JP2007305882A - 記憶素子及びメモリ - Google Patents

記憶素子及びメモリ Download PDF

Info

Publication number
JP2007305882A
JP2007305882A JP2006134435A JP2006134435A JP2007305882A JP 2007305882 A JP2007305882 A JP 2007305882A JP 2006134435 A JP2006134435 A JP 2006134435A JP 2006134435 A JP2006134435 A JP 2006134435A JP 2007305882 A JP2007305882 A JP 2007305882A
Authority
JP
Japan
Prior art keywords
layer
memory
magnetization
storage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006134435A
Other languages
English (en)
Inventor
Tetsuya Yamamoto
哲也 山元
Hiroyuki Omori
広之 大森
Masakatsu Hosomi
政功 細見
Yutaka Higo
豊 肥後
Ichiyo Yamane
一陽 山根
Takenori Oishi
雄紀 大石
Hiroshi Kano
博司 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006134435A priority Critical patent/JP2007305882A/ja
Priority to US11/745,937 priority patent/US7616475B2/en
Priority to CN2007100973646A priority patent/CN101071628B/zh
Publication of JP2007305882A publication Critical patent/JP2007305882A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect

Abstract

【課題】書き込み電流を増大させることなく、熱安定性を改善することができる記憶素子を提供する。
【解決手段】情報を磁性体の磁化状態により保持する記憶層17を有し、この記憶層17に対して、絶縁体から成る中間層16を介して磁化固定層31が設けられ、積層方向にスピン偏極した電子を注入することにより、記憶層17の磁化M1の向きが変化して、記憶層17に対して情報の記録が行われ、記憶層17を構成する強磁性層の磁歪定数の大きさが1×10−5以上である記憶素子3を構成する。
【選択図】図2

