of about 1.5 wm. Completed.
  • Adhesion Diameter Even when bent at 180 ° on a round bar of 20 mm, there was no separation and it was good.
  • Adhesion Diameter good even with 180 ° bending on round bars of 20 marauders Met.
  • the thus obtained silicon steel sheet on which a forsterite-based undercoating was not formed was immersed for 60 seconds in an aqueous solution at 85 ° C. mixed with 55 cc of SiCl 4 in 150 cc of distilled water. Thereafter, the silicon steel sheet was further immersed for 15 seconds in a 90 ° C aqueous solution mixed with 15 cc of SiC in 1500 cc of distilled water, and then N 2 (50 °) + H 2 (505 Treated in a mixed gas.
  • 200 cc of a coating solution for tension insulating coating consisting mainly of aluminum phosphate and colloidal silicide 200 cc was diluted with 2000 cc of distilled water to obtain 20 cc of SiC. After immersed in the added processing solution (85 ° C) 40 seconds, subjected to a heat treatment for 3 minutes at 950 ° C in N 2 (9390 + H 2 ( 73 ⁇ 4) mixed gas, Thickness: a 0.4 um underlying coating After that, a coating liquid for a tension insulating film consisting mainly of aluminum phosphate and colloidal silica is applied to the surface of the steel sheet, dried, and baked at 800 ° C to a thickness of approximately 2.5 wm. A coating was applied.
  • Adhesion Diameter Even if it was bent at 180 ° on a 20 mm round bar, there was no peeling and it was good.
  • an gravure offset printing of an etching resist stick mainly composed of alkyd resin was applied, and the uncoated part was in a direction almost perpendicular to the rolling direction: width: 200 m, rolling direction Interval: 4 mm, applied so as to remain linear, and baked at 200 ° C for about 20 seconds.
  • the resist thickness at this time was 2.
  • electrolytic etching is applied to the steel sheet coated with the etching resist.
  • a linear groove having a width of 200 m and a depth of 20 / im was formed, and then immersed in an organic solvent to remove the resist.
  • the electrolytic etching at this time was performed in a NaCl electrolytic solution under the conditions of a current density of 10 A / dm 2 and a processing time of 20 seconds.
  • the surface of the thus obtained silicon steel sheet on which a forsterite coating was not formed was treated under the following two conditions.
  • each steel plate was immersed for 20 seconds in an aqueous solution at 80 ° C. mixed with 20 cc of SiC in 1500 cc of distilled water.
  • an insulating film for Koti in g liquid mainly containing-phosphate magnesium and chromic acid 250 SiCl cc to the diluted solution diluted with distilled water 1500cc 4: 25cc, A1C1 3: 5 g, H 3 B0 4 :
  • the substrate was immersed for 20 seconds in a treatment solution (80 ° C) to which 10 g was added in combination, and a 0.3 m thick base coat was applied.
  • a coating liquid for insulating coating consisting mainly of magnesium phosphate and chromic acid was formed to a thickness of 0.5 m on the surface of the steel sheet, and then colloidal silica and magnesium phosphate were further placed on top of it. After coating and drying, a coating solution for a tension insulating film was applied and dried, and baked at 800 t to form a tension insulating film having a thickness of about l.Owm.
  • the magnetic properties and adhesion of the product thus obtained were as follows. Silicon steel sheet obtained by processing under condition 1
  • Adhesion Diameter Even when 180 ° bending on 20 round bars, no separation and good.
  • the silicon steel sheet sample was subjected to the following treatment in a N 2 atmosphere using a vacuum glove box.
  • the silicon steel sheet was immersed in an aqueous solution of 90 ° C. mixed with 20 cc of SiC in 1500 cc of distilled water for 10 seconds, and then exposed to an N 2 atmosphere for 5 seconds. This process was repeated three times.
  • the substrate was immersed in a treatment solution (80 ° C) to which 10 g was added in a combined manner for 20 seconds, and an undercoat film having a thickness of 0.3 was applied.
  • a coating liquid for insulating coating mainly composed of magnesium phosphate and chromic acid is formed to a thickness of 0. 0 on the surface of the steel sheet, and then a tensile insulation mainly composed of colloidal silica and magnesium phosphate is formed thereon.
  • the coating liquid for coating was applied and dried, and then baked at 800 ° C to form a tension insulating coating having a thickness of about:
  • the magnetic properties and adhesion of the product thus obtained were as follows.
  • the interface between the ground iron surface of the silicon steel sheet and the tensile insulating coating contains one or more nitride oxides selected from Fe, Si, Al and B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