Description

本発明は、強磁性層の磁化状態を情報として記憶する記憶層と、磁化の向きが固定された磁化固定層とから成り、膜面に垂直な方向に電流を流して、スピン偏極した電子を注入することにより記憶層の磁化の向きを変化させる記憶素子及びこの記憶素子を備えたメモリに係わり、不揮発メモリに適用して好適なものである。
コンピュータ等の情報機器では、ランダム・アクセス・メモリとして、動作が高速で、高密度なDRAMが広く使われている。
しかし、DRAMは電源を切ると情報が消えてしまう揮発性メモリであるため、情報が消えない不揮発のメモリが望まれている。
そして、不揮発メモリの候補として、磁性体の磁化で情報を記録する磁気ランダム・アクセス・メモリ(MRAM)が注目され、開発が進められている(例えば非特許文献1参照)。
MRAMは、ほぼ直交する2種類のアドレス配線(ワード線、ビット線)にそれぞれ電流を流して、各アドレス配線から発生する電流磁場によって、アドレス配線の交点にある磁気記憶素子の磁性層の磁化を反転して情報の記録を行うものである。
一般的なMRAMの模式図(斜視図)を、図6に示す。
シリコン基板等の半導体基体110の素子分離層102により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域108、ソース領域107、並びにゲート電極101が、それぞれ形成されている。
また、ゲート電極101の上方には、図中前後方向に延びるワード線105が設けられている。
ドレイン領域108は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域108には、配線109が接続されている。
そして、ワード線105と、上方に配置された、図中左右方向に延びるビット線106との間に、磁化の向きが反転する記憶層を有する磁気記憶素子103が配置されている。この磁気記憶素子103は、例えば磁気トンネル接合素子(MTJ素子)により構成される。
さらに、磁気記憶素子103は、水平方向のバイパス線111及び上下方向のコンタクト層104を介して、ソース領域107に電気的に接続されている。
ワード線105及びビット線106にそれぞれ電流を流すことにより、電流磁界を磁気記憶素子103に印加して、これにより磁気記憶素子103の記憶層の磁化の向きを反転させて、情報の記録を行うことができる。
そして、MRAM等の磁気メモリにおいて、記録した情報を安定に保持するためには、情報を記録する磁性層(記憶層)が、一定の保磁力を有していることが必要である。
一方、記録された情報を書き換えるためには、アドレス配線にある程度の電流を流さなければならない。
ところが、MRAMを構成する素子の微細化に従い、アドレス配線も細くなるため、充分な電流が流せなくなってくる。
そこで、より少ない電流で磁化反転が可能な構成として、スピン注入による磁化反転を利用する構成のメモリが注目されている(例えば、特許文献1、特許文献2、非特許文献2、非特許文献3参照)。
スピン注入による磁化反転とは、磁性体の中を通過してスピン偏極した電子を、他の磁性体に注入することにより、他の磁性体において磁化反転を起こさせるものである。
例えば、巨大磁気抵抗効果素子(GMR素子)や磁気トンネル接合素子(MTJ素子)に対して、その膜面に垂直な方向に電流を流すことにより、これらの素子の少なくとも一部の磁性層の磁化の向きを反転させることができる。
そして、スピン注入による磁化反転は、素子が微細化されても、電流を増やさずに磁化反転を実現することができる利点を有している。
上述したスピン注入による磁化反転を利用する構成のメモリの模式図を図4及び図5に示す。図4は斜視図、図5は断面図である。
シリコン基板等の半導体基体60の素子分離層52により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域58、ソース領域57、並びにゲート電極51が、それぞれ形成されている。このうち、ゲート電極51は、図4中前後方向に延びるワード線を兼ねている。
ドレイン領域58は、図4中左右の選択用トランジスタに共通して形成されており、このドレイン領域58には、配線59が接続されている。
そして、ソース領域57と、上方に配置された、図4中左右方向に延びるビット線56との間に、スピン注入により磁化の向きが反転する記憶層を有する記憶素子53が配置されている。
この記憶素子53は、例えば磁気トンネル接合素子(MTJ素子)により構成される。図中61及び62は磁性層を示しており、2層の磁性層61,62のうち、一方の磁性層を磁化の向きが固定された磁化固定層として、他方の磁性層を磁化の向きが変化する磁化自由層即ち記憶層とする。
また、記憶素子53は、ビット線56と、ソース領域57とに、それぞれ上下のコンタクト層54を介して接続されている。これにより、記憶素子53に電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
このようなスピン注入による磁化反転を利用する構成のメモリの場合、図6に示した一般的なMRAMと比較して、デバイス構造を単純化することができる、という特徴も有している。
また、スピン注入による磁化反転を利用することにより、外部磁界により磁化反転を行う一般的なMRAMと比較して、素子の微細化が進んでも、書き込みの電流が増大しないという利点がある。
ところで、MRAMの場合は、記憶素子とは別に書き込み配線(ワード線やビット線)を設けて、書き込み配線に電流を流して発生する電流磁界により、情報の書き込み(記録)を行っている。そのため、書き込み配線に、書き込みに必要となる電流量を充分に流すことができる。
一方、スピン注入による磁化反転を利用する構成のメモリにおいては、記憶素子に流す電流によりスピン注入を行って、記憶層の磁化の向きを反転させる必要がある。
そして、このように記憶素子に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行うメモリセルを選択するために、記憶素子を選択トランジスタと接続してメモリセルを構成する。この場合、記憶素子に流れる電流は、選択トランジスタに流すことが可能な電流(選択トランジスタの飽和電流)の大きさに制限される。
このため、選択トランジスタの飽和電流以下の電流で書き込みを行う必要があり、スピン注入の効率を改善して、記憶素子に流す電流を低減する必要がある。
また、読み出し信号を大きくするためには、大きな磁気抵抗変化率を確保する必要があり、そのためには記憶層の両側に接している中間層をトンネル絶縁層(トンネルバリア層)とした記憶素子の構成にすることが効果的である。
このように中間層としてトンネル絶縁層を用いた場合には、トンネル絶縁層が絶縁破壊することを防ぐために、記憶素子に流す電流量に制限が生じる。この観点からも、スピン注入時の電流を抑制する必要がある。
日経エレクトロニクス 2001.2.12号(第164頁−171頁) Phys.Rev.B 54.9353(1996) J.Magn.Mat. 159.L1(1996) 特開2003−17782号公報 米国特許第6256223号明細書
ところで、電流によって書き込まれた情報を記憶して保持しなければ、メモリとはなり得ない。そのため、記憶層の熱揺らぎに対する安定性(熱安定性)の確保が必要である。
スピン注入による磁化反転を利用する記憶素子の場合、従来のMRAMと比較して、記憶層の体積が小さくなるので、単純に考えると熱安定性は低下する方向にある。
記憶層の熱安定性が確保されていないと、反転した磁化の向きが、熱により再反転してしまい、書き込みエラーとなってしまう。
そのため、スピン注入による磁化反転を利用する記憶素子において、熱安定性は非常に重要な特性である。
一般に、書き込みにあまりエネルギーを費やさない素子は、エネルギーバリアが低いため、情報が消えやすい。
一方、書き込みに大きなエネルギーを要する素子は、高いエネルギーバリアを形成することが可能であるため、情報の保持も安定していると言える。
スピン注入による磁化反転を利用する記憶素子において、スピン注入効率が等しい構成で比較すると、記憶層の飽和磁化量及び記憶層の体積が大きくなるに従い、熱安定性が高くなると同時に、書き込みに大きな電流を必要とするようになる。
熱安定性指標は、一般に、熱安定性パラメーター(Δ)で表すことができる。