明 細 書 超低鉄損一方向性珪素鋼板およびその製造方法 技術分野
本発明は、 超低鉄損一方向性珪素鋼板およびその製造方法に関し、 特に仕上焼 鈍済みの珪素鋼板の表面または線状の凹領域をそなえる仕上焼鈍済みの珪素鋼板 の表面に、 極薄の S iを含む窒化 · 酸化物層を形成し、 その上に重ねて張力絶縁被 膜を被成することにより、 鉄損特性の一層の向上を磁歪の圧縮応力特性の改善と 共に、 低コス トの下で実現しよう とするものである。 背景技術
一方向性珪素鋼板は、 主として変圧器その他の電機機器の鉄心として利用され、 磁化特性として磁束密度 (B 8 値で代表される) が高く、 鉄損 (W 1 7 / 5。 で代表 される) が低いことが要求される。
一方向性珪素鋼板の磁気特性を向上させるためには、 第一に鋼板中の 2次再結 晶粒の 〈 0 0 1 〉 軸を圧延方向に高度に揃える必要があり、 第二には最終製品中 に残存する不純物や析出物をできるだけ少なくする必要がある。
このため、 N. P. Gos sによつて一方向性珪素鋼板の 1段冷延による基本的な製造 技術が提案されて以来、 その製造技術に数多くの改良が重ねられ、 一方向性珪素 鋼板の磁束密度および鉄損値は年を追って改善されてきた。
その中で特に代表的なものは、 Sbと MnSeまたは Mn S とをィンヒビ夕一として利 用する特公昭 51 - 13469号公報に記載の方法、 もう一つは A 1 Nと Mn Sをィ ンヒビ夕 一として利用する特公昭 33— 4710号公報、 特公昭 40- 15644号公報および特公昭 46 -23820号公報等に記載の方法であり、 これらの方法によれば B 8 が 1. 88Tを超え る高磁束密度を有する製品が得られるようになつた。 さ らに高磁束密度の製品を得るために、 特公昭 57- 14737号公報では素材中に Mo を複合添加したり、 また特公昭 62- 42968号公報では素材中に Moを複合添加させた のち、 最終冷延直前の中間焼鈍後に急冷処理を施すなどの改良を加えて、 B 8 が 1.90T以上の高磁束密度で、 かつ鉄損 W17/5。 が 1.05 W/kg (製品板厚: 0.30mm) 以下の低鉄損が得られることが、 開示提案されているが、 なお十分な低鉄損化に ついては改善すベき余地が残されていた。
とく に、 十数年前のエネルギー危機を境として電力損失を極力低減することへ の要請が著しく強ま り、 それに伴って鉄心材料の用途でもよ り一層の改善が望ま れている。 そのため、 渦電流損をできる限り小さくすることを目的として、 製品 板厚を薄く した 0.23mm厚 ( 9 mi 1)以下のものが数多く使用されるようになってき た。
上記した技術はいずれも、 主に冶金学的な手法であるが、 これらの方法とは別 に、 特公昭 57— 2252号公報に提案されているような、 仕上焼鈍後の鋼板の表面に レーザ一照射やプラズマ照射 (B. Fukuda, K. Sato, T. Sugiyama, A. Honda and Y. Ito : Proc. of ASM Con. of Hard and Soft Magnetic Materials, 8710-008, (USA), (1987) ) を行い、 人為的に 180° 磁区幅を減少させて鉄損を低減する方 法 (磁区細分化技術) が開発された。 この技術の開発により、 一方向性珪素鋼板 の鉄損は、 大幅に低減された。
しかしながら、 この技術は、 高温での焼鈍に耐え得ないという欠点があり、 用 途が歪取焼鈍を必要としない積鉄心変圧器に限定されるという問題があった。 この点、 歪取焼鈍に耐え得る磁区細分化技術として、 一方向性珪素鋼板の仕上 焼鈍後の鋼板表面に、 線状の溝を導入し、 溝による反磁界効果を応用して磁区の 細分化を図る方法が工業化された (H.Kobayashi, E. Sasaki, M. Iwasaki and N. Takahashi : Proc. SMM-8. , (1987), P.402 ) 。
また、 これとは別に、 一方向性珪素鋼板の最終冷延板に局所的な電解エツチン グを施すことによって溝を形成し、 磁区を細分化する方法 (特公平 8 — 6140号公 報) も開発され、 工業化されている。
さ らに、 上記した珪素鋼板の製造方法とは別に、 特公昭 55- 19976号公報、 特開 昭 56— 127749号公報および特開平 2— 3213号公報に開示されているように、 非晶 質合金が通常の電力用 トランスゃ高周波トランス等の材料として注目されている。 しかしながら、 このような非晶質材料では、 通常の一方向性珪素鋼板に比較し て非常に優れた鉄損特性が得られる反面、 熱的安定性に欠ける、 占積率が悪い、 切断が容易でない、 あま りにも薄く脆いためトランスの組み立て工数のコス トァ ップが大きい等実用上の不利が多いことから、 現状では大量に使用されるまでに は至つていない。
その他にも、 特公昭 52- 24499号公報において、 珪素鋼板の仕上焼鈍後に形成さ れるフオルステライ ト下地被膜を除去し、 鋼板表面を研磨した後、 この鋼板表面 に金属メ ツキを施すことからなる方法が提案されている。
しかしながら、 この方法は、 低温では低鉄損が得られるものの、 高温処理を施 すと金属が珪素鋼板中に拡散するため、 かえつて鉄損が劣化するという欠点があ つた。
この点、 発明者らは先に、 上記の不利を解消するものとして、 特公昭 63- 54767 号公報等において、 研磨によ り平滑化した一方向性珪素鋼板上に C V Dやイオン プレーティ ング, イオンイ ンプランテーショ ン等の ドライプレーティ ング ( P V D ) によ り、 S i , Mn, Cr, N i, Mo, W , V , T i , Nb, Ta, Hf, A l , Cu, Zrおよび Bの窒化物、 炭化物のうちから選んだ 1種または 2種以上の張力被膜を被成させ ることによつて超低鉄損が得られることを開示した。
この製造法によ り、 電力用 トランスゃ高周波卜ランス等の材料として非常に優 れた鉄損特性が得られるようになつたが、 それでもなお、 最近の低鉄損化に対す る要求に対しては十分に応えているとはいい難かった。
そこで、 発明者らは、 従来に比べて鉄損の一層の低減を図るべく、 あらゆる観 点から根本的な再検討を加えた。 すなわち、 発明者は、 安定した工程で平滑化した一方向性珪素鋼板表面上に種 々の窒化物、 炭化物のうちから選んだ 1種または 2種以上の張力被膜を被成させ て超低鉄損の製品を得るためには、 一方向性珪素鋼板の素材成分から最終の処理 工程に至るまでの根本的な再検討が必要であるとの認識に立って、 珪素鋼板の集 合組織の追跡から、 鋼板表面の平滑度や最終の C V Dや P V D処理工程に至るま で鋭意検討を重ねた。
その結果、 以下に述べる知見を得た。
(1) 珪素鋼板に被覆したセラミ ッ ク (代表例として TiN膜を使用) の薄膜は、 1.5 以上の厚みに被成しても、 鉄損向上の度合いは少なく なる。 すなわち 1.5 u m 以上の厚みの TiN 膜は、 鉄損については僅かの向上しか期待できず、 むしろ占積率および磁束密度の劣化を招く。
(2) この場合の TiNの役割は、 セラミ ッ ク特有の張力付加に加えて、 珪素鋼板と の密着性の役割の方がよ り重要である。 すなわち TiN横断面の透過電子顕微鏡 観察 (井口征夫 : 日本金属学会誌, 60 (1996), P.781〜786 参照) では、 10nm の横縞が観察され、 これは珪素鋼板の 〔 0 1 1〕 方向の Fe— Fe原子の 5原子層 に相当する。
(3) TiN 被覆領域および化学研磨領域の X線による二層の集合組織の同時測定 ( Y. Inokuti : 1SIJ International, 36 (1996), P.347〜352 参照) では、 研磨 領域の Feの { 2 0 0 } ピーク形状は円形である。 しかし TiN被覆領域での Feの { 2 0 0 } ピーク形状は楕円形であり、 珪素鋼板の 〔 1 0 0〕 s i s t ee l方向 に強力に張力付加された状況になっている。
(4) TiN 薄膜の張力 (井口征夫、 鈴木一弘、 小林康宏 : 日本金属学会誌、 60 (19 96), P.674〜678 参照) は 8〜10 MPaで、 これにより 0.014〜0.016 T程度の 磁束密度の向上が期待できる。 (これは約 1 ° の Goss方位集積度を向上させた ことに相当する。 )
以上が、 セラミ ッ ク被覆についての新規知見であるが、 さらにセラミ ッ ク膜と 鋼板の表面状態に関し、 以下に述べる知見を得た。
(5) 珪素鋼板の最終冷延板に局所的な電解エッチングを施すことによって溝を形 成し、 さ らに 2次再結晶処理後の鋼板表面を研磨により平滑化した後、 T i Nセ ラミ ツ ク膜を被覆した場合には、 導入した溝に起因した反磁界効果による磁区 細分化に加えて、 さ らにセラミ ッ ク被膜による張力付加により、 効果的に鉄損 が低減する。
(6) セラミ ッ ク被覆前に、 鋼板表面上に凹状の溝を形成した場合の引張りによる 鉄損の低減効果は、 通常の研磨によ り平滑化した珪素鋼板の場合より も大きい
(特公平 3 -32889号公報参照) 。
すなわち、 溝を導入した場合には珪素鋼板表面上に、 溝導入部上のコーティ ングによる張力と溝非導入部上のコーティ ングによる張力の差、 すなわち異張 力が作用し、 引張り張力による鉄損の低減度合いが増大する。
(7) 凹状の溝を形成した珪素鋼板上にセラミ ッ ク膜を被覆した場合は、 通常の研 磨によ り平滑化しセラミ ッ ク膜を被覆した場合より も、 鉄損の低減効果がよ り 効果的である。
すなわち、 線状の溝を導入し、 溝による反磁界効果を応用して磁区を細分化 したのち、 セラミ ッ ク張力被膜を被成して、 さらに 180° 主磁区を細分化する 方が一層効果的で、 超低鉄損が得られる。
(8) 珪素鋼板の最終冷延板に局所的な電解ェッチングを施すことによって溝を形 成した場合は、 2次再結晶処理を施した後の鋼板表面を研磨によ り平滑化しな い表面状態で T i Nセラミ ッ ク膜を被成した場合であっても、 かなりの鉄損低減 効果が発揮される。 すなわち、 研磨により平滑化しない状態、 例えば酸洗処理 等により表面に小さな凹凸が存在する状態であっても、 熱膨張係数の小さなセ ラミ ツ ク膜を被覆することによって、 珪素鋼板の表面に強力な張力を付加する ことが可能であり、 これによつて鉄損を有利に低減することができる。 そこで、 発明者は、 上記の新規知見を基に、 所期した目的を達成すべく数多く の実験と検討を重ねた結果、 表面を平滑化した珪素鋼板および線状の溝を導入し た珪素鋼板いずれであっても、 該珪素鋼板の表面に被成するセラミ ッ ク張力被膜 を複数種とし、 しかもこのセラミ ッ ク張力被膜について、 その熱膨張係数が外側 にいく ほど小さ くすることが、 鉄損の低減に極めて有効であることの知見を得、 これに基づき極めて鉄損の低い一方向性珪素鋼板を新たに開発した (特願平 9 一 328042号明細書) 。
かく して得られた一方向性珪素鋼板は、 極めて薄く、 かつ密着性に優れたセラ ミ ッ ク膜の張力被膜をそなえ、 超低鉄損の達成が可能なだけでなく、 絶縁性を具 備し、 しかも占積率にも優れているため、 まさに理想的な珪素鋼板といえる。 しかしながら、 このような緻密なセラミ ッ ク膜を被成するには、 真空中で高プ ラズマ雰囲気下での処理が不可欠であり、 かような方法ではセラミ ッ ク膜の高速 成膜ができず、 生産性が低いため、 工業化に際して、 コス トアップになるという ところに問題を残していた。
なお、 これとは別に、 最近、 特許第 2662482号および 2664326号各公報におい て、 平滑化した鋼板の表面に酸化 A1—酸化 B系の複合膜を形成させることによつ て、 被膜密着性と鉄損を改善した低鉄損一方向性珪素鋼板が提案された。
しかしながら、 この方法による珪素鋼板の鉄損値 7 / 5。 は、 0. 2 mm板厚の製 品で 0. 77〜0. 83 W/kg 程度にすぎず、 製品板厚が薄いにもかかわらずこの程度の 到達鉄損値では、 やはり改良すべき余地が残されているといわざるを得ない。 発明の開示
そこで、 発明者らは、 上記の新規知見を基に、 再度、 珪素鋼板の表面状態、 さ らにはその表面に被成する張力絶縁被膜について検討を行った。
また、 その際、 磁歪の圧縮応力特性 (以下、 単に磁歪特性という) の改善につ いても併せて検討した。 ここに、 珪素鋼板の磁歪とは、 鋼板を磁化した時に鋼板が伸縮振動する現象で、 変圧器騒音の最も大きな原因となるものである。
この磁歪挙動は、 鋼板の磁化過程が 90° 磁壁移動および回転磁化を含むことに 起因し、 鋼板にかかる圧縮応力に応じて磁歪は増大する。 変圧器の組み立て時に は、 不可避的に鋼板の圧縮応力が加わることから、 予め鋼板に張力を与えておけ ば、 磁歪の圧縮応力特性の面では有利である。 勿論、 鋼板に張力が付与されるこ とは、 方向性珪素鋼板の鉄損の改善にも有効に寄与する。
従来、 方向性珪素鋼板は、 2次再結晶前の脱炭 · 1次再結晶焼鈍時に鋼板表面 に形成されるサブスケール (S i 02 ) と、 Mg0 を主成分とする焼鈍分離剤との仕上 げ焼鈍の際における高温反応によって形成されるフオルステライ ト質下地被膜と その上に重ねて被成されるリ ン酸塩とコロイダルシリ力を主成分とする張力絶縁 被膜とによって張力が加えられ、 磁歪特性の改善が図られていたのであるが、 こ のような従来法では十分満足いく ほどの磁歪特性の改善は望み得なかったのであ る。
さて、 上記の検討の結果、 珪素鋼板の表面に、 Fe, S i , A 1および Bのうちから 選んだ 1種または 2種以上の窒化 ·酸化物を含む界面層を形成しておけば、 その 後は張力被膜として通常のリ ン酸塩系張力絶縁被膜を被成するだけで、 鉄損を格 段に低減させ得るだけでなく、 磁歪の圧縮応力特性を効果的に向上させることが でき、 併せて生産能率の向上およびコス 卜の低減も達成されることの知見を得た。 すなわち、 Fe, S i , A 1および Bのうちから選んだ 1種または 2種以上の元素、 中でも S iを活性状態で付着させ、 好ましくは引き続き含 N非酸化性雰囲気中に曝 したり、 非酸化性雰囲気で熱処理を施して、 該鋼板の表面に極薄の S iを含む窒化 -酸化物層を形成することが有効であることを見出した。
また、 リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜を被成するに 先立ち、 この張力絶縁被膜用のコーティ ング液を水で希釈し、 かつその希釈液中 に Fe, S i , A 1および Bのうちから選んだ 1種または 2種以上を含む無機化合物を 添加した処理液を薄く塗布し、 鋼板の表面に微量の Fe等を含む無機化合物を付着 させたのち、 好ましく は非酸化性雰囲気中で短時間の熱処理を施してやると、 基 本的に張力絶縁被膜と同じ被膜成分になる極薄被膜が形成される共に、 該被膜中 に存在する Fe等を含む無機化合物が活性度の高い Fe等の窒化 ·酸化物に変化し、 これが鋼板表面に強固に固着する結果、 上記極薄被膜は高い密着性の下で鋼板表 面に被成され、 一方この極薄被膜はその上に被成する張力絶縁被膜と同質である ため、 これらの密着性も極めて良好であることから、 結果として、 従来に比較し て密着性が格段に優れた張力絶縁被膜を鋼板の表面に被成することができ、 かく して鉄損が極めて低くかつ磁歪特性に優れた一方向性珪素鋼板を、 生産性良く、 低コス 卜の下で製造できることを見出した。
さ らに、 リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液を水で希釈した希釈液中に Fe, S i , A 1および Bのうちから選んだ 1種また は 2種以上を含む無機化合物を微量添加した処理液を塗布するに先立ち、 一方向 性珪素鋼板を S i Cしまたは S i Cしを主成分とする塩化物の水溶液中に浸漬して地 鉄表面を溶解したり、 またさ らにはそれに先立つ平滑化処理や酸洗処理を S i Cし を含む水溶液を用いて行う と、 上記した下地被膜の鋼板に対する密着性が一層向 上することも併せて見出した。
本発明は、 上記の知見に立脚するものである。
すなわち、 本発明の要旨構成は次のとおりである。
1 . 表面にリ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜をそなえる- 板厚が 0. 05〜0. 5 mmの仕上焼鈍済みの一方向性珪素鋼板であって、 該鋼板の地鉄 表面と張力絶縁被膜との界面に、 Fe, S i , A1および Bのうちから選んだ 1種また は 2種以上の窒化 · 酸化物を含む界面層を有することを特徴とする超低鉄損一方 向性珪素鋼板。
2 . 請求項 1 において、 界面層が、 極薄の S iを含む窒化 ·酸化物層であることを 特徴とする超低鉄損一方向性珪素鋼板。 3 . 請求項 1 において、 界面層が、 張力絶縁被膜と同じ被膜成分中に Fe, S i , A l および Bのうちから選んだ 1種または 2種以上の窒化 ·酸化物を微細に分散させ た極薄下地被膜であることを特徴とする超低鉄損一方向性珪素鋼板。
4 . 請求項 1 , 2 または 3において、 鋼板の地鉄表面に、 圧延方向と交差する向 きに 2〜10mmの間隔で、 幅 : 50〜500 y m 、 深さ : 0. 1 〜50 u ni の線状の凹領域 をそなえることを特徴とする超低鉄損一方向性珪素鋼板。
5 . 請求項 1 , 2 , 3または 4において、 仕上焼鈍済みの一方向性珪素鋼板の表 面が、 平滑化処理を施した表面である超低鉄損一方向性珪素鋼板。
6 . 請求項 1 , 2 . 3 または 4 において、 仕上焼鈍済みの一方向性珪素鋼板の表 面が、 平滑化処理を施さない、 酸洗処理ままの表面である超低鉄損一方向性珪素 鋼板。
7 . 板厚が 0. 05〜0. 5 匪の仕上焼鈍済みの一方向性珪素鋼板の表面に、 Fe, S i , A lおよび Bのうちから選んだ 1種または 2種以上の化合物を含む溶液を塗布する ことによって、 少なく とも微量の Fe, S i , A lおよび Bのうちから選んだ 1種また は 2種以上の窒化 ·酸化物を含む界面層を形成したのち、 常法に従って張力絶縁 被膜を被成することを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
8 . 請求項 7において、 塗布溶液として S i化合物を含む溶液を用い、 この溶液を 一方向性珪素鋼板の表面に塗布することによって、 該鋼板表面に微量の S iを活性 状態で付着させることを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
9 . 請求項 8において、 S i化合物を含む溶液を塗布することによって一方向性珪 素鋼板の表面に微量の S iを活性状態で付着させたのち、 含 N非酸化性雰囲気中に 曝すことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
10. 請求項 7において、 S i化合物を含む溶液を塗布することによって一方向性珪 素鋼板の表面に微量の S iを活性状態で付着させたのち、 非酸化性雰囲気中で短時 間の熱処理を施して、 該鋼板の表面に極薄の S iを含む窒化 ·酸化物層を形成する ことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。 11. 請求項 7において、 塗布溶液として、 リ ン酸塩とコロイダルシリカを主成分 とする張力絶縁被膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1およ び Bのうちから選んだ 1種または 2種以上を含む無機化合物を微量添加した処理 液を用い、 この処理液を一方向性珪素鋼板の表面に塗布 ·乾燥することにより、 該鋼板表面に微量の Fe, Si, A1および Bのうちから選んだ 1種または 2種以上を 含む無機化合物を付着させることを特徴とする超低鉄損一方向性珪素鋼板の製造 方法。
12. 請求項 11において、 リ ン酸塩とコロイダルシリカを主成分とする張力絶縁被 膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1および Bのうちから選 んだ 1種または 2種以上を含む無機化合物を微量添加した処理液を塗布すること によって、 一方向性珪素鋼板の表面に微量の Fe, Si, A1および Bのうちから選ん だ 1種または 2種以上を含む無機化合物を付着させたのち、 非酸化性雰囲気中で 短時間の熱処理を施して、 該鋼板の表面に張力絶縁被膜成分中に Fe, Si, A1およ び Bのうちから選んだ 1種または 2種以上の窒化 · 酸化物を微細に分散させた極 薄下地被膜を被成することを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
13. 請求項 11または 12において、 リ ン酸塩とコロイダルシリカを主成分とする張 力絶縁被膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1および Bのう ちから選んだ 1種または 2種以上を含む無機化合物を微量添加した処理液を塗布 するに先立ち、 一方向性珪素鋼板を SiCl4または SiCしを主成分とする塩化物の 水溶液中に浸漬して地鉄表面を溶解することを特徴とする超低鉄損一方向性珪素 鋼板の製造方法。
14. 請求項 13において、 SiCしまたは SiCしを主成分とする塩化物水溶液中への 一方向性珪素鋼板の浸漬処理後、 鋼板表面を含 N非酸化性雰囲気中に曝す暴露処 理を行うことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
15. 請求項 7〜14のいずれかにおいて、 鋼板の地鉄表面に、 圧延方向と交差する 向きに 2 〜10匪の間隔で、 幅 : 50〜500 〃m 、 深さ : 0.1 〜50 im の線状の凹領 域を設けたことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
16. 請求項?〜 14のいずれかにおいて、 仕上焼鈍済みの一方向性珪素鋼板の表面 が、 平滑化処理を施した表面である超低鉄損一方向性珪素鋼板の製造方法。
17. 請求項 7〜14のいずれかにおいて、 仕上焼鈍済みの一方向性珪素鋼板の表面 が、 平滑化処理を施さない、 酸洗処理ままの表面である超低鉄損一方向性珪素鋼 板の製造方法。
18. 請求項 16または 17において、 平滑化処理または酸洗処理を S i Cしを含む水溶 液を用いて行う ことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
19. 請求項 18において、 S i Cしを含む水溶液を用いて平滑化処理または酸洗処理 を行ったのち、 鋼板表面を含 N非酸化性雰囲気中に曝す暴露処理を行うことを特 徴とする超低鉄損一方向性珪素鋼板の製造方法。
以下、 本発明を具体的に説明する。
まず、 本発明を由来するに至った実験結果について説明する。
実験 1
C : 0. 068 wt%、 S i : 3. 33wt%、 Mn: 0. 067 wt %、 Se: 0. 020 wt %、 Sb: 0. 02 5 wt %、 A l : 0. 020 wt%、 N : 0. 0076wt%および Mo : 0. 013 wt %を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1350° (:、 4時間の加熱処理後、 熱間圧延を施して板厚 : 2. 0 ■の熱延板とした。 この熱延板に 970°C、 3分間の 均一化焼鈍を施した後、 1050°Cの中間焼鈍を挟む 2回の圧延を施して板厚 : 0. 23 mmの最終冷延板とした。
その後、 最終冷延板は次のように処理した。
① この最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジス トイ ンキをグラビアオフセッ 卜印刷により、 非塗布部が圧延方向にほぼ直角に 幅 : 200 ; a m 、 間隔 : 4 mmで線状に残存するように塗布したのち、 200 tで 3 分間焼き付けた。 このときのレジス ト厚は 2 〃m であった。 このようにしてェ ッチングレジス トを塗布した鋼板に、 電解エツチングを施すことによ り、 幅 : 200 m 、 深さ : 20w m の線状の溝を形成し、 ついで有機溶剤中に浸潰してレ ジス トを除去した。 このときの電解エッチングは、 NaCl電解液中で電流密度 :
10 A/dm2. 処理時間 : 20秒の条件で行った。
② 比較のため、 ①の処理を行わない最終冷延板も同時に用意した。
その後、 これら①および②の鋼板は、 840°Cの湿 H2中で脱炭 · 1 次再結晶焼鈍 を行った後、 鋼板表面に MgO (20%), A1203 ( 75%) , CaSiO, ( 5 %) の組成に なる焼鈍分離剤をスラ リー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 10°C /hの速度で 1150°Cまで昇温してゴス方位に強く集積した 2次再結晶粒を発達 させた後、 1200°Cの乾 H2中で純化処理した。
かく して得られた製品の表面被膜を除去し、 ついで化学研磨によ り珪素鋼板の 表面を平滑化したのち、 以下に述べる 3つの処理を施した。
(A) 珪素鋼板表面上に、 マグネ トロン ' スパッ タ法 ( P V D法の一手法) 用いて 約 0.02 m 厚の極薄 Si被膜を被成したのち、 1000°Cで 10分間、 N2 (50%) +H2
(50%) 混合ガス中で処理した。 その後、 鋼板表面にコロイダルシリカと リ ン 酸塩を主成分とする張力絶縁被膜 (約 2 m 厚) を被成し、 800°Cで焼き付け た。
(B) 珪素鋼板の表面を、 950°Cで 10分間 SiCし + N2 + H2の混合ガス ( C V D法) 中で処理した。 その後、 鋼板表面にコロイダルシリカとリ ン酸塩を主成分とす る張力絶縁被膜 (約 2 m 厚) 被成し、 800°Cで焼き付けた。
(C) 珪素鋼板を、 SiCl4 (0.5 mol/1)の水溶液中に 80°Cで 10秒間浸漬した後、 900 °Cで 10分間、 N2 (50%) +H2 (50%) 混合ガス中で処理した。 その後、 鋼板表 面にコロイダルシリカと リ ン酸塩を主成分とする張力絶縁被膜 (約 2 厚) を被成し、 800°Cで焼き付けた。
得られた各製品の磁気特性および密着性、 さらには X線光電子顕微鏡分光装置 (X-ray Photoe 1 ectron Spectroscopy, XPS法) を用いて測定した絶縁被膜被成前 における珪素鋼板表面の Si, 0, N元素の分析値を、 を表 1 に示す。 また、 表 1 には、 比較例として、 ①および②の方法で 2次再結晶処理した後、 製品の表面被膜を除去し、 ついで化学研磨により一方向性珪素鋼板の表面を平滑 化してから、 鋼密着性分析(/)むiを S板 XPStcounsec表面にコロイダルシリカとリ ン酸塩を主成分とする張力絶縁被 件極処条層理の
膜 (約 2 w m 厚) 被方法曲げ形 *成し、 800°Cで焼き付けた時の結果も、 併せて示す。
材の 铂^^
*
Figure imgf000015_0001
表 i に示した結果から明らかなように、 珪素鋼板上に極薄の Siを被成した後、 非酸化性雰囲気中で焼鈍処理を行って、 珪素鋼板表面に Siを含む窒化 ·酸化物層 (XPSの測定では、 Si, N, 0が増加しているのが特徴で、 非酸化性雰囲気で処理 したにもかかわらず 0の量も多く観察され、 Siは酸素とも結合し易いことを示し ている) を形成し、 ついでその上に張力絶縁被膜を被成した場合には、 磁気特性 および密着性ともに優れた超低鉄損一方向性珪素鋼板の製造が可能であることを 示している。
上述したように、 珪素鋼板の表面に Si膜を被成する方法として、 (A) の P V D 法、 (B) の C V D法を採用した場合は、 工業生産においてはコス トアップの原因 となるが、 被膜厚は極薄で済むのでその分従来より もコス トを低減することがで きる。
そして、 ここで注目すべきは(C) の方法である。
すなわち、 (C)の方法は、 SiCし(0.5mol/l) の水溶液中に 80°Cで 10秒間浸漬し た後、 900°Cで 10分間、 N2 (50%) +H2 (50%) 混合ガス中で処理するだけで済 むので、 極めて安価に、 しかも効率良く処理できる利点がある。
なお、 この種の従来技術として、 特開昭 60— 131976号、 特開平 6— 184762号お よび特開平 9 -78252号各公報において、 研磨した珪素鋼板表面上に外部酸化型の Si02膜の酸化層を形成させる方法が提案されている。
しかしながら、 これらの手法の骨子は、 珪素鋼板の有害な Cを除去するために 行われる脱炭 · 1次再結晶焼鈍時の湿 H2中での処理による Si02を主成分とするサ ブスケールの形成と類似の方法である。 特に、 このような鋼板の酸化処理を使用 することによる Si02を利用する手法は、 珪素鋼板の鏡面化による鉄損低減効果が 減殺されることが既に指摘されている。
また、 特開平 5— 279747号公報には、 方向性電磁鋼板の表面に、 コロイ ド状シ リ力と燐酸塩を主とする絶縁コーティ ングを施すに先立ち、 下地皮膜として珪酸 リチウム (Li20. nSi02)ゃ珪酸ナト リ ウム (Na20 · nSi02)等の水溶液 (水ガラス) を塗布、 焼き付けることからなる絶縁皮膜形成方法が提案されている。
しかしながら、 この方法では、 下地皮膜材料として用いられる Si化合物が Si02 のような酸化物形態であるため、 鋼板表面との密着性、 換言すると鋼板表面に対 するバインダ一効果が十分とはいい難く、 そのため本発明ほど良好な被膜密着性 ひいては鉄損改善効果を得ることができない。
実験 2
C : 0.076 wt%、 Si : 3.42wt%、 Mn: 0.075 wt%、 Se: 0.020 wt%、 Sb: 0.02 3 wt%、 Al : 0.020 wt%、 N : 0.0075wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1350°C、 4時間の加熱処理後、 熱間圧延を施して板厚 : 2.0 隱の熱延板とした。 この熱延板に 1000° (:、 3分間の 均一化焼鈍を施した後、 1020°Cの中間焼鈍を挟む 1回の圧延を施して板厚: 0.23 顏の最終冷延板とした。
その後、 最終冷延板は次のように処理した。
① この最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向にほぼ直角に 幅 : 200 um . 間隔 : 4 mmで線状に残存するように塗布したのち、 200 °Cで 3 分間焼き付けた。 このときのレジス ト厚は 2 m であった。 このようにしてェ ッチングレジス トを塗布した鋼板に、 電解ェッチングを施すことにより、 幅 : 200 m 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸漬してレ ジス 卜を除去した。 このときの電解エッチングは、 NaCl電解液中で電流密度 : 10 A/dm2. 処理時間 : 20秒の条件で行った。
② 比較のため、 ①の処理を行わない最終冷延板も同時に用意した。
ついで、 これらの鋼板に 840°Cの湿 H2中で脱炭 · 1 次再結晶焼鈍を施した後、 ①の鋼板については、 鋼板表面に MgO (15%), A1203 (75%) , CaSiOs (10%) の組成になる焼鈍分離剤を、 一方②の鋼板については、 鋼板表面に MgOを主成分 とする焼鈍分離剤をそれぞれスラ リー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850 °Cから 12°C/hの速度で 1150°Cまで昇温してゴス方位に強く集積した 2次再結 晶粒を発達させた後、 1220°Cの乾 H2中で純化処理した。
その後、 得られた各鋼板について、 以下の処理を施した。
(a) ①の条件で処理した珪素鋼板表面の酸化被膜を HC 1 ( 10 と H 3 P04 ( 8 ¾)の混合 酸洗液中で処理したのち、 SiCl4(0.02 mol/1) の水溶液中に 85°Cで 30秒間浸漬 し、 ついで鋼板表面にリ ン酸マグネシウムとコロイダルシリ力を主成分とする 張力絶縁被膜 (約 1.5 m 厚) を被成 (800 °C ) した。
(b) ①の条件で処理した珪素鋼板表面の酸化被膜を HC1 (10%)で除去後、 3 %フッ 酸と過酸化水素で化学研磨したのち、 SiCし(0.02mol/l)の水溶液中に 85°Cで 30 秒間浸漬し、 ついで鋼板表面にリ ン酸マグネシウムとコロイダルシリ カを主成 分とする張力絶縁被膜 (約 1.5 厚) を被成 (800 °C ) した。
(c) ②の条件で処理したフォルステライ ト被膜付き珪素鋼板の表面に、 リ ン酸マ グネシゥムとコロイダルシリカを主成分とする張力絶縁被膜 (約 1.5 ; um 厚) を被成 (800 °C ) した。
かく して得られた珪素鋼板に 800°Cで 2時間の歪取り焼鈍を施して製品板とし た。
各製品板の磁気特性について調査したところ、 (a) B 8 =1.91T, W17/5。 = 0.66 W/kg 、 (b) B 8 =1.91T, W17/5。 =0.65 W/kg であり、 従来材である(c) B a =1.91T, W17/5。 =0.73 W/kg に比べると、 極めて良好な特性値が得られ た。
また、 各製品板の磁歪の圧縮応力特性について調べた結果を、 図 1に示す。 同図に示したとおり、 発明例(a), (b)では圧縮応力が 0.7 kg /匪2 まで増加し ても磁気ひずみ; lPPの増加はほとんど見られなかったのに対し、 従来材(c) では 圧縮応力が 0.35 kg/mm2以上になると磁気ひずみ; I PPが急激に増加し、 圧縮応力 が 0.50 kg/mm2では磁気ひずみ PPは 3.2 x 10 6にも達する大きな値を呈するよ うになつた。 本発明に従い、 張力絶縁被膜の被成に先立ち、 極薄の S iを含む窒化 ·酸化物層 を形成することによって磁歪の圧縮応力特性が改善される理由は次のとおり と考 えられる。
すなわち、 現行のフォルステラィ ト質下地被膜を有する珪素鋼板は、 図 2 (a) に示すとおり、 鋼板の表面直下 (約 2〜 3 Ai m)に硫化物や窒化物からなる無数の アンカーが存在するため、 磁壁の移動が阻害される。 ゴス方位の 2次再結晶焼鈍 中に MgOと珪素鋼板表面状のサブスケール (S i 02 ) との固相反応によってフオル ステライ ト質下地被膜を形成させた珪素鋼板は、 上記したような無数のアンカー を存在させることによって地鉄との密着性を確保している。 このため、 圧縮応力 を加えるほど珪素鋼板の磁気ひずみス P Pは増大する。
これに対し、 本発明に従い、 地鉄表面に極薄の S iを含む窒化 .酸化物層を形成 して強力なバイ ンダー効果を付与した上で、 絶縁被膜を強固に密着させた珪素鋼 板は、 磁壁の移動が容易なだけでなく、 鋼板に直接張力を付与することができる ので、 磁歪の圧縮応力特性が効果的に改善されるのである。
なお、 このような珪素鋼板に付与する引っ張り応力は、 磁歪だけでなく、 鉄損 の改善にも有効であるのは言うまでもなく、 特にゴス方位に強く集積した高磁束 密度一方向性珪素鋼板の場合において、 その効果は顕著である。
実験 3
C : 0. 067 wt%、 S i : 3. 38wt%、 Mn: 0. 077 wt%、 Se: 0. 020 wt%、 Sb: 0. 02 3 wt %、 Al : 0. 021 wt%、 N : 0. 0078wt%および Mo: 0. 012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鐃スラブを、 1340°C、 5 時間の加熱処理後、 熱間圧延を施して板厚 : 2. 0 mmの熱延板とした。 この熱延板に 980°C、 3分間の 均一化焼鈍を施した後、 1030°Cの中間焼鈍を挟む 2回の圧延を施して板厚: 0. 23 隱の最終冷延板とした。
その後、 最終冷延板を次のように処理した。
① この最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジス 卜イ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向にほぼ直角に 幅 : 200 m 、 間隔 : 4 で線状に残存するように塗布したのち、 200 °Cで 3 分間焼き付けた。 このときのレジス ト厚は 2 w m であった。 このようにしてェ ッチングレジス 卜を塗布した鋼板に、 電解ェッチングを施すことにより、 幅 : 200 um 、 深さ : 20wm の線状の溝を形成し、 ついで有機溶剤中に浸漬してレ ジス トを除去した。 このときの電解エッチングは、 NaCl電解液中で電流密度 : 10 k/dm 処理時間 : 20秒の条件で行った。
② 比較のためこれらの処理を行わない珪素鋼板も用意した。
その後、 これら①および②の鋼板は、 840°Cの湿 H2中で脱炭 . 1 次再結晶焼鈍 を行った後、 鋼板表面に MgO (15%), A1203 ( 75%) , CaSi03 (10%) の組成に なる焼鈍分離剤をスラ リー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1150°Cまで昇温してゴス方位に強く集積した 2次再結晶粒を発達 させた後、 1220°Cの乾 H2中で純化処理した。
かく して得られた製品の表面被膜を除去し、 ついで化学研磨により珪素鋼板の 表面を平滑化したのち、 以下に述べる 6つの処理を施した。
(A) リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにその希釈液中に SiCし溶液: 50cc を添加した 80°Cの処理液中に、 珪素鋼板を 20秒間浸積し、 水洗後乾燥した。
(B) リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにその希釈液中に SiCし溶液 : 25cc と FeCl3 : 25gを複合添加した 80tの処理液中に、 珪素鋼板を 20秒間浸積し、 水洗後乾燥した。
(0 リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにその希釈液中に SiCl4溶液 : 25cc と A1P04 · 3/2H20: 25gを複合添加した 80°Cの処理液中に、 珪素鋼板を 20秒間 浸積し、 水洗後乾燥した。 (D) リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにその希釈液中に FeC l 3 : 20 g と A1 (N03) : 20 g、 H 3B03 : 10 gを複合添加した 80°Cの処理液中に、 珪素鋼板を 20 秒間浸積し、 水洗後乾燥した。
(E) リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で希釈した 80°Cの処理液中に、 珪素鋼板を 20秒間浸 積し、 水洗後乾燥した。
(F) リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにその希釈液中に S i Cし溶液 : 50cc を添加した 80°Cの処理液中に、 珪素鋼板を 20秒間浸積し、 水洗後乾燥した。
(G) 仕上焼鈍後、 珪素鋼板の表面の酸化物を酸洗により除去した。
ついで (A)〜(E) の処理を施した珪素鋼板については、 N 2 (509 +H 2 (505 混合 ガス中にて 950°C , 10分間の熱処理を行った。
その後、 さらにこれらの鋼板表面にリ ン酸マグネシウムとコロイダルシリカを 主成分とする張力絶縁被膜 (約 2 厚) を被成 (800 °C ) した。
かく して得られた各製品の磁気特性および密着性について調べた結果を、 表 2 に示す。
表 1
Figure imgf000022_0001
*〜 180° 曲げを行っても剝離しない直径 (匪) 表 2に示した結果から明らかなように、 ①ー A〜①ー Dの発明例、 すなわち表 面を化学研磨により平滑化した珪素鋼板を、 リ ン酸塩とコロイダルシリ力を主成 分とする張力絶縁被膜用コーティ ング液を蒸留水で希釈し、 さらにその希釈液中 に微量の Fe, Si, Al, B等を含む無機化合物を添加した処理液中に浸積したのち、 非酸化性雰囲気中で焼鈍処理を行って鋼板の表面に張力絶縁被膜成分中に Fe, Si, Alおよび Bのうちから選んだ 1種または 2種以上の窒化 · 酸化物を微細に分散さ せた極薄下地被膜を被成し、 その後常法に従ってリ ン酸塩とコロイダルシリ力を 主成分とする張力絶縁被膜を被成した場合には、 鉄損 W17/5。 が 0.6 W/kg 以下 の超低鉄損と共に、 180 ° 曲げを行っても剝離しない直径が 15匪以下という優れ た密着性を併せて得ることができた。
また、 ①ー Fの、 微量の Fe, Si, Al, Bを含む無機化合物を添加した張力絶縁 被膜用コ一ティ ング液の希釈液を塗布したのち、 その後の焼鈍処理を省略して、 直ちに常法に従い、 リ ン酸塩とコ口ィダルシリ力を主成分とする張力絶縁被膜を 被成した場合にも、 上記した①ー A〜①ー Dの場合と遜色のない優れた鉄損特性 および被膜密着性を得ることができた。
これに対し、 ①ー Eの、 下地被膜の処理液として、 微量の Fe, S i , A l , Bを含 む無機化合物を添加しない、 単なる張力絶縁被膜用コーティ ング液の希釈液を用 いた場合には、 化学研磨による平滑化処理よつてかなりの鉄損改善効果は見られ るものの、 密着性が極めて悪く曲げ試験において直ぐ剝離が生じるために珪素鋼 板として使用することができない。
また、 ①ー Gの、 化学研磨およびその後の極薄下地被膜形成処理を行わなかつ た場合は、 磁区細分化による鉄損改善向上のみであるため、 本発明に比較すると 珪素鋼板の鉄損レベルははるかに劣っている。
次に、 図 3に、 従来の一方向性珪素鋼板 (同図(a), (b) ) および本発明に従う 一方向性珪素鋼板 (同図(c) ) の被膜構造を比較して示す。
図 3中 (a)は、 特開平 5 — 31 1353号公報に開示されたような、 仕上焼鈍済みの 一方向性珪素鋼板の表面に単にリ ン酸塩とコロイダルシリ力を主成分とする張力 絶縁被膜を被成した場合であるが、 この場合は、 珪素鋼板と絶縁被膜との密着性 が大きな問題となるため実用製品としての使用は難しい。
また、 同図(b) は、 特公昭 63-35686号公報に開示されたような、 研磨により平 滑化した一方向性珪素鋼板の表面に、 C V Dや P V Dによつて T i Nや Cr N等の極 薄セラミ ツ ク被膜を形成したのち、 さ らにその表面に張力絶縁被膜を被成した場 合であるが、 この場合は、 鉄損の低減については非常に有効であるものの、 前述 したとおり、 高真空中でのプラズマ処理が必要であるため、 コス トアップを招く という不利がある。
これに対し、 同図(c) の本発明例は、 一方向性珪素鋼板と張力絶縁被膜との界 面に、 微量の Fe, S i , A lおよび B等の窒化 ·酸化物が微細に分散した極薄下地被 膜が形成されているので、 珪素鋼板との密着性が格段に向上し、 それ故より効果 的に張力絶縁被膜による張力の付与が行われるものと考えられる。
すなわち、 本発明では、 極薄の下地被膜中に Fe, Si, A1および B等の窒化 -酸 化物を微細に分散させることによって、 該下地被膜を珪素鋼地鉄に強固に被着さ せ、 一方この下地被膜の主成分は、 その上に被成する張力絶縁被膜と同質である ので、 この下地被膜と上塗り張力絶縁被膜との密着性も良く、 従ってかかる下地 被膜を介在させることによって、 上塗り張力絶縁被膜のもつ張力付与機能を十分 に発揮させることができ、 その結果、 一層の鉄損改善効果が達成されるのである。 従って、 この極薄下地被膜は、 珪素鋼板地鉄との密着性および張力絶縁被膜と の密着性が共に良好で、 珪素鋼板地鉄と張力絶縁被膜とのバイ ンダ一の役割をも つ被膜と言うことができる。
ここに、 かかる極薄下地被膜としては、 該被膜中に Fe, Si, A1および B等を窒 化 . 酸化物の形で含有することが重要で、 そのためには処理液としては、 原料で ある Fe, Si, A1および B等を含む無機化合物が窒化 ·酸化物になり易いように通 常の張力絶縁被膜用コーティ ング液を水で薄めた希釈液として使用することが肝 要であり、 またその膜厚も必要厚を満たした上で極力薄くすることが重要である。 このように、 張力絶縁被膜用コ一ティ ング液を希釈しておけば、 該希釈液中に 含まれる Fe, Si, A1および B等の無機化合物が、 その後の熱処理によって容易に 窒化 · 酸化物になることを、 表 3に例示する。
表 3は、 X線光電子顕微鏡分光装置(X-ray Photoe 1 ectron Spectroscopy, XPS 法) を用いて測定した張力絶縁被膜被成前における珪素鋼板表面の Fe, Si, N, 0の分析値を示したものであるが、 同表に示したとおり、 本発明例では Fe, N, 0が多量に観察されるのが特徴で、 非酸化性雰囲気中で処理したにもかかわらず 〇の量も多く観察され、 Feは酸素とも結合し易いことを示している。 また、 この 場合 Siも若干増加しているが、 これは下地被膜中のコロイダルシリ力も含まれる ためと考えられる。 表 3
Figure imgf000025_0001
また、 図 4に、 Fe, Si, Alおよび B等の無機化合物として SiCl4を利用して、 鋼板の表面に Siの窒化 ·酸化物を分散させた極薄下地被膜を被成した場合におけ る、 該窒化 ·酸化物中の酸化物組成を、 XPS法で測定した結果を示す。
同図から明らかなように、 この方法によって形成される酸化物は、 主に FeSi03 (Clinoferrosilite)と Fe2Si04 (Fayalite) からなつていることが注目される (な お、 厳密には、 FeSi03の生成量の方が Fe2Si04よりも多い) 。
ここに、 上記のような酸化物は、 次式
SiCし + 2H20 + 2FeO → Fe2Si04+ 4HC1
のような反応によって形成されるものと考えられる。
そして、 上記したような酸化物は、 従来からの Si02のサブスケールとは異なり、 極めて緻密であり、 かような緻密な酸化物が微細な窒化物と共に生成するために、 従来に比べると格段に密着性が向上するものと考えられる。
実験 4
C : 0.073 wt%、 Si : 3.38wt%、 Mn: 0.070 wt%、 Se: 0.020 wt%、 Sb: 0.02 5 wt%、 Al : 0.020 wt%、 N : 0.0078wt%および Mo: 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錶スラブを、 1340° (:、 5 時間の加熱処理後、 熱間圧延を施して板厚 : 2.0 mmの熱延板とした。 この熱延板に 1000° (:、 3分間の 均一化焼鈍を施した後、 1050°Cの中間焼鈍を挟む I回の圧延を施して板厚 : 0.23 關の最終冷延板とした。
その後、 最終冷延板は次のように処理した。
この最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジス 卜 イ ンキをグラビアオフセッ 卜印刷により、 非塗布部が圧延方向にほぼ直角に幅 : 200 um 、 間隔 : 4匪で線状に残存するように塗布したのち、 200 °Cで 3分間焼 き付けた。 このときのレジス ト厚は 2 w m であった。 このようにしてエッチング レジス トを塗布した鋼板に、 電解エッチングを施すことにより、 幅 : 200 〃m 、 深さ : 20wm の線状の溝を形成し、 ついで有機溶剤中に浸漬してレジス 卜を除去 した。 このときの電解エッチングは、 NaCl電解液中で電流密度: 10 A/dm2, 処理 時間 : 20秒の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1 次再結晶焼鈍を行った後、 鋼板表面に CaO (20%), A1203 ( 60%) , Si02 ( 20%) の組成になる焼鈍分離剤をスラ リ ー塗布 し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 10°C/hの速度で 1150°Cまで昇温 してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1220°Cの乾 H2中で純 化処理した。
かく して得られた製品の表面被膜を除去し、 ついで化学研磨により珪素鋼板の 表面を平滑化したのち、 以下に述べる工程で処理を施した。
(A) 工程: 珪素鋼板を、 1500ccの蒸留水中に SiCし溶液 : 20ccを溶解した 80°Cの 水溶液中に 1〜90秒間浸積した後、 さらに珪素鋼板を、 リ ン酸塩とコ ロイダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし溶液 : 30ccと A1P04:20 g と H3P03:20gを複合添加した 80°Cの処理液中に 1〜 60秒間浸積し、 水洗後、 乾燥した。
(B) 工程: 珪素鋼板を、 1500ccの蒸留水中に SiCし溶液: 30ccを溶解した 80°Cの 水溶液中に 1〜90秒間浸積した後、 さらに珪素鋼板を、 リ ン酸塩とコ ロイダルシ リ カを主成分とする張力絶縁被膜用コーティ ング液: 250 ccを 2000ccの蒸留水で薄めた希釈液中に SiCl4溶液 : 30ccと A1P04: 20 gと H3P03:20 gを複合添加した 80°Cの処理液中に 1〜60秒間浸積し、 水洗後、 乾燥した。
(0 工程: 珪素鋼板を、 1500ccの蒸留水中に SiCし溶液: 20ccと FeCl3 : 10gを 溶解した 80°Cの水溶液中に 1〜90秒間浸積したのち、 さらに珪素鋼板 を、 リ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コー ティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCl4溶液 : 25ccと FeCl3:15gと AlP04:10gと H3P03:10gを複合添加した 80°Cの 処理液中に 1〜90秒間浸積し、 水洗後、 乾燥した。
その後、 (A)〜(C) の工程で処理した珪素鋼板を、 それぞれ 950°Cで 10分間、 N2 (50%) +H2 (50%) 混合ガス中で処理した。
その後、 さらに得られた鋼板の表面に、 リ ン酸塩とコロイダルシリカを主成分 とする張力絶縁被膜用コーティ ング液を、 塗布 .乾燥後、 800°Cの N2ガス中で焼 き付けて、 2.0 厚の張力絶縁被膜を被成した。
かく して得られた各製品の鉄損特性 W17/5。(W/kg) と張力絶縁被膜用コ一ティ ング液の塗布前における板厚減少量 (両面) との関係について調べた結果を、 図 5に示す。
同図から明らかなように、 珪素鋼板の鉄損 WI 7/50(W/kg) は、 (A), (B)および (0 工程共に、 板厚減少量が 0.01〜3.0 m の範囲において低減効果が顕著であ ることが判る。
この理由については次のとおり と考えられる。
すなわち、 珪素鋼板に、 下地被膜を被成するに先立ち、 SiCし や SiCしを主成 分とする塩化物の水溶液中に浸積し、 鋼板の表面反応を促進して鋼板表面の Fe成 分をある程度溶解することによって、 鋼板表面の活性度ひいては密着性が高まる ついで、 その活性化にした鋼板表面に、 下地被膜中の Fe, Si, A1および B等の微 細窒化 ·酸化物が強固に被着し、 これらの微細窒化 .酸化物がァンカーの働きを して珪素鋼板と下地被膜の密着性が向上するだけでなく、 その上の重ねて被成し た張力絶縁被膜による張力付与効果も同時に向上するので、 超低鉄損が得られる ものと考えられる。