Δは、Δ=KV/kT(K:異方性エネルギー、V:記憶層の体積、k:ボルツマン定数、T:温度)で与えられる。
従って、スピン注入により記憶層の磁化の向きを反転させる構成の記憶素子が、メモリとして存在し得るためには、スピン注入効率を改善して磁化反転に必要な電流をトランジスタの飽和電流以下に減らすと同時に、書き込まれた情報をしっかり保持する熱安定性を確保する必要がある。
上述した問題の解決のために、本発明は、書き込み電流を増大させることなく、熱安定性を改善することができる記憶素子、並びにこの記憶素子を有するメモリを提供するものである。
本発明の記憶素子は、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層に対して、中間層を介して磁化固定層が設けられ、中間層が絶縁体から成り、積層方向にスピン偏極した電子を注入することにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われ、記憶層を構成する強磁性層の磁歪定数の大きさが、1×10−5以上であるものである。
また、本発明のメモリは、情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、互いに交差する2種類の配線とを備え、記憶素子は上記本発明の記憶素子の構成であり、2種類の配線の交点付近かつ2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて記憶素子に積層方向の電流が流れ、スピン偏極した電子が注入されるものである。
上述の本発明の記憶素子の構成によれば、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層に対して中間層を介して磁化固定層が設けられ、中間層が絶縁体から成り、積層方向にスピン偏極した電子を注入することにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われるので、積層方向に電流を流してスピン偏極した電子を注入することによって情報の記録を行うことができる。
また、記憶層を構成する強磁性層の磁歪定数の大きさが、1×10−5以上であることにより、記憶層の保磁力を大きくすることが可能になる。このように、記憶層の保磁力を大きくすることが可能になるため、記憶層の熱安定性を向上することが可能になる。
さらに、記憶層を構成する強磁性層の磁歪定数の大きさが、1×10−5以上であることにより、記憶層の飽和磁化を増大させないで、保磁力を大きくすることが可能になる。
これにより、記憶層の磁化の向きを反転させるために必要となる、書き込み電流量を増大させることなく、記憶層の熱安定性を充分に確保することが可能になる。
上述の本発明のメモリの構成によれば、情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、互いに交差する2種類の配線とを備え、記憶素子は上記本発明の記憶素子の構成であり、2種類の配線の交点付近かつ2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて記憶素子に積層方向の電流が流れ、スピン偏極した電子が注入されるものであることにより、2種類の配線を通じて記憶素子の積層方向に電流を流してスピン注入による情報の記録を行うことができる。
また、記憶素子の記憶層の磁化の向きを反転させるために必要となる、書き込み電流量を増大させることなく、充分に記憶層の熱安定性を確保することが可能になるため、メモリの消費電力を増大させることなく、メモリセルに記録された情報を安定して保持することが可能になる。
上述の本発明によれば、記憶層の磁化の向きを反転させるために必要となる電流量(閾値電流)を増大させることなく、情報保持能力である熱安定性を確保することができるため、特性バランスに優れた記憶素子を構成することができる。
これにより、動作エラーをなくして、記憶素子の動作マージンを充分に得ることができる。
また、メモリとして必要な熱安定性を確保しても、書き込み電流が増えることがないので、大きな電圧をかける必要がなくなることから、中間層である絶縁体が破壊されることもなくなる。
従って、安定して動作する、信頼性の高いメモリを実現することができる。
さらにまた、書き込み電流を低減しても、メモリとして必要となる熱安定性を充分に確保することが可能となるため、書き込み電流を低減して、記憶素子に書き込みを行う際の消費電力を低減することが可能になる。
従って、メモリ全体の消費電力を低減することも可能になる。
まず、本発明の具体的な実施の形態の説明に先立ち、本発明の概要について説明する。
本発明は、前述したスピン注入により、記憶素子の記憶層の磁化の向きを反転させて、情報の記録を行うものである。記憶層は、強磁性層等の磁性体により構成され、情報を磁性体の磁化状態(磁化の向き)により保持するものである。
スピン注入により磁性層の磁化の向きを反転させる基本的な動作は、巨大磁気抵抗効果素子(GMR素子)もしくは磁気トンネル接合素子(MTJ素子)から成る記憶素子に対して、その膜面に垂直な方向に、ある閾値(Ic)以上の電流を流すものである。このとき、電流の極性(向き)は、反転させる磁化の向きに依存する。
この閾値よりも絶対値が小さい電流を流した場合には、磁化反転を生じない。
スピン注入によって、磁性層の磁化の向きを反転させるときに、必要となる電流の閾値Icは、現象論的に、下記式(1)により表される(例えば、F.J.Albert他著、Appl.Phys.Lett.,77,p.3809,2000年、等を参照)。
Figure 2007305882
なお、式(1)において、Aは定数、αはスピン制動定数、ηはスピン注入効率、Msは飽和磁化量、Vは磁性層(記憶層)の体積である。
本発明では、式(1)で表されるように、電流の閾値が、磁性層の体積V、磁性層の飽和磁化Ms、スピン注入効率と制動定数を制御することにより、任意に設定することが可能であることを利用する。
そして、磁化状態により情報を保持することができる磁性層(記憶層)と、磁化の向きが固定された磁化固定層とを有する記憶素子を構成する。
メモリとして存在し得るためには、書き込まれた情報を保持することができなければならない。情報を保持する能力の指標として、前述した熱安定性指標Δの値で判断される。磁性層(記憶層)の熱安定性指標Δは、下記式(2)により表される。
Figure 2007305882
なお、式(2)において、Bは定数、Hcは0Kでの保磁力Hc、Msは飽和磁化量、Vは体積である。
一般に、記憶された情報を85℃で10年間保持するためには、熱安定性指標Δの値として60以上が必要とされる。この熱安定性指標Δと電流の閾値Icとは、トレードオフの関係になることが多く、メモリ特性を維持するには、これらの両立が課題となることが多い。
記憶層の磁化状態を変化させる電流の閾値は、実際には、例えば記憶層の厚さが2nmであり、平面パターンが100nm×150nmの略楕円形のトンネル磁気抵抗効果素子(TMR素子)において、+側の閾値+Ic=+0.5mAであり、−側の閾値−Ic=−0.3mAであり、その際の電流密度は約3.5×10A/cmである。これらは、上記の式(1)にほぼ一致する。
一方、電流磁場により磁化反転を行う通常のMRAMでは、書き込み電流が数mA以上必要となる。
これに対して、スピン注入により磁化反転を行う場合には、上述のように、書き込み電流の閾値が充分に小さくなるため、集積回路の消費電力を低減させるために有効であることがわかる。
また、通常のMRAMで必要とされる、電流磁界発生用の配線(図6の105)が不要となるため、集積度においても通常のMRAMに比較して有利である。
そして、スピン注入により磁化反転を行う場合には、記憶素子に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行うメモリセルを選択するために、記憶素子を選択トランジスタと接続してメモリセルを構成する。
この場合、記憶素子に流れる電流は、選択トランジスタに流すことが可能な電流(選択トランジスタの飽和電流)の大きさに制限されるため、書き込み電流の許容範囲も制限されることになる。
これに対して、記憶層の磁化量を減らせば、書き込み電流の閾値を低減して許容範囲を広げることが可能になるが、前述したように、記憶層の熱安定性(指標Δ)を損なうことになる。メモリを構成するためには、熱安定性指標Δがある程度以上の大きさである必要がある。