上記した珪素鋼板と下地被膜との界面の状況は、 前述した(2) の TiN被覆珪素 鋼板の界面の電子顕微鏡観察の 10nm程度に観察された横縞に類似の現象を作り出 していると考えられる。
なお、 本発明においては、 P V Dの真空下でのプラズマ処理による TiN ほど薄 い界面層を作り出すことは原理的に不可能であるが、 このような真空ブラズマ法 を用いなく ても安価に鋼板表面を活性化させ、 もって、 一方向性珪素鋼板の超低 鉄損の達成が可能であることが注目される。
また、 上述したような珪素鋼板の塩化物溶液による 0.01〜3.0 の板厚減少 は、 0.0005〜0.15gの重量減少に相当する。
すなわち、 真空処理のプラズマの場合には、 前述した(2) の TiN被覆珪素鋼板 の界面の電子顕微鏡観察の 1 Onm程度に観察された横縞に類似の現象を作り出し、 正に理想の混合層を作り出すことが可能であるが、 本発明のように真空を使用し ないでも珪素鋼板の 0.0005〜0.15 gの重量減少を作り出すことによって、 鋼板面 を活性化させこれら Fe, Si, Al, B等の微細窒化 ·酸化物を界面層に優先的に形 成させることによ り超低鉄損化を達成したものである。
実験 5
C : 0.069 wt%、 Si: 3.42wt%、 Mn: 0.075 wt%、 Se: 0.020 wt%、 Sb: 0.02 5 wt%、 Al : 0.020 wt%、 N : 0.0073wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1360° (:、 5時間の加熱処理後、 熱間圧延を施して板厚 : 2.0 mmの熱延板とした。 この熱延板に 1020°C、 3分間の 均一化焼鈍を施した後、 1050°Cの中間焼鈍を挟む 2回の圧延を施して板厚 : 0.23 の最終冷延板とした。
その後、 最終冷延板は次のように処理した。 この最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジス 卜 イ ンキをグラビアオフセッ ト印刷によ り、 非塗布部が圧延方向にほぼ直角に幅 : 200 im 、 間隔 : 4關で線状に残存するように塗布したのち、 200 °Cで 3分間焼 き付けた。 このときのレジス ト厚は 2 w m であった。 このようにしてエッチング レジス トを塗布した鋼板に、 電解エッチングを施すことにより、 幅 : 200 win 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸漬してレジス トを除去 した。 このときの電解エッチングは、 NaCl電解液中で電流密度 : 10 A/dm2、 処理 時間 : 20秒の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に CaO (20%), A1203 ( 50%) , Si02 ( 30%) の組成になる焼鈍分離剤をスラリー塗布 し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1150°Cまで昇温 してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1200°Cの乾 H2中で純 化処理した。
かく して得られたフォルステラィ ト下地被膜を有しない珪素鋼板の表面を、 以 下に述べる工程で処理した。
(A) 工程: 1500ccの蒸留水中に SiCl4 : 30ccを添加した水溶液中 (80°C) に i分 間浸漬して、 鋼板表面の酸化物除去を行った。
(B) 工程 : 1500ccの蒸留水中に SiCし : 20ccと HC1 : 20ccとを添加した水溶液中
(80°C) に 1分間浸漬して、 鋼板表面の酸化物除去を行った。
(0 工程: 1500ccの蒸留水中に HC1 : 50ccを添加した水溶液中 (80°C) に 1分間 浸潰して、 鋼板表面の酸化物除去を行った。
(D) 工程: 1500ccの蒸留水中に HC1 : 50ccを添加した水溶液中 (80°C) に 0.5分 間浸潰して鋼板表面の酸化物を除去した後、 39iHFと 975ίΗ202 の混合液 中で化学研磨した。
(Ε) 工程: (D) 工程の処理後、 (Α) 工程と同じ方法、 すなわち 1500ccの蒸留水中 に SiCl4 : 30ccを添加した水溶液中 (80°C) に 20秒間浸漬した。 その後、 上記 (A) 〜 (E) の工程で処理した珪素鋼板をそれぞれ、 950°Cの H2 (50¾) +N2 (50¾) 混合ガス中で 10分間の処理したのち、 さ らに珪素鋼板の表面 にリ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈溶液中に SiCし溶液: 25ccと FeCl3 : 15g と A1P04 : 10gと H3P03 : 10 gを複合添加した 80°Cの処理液中に 20秒間浸積し、 水洗後、 乾燥した。
ついで、 それぞれ N2 (93¾) +H2 (7W混合ガス中にて 900°Cで 10分間の熱処理を 施した。
なお、 (Α' ) 工程として、 (Α) 工程の処理後、 H2(50 +N2(50¾) 混合雰 囲気中での短時間の熱処理を行わず、 単に N雰囲気中に 20秒間曝すだけの処理を 施し、 その後、 N2 (93 +H2(79 混合ガス中にて上記と同様の処理を施して、 鋼 板の表面に極薄下地被膜を被成した。
その後、 さらにこれらの鋼板の表面に、 リ ン酸塩とコロイダルシリカを主成分 とする張力絶縁被膜用コーティ ング液を塗布 ·乾燥し、 800°Cの N2ガス中で焼き 付けて 2.0 πι 厚の張力絶縁被膜を被成した。
かく して得られた各製品の鉄損特性 W17/50(W/kg) と密着性について調べた結 果を表 4 に示す。
密着性
(曲げ変°形 180 M os
行剝離もをてっ
直径)しない
溶O)混入水液中 SiCOをした 20pccmm (
分漬間浸 1に
()含非性後酸化程雰囲A <工 N 20 φmm、
気中露処暴理にて
()()i混入 SCし0Cl0を2と H2 25 øccccmm
as 水溶液中分漬間浸した 1に
OQ H
(水溶液中)入 ()混た HCl0をしC5にcc
漬分間比較例浸 1
溶()入水液中 (混)Cをした Hl50Dに Xcc
分漬間後剥離 () 0浸%¾53HFと 9H0722、.
液中学磨較混合比例化研ので
(水溶液中)入 ()C混した Hl0を5Eにcc
漬分後間浸% 03と 9¾5HF7H022、.
液中学磨混合後例化研発明さらのにで、
(水溶液中)混入し SiC0をたし3cc
秒漬間浸02に
、 ^
<^
H 1 1
表 4から明らかなように、 本発明に従う (A) , (Α' ) , (Β) および (Ε ) の工程で処理した珪素鋼板は、 鉄損 W17/5。(W/kg) で 0.56 0.65 W/kg の超低鉄 損が得られ、 しかも密着性も良好であることが注目される。
すなわち、 フォルステラィ ト下地被膜を有しない一方向性珪素鋼板を、 SiCし を含む水溶液中にて浸漬 ·酸洗処理を行うだけで、 超低鉄損と優れた密着性を有 する一方向性珪素鋼板の製造が可能であることが注目される。 なお、 特に良好な 結果が得られたのは (E ) 工程のような酸洗処理および化学研磨処理を施した場 合であるが、 化学研磨を施さない (A) および (Α' ) 工程によってもそれぞれ、 W17/5。(W/kg) で 0.63 W/kg, 0.61 W/kg という超低鉄損が得られることが注目 される。
従来は、 化学研磨や電解研磨等を用いて珪素鋼板の表面を平滑化させることに よ り、 珪素鋼板のヒステリシス損を減少させる方法が採用されてきた。
しかしながら、 この化学研磨や電解研磨等の方法は、 製品歩留りが悪くなるだ けでなく、 研磨費用の大幅のコス 卜アップとなるという大きな問題があつた。 本発明では、 フォルステラィ 卜下地被膜を有しない一方向性珪素鋼板の表面を、 SiCl4 を含む水溶液中で浸漬 ·酸洗処理を行うだけで、 超低鉄損と優れた密着性 を有する一方向性珪素鋼板が極めて安価に得られることが注目される。
図 6に、 (Α' ) 工程に従い、 仕上焼鈍後の鋼板を、 SiCし溶液 (80°C) 中に 浸漬後、 N雰囲気中に曝した際の鋼板表層部の N濃度を SIMS (Secondary Ion Mass Spectroscopy)で測定した結果を、 (D) 工程に従い、 3i¾HFと 97!½H202 の混 合液中で化学研磨した場合と比較して示す。
同図に示したとおり、 鋼板を SiCl4溶液中に浸潰し、 その後に N雰囲気中に曝 すだけでも、 鋼板表面には、 化学研磨材に比べると格段に高い N濃化層が形成さ れていることが注目される。
以上、 実験 1〜 5に基づいて説明したとおり、 本発明は、 珪素鋼板の地鉄表面 と張力絶縁被膜との界面に、 Fe, Si, A1および Bのうちから選んだ 1種または 2 種以上の窒化 ·酸化物層や張力絶縁被膜と同じ被膜成分中に Fe, Si, A1および B のうちから選んだ 1種または 2種以上の窒化 ·酸化物を微細に分散させた極薄下 地被膜などの界面層を形成することによ り、 またさらにはかような界面層の形成 に先立って、 S i Cしを主成分とする塩化物の水溶液中に浸漬して地鉄表面を溶解 したり、 または平滑化処理や酸洗処理を SiCしを含む水溶液を用いて行うことよ り、 地鉄表面に対する被膜密着性を格段に向上させることができ、 ひいては従来 材に比較して鉄損が格段に優れ、 かつ磁歪特性にも優れた超低鉄損一方向性珪素 鋼板を、 極めて安価にしかも高生産性の下で得ることができるのである。
さて、 本発明の素材である含珪素鋼としては、 従来公知の成分組成いずれもが 適合するが、 代表組成を掲げると次のとおりである。
C : 0. 01〜0. 08wt%
Cは、 0. 0 ^ %ょ り少ないと熱延集合組織抑制が不十分となって大きな伸長粒 が形成されるため磁気特性が劣化し、 一方 0. 08 %ょ り多いと脱炭工程で脱炭に 時間がかかり経済的でないので、 0. 01〜0. 08wt %程度とするのが好ましい。
S i : 2. 0 〜4. O t %
S iは、 2. (^ %ょり少ないと十分な電気抵抗が得られないため渦電流損失が増 大して鉄損の劣化を招き、 一方 4. 0vvt%よ り多いと冷延の際に脆性割れが生じ易 く なるので、 2. 0〜4. 0 wt%程度の範囲とすることが好ましい。
n: 0. 0卜 0. 2 wt%
Mnは、 一方向性珪素鋼板の I次再結晶を左右する分散析出相としての Mn Sある いは MnSeを決定する重要な成分である。 Mn量が 0. 01wt%を下回ると 2 次再結晶を 生じさせるのに必要な Mn S等の絶対量が不足し、 不完全 2次再結晶を起こすと同 時に、 ブリスターと呼ばれる表面欠陥が増大する。 一方、 0. 2wt%を超えると、 スラブ加熱等において Mn S等の解離固溶が行われたとしても、 熱延時に析出する 分散析出相が粗大化し易く、 抑制剤として望まれる最適サイズ分布が損なわれて 磁気特性が劣化するので、 Mnは 0. 01〜0. 2 wt%程度とすることが好ましい。
S : 0. 008 〜0. 1 wt%、 Se: 0. 003 〜 1 wt %
Sおよび Seはいずれも、 0. lwt%以下、 中でも Sは 0. 008〜0. 1 wt%、 また Se は 0. 003〜0. 1 wt%の範囲とすることが好ましい。 というのは、 これらが 0. lwt %を超えると熱間および冷間加工性が劣化し、 一方それぞれ下限値に満たないと Mn S . MnSeとしての 1 次粒成長抑制機能に格別の効果を生じないからである。 その他、 イ ンヒビタ一として従来公知の A l, Sb, Cu, Snおよび B 等を複合添加 しても、 本発明の効果を妨げるものではない。
次に、 本発明に従う超低鉄損一方向性珪素鋼板の製造工程について説明する。 まず素材を溶製するには、 L D転炉、 電気炉、 平炉、 その他公知の製鋼炉を使 用できるのは言うまでもなく、 真空溶解や R H脱ガス処理を併用することもでき る。
本発明に従い、 素材中に含有される S、 Seあるいはその他の 1 次粒成長抑制剤 を溶鋼中に微量添加する方法としては、 従来公知の何れの方法を用いても良く、 例えば L D転炉、 R H脱ガス終了時あるいは造塊時の溶鋼中に添加することがで きる。
また、 スラブ製造は、 コス ト低減、 さらにはスラブ長手方向における成分ある いは品質の均一性等の経済的 ·技術的利点のため連続銕造法の採用が有利ではあ るが、 従来の造塊スラブの使用を妨げるものではない。
連続鐃造スラブは、 スラブ中のイ ンヒビターを解離 . 固溶させるために、 1300 °C以上の温度に加熱される。 その後、 このスラブは熱間粗圧延ついで熱間仕上圧 延が施されて、 通常厚み 1. 3〜3. 3 mm程度の熱延板とされる。
次に熱延板は、 必要に応じ 850〜1 100°Cの温度範囲の中間焼鈍を挟み 2回の冷 間圧延を実施して最終板厚とするが、 高磁束密度で低鉄損の特性を有する製品を 得るには最終冷延率 (通常 55〜90% ) に注意を払う必要がある。
このとき、 珪素鋼板の渦電流損をできるかぎり小さ くする観点から、 製品厚の 上限は 0. 5 匪に、 またヒステリシス損の弊害を避けるために板厚の下限は 0. 05mm に限定した。
鋼板表面に線状の溝を形成する場合には、 この最終冷延を終え製品板厚となつ た鋼板に対して行うのがとりわけ有利である。
すなわち、 最終冷延板または 2次再結晶前後の鋼板の表面に、 圧延方向と交差 する向きに 1〜10匪の間隔で、 幅 : 50〜500 y m 、 深さ : 0. 1 〜50 w m の線状の 凹領域を形成させるのである。 ここに、 線状凹領域の間隔を 2〜10匪の範囲に限定したのは、 2 mmに満たない と鋼板凹凸があま りにも顕著で磁束密度が低下し経済的でなくなり、 一方 10隱を 超えると磁区細分化効果が小さく なるからである。
また、 凹領域の幅が 50 w m に満たないと反磁界効果を利用することが困難とな り、 一方 500 111 を超えると磁束密度が低下し経済的でなくなるので、 凹領域の 幅は 50〜500 m の範囲に限定した。
さらに、 凹領域の深さが 0. l z m に満たないと反磁界効果を効果的に利用する ことができず、 一方 50 W m を超えると磁束密度が低下し経済的でなくなるので、 凹領域の深さは 0. l〜50 m の範囲に限定した。
なお、 線状凹領域の形成方向は、 圧延方向と直角方向すなわち板幅方向とする のが最適であるが、 板幅方向に対し ± 30° 以内であればほぼ同様の効果を得るこ とができる。
さらに、 線状凹領域の形成方法としては、 最終冷延板の表面に、 印刷によりェ ツチングレジス トを塗布、 焼き付けた後、 エッチング処理を施し、 しかるのち該 レジス トを除去する方法が、 従来のナイフの刃先やレーザ一等を用いる方法に比 較して、 工業的に安定して実施できる点、 および引張り張力によ り一層効果的に 鉄損を低減できる点で有利である。
以下、 上記のエッチングによる線状溝形成技術の典型例について具体的に説明 する。
最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエツチングレジス トィン キをグラビアオフセッ ト印刷によ り、 非塗布部が圧延方向にほぼ直角に幅 : 200 m 、 間隔 : 4關で線状に残存するように塗布したのち、 200°Cで約 20秒間焼き 付ける。 このとき、 レジス ト厚は 2 程度とする。 このようにしてエッチング レジス トを塗布した鋼板に、 電解エッチングまたは化学エッチングを施すことに より、 幅 : 200 z m 、 深さ : 20 W m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去する。 この時の電解エッチング条件は、 NaC l電解液中で電 流密度 : 10 A/dm2, 処理時間 : 20秒程度、 また化学エッチング条件は、 HN03液中 で浸漬時間 : 10秒間程度とすれば良い。
ついで、 鋼板には脱炭焼鈍が施される。 この焼鈍は、 冷延組織を 1次再結晶組 織にすると同時に、 最終焼鈍 (仕上焼鈍とも呼ばれる) で { 1 1 0 } 〈 0 0 1 〉 方位の 2次再結晶粒を発達させる場合に有害な Cを除去することを目的とし、 例 えば 750〜880 °Cの湿水素中で行う。
最終焼鈍は、 { 1 1 0 } 〈 0 0 1 〉 方位の 2次再結晶粒を十分発達させるため に施されるもので、 通常箱焼鈍によって直ちに 1000°C以上に昇温し、 その温度に 保持することによって行われる。 ごの最終焼鈍は通常、 マグネシア等の焼鈍分離 剤を塗布して行い、 表面にフォルステラィ ト と呼ばれる下地被膜も同時に形成す る。
しかしながら、 この発明では、 フォルステライ ト下地被膜を形成させたとして も、 次工程でこの下地被膜を除去するため、 かようなフォルステラィ ト下地被膜 を形成させないような焼鈍分離剤の方が有利である。 すなわち、 フォルステラィ ト下地被膜を形成させる MgOの含有比率を低減し (50%以下) 、 代わってかかる 被膜を形成させない CaO, A 1203 , CaSiOs, Si02, PbCl 3等の含有比率を高く (50 %以上) した焼鈍分離剤が有利である。
この発明において { 1 1 0 } 〈 0 0 1〉 方位に高度に集積した 2次再結晶組織 を発達させるためには、 820°Cから 900 °Cの低温で保定焼鈍する方が有利である が、 その他、 例えば 0.5〜15°C/h程度の昇温速度の徐熱焼鈍でも良い。
この純化焼鈍後に、 鋼板表面のフォルステラィ ト下地被膜や酸化物被膜は、 公 知の酸洗などの化学的方法や切削、 研磨などの機械的方法またはそれらの組み合 わせにより除去して、 鋼板表面を平滑化する。
すなわち、 鋼板表面の種々の被膜を除去した後、 化学研磨、 電解研磨等の化学 研磨やパフ研磨等の機械的研磨あるいはそれらの組み合わせなど従来の手法によ り、 中心線平均粗さ Raで 0.4 um 以下程度まで鋼板表面を平滑化する。 なお、 本発明では、 珪素鋼板の表面を必ずしも平滑化する必要はない。 従って この場合には、 コス トアップを伴う平滑化処理を行わなくても、 酸洗処理のみで 十分な鉄損低減効果を発揮できるという利点がある。 とはいえ、 やはり平滑化処 理を施すことが有利であることに変わりはない。
また、 この段階で鋼板表面に凹形状の溝を導入することもできる。 溝の導入方 法は、 最終冷延板または 2次再結晶前後の鋼板の表面に施す場合と同じ方法を用 いれば良い。
さて、 本発明に従い、 珪素鋼板の地鉄表面に張力絶縁被膜を被成するに先立ち、 界面層として、 Fe, S i , A 1および Bのうちから選んだ 1種または 2種以上の窒化 -酸化物層を形成する場合には、 上記のような処理を施した鋼板に対して行う。 ここに、 かような窒化 ·酸化物層として最適なのが、 S iを含む極薄の窒化 .酸 化物層である。
また、 かような極薄の S iを含む窒化 .酸化物層の形成方法として特に好適な方 法は、 鋼板表面に S i化合物を含む溶液たとえば S i Cしを含む希薄水溶液を塗布し て、 微量の S iを活性状態で付着させたのち、 非酸化性雰囲気中で短時間の熱処理 を施す方法である。
この方法によれば、 真空中、 高プラズマ雰囲気下での処理のような高コス トで 長時間の処理を必要としないので、 極めて安価かつ短時間のうちに所望の被膜を 得ることができる。
ここに、 上記した S iの窒化 ·酸化層を形成するための短時間の熱処理における 雰囲気としては、 窒化の促進を図るために含 N非酸化性雰囲気とすることが好ま しく、 特に好適には (N 2 + H 2 ) 混合ガス雰囲気である。
また、 処理温度は 80〜 1200°C程度 (好ましくは 500〜1 100°C程度) 、 処理時間 は 1〜100 分間程度 (好ましく は 3〜30分間程度) とすることが好ましい。
次に好適なのが、 鋼板を、 S i化合物を含む溶液中に浸潰し、 その表面に微量の S iを活性状態で付着させた後、 含 N非酸化性雰囲気中に暴露する方法である。 かような浸漬処理は、 通常 90°C前後の浴温度で実施されることから、 浸潰後、 含 N非酸化性雰囲気中に曝すだけでも、 鋼板表面には、 極薄の Siを含む窒化 ·酸 化物層が形成されるのである。
かかる Siを含む窒化♦酸化物層における酸化物の組成は、 前掲した図 4に示し たとおり主に FeSi03と Fe2Si04 からなつており、 これらの酸化物は、 従来からの Si02のサブスケールとは異なり、 極めて緻密であることから、 かような緻密な酸 化物が微細な窒化物と共に生成するために、 従来に比べると格段に密着性が向上 するものと考えられる。
さ らに、 本発明では、 上記したような短時間の熱処理や含 N非酸化性雰囲気中 での暴露処理は必ずしも必要とはしない。
というのは、 このような短時間の熱処理を施さなくても、 その後の絶縁被膜形 成時の熱処理によって、 鋼板表面に上記したような Siを含む窒化 ·酸化物層が優 先的に形成されるからである。
ここに、 Siを含む窒化 ·酸化物層の厚みは、 0.001〜0.1 程度とするのが 好ましい。 というのは、 膜厚が O.OOlwm に満たないと十分な密着性ひいては鉄 損低減効果が得られず、 一方 0. を超えると Si量が多くなりすぎるため、 満 足のいく Siの窒化 ·酸化物層を作製することが困難となり、 その結果磁気特性の みならず被膜密着性の向上が望めなくなるからである。
また、 上記の膜厚にするには、 鋼板表面に対する Si化合物を含む溶液の塗布量 は、 その濃度に影響されるけれども、 だいたい 0.001〜2.0 g/m2程度とするのが 好ましい。 より望ましく は 0.01〜1.0 g/m2の範囲である。
塗布方法としては、 通常のロールコーター等による塗布の他、 鋼板そのものを 溶液中に漬ける浸漬方法、 さらには電解処理法など公知の方法いずれもが使用で きる。 処理温度は、 常温でもかまわないが、 より有効に付着させるためには 50〜 100 °C程度の温溶液中で処理する方が好ましい。
さらに、 Si化合物としては、 Siを活性状態で付着できるものならいずれもが有 利に適合し、 特に好適な化合物は S i Cしである。
このように、 本発明においては、 S iを活性状態で鋼板の表面に付着させる必要 があることから、 用いる S i化合物としては、 すでに活性を失っている酸化物ゃ窒 化物形態のものは除外される。
その他、 P V Dや C V Dを用いて S iを薄く被成したのち (S i量 : 0. 001 〜0. 2 g/m2程度) 、 同じく非酸化性雰囲気中で短時間の熱処理を施しても良い。
この場合は、 コス トの上昇が避けられないが、 被膜厚は極薄くで済むのでその 分従来より もコス トを低減することができる。
ここに、 P V Dとしては、 前述したマグネ トロン ' スパッ夕法の他、 蒸着法や イオンプレーティ ング法なども有利に適合する。 また、 その際、 S i膜は結晶質で あっても非晶質であってもどちらでも良く、 要は、 Nや◦と結合可能な活性状態 になっていれば良い。
その後、 珪素鋼板の表面に、 常法に従いリ ン酸塩とコロイダルシリカを主成分 とする張力絶縁被膜用コーティ ング液を塗布した後、 500〜 1000°Cで焼き付けて、 張力絶縁被膜 (膜厚: 0. 5 〜 5 m 厚) を被成する。
ここに、 リ ン酸塩とコロイダルシリカを主成分とする張力絶縁被膜用コ一ティ ング液としては、 例えば特公昭 53- 28375号公報に開示のような、 コロイ ド状シリ 力 : 4 〜16wt%、 リ ン酸アルミ二ゥム : 3〜24wt%、 無水クロム酸および/また はクロム酸塩 : 0. 2 〜4. 5 wt%を添加したコーティ ング液や、 特公昭 56-521 17号 公報に開示のような、 コロイ ド状シリカ : 7〜24wt%、 リ ン酸マグネシウム : 5 〜30wt% (ただし、 リ ン酸マグネシウムとコロイ ド状シリカとのモル比: 20/ 80 〜30/70) 、 さ らに必要に応じて無水クロム酸、 クロム酸塩および/または重ク ロム酸塩 : 0. 01〜 5 wt%を添加したコ一ティ ング液が有利に適合する。
次に、 珪素鋼板の地鉄表面に張力絶縁被膜を被成するに先立ち、 界面層として- 張力絶縁被膜と同じ被膜成分中に Fe, S i , A 1および Bのうちから選んだ 1種また は 2種以上の窒化 ·酸化物を微細に分散させた極薄下地被膜を形成する場合につ いて説明する。
かような極薄下地被膜を形成するには、 まず、 リ ン酸塩とコロイダルシリカを 主成分とする張力絶縁被膜用コ一ティ ング液を水で希釈し、 この希釈液中に Fe, S i , A lおよび Bのうちから選んだ 1種または 2種以上を含む無機化合物を微量添 加したものを処理液として用いる。
なお、 鋼板表面への塗布に際しては、 かかる処理液を珪素鋼板の表面に直接塗 布すればよいが、 予め、 Fe, S i , Alおよび B等の無機化合物を添加した水溶液を 鋼板表面に塗布した後、 かかる処理液を塗布するようにしてもよい。
ここに、 リ ン酸塩とコ口ィダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液としては、 上記したような特公昭 53-28375号公報または特公昭 56- 521 17号 公報に開示のようなコーティ ング液が有利に適合する。
また、 上記コーティ ング液の希釈程度については、 0. 1〜 60%程度好ましくは 1 〜20% (例えば、 1500ccの水溶液中に 10〜 1000ccのコーティ ング液を溶解した 程度の量) 程度まで希釈することが好ましい。