本願の発明者等が種々の検討を行った結果、記憶層を構成する強磁性層の磁歪定数を規定することにより、記憶層の保磁力が向上し、書き込み電流を増やすことなく、熱安定性を改善することができ、安定したメモリを形成することができることを、見出した。
そして、記憶層を構成する強磁性層の磁歪定数の大きさを、1×10−5以上とすることが、有効であることを見出した。
以下、磁歪定数を制御することにより、保磁力が向上する理由について述べる。
一般的に、楕円形状を有する微小な磁性素子の磁気異方性の起源は、磁性材料の結晶磁気異方性、誘導磁気異方性、素子の形状異方性、並びに磁歪による一軸異方性等に分類される。
そして、スピン注入により磁化の向きを変えて情報を記録する記憶素子では、記憶層及び磁化固定層の磁化の向きが、互いに平行又は反平行のとき、抵抗値の変化が最大になるため、2種類の安定状態を持つ一軸異方性を有することが好ましい。
ここで、素子サイズが数100nm以下程度の微小な記憶素子において、上述した各種異方性の大きさを見積もる。
まず、結晶磁気異方性に関しては、磁性膜の成膜には一般的にスパッタ法が用いられており、スパッタ法で作製された磁性膜は、一般的に多結晶であって面内方向にランダムに配向しているために、一軸異方性の起源にはなりにくい。
次に、記憶層のスパッタ成膜時や熱処理時の印加磁界で付加される、誘導磁気異方性は、一軸異方性の起源の一つになるが、この誘導磁気異方性により生じる保磁力の大きさは数10[Oe]程度であり、この誘導磁気異方性のみでは、熱安定性に必要な熱安定性指標Δを全く確保できない。
次に、楕円形状等の素子形状に起因する形状磁気異方性は、記憶素子の寸法の微細化に伴って拡大するために、メモリにとっては都合が良い性質を持ち、素子サイズが100nm程度以下で、100[Oe]以上の保磁力を発生させることができる。
そして、誘導異方性と形状異方性とを起源とする一軸異方性による保磁力の総和は、素子サイズを小さくすることで、130[Oe]弱程度にはなる。しかし、素子サイズを小さくすることにより、記憶層の体積が減少してしまうため、熱安定性指標Δは、熱安定性に必要な60以上を確保することができない。
これに対して、磁歪定数の大きさを1×10−5以上とした場合には、一般の半導体MOS形成プロセスを経たチップ内に生じる応力の大きさが、数100MPa以上になることから、磁歪を起源とする一軸異方性によって、100[Oe]程度以上の保磁力が安定して得られる。即ち、上述した誘導磁気異方性及び形状異方性と同等以上になり、これら各異方性による保磁力の大きさが150[Oe]以上にも達することから、熱安定性に必要となる熱安定性指標Δを、充分に確保することができる。
なお、磁歪定数が1×10−5未満の場合には、充分な保磁力が得られなくなってしまったり、周辺環境により応力が変化した場合に保磁力も容易に変動したりすることにより、熱安定性指標Δが60以下になることがある。
本発明においては、スピン注入を利用する記憶素子の記憶層の情報保持特性を確保するために、上述したように、記憶層の磁歪定数の大きさを1×10−5以上とする。
これにより、従来の構成では、反転電流と記憶層の情報保持能力とが共に増大する傾向を示していたのが、反転電流の増大なく記憶層の情報保持能力を向上させることができ、非常に望ましい結果を得ることができる。
大きい磁歪定数を有する強磁性層材料として、Co,Fe,Niを主成分とする一般的なCoFe合金やNiFe合金或いはCoNiFe合金が適用される。また、これら強磁性合金に、B,C,N等の軽元素、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W等の遷移金属、Gd等の希土類元素、或いはPt,Pd等の貴金属元素が、添加元素として1種類以上含有させてもよい。これらの添加元素を含有していた方が、望ましい特性が得られる場合がある。
ただし、例えばCoFe合金の場合、CoとFeの合計の含有比率が60原子%以下になると、強磁性層としての飽和磁化量及び保磁力が得られなくなってしまう。
また、一般的にCoFeの比率はCo:Feが90:10〜40:60の範囲にあるときに、磁気異方性分散が適当に抑制された、良好な軟磁気特性を示す。
従って、本発明の場合においても、上述したように、強磁性成分として良好な特性を得るためのCoとFeの含有比率を設定することができる。
また、記憶層の強磁性層として、アモルファス材料や、CoMnSi,CoMnAl,CoCrFeAl等のホイスラー材料を、使用することができる。これらの材料でも大きい磁歪定数を確保することが可能である。
なお、本発明の構成においては、記憶層を構成する強磁性層の保磁力を可能な限り大きくすることが望ましい。具体的には、強磁性層の保磁力が150[Oe]以上であることが望ましい。
本発明の構成において、さらに強磁性層が150[Oe]以上の保磁力を有することにより、記憶層の熱安定性を充分に向上させ、かつ反転電流の増大を抑制することができる。
さらに、本発明では、選択トランジスタの飽和電流値を考慮して、記憶層と磁化固定層との間の非磁性の中間層として、絶縁体から成るトンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成する。
トンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成することにより、非磁性導電層を用いて巨大磁気抵抗効果(GMR)素子を構成した場合と比較して、磁気抵抗変化率(MR比)を大きくすることができ、読み出し信号強度を大きくすることができるためである。
また、トンネル絶縁層の材料として、特に、酸化マグネシウム(MgO)を用いることにより、これまで一般的に用いられてきた酸化アルミニウムを用いた場合よりも、磁気抵抗変化率(MR比)を大きくすることができる。
一般に、スピン注入効率はMR比に依存し、MR比が大きいほど、スピン注入効率が向上し、磁化反転電流密度を低減することができる。
従って、中間層であるトンネル絶縁層の材料として酸化マグネシウムを用い、同時に上述の構成の記憶層を用いることにより、スピン注入による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
これにより、MR比(TMR比)を確保して、スピン注入による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
トンネル絶縁層を酸化マグネシウム(MgO)膜により形成する場合には、MgO膜が結晶化していて、001方向に結晶配向性を維持していることがより望ましい。
なお、本発明において、記憶層と磁化固定層との間の中間層は、酸化マグネシウムから成る構成(トンネル絶縁層)とする他にも、例えば、酸化アルミニウム、窒化アルミニウム、SiO、Bi、MgF、CaF、SrTiO、AlLaO、Al−N−O等の各種の絶縁体、誘電体、半導体を用いて構成することもできる。
さらにまた、中間層に酸化マグネシウムを用いた場合に優れた磁気抵抗効果特性(MR特性)を得るためには、アニール温度を300℃以上、望ましくは340℃〜360℃の高い温度とすることが要求される。これは、従来中間層に用いられていた酸化アルミニウムの場合のアニール温度の範囲(250℃〜280℃)と比較して、高温になっている。
これは、酸化マグネシウム等のトンネル絶縁層の適正な内部構造や結晶構造を形成するために必要になるからである、と考えられる。
このため、記憶素子の強磁性層にも、この高い温度のアニールに耐性を有するように、耐熱性のある強磁性材料を用いることにより、優れたMR特性を得ることができる。
トンネル絶縁層の面積抵抗値は、スピン注入により記憶層の磁化の向きを反転させるために必要な電流密度を得る観点から、数十Ωμm程度以下に制御する必要がある。
そして、MgO膜から成るトンネル絶縁層では、面積抵抗値を上述の範囲とするために、MgO膜の膜厚を1.5nm以下に設定する必要がある。
また、記憶層の磁化の向きを、小さい電流で容易に反転できるように、記憶素子を小さくすることが望ましい。
従って、好ましくは、記憶素子の面積を0.04μm以下とする。
なお、上述した構成条件を有する記憶層と、材料又は組成範囲の異なる他の強磁性層とを直接積層させることも可能である。また、強磁性層と軟磁性層とを積層させたり、複数層の強磁性層を軟磁性層や非磁性層を介して積層させたりすることも可能である。このように積層させた場合でも、本発明の効果が得られる。
特に複数層の強磁性層を非磁性層に介して積層させた構成としたときには、強磁性層の層間の相互作用の強さを調整することが可能になるため、記憶素子の寸法がサブミクロン以下になっても、磁化反転電流が大きくならないように抑制することが可能になるという効果が得られる。この場合の非磁性層の材料としては、Ru,Os,Re,Ir,Au,Ag,Cu,Al,Bi,Si,B,C,Cr,Ta,Pd,Pt,Zr,Hf,W,Mo,Nbまたはそれらの合金を用いることができる。
磁化固定層は、一方向の異方性を有していることが望ましく、記憶層は一軸異方性を有していることが望ましい。
また、磁化固定層及び記憶層のそれぞれの膜厚は、1nm〜30nmであることが好ましい。
記憶素子のその他の構成は、スピン注入により情報を記録する記憶素子の従来公知の構成と同様とすることができる。
磁化固定層は、強磁性層のみにより、或いは反強磁性層と強磁性層の反強磁性結合を利用することにより、その磁化の向きが固定された構成とする。
また、磁化固定層は、単層の強磁性層から成る構成、或いは複数層の強磁性層を非磁性層を介して積層した積層フェリ構造とする。
磁化固定層を積層フェリ構造としたときには、磁化固定層の外部磁界に対する感度を低下させることができるため、外部磁界による磁化固定層の不要な磁化変動を抑制して、記憶素子を安定して動作させることができる。さらに、各強磁性層の膜厚を調整することができ、磁化固定層からの漏洩磁界を抑えることができる。
積層フェリ構造の磁化固定層を構成する強磁性層の材料としては、Co,CoFe,CoFeB等を用いることができる。また、非磁性層の材料としては、Ru,Re,Ir,Os等を用いることができる。
反強磁性層の材料としては、FeMn合金、PtMn合金、PtCrMn合金、NiMn合金、IrMn合金、NiO、Fe等の磁性体を挙げることができる。
また、これらの磁性体に、Ag,Cu,Au,Al,Si,Bi,Ta,B,C,O,N,Pd,Pt,Zr,Hf,Ir,W,Mo,Nb等の非磁性元素を添加して、磁気特性を調整したり、その他の結晶構造や結晶性や物質の安定性等の各種物性を調整したりすることができる。
また、記憶素子の膜構成は、記憶層が磁化固定層の上側に配置される構成でも、下側に配置される構成でも全く問題はない。
なお、記憶素子の記憶層に記録された情報を読み出す方法としては、記憶素子の記憶層に薄い絶縁膜を介して、情報の基準となる磁性層を設けて、絶縁層を介して流れる強磁性トンネル電流によって読み出してもよいし、磁気抵抗効果により読み出してもよい。
続いて、本発明の実施の形態を説明する。
本発明の一実施の形態として、メモリの概略構成図(斜視図)を図1に示す。
このメモリは、互いに直交する2種類のアドレス配線(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができる記憶素子が配置されて成る。
即ち、シリコン基板等の半導体基体10の素子分離層2により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域8、ソース領域7、並びにゲート電極1が、それぞれ形成されている。このうち、ゲート電極1は、図中前後方向に延びる一方のアドレス配線(例えばワード線)を兼ねている。
ドレイン領域8は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域8には、配線9が接続されている。
そして、ソース領域7と、上方に配置された、図中左右方向に延びる他方のアドレス配線(例えばビット線)6との間に、記憶素子3が配置されている。この記憶素子3は、スピン注入により磁化の向きが反転する強磁性層から成る記憶層を有する。
また、この記憶素子3は、2種類のアドレス配線1,6の交点付近に配置されている。
この記憶素子3は、ビット線6と、ソース領域7とに、それぞれ上下のコンタクト層4を介して接続されている。
これにより、2種類のアドレス配線1,6を通じて、記憶素子3に上下方向の電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
また、本実施の形態のメモリの記憶素子3の断面図を図2に示す。
図2に示すように、この記憶素子3は、スピン注入により磁化M1の向きが反転する記憶層17に対して、下層に磁化固定層31を設けている。磁化固定層31の下に反強磁性層12が設けられ、この反強磁性層12により、磁化固定層31の磁化の向きが固定される。
記憶層17と磁化固定層31との間には、トンネルバリア層(トンネル絶縁層)となる絶縁層16が設けられ、記憶層17と磁化固定層31とにより、MTJ素子が構成されている。
また、反強磁性層12の下には下地層11が形成され、記憶層17の上にはキャップ層18が形成されている。
磁化固定層31は、積層フェリ構造となっている。
具体的には、磁化固定層31は、2層の強磁性層13,15が、非磁性層14を介して積層されて反強磁性結合した構成である。
磁化固定層31の各強磁性層13,15が積層フェリ構造となっているため、強磁性層13の磁化M13が右向き、強磁性層15の磁化M15が左向きとなっており、互いに反対向きになっている。これにより、磁化固定層31の各強磁性層13,15から漏れる磁束が、互いに打ち消し合う。
磁化固定層31の強磁性層13,15の材料としては、特に限定はないが、鉄、ニッケル、コバルトの1種もしくは2種以上からなる合金材料を用いることができる。さらにNb,Zr,Gd,Ta,Ti,Mo,Mn,Cu等の遷移金属元素やSi,B,C等の軽元素を含有させることもできる。また、例えばCoFe/NiFe/CoFeの積層膜といったように、材料が異なる複数の膜を直接(非磁性層を介さずに)積層して、強磁性層13,15を構成してもよい。
磁化固定層31の積層フェリを構成する非磁性層14の材料としては、ルテニウム、銅、クロム、金、銀等が使用できる。
非磁性層14の膜厚は、材料によって変動するが、好ましくは、ほぼ0.5nmから2.5nmの範囲で使用する。
本実施の形態においては、特に、記憶素子3の記憶層17が、磁歪定数が1×10−5以上の強磁性層から構成されている。
記憶層17を構成する強磁性層の材料は、磁歪定数を大きくするのに好適な、前述した各種の材料を使用することができる。
さらに、本実施の形態において、中間層である絶縁層16を、酸化マグネシウム層とした場合には、磁気抵抗変化率(MR比)を高くすることができる。
このようにMR比を高くすることによって、スピン注入の効率を向上して、記憶層17の磁化M1の向きを反転させるために必要な電流密度を低減することができる。
本実施の形態の記憶素子3は、下地層11からキャップ層18までを真空装置内で連続的に形成して、その後エッチング等の加工によって記憶素子3のパターンを形成することにより、製造することができる。
上述の本実施の形態によれば、記憶素子3の記憶層17が、磁歪定数が1×10−5以上の強磁性層から構成されていることにより、記憶層17の磁化M1の向きを反転させるために必要となる、書き込み電流量を増大させることなく、記憶層17の熱安定性を充分に確保することが可能になる。
記憶層17の熱安定性が向上することにより、記憶素子3に対して電流を流して情報を記録する、動作領域を拡大することが可能になり、動作のマージンを広く確保し、記憶素子3を安定して動作させることができる。
また、記憶素子3の記憶層17に充分な熱安定性を確保しても、書き込み電流が増えることがないので、大きな電圧をかける必要がなくなることから、中間層である絶縁層16が絶縁破壊されることもなくなる。
従って、安定して動作する信頼性の高いメモリを実現することができる。
さらにまた、書き込み電流を低減しても、熱安定性を充分に確保することが可能となるため、書き込み電流を低減して、記憶素子3に書き込みを行う際の消費電力を低減することが可能になる。
これにより、本実施の形態の記憶素子3によりメモリセルを構成した、メモリ全体の消費電力を低減することも可能になる。
従って、情報保持特性が優れた、安定して動作する信頼性の高いメモリを実現することができ、記憶素子3を備えたメモリにおいて、消費電力を低減することができる。