というのは、 本発明において、 地鉄に強固に密着した下地被膜を被成するため には、 下地処理液中に含有させた Fe, S i , Alおよび B等の無機化合物を窒化 . 酸 化物に変化させる必要があるが、 この下地処理液の濃度が濃すぎると、 その際の 処理雰囲気 (好適には N2 (509O +H 2 (50¾i)混合ガス雰囲気) では無機化合物をうま く窒化 ·酸化物に変化させることが難しく、 かかる窒化 .酸化を効果的に促進さ せるためには適量の水で希釈することが効果的だからである。
さらに、 Fe, S i , A lおよび Bのうちから選んだ 1種または 2種以上を含む無機 化合物の希釈液中における添加量は、 無機化合物の量にして 5〜500 g程度 ( 0 . 001〜0. 5 mo l / 1 程度) とすることが好ましい。
というのは、 これらの無機化合物の量が少なすぎるとその効果を発揮すること ができず、 一方多すぎる場合には経済的でないだけでなく、 かえって被膜特性が 劣化するからである。 ここに、 上記した各種無機化合物のうち、 Feを含む無機化合物としては FeCし, Fe(N03)3等が、 Siを含む無機化合物としては SiCし, Na2Si03, Si02等が、 Alを含 む無機化合物としては A1C13. Al (N03) A1P04等が、 Bを含む無機化合物として は H3B03, Na2B407等がとりわけ有利に適合する。
さて、 上記したような、 張力絶縁被膜用コーティ ング液の希釈液中に Fe, Si, Alおよび B等の無機化合物を微量添加した処理液を、 鋼板表面に塗布 .乾燥する ことによ り、 地鉄表面に微量の Fe, Si, Alおよび B等の無機化合物を付着させた のち、 好ましく は非酸化性雰囲気中で短時間の熱処理を施して、 該鋼板の表面に 張力絶縁被膜成分中に Fe, Si, Alおよび B等の窒化 .酸化物を微細に分散させた 極薄下地被膜を被成する。
また、 本発明においては、 上記したような短時間の熱処理は必ずしも必要とは しない。 というのは、 このような短時間の熱処理を施さなくても、 その後の絶縁 被膜形成時の熱処理によって、 鋼板表面に上記したような Fe, Si, Alおよび B等 の窒化 ·酸化物を微細に分散させた極薄下地被膜が優先的に形成されるからであ る。
ここに、 塗布方法としては、 通常のロールコ一ター等による塗布の他、 鋼板そ のものを処理液中に漬ける浸漬方法、 また処理液を鋼板表面に直接噴霧あるいは 噴射する方法、 さらには電解処理法など公知の方法いずれもが使用できる。 処理 温度は、 常温でもかまわないが、 より有効に付着させるためには 50〜100 °C程度 の温溶液中で処理する方が好ましい。 また、 浸漬処理を利用する場合には、 浸漬 時間は 1〜 100 秒程度とすることが望ましい。
ついで、 水洗後、 乾燥したのち、 微細な Fe, Si, Alおよび B等の窒化 ·酸化物 を鋼板の表面に形成させるために、 より好ましくは、 非酸化性雰囲気中で短時間 の熱処理を施す。
処理雰囲気としては、 窒化の促進を図るため含 N非酸化性雰囲気とすることが 好ましく、 例えば (N2 + H2) 混合ガス雰囲気およびアンモニアを含む(NH3 + H2) 混合雰囲気がと りわけ好適である。
また、 処理温度は 200〜 1200°C程度 (好ましくは 500〜 1000°C程度) 、 処理時 間は 1 〜100 分間程度 (好ましく は 3 〜30分間程度) が好適である。
かく して、 被膜中に微細に分散させた Fe, S i , A 1および B等の窒化 ·酸化物の 存在により、 鋼板の表面に強固に被着した極薄下地被膜を被成することができる。 なお、 下地処理液の塗布量は、 0. 001 ~ 0. 5 g/m2程度とすることが好ましく、 この程度の量を塗布したのち熱処理を施すことによって、 最終的に 0. 001〜3. 0 u rn 程度の好適厚みになる極薄下地被膜を得ることができる。
その後、 上記した極薄下地被膜の表面に、 上述したコロイダルシリカと リ ン酸 塩を主成分とする張力絶縁被膜用コ一ティ ング液を塗布したのち、 500〜 1000°C の温度で焼き付けて、 張力絶縁被膜(0. 5〜 5 厚) を形成する。
ここに、 上記した極薄下地被膜とその上に被成した張力絶縁被膜は同質である ので、 これらの密着性は極めて高く、 それ故結果として、 従来に比較して格段に 密着性に優れた張力絶縁被膜を鋼板の表面に被成することができ、 かく して鉄損 の極めて低い一方向性珪素鋼板を、 生産性良く、 また低コス トの下で得ることが できるのである。
なお、 場合によっては、 絶縁被膜として、 被膜中にコロイダルシリカを添加し ない、 リ ン酸塩とクロム酸を主成分とする絶縁被膜の使用も可能である。
また、 珪素鋼板に対して一層良好な傾斜機能を発揮させるためには、 珪素鋼板 側には通常の絶縁被膜を被成し、 その上に重ねて張力絶縁被膜を被成することが 有利である。
次に、 上記したような極薄下地被膜の形成に先立ち、 前処理として、 珪素鋼板 を、 S iC l 4 または S i Cしを主成分とする塩化物の水溶液中に浸潰して地鉄の表面 をある程度溶解する処理を施す場合について説明する。
かような、 前処理を施す理由は、 前述したとおり、 地鉄表面の Fe成分をある程 度溶解することによって、 地鉄表面の活性度ひいては密着性を高めるためである < ここに、 地鉄表面の好適な溶解量は、 前掲図 5に示したとおり、 板厚減少量で 0.01〜3.0 程度 (重量減少量で0.0005〜0.158程度) の範囲である。
なお、 板厚減少量は、 後続の下地被膜の形成の際、 処理液中に添加する無機化 合物として SiCし等の塩化物を用いない場合には、 この前処理のみで定まるが、 上記の無機化合物として塩化物を用いた場合には、 この下地被膜形成用処理液の 塗布によっても地鉄は幾分溶解されるので、 かような場合、 板厚減少量は、 下地 被膜形成処理後の値で評価するものとする。
また、 S し以外の塩化物としては、 MgCl2, CaC , SrCl2, BaCl2等が有利に 適合するが、 極微量であれば TiCl3, ZrCl4, NbCh, TaCl5, CrCl3, CoCl3) NiCl CuCl2, ZnCl2) T1C13等も使用することができる。
さらに、 塩化物水溶液中への珪素鋼板の浸漬処理に代えて、 かような塩化物水 溶液を鋼板表面に噴霧あるいは噴射するようにしても良い。
上記したような前処理を施した後、 珪素鋼板の表面を含 N非酸化性雰囲気中に 曝すいわゆる暴露処理を施すことは有利である。
というのは、 かような暴露処理によって鋼板の表面には N濃化層が形成され ( Siの窒化 ' 酸化物層が形成されていると考えられる) 、 これが被膜密着性の向上 に有利に作用するからである。
また、 このような暴露処理の代わりに、 500°C以上の非酸化性雰囲気中で焼鈍 処理を実施しても良い。
ついで、 下地被膜として、 リ ン酸塩とコ口ィダルシリ力を主成分とする張力絶 縁被膜と同じ被膜成分中に Fe, Si, A1および Bのうちから選んだ 1種または 2種 以上の窒化 ·酸化物を微細に分散させた極薄被膜を、 前述したような方法で形成 する。
なお、 上記したような極薄被膜のベースとしては、 必ずしもリ ン酸塩とコロイ ダルシリ力を主成分とする張力絶縁被膜である必要はなく、 リ ン酸塩とクロム酸 を主成分とする通常の絶縁被膜であっても良い。 次に、 仕上焼鈍後の珪素鋼板の表面処理として、 酸洗処理、 またさらには平滑 化処理を場合において、 かかる酸洗処理や平滑化処理を SiCしを含む水溶液中で 行う場合について説明する。
この場合に使用する水溶液中の SiCし濃度は 0.001〜5.0 mol/1 程度とするこ とが望ましい。 というのは、 この濃度より濃いと経済的でなく、 一方これよ り薄 いと処理効果が小さく なるからである。
また、 この SiCしを使用する際、 表 1の (B)工程に示したように HC1や H3P04, H2S0" HF 等を混入させて使用するとか、 あるいは他の塩化物化合物の併用、 例 えば FeCl3や A1C13 等を少量添加することを妨げるものではない。
さ らに、 この場合の SiCしを含む水溶液は、 電解液としても有効で、 珪素鋼板 の表面を弱電解処理することも可能である。 また、 浸漬、 電解処理に代えて、 こ の水溶液を鋼板上に直接噴射あるいは噴霧処理も使用可能である。
上記したような前処理を施した後、 珪素鋼板の表面を含 N非酸化性雰囲気中に 曝すいわゆる暴露処理を施すことは有利である。
というのは、 かような暴露処理によって鋼板の表面には N濃化層が形成され ( Siの窒化 ' 酸化物層が形成されていると考えられる) 、 これが被膜密着性の向上 に有利に作用するからである。
また、 このような暴露処理の代わりに、 500°C以上の非酸化性雰囲気中で焼鈍 処理を実施しても良い。
ついで、 下地被膜として、 リ ン酸塩とコ口ィダルシリ力を主成分とする張力絶 縁被膜と同じ被膜成分中に Fe, Si, A1および Bのうちから選んだ 1種または 2種 以上の窒化 ·酸化物を微細に分散させた極薄被膜を、 前述したような方法で形成 する。
なお、 上記したような極薄被膜のベースとしては、 必ずしもリ ン酸塩とコロイ ダルシリ力を主成分とする張力絶縁被膜である必要はなく、 リ ン酸塩とク口ム酸 を主成分とする通常の絶縁被膜であっても良い。 図面の簡単な説明
図 1 は、 珪素鋼板の磁歪特性を発明例と従来例とで比較して示したグラフ、 図 2は、 現行の一方向性珪素鋼板 (同図 a ) および本発明に従い極薄の Siを含 む窒化 ·酸化物の上に張力絶縁被膜を被成した一方向性珪素鋼板 (同図 b ) の表 面近傍の断面を比較して示した模式図、
図 3は、 仕上焼鈍済みの一方向性珪素鋼板の表面に単にリ ン酸塩とコ口ィダル シリ力を主成分とする張力絶縁被膜を被成した従来の一方向性珪素鋼板 (同図 a ) 平滑化した一方向性珪素鋼板の表面に、 TiNや ON等の極薄セラミ ッ ク被膜を形 成したのち、 さ らにその表面に張力絶縁被膜を被成した従来の一方向性珪素鋼板
(同図 b ) および一方向性珪素鋼板と張力絶縁被膜との界面に、 微量の Fe, Si, A1および B等の窒化 · 酸化物を微細に分散させた極薄下地被膜が形成した本発明 に従う一方向性珪素鋼板 (同図 c ) の表面近傍の断面を比較して示した模式図、 図 4は、 極薄下地被膜中に分散させた Siの窒化 ·酸化物中における酸化物組成 を示した図、
図 5は、 張力絶縁被膜用コーティ ング液の塗布前における板厚減少量と製品板 の鉄損特性 W , / 5。(W/kg) との関係を示した図、
図 6は、 化学研磨材と SiCl 材の表面 N濃度を比較して示したグラフである。 発明を実施するための最良の形態
実施例 1
C : 0.078 wt%, Si : 3.45wt%, Mn: 0.076 wt%, Se: 0.021 wt%, Sb: 0.02 5 wt%, Al : 0.024 wt%, N : 0.0073wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎵スラブを、 1350°Cで 4時間の加熱処理後、 熱間圧延を施して厚み : 1.1 匪の熱延板とした。 ついで 1000°Cの均一化焼鈍を施 した後、 1050°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23 厚の最終冷延板 とした。 ついで、 850°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (20¾), A1203 (70¾), CaSi03 (10%)の組成になる焼鈍分離剤をスラ リー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1180°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1220°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 ①化学研磨によ る平滑化処理、 ② 10 HC1による酸洗処理を施した。
ついで、 珪素鋼板を、 SiCl4(0.3 mol/1)の水溶液 (80°C) 中に 10分間浸漬した 後、 950°Cで 10分間、 Ν2 (50ί½)+Η2 (50%) 混合ガス中で処理した。 その後、 鋼板表 面にコロイ夕"ルシリカとリ ン酸マグネシウムを主成分とする張力絶縁被膜 (約 2 厚) を被成し、 800°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性、 密着性および磁歪の圧縮応力特性は次のと おりであった。
①平滑化処理を施した場合
磁気特性 B8 : 1.95 T
W17/5。 : 0.68 W/kg
密着性 直径 : 20iMiの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
磁歪 圧縮応力 σ=0.4 kg/mm2の時の磁気ひずみ; lPP = 0.8 x 10"6
" =0.6 kg/mm2の時の磁気ひずみ; I PP= 1.1 xlO— 6 であり良好な値を示した。
②酸洗処理を施した場合
磁気特性 B8 : 1.94 T
W / 5。 : 0.70 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。 磁歪 圧縮応力 σ =0.4 kg/隱 2の時の磁気ひずみ; I PP = 0.7 xlO
" =0.6 kg/mm2の時の磁気ひずみス PP= 1.2 xlO— 6 であり良好な値を示した。
なお、 比較のため、 850°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板 表面に MgO を主成分とする焼鈍分離剤をスラ リ ー塗布し、 ついで 850°Cで 15時間 の焼鈍後、 850°Cから 10°C/hの速度で 1180°Cまで昇温してゴス方位に強く集積し た 2次再結晶粒を発達させたのち、 1200°Cの乾 H2中で純化処理を施し、 その後さ らにフオルステライ 卜質下地被膜の上にコロィダルシリカとリ ン酸マグネシゥム を主成分とする張力絶縁被膜 (約 2 wni 厚) を被成し、 800°Cで焼き付け処理を 施して得た方向性珪素鋼板の磁気特性、 密着性および磁歪の圧縮応力特性につい て調べた結果は、 次のとおりであった。
磁気特性 B8 : 1.95 T
W,7/5。 : 0.80 W/kg
密着性 直径 : 25nunの丸棒上で 180° 曲げを行っても剥離が無かった。 磁歪 圧縮応力 σ =0.4 kg /匪2の時の磁気ひずみ; I PP= 1.6 xlO
" =0.6 kg/mm2の時の磁気ひずみス PP=5.3 X 10 とかなり大きな値を呈した。
実施例 2
C : 0.066 wt%, Si : 3.49wt%, Mn: 0.072 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%, Al : 0.022 wt%, N : 0.0068wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1340°Cで 5時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 隱の熱延板とした。 ついで 950°Cの均一化焼鈍を 施した後、 1050°Cの中間焼鈍を挟む 回の冷間圧延を施して 0.23mm厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ 卜印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 ; um 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス 卜厚は 2 m であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解エツチングを施すことに よ り、 幅 : 200 、 深さ : 20wm の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm\ 処理時間 : 20秒間の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (25¾), A1Z03 (70¾), CaSiOs (5¾) の組成になる焼鈍分離剤をスラ リー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 10°C/hの速度で 1150°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨によ り 一方向性珪素鋼板の表面を平滑化した。
ついで、 珪素鋼板を、 SiCl4(0.5 mol/1)の水溶液 (80°C) 中に 10秒間浸漬した 後、 900°Cで 10分間、 N2 (50¾)+H2 (50¾) 混合ガス中で処理した。 その後、 鋼板表 面にコロイダルシリカとリ ン酸塩を主成分とする張力絶縁被膜 (約 2 "πι 厚) を 被成し、 800°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.91 T
W17/5。 : 0.59 W/kg
密着性 直径 : 20mniの丸棒上での 180° 曲げを行っても剥離が無く、 良好 であった。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様にして、 極 薄の Siを含む窒化 ·酸化物層を形成したのち、 リ ン酸塩系の張力絶縁被膜を被成 して得た製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.92 T W 1 7/5。 : 0.64 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 3
C : 0.044 wt%, Si : 3.39wt%, Mn: 0.073 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%および Mo: 0.012 wt%を含有し、 残部は実質的に Feの組成になる珪素鋼連 銹スラブを、 1340°Cで 3時間加熱処理後、 熱間圧延を施して厚み : 2.4 關の熱延 板とした。 ついで、 900°Cの均一化焼鈍後、 950°Cの中間焼鈍を挟む 2回の冷間 圧延を施して 0.23mm厚の最終冷延板とした。
その後、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 u m 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解ェッチングを施すことに より、 幅 : 200 m 、 深さ : 20;uin の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2, 処理時間 : 20秒間の条件で行った。
ついで、 840 °Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (2550, A1203 (70¾), CaSi03 (5¾) の焼鈍分離剤をスラ リー塗布し、 ついで 850°C で 50時間の保定焼鈍によりゴス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨によ り 一方向性珪素鋼板の表面を平滑化した。 さらにその後マグネ ト口ンスパッ タ法を 用いて、 Siを 0.05 im 厚被成し、 1000°Cで 15分間、 H2 (50%) +N2 (50%) 混合雰囲気 中で処理した後、 鋼板表面上にコロイダルシリカと リ ン酸塩を主成分とする張力 絶縁被膜 (約 2 win 厚) 被成し、 800°Cで焼き付け処理を行った。 かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.88 T
W17/5。 : 0.66 W/kg
密着性 直径 : 20剛の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様にして、 極 薄の Siを含む窒化 · 酸化物層を形成したのち、 リ ン酸塩系の張力絶縁被膜を被成 して得た製品の磁気特性および密着性は次のとおりであつた。
磁気特性 B8 : 1.88 T
WI 7/5。 : 0.68 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 4
C : 0.073 wt%, Si : 3.38wt%, Mn: 0.078 wt%, Se: 0.020 wt , Sb: 0.02 5 wt%, Al : 0.020 wt%, N : 0.0077wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1340°Cで 5時間の加熱処理後、 熱間圧延を施して厚み : 2.3 關の熱延板とした。 ついで 1000°Cの均一化焼鈍を施 した後、 105CTCの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mm厚の最終冷延板 とした。
ついで、 840°Cの湿 H2中で脱炭 ' 1次再結晶焼鈍を行った後、 鋼板表面に MgO (2050, A Oa (50¾), CaSi03 (10¾), PbCl 2 (20¾)の組成になる焼鈍分離剤をスラ リ 一塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1180°Cま で昇温してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1220°Cの乾 H2 中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 ①化学研磨によ る平滑化処理、 ② 105iHClによる酸洗処理を施した。 ついで、 珪素鋼板を、 S し(0.2 mol/1)の水溶液 (85°C) 中に 0.5分間浸漬し た後、 リ ン酸塩とクロム酸を主成分とする絶縁コーティ ング処理液、 ついでコロ ィダルシリ カと リ ン酸塩を主成分とする張力絶縁コ一ティ ング処理液を塗布し、 800 °Cで焼き付けることによって、 合計厚み :約 2. O /m (0.5 m +1.5 m)の 二層張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
①平滑化処理を施した場合
磁気特性 B 8 : 1.94 T
W : 0.71 W/kg
密着性 直径 : 20關の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
②酸洗処理を施した場合
磁気特性 B8 : 1.94 T
W17/5。 : 0.73 W/kg
密着性 直径 : 20匪の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 5
C : 0.076 wt%, Si : 3.41 t%, Mn: 0.078 wt%, Se: 0.020 t , Sb: 0.02 5 wt%, Al: 0.020 wt%, N : 0.0072wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鐃スラブを、 134CTCで 5時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 950°Cの均一化焼鈍を 施した後、 1050°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23難厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ 卜印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 m 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエツチングレジス トを塗布した鋼板に、 電解エツチングを施すことに よ り、 幅 : 200 、 深さ : 20 im の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (25¾), A1203 (70¾), CaSi03 (5¾) の組成になる焼鈍分離剤をスラ リー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 10°C/hの速度で 1150°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨により 一方向性珪素鋼板の表面を平滑化した。
ついで、 真空グロ一ボッ クスを用いて、 このボッ クス中に N 2 ガスを流入しな がら、 珪素鋼板を、 SiCl4 (0.8 mol/1)の水溶液 (90°C ) 中に 10秒間浸漬した後、 窒素雰囲気中で 5秒間暴露処理した。 この方法を 3回連続して処理した後、 鋼板 表面にコロイダルシリカと リ ン酸塩を主成分とする張力絶縁被膜 (約 2 m 厚) を被成し、 820°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B 8 : 1.91 T
W17/5。 : 0.58 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 6
C : 0.076 wt%, Si : 3.38wt%, Mn: 0.069 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%, Al : 0.021 wt%, N : 0.0076wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1360°Cで 5 時間の加熱処理後、 熱間圧延を施して厚み : 2.2 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を施 した後、 1050°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23随厚の最終冷延板 とした。