また、図2に示した記憶素子3を備え、図1に示した構成のメモリは、メモリを製造する際に、一般の半導体MOS形成プロセスを適用できるという利点を有している。例えば、340℃〜360℃のアニールにも、記憶層17の磁気特性が劣化することがなく、耐えうるようになる。
従って、本実施の形態の記憶素子3を備えたメモリを、汎用メモリとして適用することが可能になる。
ここで、本発明の記憶素子の構成において、具体的に記憶層を構成する強磁性材料等、各層の材料や膜厚等を選定して、特性を調べた。
実際のメモリでは、図1や図4に示したように、記憶素子以外にもスイッチング用の半導体回路等が存在するが、選択用のトランジスタや下層配線の製造工程については、説明を省略する。
また、図1では、記憶素子3の上下にコンタクト層4が接続されているが、ここでは、図3に断面図を示すように、記憶素子3上にビット線24(BL)を直接接続した構造とした。
下層配線と接続するコンタクト層21が形成された絶縁層22上に、図2に示した構成の記憶素子3を形成した。
具体的には、図2に示した構成の記憶素子3において、各層の材料及び膜厚を、下地膜11を膜厚3nmのTa膜、反強磁性層12を膜厚20nmのPtMn膜、磁化固定層31を構成する強磁性層13を膜厚2nmのCoFe膜、強磁性層15を膜厚2.5nmのCoFeB膜、積層フェリ構造の磁化固定層31を構成する非磁性層14を膜厚0.8nmのRu膜、トンネル絶縁層となる絶縁層(バリア層)16を膜厚0.9nmの酸化マグネシウム膜、記憶層17を強磁性層、キャップ層18を膜厚5nmのTa膜と選定した。
上記膜構成で、記憶層17の強磁性層は、材料を表1に示すように変化させたものを作製して、実施例及び比較例とした。PtMn膜の組成はPt50Mn50(原子%)、CoFe膜の組成はCo90Fe10(原子%)とした。
酸化マグネシウム膜から成る絶縁層16以外の各層は、DCマグネトロンスパッタ法を用いて成膜した。
酸化マグネシウム(MgO)膜から成る絶縁層16は、RFマグネトロンスパッタ法を用いて成膜した。
さらに、記憶素子3の各層を成膜した後に、磁場中熱処理炉で、10kOe・360℃・2時間の熱処理を行い、反強磁性層12のPtMn膜の規則化熱処理を行った。
その後、電子ビーム描画装置により記憶素子3のパターンのマスクを形成し、積層膜に対してArプラズマにより選択エッチングを行い、記憶素子3を形成した。
この際に、記憶素子3部分以外は、下地層11より下方の絶縁層22を深さ5nmまでエッチングした。
なお、記憶素子には、磁化反転に必要なスピントルクを発生させるために、記憶素子に充分な電流を流す必要があるため、トンネル絶縁層の抵抗値を抑える必要がある。
そこで、記憶素子3のパターンを、短軸0.09μm×長軸0.18μmの楕円形状として、記憶素子3の面積抵抗値(Ωμm2)が20Ωμm2となるようにした。ただし、試料番号3のみ、短軸0.06μm×長軸0.09μmとした。
次に、記憶素子3の周囲を絶縁するために、シリコン窒化膜及びSiO又はAl等の絶縁膜23を、全面にCVD(化学的気相成長)法又はPVD(物理的気相成長)法で堆積した。
その後、CMP(化学的機械的研磨)法により、表面を平坦化する研磨を行って、キャップ層18を露出させ、コンタクト部分を形成した。
続いて、標準的な配線形成技術により、ビット線24及び周辺回路の配線(図示省略)、ボンディングパッド領域(図示省略)を形成した。さらに、全面にプラズマシリコン窒素膜25を堆積し、ボンディングパッド部を開口して、LSI(Large Scale Integration )のウェーハプロセス工程を完了した。
このようにして、記憶素子3の試料を作製した。
そして、上述の製造方法により、表1に示すように、それぞれ記憶層17の強磁性層の材料を変えた、記憶素子3の各試料を作製した。試料の形成条件として、記憶層の組成を、表1に示している。
作製した記憶素子3の各試料に対して、それぞれ以下のようにして、特性の評価を行った。
測定に先立ち、反転電流のプラス方向とマイナス方向の値を対称になるように制御することを可能にするため、記憶素子3に対して、外部から磁界を与えることができるように構成した。また、記憶素子3に印加される電圧が、絶縁層16が破壊しない範囲内の1Vまでとなるように設定した。
(保磁力の測定)
記憶素子の保磁力の測定を行った。
まず、記憶素子に連続的に変化する外部磁場を加えながら、記憶素子の抵抗値を測定した。このとき、温度を室温25℃として、ワード線の端子とビット線の端子にかかるバイアス電圧が10mVとなるように調節した。
そして、記憶層の磁化の向きとは反対の方向に外部磁場を加えていき、外部磁界が記憶層の保磁力を上回ると、記憶層の磁化の向きが反転する。磁化の向きが反転することにより、記憶素子の抵抗値が変化するので、この抵抗値が変化したときの外部磁界の大きさを記憶素子の保磁力と等しいとみなして、記憶素子の保磁力を得た。
(反転電流値及び熱安定性の測定)
本発明による記憶素子の書き込み特性を評価する目的で、反転電流値の測定を行った。
記憶素子に100nsから1msのパルス幅の電流を流して、その後の記憶素子の抵抗値を測定した。さらに、記憶素子に流す電流量を変化させて、この記憶層の磁化が反転する電流値を求めた。この電流値のパルス幅依存性をパルス幅1nsに外挿した値を、反転電流値とした。
また、反転電流値のパルス幅依存性の傾きは、記憶素子の前述した熱安定性指標(Δ)に対応する。反転電流値がパルス幅によって変化しない(傾きが小さい)ほど、熱の擾乱に強いことを意味する。前述したように、メモリに用いるためには、60以上の熱安定性指標Δが必要である。
そして、記憶素子間のばらつきを考慮するために、同一構成の記憶素子を20個程度作製して、上述の測定を行い、反転電流値及び熱安定性指標Δの平均値を求めた。
各試料の測定結果を、記憶層の材料及び組成から求めた磁歪定数と共に、表1に示す。
Figure 2007305882
表1の結果より、記憶層の磁歪定数が10×10−6以上、即ち1×10−5以上になると、いずれも150[Oe]以上の保磁力が得られることがわかる。磁歪定数が1×10−5以下の場合、保磁力は150[Oe]より小さくなり、素子サイズを小さくして形状異方性を大きくした試料番号3においても、保磁力は120[Oe]にしかならない。
即ち、磁歪定数が1×10−5以上とすることの効果を確認できた。
また、表1の熱安定性指標Δの値を見ると、保磁力と良好な相関関係があり、150[Oe]以上の保磁力の場合に、熱安定性指標Δが60以上になっていることがわかる。
試料番号3の体積を小さくして保磁力を確保した場合には、試料番号1及び試料番号2と比較して、保磁力が増加しているが、体積が減少したことにより、熱安定性指標Δがそれほど増加せず、60には至っていないことがわかる。
このように、本発明により、実用メモリとして必要な熱安定性指標Δの値である、60以上の値を確保することができる。
また、磁歪定数が変化しても、反転電流値はあまり変化せず、小さな反転電流値が維持されていることがわかる。なお、試料番号3の体積を小さくした場合に、反転電流値が他の試料よりも小さくなっているが、これは記憶層の強磁性体の体積の減少に起因している。
従って、本発明により、本来トレードオフになると考えられていた、充分な熱安定性の確保と、反転電流の低減とを、両立させることができる。
本発明では、上述の各実施の形態で示した記憶素子3の膜構成に限らず、様々な膜構成を採用することが可能である。
上述の各実施の形態では、磁化固定層31が2層の強磁性層13,15と非磁性層14から成る積層フェリ構造となっているが、例えば、磁化固定層を単層の強磁性層により構成してもよい。
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
本発明の一実施の形態のメモリの概略構成図(斜視図)である。 図1の記憶素子の断面図である。 特性の測定のために作製した記憶素子の試料の概略断面図である。 スピン注入による磁化反転を利用したメモリの概略構成図(斜視図)である。 図4のメモリの断面図である。 従来のMRAMの構成を模式的に示した斜視図である。
符号の説明
3 記憶素子、11 下地層、12 反強磁性層、13,15 強磁性層、14 非磁性層、16 トンネル絶縁層、17 記憶層、18 キャップ層、31 磁化固定層