ついで、 840°Cの湿 H2中で脱炭 . 1次再結晶焼鈍を行った後、 鋼板表面に MgO (2090, A1203 (70¾), CaSi03 (10 の組成になる焼鈍分離剤をスラ リー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 10°C/hの速度で 1180°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 ①化学研磨によ る平滑化処理、 ② 10¾HC1による酸洗処理を施した。
ついで、 珪素鋼板を、 リ ン酸マグネシウムとコロイダルシリカを主成分とする 張力絶縁被膜用コーティ ング液 : 250cc を 1500ccの蒸留水で希釈し、 さらにこの 希釈液中に SiCし : 20cc, FeC : 20 g , Al (Ν03) 3 : 10 gを添加した処理液 (80 °C ) 中に 20秒間浸漬したのち、 950 °Cで 7分間、 N2 (50 +H2 (50¾i) 混合ガス中で 処理し、 厚み : 0.2 m の極薄下地被膜を被成した。 その後、 鋼板表面にコロイ ダルシリカと リ ン酸マグネシウムを主成分とする張力絶縁被膜 (約 2 wm 厚) を 被成し、 800°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性、 密着性および磁歪特性は次のとおりであつ た。
①平滑化処理を施した場合
磁気特性 B 8 : 1.94 T
W17/5。 : 0.64 W/kg
密着性 直径 : 25tnmの丸棒上での 180° 曲げを行っても剝離が無く 、 良好 であった。
磁歪特性 圧縮応力 σ =0.4 kg /籠2の時の磁気ひずみス PP= 0.8X 10一 6
" =0.6 kg/mm2の時の磁気ひずみ; PP= 0.9x 10一 6 であり良好な値を示した。
②酸洗処理を施した場合
磁気特性 B8 : 1.93 T
W17/5。 : 0.68 W/kg
密着性 直径 : 25薩の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
磁歪特性 圧縮応力 σ =0.4 kg/mm2の時の磁気ひずみ; I PP= 0.7x10一6
" =0.6 kg/mm2の時の磁気ひずみ; PP= 0.9x10— 6 であり良好な値を示した。
その後、 上記の製品板に 800°Cで 3時間の歪取り焼鈍を行った後の磁気特性に ついても調査したところ、 以下に示すとおり、 ①および②いずれの場合も特性の 劣化は見られなかった。
① 磁気特性 B8 : 1.94 T
W : 0.64 W/kg
② 磁気特性 B8 : 1.93 T
W17/5。 : 0.68 W/kg
なお、 比較のため、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板 表面に MgO を主成分とする焼鈍分離剤をスラ リー塗布し、 ついで 850°Cで 15時間 の焼鈍後、 850°Cから 10°C/hの速度で 118CTCまで昇温してゴス方位に強く集積し た 2次再結晶粒を発達させたのち、 1200°Cの乾 H2中で純化処理を施し、 その後さ らにフオルステライ ト質下地被膜の上にコロイダルシリカと リ ン酸マグネシウム を主成分とする張力絶縁被膜 (約 2 ;um 厚) を被成し、 800°Cで焼き付け処理を 施して得た方向性珪素鋼板の磁気特性、 密着性および磁歪の圧縮応力特性につい て調べた結果は、 次のとおりであった。
磁気特性 B8 : 1.94 T
W17ハ。 : 0.76 W/kg 密着性 直径 : 20 nunの丸棒上で 180° 曲げを行っても剝離が無かった。 磁歪 圧縮応力 σ=0.4 kg/mm2の時の磁気ひずみス ΡΡ= 1.6x10
" =0.6 kg/mm2の時の磁気ひずみス PP= 4.8X 10—6 とかなり大きな値を呈した。
実施例 7
C : 0.069 wt%, Si : 3.42wt%, Mn: 0.073 wt%, Se: 0.020 wt%, Sb: 0.02 3 wt%, Al : 0.020 wt%, N : 0.0072wt%および Mo : 0.013 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連銕スラブを、 1360°Cで 4 時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 980°Cの均一化焼鈍を 施した後、 1050°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mm厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 ; um 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解エツチングを施すことに よ り、 幅 : 200 m 、 深さ : 20;um の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2, 処理時間 : 20秒間の条件で行った。
その後、 850°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (20%), A1203 (70¾), CaSi03(10¾)の組成になる焼鈍分離剤をスラ リ ー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1150°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨により 一方向性珪素鋼板の表面を平滑化した。 ついで、 珪素鋼板を、 1500ccの水中に SiCし : 20ccを溶解して 80°Cの水溶液中 に 10秒間浸漬した後、 950 tで Ν2 (50¾)+Η2 (50%) 混合ガス中で 3分間処理した。 その後、 さ らにリ ン酸マグネシウムとコロイダルシリ力を主成分とする張力絶縁 被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さらにこの希釈液中 に SiCし : 20cc, A1P04 : 15g , H3B03 : 10gを添加した処理液 (80°C ) 中に 20 秒間浸漬したのち、 900 °Cで 10分間、 N2 (93W+H2 (7¾ 混合ガス中で処理し、 厚み : 0.4 u m の極薄下地被膜を被成した。 その後、 鋼板表面にコロイダルシリカと リ ン酸マグネシウムを主成分とする張力絶縁被膜 (約 2 m 厚) を被成し、 800 °Cで焼き付け処理を行った。
かく して得られた製品の磁気特性および密着性は次のとおりであつた。
磁気特性 B 8 : 1.91 T
W 1 7/5。 : 0.57 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であつた。
その後、 上記の製品板に 800°Cで 3時間の歪取り焼鈍を行った後の磁気特性に ついても調査したところ、
磁気特性 B 8 : 1.91 T
W ハ。 : 0.57 W/kg
であり、 歪取り焼鈍による磁気特性の劣化は見られなかった。
また、 化学研磨をせず、 酸洗処理ままの鋼板を、 上記と同様にして、 リ ン酸マ グネシゥムとコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で希釈し、 さ らにこの希釈液中に SiCし : 20cc, A1P04 : 15g , H3B03 : 10gを添加した処理液 (80°C ) 中に 20秒間浸潰した後、 900 V で 10分間、 N2 (93¾)+ H2 (7¾) 混合ガス中で処理した。 その後、 張力絶縁被膜を被 成して得た製品の磁気特性および密着性は次のとおりであった。
磁気特性 B 8 : 1.91 T W1 7/5。 : 0.65 W/kg
密着性 直径 : 25關の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
この製品板についても、 800°Cで 3時間の歪取り焼鈍を行った後の磁気特性に ついても調査したところ、
磁気特性 B 8 : 1.91 T
W 17/5。 : 0.65 W/kg
であり、 歪取り焼鈍による磁気特性の劣化は見られなかった。
実施例 8
C : 0.042 wt%, Si : 3.46wt%, Mn: 0.070 wt%, Se : 0.021 wt%, Sb: 0.02 5 wt%および Mo: 0.012 wt%を含有し、 残部は実質的に Feの組成になる珪素鋼連 鎊スラブを、 1340°Cで 4 時間加熱処理後、 熱間圧延を施して厚み : 2.4 mmの熱延 板とした。 ついで、 900°Cの均一化焼鈍後、 950°Cの中間焼鈍を挟む 2回の冷間 圧延を施して 0.23隱厚の最終冷延板とした。
その後、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 u m 、 圧延方向の間隔 : 4圆で線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス 卜厚は 2 であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2, 処理時間 : 20秒間の条件で行った。
ついで、 840 °Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (25%), Al 203 (70¾), CaSi03 (5¾) の焼鈍分離剤をスラリー塗布し、 ついで 850°C で 50時間の保定焼鈍によ りゴス方位に強く集積した 2次再結晶粒を発達させた後- 1200°Cの乾 H2中で純化処理を施した。 かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨によ り 一方向性珪素鋼板の表面を平滑化した。 さらにこの珪素鋼板を、 リ ン酸アルミ二 ゥムとコロイダルシリ力を主成分とする張力絶縁被膜用コーティ ング液 : 250 cc を 1500ccの蒸留水で希釈し、 さらにこの希釈液中に SiCし : 50ccを添加した処理 液 (80°C ) 中に 20秒間浸漬した後、 950 °Cで 10分間、 N2 (50¾) +H2 (50¾) 混合ガス 中で処理し、 厚み : 0.6 m の極薄下地被膜を被成した。 その後、 鋼板表面にコ ロイダルシリ カとリ ン酸アルミニウムを主成分とする張力絶縁被膜 (約 1 um 厚) を被成し、 800°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B 8 : 1.88 T
W 1 7/5。 : 0.63 W/kg
密着性 直径 : 25iMiの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様にして、 Si の酸化物を微細に分散させた極薄張力被膜を被成したのち、 リ ン酸アルミニウム 系の張力絶縁被膜を被成して得た製品の磁気特性および密着性は次のとおりであ つた。
磁気特性 B 8 : 1.88 T
W1 7/5。 : 0.67 W/kg
密着性 直径 : 20隱の丸棒上での 180° 曲げを行っても剥離が無く、 良好 であった。
さ らに、 これらの製品板に 800°Cで 3時間の歪取り焼鈍を行った後の磁気特性 についても調査したところ、 以下に示すとおり、 いずれの場合も特性の劣化は見 られなかった。
平滑化処理材
磁気特性 B 8 : 1.88 T W17/5。 : 0.63 W/kg
酸洗処理材
磁気特性 B 8 : 1.88 T
W17/5。 : 0.67 W/kg
実施例 9
C : 0.073 wt%, Si : 3.40wt%, Mn: 0.072 wt%, Se: 0.020 wt%, Sb: 0.02 3 wt%, Al : 0.019 wt%, N ·· 0.0074wt%および Mo : 0.013 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1340°Cで 5 時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を 施した後、 1050°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23mm厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷によ り、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 um 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (2096), A1203 (70¾), CaSi03 (10 の組成になる焼鈍分離剤をスラ リ ー塗布し、 つ いで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1100°Cまで昇温してゴ ス方位に強く集積した 2次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理 を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨により 一方向性珪素鋼板の表面を平滑化した。 ついで、 珪素鋼板を、 1500ccの水中に SiCし : 25ccと A1N03 : 5 gを溶解して 90°Cの水溶液中に 40秒間浸漬した。 その後、 さらにリ ン酸マグネシウムとコロイ ダルシリ力を主成分とする張力絶縁被膜用コ一ティ ング液 : 250 ccを 1500ccの蒸 留水で希釈し、 さ らにこの希釈液中に SiCl4 : 20cc, A1P0 15g, H3B03 : 10 gを添加した処理液 (80°C) 中に 20秒間浸漬した。 さ らにその後鋼板表面にコロ ィダルシリ カとリ ン酸マグネシウムを主成分とする張力絶縁被膜 (約 1.5 m 厚) を被成し、 800°Cで焼き付け処理を行った。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.91 T
W17/5。 : 0.59 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 10
C : 0.078 wt%, Si: 3.36wt%, Mn: 0.070 wt%, Se: 0.019 wt%, Sb: 0.02 2 wt%, Al : 0.019 wt%, N : 0.0076wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1340°Cで 5時間の加熱処理後、 熱間圧延を施して厚み : 2.2 ■の熱延板とした。 ついで 950°Cの均一化焼鈍を施 した後、 lOOOtの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mni厚の最終冷延板 とした。
ついで、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に CaO (20¾), A1203 (40¾), Si02 (40¾)の組成になる焼鈍分離剤をスラ リー塗布し、 つい で 850°Cで 15時間の焼鈍後、 850°Cから 10°C/hの速度で 1100°Cまで昇温してゴス 方位に強く集積した 1次再結晶粒を発達させた後、 1200°Cの乾 H2中で純化処理を 施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 ①化学研磨によ る平滑化処理、 ② 10%HC1による酸洗処理を施した。 ついで、 珪素鋼板を、 1500ccの蒸留水中に SiCl4溶液 : 20ccと Si02 : 5 gを溶 解した 80 °Cの水溶液中に 20秒間浸積した後、 N 2 ( 509 + H 2 ( 50 混合ガス中にて 900 "Cで 5分間の熱処理施した。
その後、 リ ン酸マグネシゥムとコロイダルシリ力を主成分とする張力絶縁被膜 用コーティ ング液: 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし : 20cc, A1P0. : 10g , H3B0, : 10 gを複合添加した処理液 (80°C) 中に 20秒間浸漬した。 このときの重量減少は約 0.06gすなわち板厚減少量は約 1.2wm であった。 つい で、 N2 (93 +H2 (756)混合ガス中において 900°Cで 5分間の熱処理を施し、 厚み : 0.3 urn の下地被膜を形成した。
その後、 鋼板表面にリ ン酸マグネシウムとコロイダルシリ力を主成分とする張 力絶縁被膜用コーティ ング液を、 塗布 ·乾燥後、 800 °Cで焼き付けて、 厚み : 約 2 m の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性、 密着性および磁歪特性は次のとおりであつ た。
①平滑化処理を施した場合
磁気特性 B8 : 1.93 T
WI 7/5。 : 0.64 W/kg
密着性 直径 : 15imnの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
磁歪特性 圧縮応力 σ =0.4 kg/mm2の時の磁気ひずみス PP= 0.8x10一 6
" =0.6 kg/mm2の時の磁気ひずみ; I PP= 1.1x10一 6 であり良好な値を示した。
②酸洗処理を施した場合
磁気特性 B8 : 1.92 T
W17/5。 : 0.67 W/kg
密着性 直径 : 15mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
磁歪特性 圧縮応力 σ =0.4 kg/mm2の時の磁気ひずみス PP= 0.9x 10'6
" =0.6 kg/mm2の時の磁気ひずみ; I PP= 1.2x 10"6 であり良好な値を示した。
実施例 11
C : 0.072 wt%, Si : 3.36wt , Mn: 0, 071 wt%, Se: 0.019 wt%, Sb: 0.02 3 wt%, Al : 0.019 wt%, N : 0.0073wt%および Mo : 0.013 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連銹スラブを、 1360°Cで 5時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を 施した後、 1000°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23 厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トィ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 um 、 圧延方向の間隔 : 4隱で線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 win 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 850°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), Ca0(25¾), A1203 (30¾), CaSi03 (10¾) , S ί02 (30%)の組成になる焼鈍分離剤 をスラ リ ー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1050°Cまで昇温してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1200 °Cの乾 H2中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨によ り 一方向性珪素鋼板の表面を平滑化した。 ついで、 珪素鋼板を、 1500ccの蒸留水中に SiCし : 15ccと FeCl3 : 10gを混入 した 85°Cの水溶液中に 10秒間浸積した後、 950°Cの N2 (50 : H2 (50W 混合ガス 中で処理した。
その後、 さらにリ ン酸マグネシゥムとコロイダルシリ力を主成分とする張力絶 縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし : 25cc, A1C13: 5 g , Η3Β04 : 10gを複合添加した処理液 (80°C ) 中に 20秒間浸 漬した。 このときの重量減少は約 0.04 gすなわち板厚減少量は約 0.8wm であつ た。 ついで、 N2 (93%) +H2 (790混合ガス中において 900°Cで 10分間の熱処理を施 し、 厚み : 0.2 u m の下地被膜を形成した。
その後、 鋼板表面にリ ン酸マグネシゥムとコロイダルシリ力を主成分とする張 力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 °Cで焼き付けて、 厚み : 約 1.5wm の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B 8 : 1.90 T
W1 7/5。 : 0.58 W/kg
密着性 直径: 10隨の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様の条件で、 前処理、 下地被膜処理および張力絶縁被膜処理を施して得た製品の磁気特性およ び密着性は次のとおりであった。
磁気特性 B 8 : 1.90 T
W ハ。 : 0.64 W/kg
密着性 直径 : 10關の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 12
C : 0.042 wt%, Si : 3.36wt%, Mn: 0.068 wt%, Se: 0.022 wt%, Sb: 0.02 5 wt%および Mo: 0.012 wt%を含有し、 残部は実質的に Feの組成になる珪素鋼連 銹スラブを、 1330°Cで 4時間加熱処理後、 熱間圧延を施して厚み : 2.4 mmの熱延 板とした。 ついで、 950°Cの均一化焼鈍後、 980°Cの中間焼鈍を挟む 2回の冷間 圧延を施して 0.23iMi厚の最終冷延板とした。
その後、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷によ り、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 m 、 圧延方向の間隔 : 4■で線状に残存するよう に塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 w m であった。 この ようにしてエッチングレジス 卜を塗布した鋼板に、 電解エッチングを施すことに よ り、 幅 : 200 wni 、 深さ : 20wm の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
ついで、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), A1203 (50¾), CaSi03 (5¾), Si02 (40¾) の焼鈍分離剤をスラ リ ー塗布し、 つ いで 850°Cで 50時間の保定焼鈍によりゴス方位に強く集積した 2次再結晶粒を発 達させた後、 1200°Cの乾 H2中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨により 一方向性珪素鋼板の表面を平滑化した。
ついで、 珪素鋼板を、 1500ccの蒸留水中に SiCし : 15ccを混入した 90°Cの水溶 液中に 15秒間浸積した後、 900 °Cの N2(50 : Hz (50¾) 混合ガス中で処理した。 その後、 リ ン酸塩アルミニゥムとコロイダルシリ力を主成分とする張力絶縁被 膜用コ一ティ ング液 : 100 ccを 1500ccの蒸留水で薄めた希釈液中に SiCl4 : 15cc, A1C13 : 5 g, H3BO4 : 5 gを複合添加した処理液 (85°C) 中に 15秒間浸漬した c このときの重量減少は約 0.08 gすなわち板厚減少量は約 1.6 im であった。 つい で、 N2 (93 +H2 (7¾)混合ガス中において 880°Cで 3分間の熱処理を施し、 厚み : 0.4 Wm の下地被膜を形成した。 その後、 鋼板表面にコロイダルシリカとリ ン酸塩を主成分とする張力絶縁被膜 用コーティ ング液を、 塗布 ·乾燥後、 800 °Cで焼き付けて、 厚み :約 2.5 w m の 張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.88 T
Wl 7/5。 : 0.63 W/kg
密着性 直径 : 15關の丸棒上での 180° 曲げを行っても剥離が無く、 良好 であった。
その後、 この製品に 800°Cでの 3時間の歪み取り焼鈍を行った時の磁気特性は 次のとおりであった。
磁気特性 B8 : 1.88 T
W17/5。 : 0.61 W/kg
このように歪取焼鈍にも耐える珪素鋼板であることがわかる。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様にして、 前 処理、 下地被膜処理および張力絶縁被膜処理を施して得た製品の磁気特性および 密着性は次のとおりであった。
磁気特性 B8 : 1.88 T
W17/5。 : 0.67 W/kg
密着性 直径 : 10匪の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 13
C : 0.074 wt%, Si : 3.31wt%, Mn: 0.076 wt%, Se: 0.020 wt%, Sb: 0.02 3 wt%, Al : 0.020 t%, N : 0.0071wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1340°Cで 5時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を 施した後、 1000°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23mm厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ 卜印刷によ り、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 、 圧延方向の間隔 : 4關で線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス 卜を塗布した鋼板に、 電解エッチングを施すことに よ り、 幅 : 200 、 深さ : 20Wm の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 850°Cの湿 H2中で脱炭 . 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), Ca0(25¾), AI2O3 (30¾), CaSi03 (10¾), Si02 (30¾) , PbC 12 (20Wの組成にな る焼鈍分離剤をスラ リー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12 °C/hの速度で 1050tまで昇温してゴス方位に強く集積した 2次再結晶粒を発達さ せた後、 1200°Cの乾 H2中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨によ り 一方向性珪素鋼板の表面を平滑化した。
ついで、 珪素鋼板を、 1500ccの蒸留水中に SiCし : 15ccと FeCl3 : 5 gを混入 した 85°Cの水溶液中に 10秒間浸積した。
その後、 リ ン酸マグネシウムとクロム酸を主成分とする絶縁被膜用コ一ティ ン グ液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし : 15cc, A1C13 : 5 g , H3B04 : 5 gを複合添加した処理液 (80°C) 中に 20秒間浸漬した。 このときの重 量減少は約 0.02 gすなわち板厚減少量は約 0.4 win であった。
ついで、 リ ン酸マグネシウムとクロム酸を主成分とする絶縁被膜用コ一ティ ン グ液を 0.5 m 厚みで形成したのち、 さ らにその上にコロイダルシリカと リ ン酸 マグネシゥムを主成分とする張力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 °Cで焼き付けて、 厚み : 約 l.Owm の張力絶縁被膜を被成した。 かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B8 : 1.91 T
W17/5。 : 0.63 W/kg
密着性 直径 : 10mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
また、 化学研磨をせず、 酸洗処理ままの鋼板の表面に、 上記と同様の条件で、 前処理、 下地被膜処理および絶縁被膜処理を施して得た製品の磁気特性および密 着性は次のとおりであった。
磁気特性 B8 : 1.91 T
W17/5。 : 0.67 W/kg
密着性 直径 : 10mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 14
C : 0.076 wt%, Si : 3.41wt%, Mn: 0.078 wt%, Se: 0.019 wt%, Sb: 0.02 5 wt%, Al : 0.020 t%, N : 0.0076wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連铸スラブを、 1350°Cで 4時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 の熱延板とした。 ついで 1000°Cの均一化焼鈍を 施した後、 1020°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23關厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ 卜印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 ; um 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 m であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解エッチングを施すことに より、 幅 : 200 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), CaO(25¾), A1203 (30¾), CaSi03 (10¾), Si02 (30 の組成になる焼鈍分離剤 をスラ リー塗布し、 ついで 85CTCで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1050°Cまで昇温してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1200 °Cの乾 H 2中で純化処理を施した。
かく して得られた珪素鋼板の表面の酸化物被膜を除去した後、 化学研磨により 一方向性珪素鋼板の表面を平滑化した。
ついで、 真空グロ一ボッ クスで N 2 ガス雰囲気中で珪素鋼板を処理した。 すな わち、 珪素鋼板を、 1500ccの蒸留水中に SiCし : 25ccと A1N03 : 5gを混入した 90°Cの水溶液中に 10秒間浸積した後、 N2 ガス雰囲気中に 5秒間曝した。 この処 理を 3回繰り返し行った。
その後、 さらにリ ン酸マグネシゥムとコロイダルシリ力を主成分とする張力絶 縁被膜用コーティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCl4 : 25cc, AlC : 5 g, H3B04 : lOgを複合添加した処理液 (80°C ) 中に 20秒間浸 漬した。 このときの重量減少は約 0.04gすなわち板厚減少量は約 0.8^ 111 であつ た。 その後、 鋼板表面にリ ン酸マグネシウムとコロイダルシリ力を主成分とする 張力絶縁被膜用コーティ ング液を、 塗布 ·乾燥後、 800 °Cで焼き付けて、 厚み : 約 1.5 (11 の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであつた。
磁気特性 B8 : 1.90 T
W17/5。 : 0.57 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 15
C : 0.075 wt%, Si: 3.47 t%, Mn: 0.068 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%, Al : 0.020 wt%, N : 0.0073wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錡スラブを、 1350°Cで 5時間の加熱処理後、 熱間圧延を施して厚み : 1.1 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を施 した後、 1050°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mm厚の最終冷延板 とした。
ついで、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に CaO (10%), Alz03 (50%), Si02 (40%)の組成になる焼鈍分離剤をスラ リ ー塗布し、 つい で 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1100°Cまで昇温してゴス 方位に強く集積した 2次再結晶粒を発達させた後、 1220での乾 H2中で純化処理を 施した。
かく して得られたフォルステラィ ト系下地被膜を形成さない珪素鋼板に、 1500 ccの蒸留水中に SiCし : 50ccを溶解させた 80°Cの水溶液中に 60秒間浸積させる酸 洗処理を施して、 表面の酸化物を除去した後、 950°Cで 5分間 N2 (50¾) +H2 (50 混合ガス中で処理した。
その後、 リ ン酸マグネシゥムとコロイダルシリ力を主成分とする張力絶縁被膜 用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし : 20cc, A1P04 : 10g , H3B04 : 10 gを複合添加した処理液 (80°C ) 中に 20秒間浸漬した のち、 N2 (93i¾) +H2 (7 混合ガス中において 900°Cで 5分間の熱処理を施し、 厚 み : 0.3 um の下地被膜を形成した。
その後、 鋼板表面にリ ン酸マグネシゥムとコロイダルシリ力を主成分とする張 力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 tで焼き付けて、 厚み : 約 2 um の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性、 密着性および磁歪特性は次のとおりであつ た。
磁気特性 B 8 : .94 T
W17/5。 : 0.62 W/kg 密着性 直径: 20 の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
磁歪特性 圧縮応力 σ =0.4 kg/議 2の時の磁気ひずみ; I PP= 0.7x 10一6
" =0.6 kg/mm2の時の磁気ひずみス PP- 1.2X 10— 6 であり良好な値を示した。
実施例 16
C : 0.077 wt%, Si : 3.46wt%, Mn: 0.070 wt%, Se: 0.019 wt%, Sb: 0.02 5 wt%, Al : 0.020 wt%, N : 0.0074wt%および Mo : 0.013 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連錶スラブを、 1350°Cで 5時間の加熱処理後、 熱間圧延を施して厚み : 2.0 匪の熱延板とした。 ついで 1000°Cの均一化焼鈍を施 した後、 1030°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mm厚の最終冷延板 とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2〃 m であった。 この ようにしてエッチングレジス トを塗布した鋼板に、 電解エッチングを施すことに より、 幅 : 200 m 、 深さ : 20Wm の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度: 10 A/dm2、 処理時間 : 20秒間の条件で行った。
その後、 850tの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5%), CaO(25%),Al 203 (30%), CaSi03(10%), Si02 (30%) の組成になる焼鈍分離剤 をスラ リー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12°C/hの速度で 1050°Cまで昇温してゴス方位に強く集積した 1次再結晶粒を発達させた後、 1220 °Cの乾 H2中で純化処理を施した。
かく して得られたフォルステラィ 卜系被膜を形成させない珪素鋼板の表面を、 次の二つの条件で処理した。
① 1500cc の蒸留水中に Si 4 : 45ccと FeCl 3 : 10 gを混入させた 85°Cの水溶液 中に 60秒間浸積した。
② ①の条件で処理した後、 さ らに鋼板の表面を (3i¾HF + 97¾H 202 )の混合液中で 化学研磨した。
ついで、 それぞれの鋼板を、 1500ccの蒸留水中に SiCし : 20ccを混入させた 80 °Cの水溶液中に 20秒間浸積したのち、 950°Cの N2 (50¾) +H2 (50¾) 混合ガス中で 熱処理した。
その後、 リ ン酸マグネシウムとコロイダルシリ力を主成分とする張力絶縁被膜 用コ一ティ ング液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCl4 : 25cc, A1C13 : 5 g, H3B04 : 10gを複合添加した処理液 (80°C) 中に 20秒間浸漬した のち、 N2 (93%) +H2 (7 混合ガス中において 900°Cで 10分間の熱処理を施し、 厚 み : 0.5 m の下地被膜を形成した。
その後、 鋼板表面にリ ン酸マグネシウムとコロイダルシリ力を主成分とする張 力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 °Cで焼き付けて、 厚み : 約 1.5wm の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
①の条件で処理して得た珪素鋼板
磁気特性 B8 : 1.91 T
W17/5。 : 0.62 W/kg
密着性 直径: 20mmの丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
②の条件で処理して得た珪素鋼板
磁気特性 B8 : 1.91 T
W17/5。 : 0.57 W/kg
密着性 直径 : 20匪の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 17
C : 0.044 wt%, Si : 3.37wt , Mn: 0.069 wt%, Se: 0.021 wt%, Sb: 0.02 4 wt%および Mo : 0.012 wt%を含有し、 残部は実質的に Feの組成になる珪素鋼連 銹スラブを、 1320°Cで 4時間加熱処理後、 熱間圧延を施して厚み : 2.4 mmの熱延 板とした。 ついで、 950°Cの均一化焼鈍後、 1000°Cの中間焼鈍を挟む 2回の冷間 圧延を施して 0.23mm厚の最終冷延板とした。
その後、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス 卜ィ ンキをグラビアオフセッ ト印刷によ り、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 urn 、 圧延方向の間隔 : 4 mmで線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエツチングレジス トを塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 urn 、 深さ : 20;um の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
ついで、 840 °Cの湿 H2中で脱炭 ' 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), A1Z03 (50¾), CaSi03 (15¾), S i02 (30 の焼鈍分離剤をスラ リー塗布し、 つ いで 850°C で 50時間の保定焼鈍によ りゴス方位に強く集積した 2次再結晶粒を 発達させた後、 1220°Cの乾 H2中で純化処理を施した。
かく して得られたフォルステラィ ト系下地被膜を形成させない珪素鋼板を、 15 OOccの蒸留水中に SiCl4 : 55ccを混入させた 85°Cの水溶液中に 60秒間浸積した。 その後、 さ らに珪素鋼板を、 1500ccの蒸留水中に SiCし : 15ccを混入させた 90°C の水溶液中に 15秒間浸積した後、 900°Cの N2 (50¾) +H2 (505 混合ガス中で処理 した。
その後、 リ ン酸アルミニゥムとコロイダルシリ力を主成分とする張力絶縁被膜 用コーティ ング液 : 200 ccを 2000ccの蒸留水で薄めた希釈液中に SiCし : 20ccを 添加した処理液 ( 85°C ) 中に 40秒間浸漬したのち、 N2 (9390 +H2 (7¾)混合ガス中 において 950°Cで 3分間の熱処理を施し、 厚み : 0.4 u m の下地被膜を形成した。 その後、 鋼板表面にリ ン酸アルミニウムとコロイダルシリカを主成分とする張 力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 °Cで焼き付けて、 厚み :約 2.5wm の張力絶縁被膜を被成した。
かく して得られた製品の磁気特性および密着性は次のとおりであった。
磁気特性 B 8 : 1.88 T
νν : 0.65 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剥離が無く、 良好 であった。
その後、 この製品に 800°Cでの 2時間の歪み取り焼鈍を行った時の磁気特性は 次のとおりであった。
磁気特性 B 8 : 1.88 T
W17/5。 : 0.64 W/kg
実施例 18
C : 0.073 wt%, Si : 3.42wt%, Mn: 0.076 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%, Al : 0.020 wt%, N : 0.007½t%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1340°Cで 5時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 匪の熱延板とした。 ついで 1000tの均一化焼鈍を 施した後、 1030°Cの中間焼鈍を挟む 2回の冷間圧延を施して 0.23mm厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トィ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 m 、 圧延方向の間隔 : 4 mmで線状の残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 であった。 この ようにしてエッチングレジス 卜を塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 m 、 深さ : 20/im の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス 卜を除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2. 処理時間 : 20秒間の条件で行った。
その後、 850°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (5¾), CaO(25¾),Al 203 (30¾), CaSi03 (10¾), Si02 (20¾), PbCl2 (10¾) の組成にな る焼鈍分離剤をスラリー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850tから 12 °C/hの速度で 1050°Cまで昇温してゴス方位に強く集積した 1次再結晶粒を発達さ せた後、 1220°Cの乾 H2中で純化処理を施した。
かく して得られたフォルステラィ 卜系被膜を形成させない珪素鋼板の表面を、 次の二つの条件で処理した。
① 1500cc の蒸留水中に HC1 : 30ccと H3P04 : 25ccと SiCし : 25ccを混入させた
85°Cの水溶液中に 60秒間浸積した。
② ①の条件で処理した後、 さらに鋼板の表面を (39iHF+97¾H 202 )の混合液中で 化学研磨した。
ついで、 それぞれの鋼板を、 1500ccの蒸留水中に SiCし : 20ccを混入させた 80 °Cの水溶液中に 20秒間浸積した。
その後、 リ ン酸マグネシウムとクロム酸を主成分とする絶縁被膜用コーティ ン グ液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCl4 : 25cc, A1C13 : 5 g , H3B04 : 10gを複合添加した処理液 (80°C ) 中に 20秒間浸漬し、 厚み : 0.3 m の下地被膜分を塗布した。
その後、 鋼板表面にリ ン酸マグネシゥムとクロム酸を主成分とする絶縁被膜用 コ一ティ ング液を 0.5 m 厚みで形成した後、 さ らにその上にコロイダルシリカ とリ ン酸マグネシウムを主成分とする張力絶縁被膜用コーティ ング液を、 塗布 · 乾燥後、 800 tで焼き付けて、 厚み : 約 l.Owm の張力絶縁被膜を被成した。 かく して得られた製品の磁気特性および密着性は次のとおりであつた。 ①の条件で処理して得た珪素鋼板
磁気特性 B8 : 1.91 T
W17/5。 : 0.65 W/kg
密着性 直径 : 20匪の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
②の条件で処理して得た珪素鋼板
磁気特性 B8 : 1.91 T
W17/5。 : 0.62 W/kg
密着性 直径 : 20隨の丸棒上での 180° 曲げを行っても剝離が無く、 良好 であった。
実施例 19
C : 0.076 wt%, Si: 3.32wt%, Mn: 0.071 wt%, Se: 0.020 wt%, Sb: 0.02 5 wt%, Al : 0.020 wt%, N : 0.0068wt%および Mo : 0.012 wt%を含有し、 残部 は実質的に Feの組成になる珪素鋼連鎊スラブを、 1350°Cで 4 時間の加熱処理後、 熱間圧延を施してて厚み : 2.0 mmの熱延板とした。 ついで 1000°Cの均一化焼鈍を 施した後、 1050°Cの中間焼鈍を挟む 1回の冷間圧延を施して 0.23關厚の最終冷延 板とした。
ついで、 最終冷延板の表面に、 アルキ ド系樹脂を主成分とするエッチングレジ ス トイ ンキをグラビアオフセッ ト印刷により、 非塗布部が圧延方向とほぼ直角な 方向に幅 : 200 、 圧延方向の間隔 : 4匪で線状に残存するように塗布したの ち、 200 °Cで約 20秒間焼付けた。 このときのレジス ト厚は 2 m であった。 この ようにしてエッチングレジス 卜を塗布した鋼板に、 電解ェッチングを施すことに よ り、 幅 : 200 m 、 深さ : 20 m の線状の溝を形成し、 ついで有機溶剤中に浸 漬してレジス トを除去した。 この時の電解エッチングは、 NaCl電解液中で電流密 度 : 10 A/dm2、 処理時間 : 20秒間の条件で行った。
その後、 840°Cの湿 H2中で脱炭 · 1次再結晶焼鈍を行った後、 鋼板表面に MgO (550, Ca0(25¾), A1203 (30¾) , CaSiOa (10¾), Si02 (20¾), PbCl2 (10¾) の組成にな る焼鈍分離剤をスラリー塗布し、 ついで 850°Cで 15時間の焼鈍後、 850°Cから 12 °C/hの速度で 1080°Cまで昇温してゴス方位に強く集積した 2次再結晶粒を発達さ せた後、 1220°Cの乾 H2中で純化処理を施した。
かく して得られた珪素鋼板の試料は、 1500ccの蒸留水中に HC1 : 30ccと H3P04 : 25ccと SiCl4 : 25ccを混入させた 85°Cの水溶液中に 60秒間浸積した。 その後、 さ らに鋼板の表面を (3¾iHF + 97!¾H 202)の混合液中で化学研磨した。
ついで、 珪素鋼板の試料は、 真空グロ一ボッ クスを使用して、 N2 雰囲気中で 以下の処理を行った。
すなわち、 珪素鋼板を、 1500ccの蒸留水中に SiCし : 20ccを混入させた 90°Cの 水溶液中に 10秒間浸積した後、 N2 雰囲気中に 5秒間曝した。 そして、 この処理 を 3回繰り返し行った。
その後、 リ ン酸マグネシゥムとクロム酸を主成分とする絶縁被膜用コーティ ン グ液 : 250 ccを 1500ccの蒸留水で薄めた希釈液中に SiCし : 25cc, A1C13 : 5 g , H3B04 : 10 gを複合添加した処理液 (80°C) 中に 20秒間浸漬し、 厚み : 0.3 の下地被膜分を塗布した。
その後、 鋼板表面にリ ン酸マグネシウムとクロム酸を主成分とする絶縁被膜用 コーティ ング液を 0. 厚みで形成した後、 さらにその上にコロイダルシリカ とリ ン酸マグネシウムを主成分とする張力絶縁被膜用コ一ティ ング液を、 塗布 · 乾燥後、 800 °Cで焼き付けて、 厚み :約 の張力絶縁被膜を被成した。 かく して得られた製品の磁気特性および密着性は次のとおりであった。
このように処理して得た珪素鋼板
磁気特性 B8 : 1.91 T
W17/5。 : 0.62 W/kg
密着性 直径 : 20mmの丸棒上での 180° 曲げを行っても剝離が無く 、 良好 であった。 産業上の利用可能性
かく して、 本発明に従い、 珪素鋼板の地鉄表面と張力絶縁被膜との界面に、 Fe, S i , A lおよび Bのうちから選んだ 1種または 2種以上の窒化 .酸化物を含む界面 層を形成することによ り、 鉄損を格段に低減させ得るだけでなく、 磁歪の圧縮応 力特性を効果的に向上させることができ、 併せて生産能率の向上およびコス 卜の 低減を達成することができる。