Claims (3)

  1. 情報を磁性体の磁化状態により保持する記憶層を有し、
    前記記憶層に対して、中間層を介して磁化固定層が設けられ、
    前記中間層が、絶縁体から成り、
    積層方向にスピン偏極した電子を注入することにより、前記記憶層の磁化の向きが変化して、前記記憶層に対して情報の記録が行われ、
    前記記憶層を構成する強磁性層の磁歪定数の大きさが、1×10−5以上である
    ことを特徴とする記憶素子。
  2. 前記記憶層を構成する強磁性層の保磁力の大きさが150[Oe]以上であることを特徴とする請求項1に記載の記憶素子。
  3. 情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、
    互いに交差する2種類の配線を備え、
    前記記憶素子は、前記記憶層に対して、中間層を介して磁化固定層が設けられ、前記中間層が絶縁体から成り、積層方向にスピン偏極した電子を注入することにより、前記記憶層の磁化の向きが変化して、前記記憶層に対して情報の記録が行われ、前記記憶層を構成する強磁性層の磁歪定数の大きさが1×10−5以上である構成であり、
    前記2種類の配線の交点付近かつ前記2種類の配線の間に、前記記憶素子が配置され、
    前記2種類の配線を通じて、前記記憶素子に前記積層方向の電流が流れる
    ことを特徴とするメモリ。
JP2006134435A 2006-05-12 2006-05-12 記憶素子及びメモリ Pending JP2007305882A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006134435A JP2007305882A (ja) 2006-05-12 2006-05-12 記憶素子及びメモリ
US11/745,937 US7616475B2 (en) 2006-05-12 2007-05-08 Memory element and memory
CN2007100973646A CN101071628B (zh) 2006-05-12 2007-05-11 存储元件和存储器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134435A JP2007305882A (ja) 2006-05-12 2006-05-12 記憶素子及びメモリ