Claims

請 求 の 範 囲
1 . 表面にリ ン酸塩とコロイダルシリ力を主成分とする張力絶縁被膜をそなえる、 板厚が 0.05〜0.5 mmの仕上焼鈍済みの一方向性珪素鋼板であって、 該鋼板の地鉄 表面と張力絶縁被膜との界面に、 Fe, Si, A1および Bのうちから選んだ 1種また は 2種以上の窒化 ·酸化物を含む界面層を有することを特徴とする超低鉄損一方 向性珪素鋼板。
2. 請求項 1 において、 界面層が、 極薄の Siを含む窒化 ·酸化物層であることを 特徴とする超低鉄損一方向性珪素鋼板。
3. 請求項 1 において、 界面層が、 張力絶縁被膜と同じ被膜成分中に Fe, Si, Al および Bのうちから選んだ 1種または 2種以上の窒化 '酸化物を微細に分散させ た極薄下地被膜であることを特徴とする超低鉄損一方向性珪素鋼板。
4. 請求項 1 , 2または 3において、 鋼板の地鉄表面に、 圧延方向と交差する向 きに 2〜10關の間隔で、 幅 : 50~500 urn 、 深さ : 0.1 〜50 m の線状の凹領域 をそなえることを特徴とする超低鉄損一方向性珪素鋼板。
5. 請求項 1 , 2 , 3または 4において、 仕上焼鈍済みの一方向性珪素鋼板の表 面が、 平滑化処理を施した表面である超低鉄損一方向性珪素鋼板。
6. 請求項 1 , 2 , 3 または 4において、 仕上焼鈍済みの一方向性珪素鋼板の表 面が、 平滑化処理を施さない、 酸洗処理ままの表面である超低鉄損一方向性珪素 鋼板。
7. 板厚が 0.05〜0.5 匪の仕上焼鈍済みの一方向性珪素鋼板の表面に、 Fe, Si, A1および Bのうちから選んだ 1種または 2種以上の化合物を含む溶液を塗布する ことによって、 少なく とも微量の Fe, Si, A1および Bのうちから選んだ 1種また は 2種以上の窒化 .酸化物を含む界面層を形成したのち、 常法に従って張力絶縁 被膜を被成することを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
8. 請求項 7において、 塗布溶液として Si化合物を含む溶液を用い、 この溶液を 一方向性珪素鋼板の表面に塗布することによって、 該鋼板表面に微量の Siを活性 状態で付着させることを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
9. 請求項 8において、 Si化合物を含む溶液を塗布することによって一方向性珪 素鋼板の表面に微量の S ίを活性状態で付着させたのち、 含 Ν非酸化性雰囲気中に 曝すことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
10. 請求項 7において、 Si化合物を含む溶液を塗布することによって一方向性珪 素鋼板の表面に微量の Siを活性状態で付着させたのち、 非酸化性雰囲気中で短時 間の熱処理を施して、 該鋼板の表面に極薄の Siを含む窒化 ·酸化物層を形成する ことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
11. 請求項 7において、 塗布溶液として、 リ ン酸塩とコロイダルシリカを主成分 とする張力絶縁被膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1およ び Bのうちから選んだ 1種または 2種以上を含む無機化合物を微量添加した処理 液を用い、 この処理液を一方向性珪素鋼板の表面に塗布 ·乾燥することによ り、 該鋼板表面に微量の Fe, Si, A1および Bのうちから選んだ 1種または 2種以上を 含む無機化合物を付着させることを特徴とする超低鉄損一方向性珪素鋼板の製造 方法。
12. 請求項 11において、 リ ン酸塩とコロイダルシリカを主成分とする張力絶縁被 膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1および Bのうちから選 んだ 1種または 2種以上を含む無機化合物を微量添加した処理液を塗布すること によって、 一方向性珪素鋼板の表面に微量の Fe, Si, A1および Bのうちから選ん だ 1種または 2種以上を含む無機化合物を付着させたのち、 非酸化性雰囲気中で 短時間の熱処理を施して、 該鋼板の表面に張力絶縁被膜成分中に Fe, Si, A1およ び Bのうちから選んだ 1種または 2種以上の窒化 ·酸化物を微細に分散させた極 薄下地被膜を被成することを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
13. 請求項 11または 12において、 リ ン酸塩とコロイダルシリカを主成分とする張 力絶縁被膜用コーティ ング液を水で希釈した希釈液中に Fe, Si, A1および Bのう ちから選んだ 1種または 2種以上を含む無機化合物を微量添加した処理液を塗布 するに先立ち、 一方向性珪素鋼板を SiCしまたは SiCl4を主成分とする塩化物の 水溶液中に浸潰して地鉄表面を溶解することを特徴とする超低鉄損一方向性珪素 鋼板の製造方法。
14. 請求項 13において、 SiCしまたは SiCl4を主成分とする塩化物水溶液中への 一方向性珪素鋼板の浸漬処理後、 鋼板表面を含 N非酸化性雰囲気中に曝す暴露処 理を行う ことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
15. 請求項 7〜14のいずれかにおいて、 鋼板の地鉄表面に、 圧延方向と交差する 向きに 2〜10隱の間隔で、 幅 : 50〜500 urn 、 深さ : 0.1 〜50〃m の線状の凹領 域を設けたことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
16. 請求項?〜 14のいずれかにおいて、 仕上焼鈍済みの一方向性珪素鋼板の表面 が、 平滑化処理を施した表面である超低鉄損一方向性珪素鋼板の製造方法。
17. 請求項 7〜14のいずれかにおいて、 仕上焼鈍済みの一方向性珪素鋼板の表面 が、 平滑化処理を施さない、 酸洗処理ままの表面である超低鉄損一方向性珪素鋼 板の製造方法。
18. 請求項 16または 17において、 平滑化処理または酸洗処理を S i Cしを含む水溶 液を用いて行うことを特徴とする超低鉄損一方向性珪素鋼板の製造方法。
19. 請求項 18において、 S しを含む水溶液を用いて平滑化処理または酸洗処理 を行ったのち、 鋼板表面を含 N非酸化性雰囲気中に曝す暴露処理を行うことを特 徴とする超低鉄損一方向性珪素鋼板の製造方法。
PCT/JP1998/005817 1997-12-24 1998-12-22 Plaque d'acier au silicium a grains orientes a tres faible perte dite dans le fer et procede de fabrication de ladite plaque WO1999034377A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69838419T DE69838419T2 (de) 1997-12-24 1998-12-22 Kornorientiertes siliziumstahlblech mit sehr geringem eisenverlust und herstellungsverfahren desselben
EP98961483A EP0971374B1 (en) 1997-12-24 1998-12-22 Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
US09/367,671 US6287703B1 (en) 1997-12-24 1998-12-22 Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
KR10-1999-7007650A KR100479353B1 (ko) 1997-12-24 1998-12-22 초저철손 일방향성 규소강판 및 그의 제조방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP35449097 1997-12-24
JP9/354490 1997-12-24
JP4323898 1998-02-25
JP10/43238 1998-02-25
JP10/74275 1998-03-23
JP7427598 1998-03-23
JP10/74274 1998-03-23
JP7427498 1998-03-23

Publications (1)

Publication Number Publication Date
WO1999034377A1 true WO1999034377A1 (fr) 1999-07-08

Family

ID=27461343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005817 WO1999034377A1 (fr) 1997-12-24 1998-12-22 Plaque d'acier au silicium a grains orientes a tres faible perte dite dans le fer et procede de fabrication de ladite plaque

Country Status (6)

Country Link
US (1) US6287703B1 (ja)
EP (1) EP0971374B1 (ja)
KR (1) KR100479353B1 (ja)
CN (1) CN1163916C (ja)
DE (1) DE69838419T2 (ja)
WO (1) WO1999034377A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359622B1 (ko) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
JP2002057019A (ja) * 2000-05-30 2002-02-22 Nippon Steel Corp 低騒音トランス用一方向性電磁鋼板
KR100900660B1 (ko) * 2002-11-27 2009-06-01 주식회사 포스코 분말도포성 및 표면특성이 우수한 침규확산용 피복제조성물
KR100900662B1 (ko) * 2002-11-11 2009-06-01 주식회사 포스코 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
KR100900661B1 (ko) * 2002-11-11 2009-06-01 주식회사 포스코 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
JP2007305882A (ja) * 2006-05-12 2007-11-22 Sony Corp 記憶素子及びメモリ
JP5891578B2 (ja) * 2010-09-28 2016-03-23 Jfeスチール株式会社 方向性電磁鋼板
JP6121086B2 (ja) * 2010-09-30 2017-04-26 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN102789862B (zh) * 2012-08-31 2014-11-12 哈尔滨工业大学 溶胶浸润的玻璃干凝胶包覆层软磁复合材料的制备方法
CN102820115B (zh) * 2012-08-31 2014-11-12 哈尔滨工业大学 溶胶浸润的玻璃包覆层软磁复合材料的制备方法
CN102789863B (zh) * 2012-08-31 2014-11-12 哈尔滨工业大学 以玻璃粉作为包覆层的软磁复合材料的制备方法
CN102789859B (zh) * 2012-08-31 2014-11-12 哈尔滨工业大学 一种软磁复合材料及其制备方法
CN102789860B (zh) * 2012-08-31 2014-11-12 哈尔滨工业大学 一种以玻璃干凝胶为包覆层的软磁复合材料的制备方法
KR101719231B1 (ko) * 2014-12-24 2017-04-04 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
DE102015218439A1 (de) * 2015-09-25 2017-03-30 Robert Bosch Gmbh In seinen Ummagnetisierungsverlusten reduziertes Teil und Verfahren zu seiner Herstellung
CN109844179B (zh) * 2016-10-18 2021-08-06 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
RU2706940C1 (ru) * 2016-10-18 2019-11-21 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электромагнитная листовая сталь и способ производства текстурированной электромагнитной листовой стали
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
DE102018216457A1 (de) * 2018-09-26 2020-03-26 Thyssenkrupp Ag Beschichtung von kornorientiertem Elektroband durch CVD
US11993835B2 (en) 2019-01-16 2024-05-28 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
EP3715480A1 (en) * 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Iron-silicon material suitable for medium frequency applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss
JPS6263408A (ja) * 1985-09-14 1987-03-20 Kawasaki Steel Corp 超低鉄損一方向性けい素鋼板の製造方法
JPS63278209A (ja) * 1985-02-22 1988-11-15 Kawasaki Steel Corp 熱安定性、超低鉄損一方向性けい素鋼板
JPH08222423A (ja) * 1995-02-13 1996-08-30 Kawasaki Steel Corp 鉄損の低い方向性けい素鋼板およびその製造方法
JPH09316655A (ja) * 1996-05-30 1997-12-09 Toyobo Co Ltd クロムフリー電磁鋼板表面処理用組成物及び表面処理電磁鋼板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141706A (ja) * 1985-12-17 1987-06-25 Kawasaki Steel Corp 超低鉄損一方向性けい素鋼板の製造方法
JPS61235514A (ja) * 1985-04-10 1986-10-20 Kawasaki Steel Corp 熱安定性、超低鉄損一方向性珪素鋼板の製造方法
EP0215134B1 (en) * 1985-02-22 1990-08-08 Kawasaki Steel Corporation Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
EP0193324B1 (en) * 1985-02-22 1989-10-11 Kawasaki Steel Corporation Extra-low iron loss grain oriented silicon steel sheets
US4909864A (en) * 1986-09-16 1990-03-20 Kawasaki Steel Corp. Method of producing extra-low iron loss grain oriented silicon steel sheets
JPH02228480A (ja) * 1989-03-01 1990-09-11 Kawasaki Steel Corp 方向性珪素鋼板の低鉄損化処理方法
CN1039915C (zh) * 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
JPH0347975A (ja) * 1989-07-13 1991-02-28 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板
JPH0699824B2 (ja) * 1989-07-13 1994-12-07 川崎製鉄株式会社 熱安定性超低鉄損一方向性けい素鋼板およびその製造方法
JP2654861B2 (ja) * 1990-10-27 1997-09-17 新日本製鐵株式会社 鉄心の加工性および耐熱性の優れた方向性電磁鋼板の絶縁皮膜形成方法
JPH05279747A (ja) * 1992-04-02 1993-10-26 Nippon Steel Corp 方向性電磁鋼板の絶縁皮膜形成方法
US5296051A (en) * 1993-02-11 1994-03-22 Kawasaki Steel Corporation Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss
JPS63278209A (ja) * 1985-02-22 1988-11-15 Kawasaki Steel Corp 熱安定性、超低鉄損一方向性けい素鋼板
JPS6263408A (ja) * 1985-09-14 1987-03-20 Kawasaki Steel Corp 超低鉄損一方向性けい素鋼板の製造方法
JPH08222423A (ja) * 1995-02-13 1996-08-30 Kawasaki Steel Corp 鉄損の低い方向性けい素鋼板およびその製造方法
JPH09316655A (ja) * 1996-05-30 1997-12-09 Toyobo Co Ltd クロムフリー電磁鋼板表面処理用組成物及び表面処理電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0971374A4 *

Also Published As

Publication number Publication date
KR100479353B1 (ko) 2005-03-30
DE69838419D1 (de) 2007-10-25
KR20000075590A (ko) 2000-12-15
CN1253658A (zh) 2000-05-17
EP0971374B1 (en) 2007-09-12
DE69838419T2 (de) 2008-06-05
EP0971374A4 (en) 2003-06-25
CN1163916C (zh) 2004-08-25
US6287703B1 (en) 2001-09-11
EP0971374A1 (en) 2000-01-12

Similar Documents

Publication Publication Date Title
WO1999034377A1 (fr) Plaque d&#39;acier au silicium a grains orientes a tres faible perte dite dans le fer et procede de fabrication de ladite plaque
JP6954351B2 (ja) 方向性電磁鋼板
WO2019013351A1 (ja) 方向性電磁鋼板及びその製造方法
CN111684106B (zh) 带有绝缘被膜的电磁钢板及其制造方法
JP4473489B2 (ja) 一方向性珪素鋼板とその製造方法
JP2002322566A (ja) 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP3551517B2 (ja) 磁気特性の良好な方向性けい素鋼板及びその製造方法
JP7269505B2 (ja) 方向性電磁鋼板の製造方法
CN110832112B (zh) 方向性电磁钢板
JP6881581B2 (ja) 方向性電磁鋼板
JP4300604B2 (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPH11236682A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPH11310882A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JP5245323B2 (ja) エッチング加工用電磁鋼板
JP3280844B2 (ja) 一方向性珪素鋼板の絶縁皮膜形成方法
JPH1112755A (ja) 超低鉄損方向性電磁鋼板
WO2022215709A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
JPH11335861A (ja) 超低鉄損一方向性珪素鋼板の製造方法
WO2023195517A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
JPS621820A (ja) 熱安定性、超低鉄損一方向性けい素鋼板の製造方法
WO2022215714A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
JP4042202B2 (ja) 一方向性珪素鋼板
JPH11343579A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPH08283956A (ja) 低鉄損一方向性珪素鋼板
JPH11329819A (ja) 超低鉄損一方向性珪素鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98804520.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09367671

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997007650

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998961483

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998961483

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007650

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997007650

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998961483

Country of ref document: EP