Publications (1)

Publication Number Publication Date
JP2007305882A true JP2007305882A (ja) 2007-11-22

Family

ID=38684928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134435A Pending JP2007305882A (ja) 2006-05-12 2006-05-12 記憶素子及びメモリ

Country Status (3)

Country Link
US (1) US7616475B2 (ja)
JP (1) JP2007305882A (ja)
CN (1) CN101071628B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103420A (ja) * 2009-12-08 2014-06-05 Qualcomm Inc 磁気トンネル接合デバイス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932571B2 (en) * 2007-10-11 2011-04-26 Everspin Technologies, Inc. Magnetic element having reduced current density
US9021685B2 (en) * 2008-03-12 2015-05-05 Headway Technologies, Inc. Two step annealing process for TMR device with amorphous free layer
JP2011003892A (ja) * 2009-06-18 2011-01-06 Northern Lights Semiconductor Corp Dramセル
JP5150673B2 (ja) * 2010-03-19 2013-02-20 株式会社東芝 スピンメモリおよびスピントランジスタ
JP2012059878A (ja) * 2010-09-08 2012-03-22 Sony Corp 記憶素子、メモリ装置
JP2012064623A (ja) * 2010-09-14 2012-03-29 Sony Corp 記憶素子、メモリ装置
JP5724256B2 (ja) * 2010-09-14 2015-05-27 ソニー株式会社 記憶素子、メモリ装置
JP2012129225A (ja) * 2010-12-13 2012-07-05 Sony Corp 記憶素子、メモリ装置
JP5796349B2 (ja) * 2011-05-23 2015-10-21 ソニー株式会社 記憶素子の製造方法
JP2013033881A (ja) * 2011-08-03 2013-02-14 Sony Corp 記憶素子及び記憶装置
US9344345B2 (en) 2014-03-19 2016-05-17 Micron Technology, Inc. Memory cells having a self-aligning polarizer
SG10201401676XA (en) 2014-04-21 2015-11-27 Micron Technology Inc Spin transfer torque memory cells
DE112017001776T5 (de) * 2016-03-30 2018-12-13 Sony Corporation Magnetoresistives Element, Speicherelement und elektronische Vorrichtung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920010310B1 (ko) * 1988-12-06 1992-11-26 미쯔비시덴끼 가부시끼가이샤 왜곡 검출 장치
US6256222B1 (en) * 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
DE69838419T2 (de) * 1997-12-24 2008-06-05 Jfe Steel Corp. Kornorientiertes siliziumstahlblech mit sehr geringem eisenverlust und herstellungsverfahren desselben
US6130814A (en) 1998-07-28 2000-10-10 International Business Machines Corporation Current-induced magnetic switching device and memory including the same
JP2000322707A (ja) * 1999-05-10 2000-11-24 Nec Corp 高飽和磁束密度を有するCo−Fe−Ni磁性膜、およびこれを磁極に用いた複合型薄膜磁気ヘッド、並びに磁気記憶装置
JP3312174B2 (ja) * 1999-09-24 2002-08-05 東北大学長 高密度磁気固定メモリの書き込み方法及び高密度磁気固定メモリ
US6533956B2 (en) * 1999-12-16 2003-03-18 Tdk Corporation Powder for magnetic ferrite, magnetic ferrite, multilayer ferrite components and production method thereof
DE10045705A1 (de) * 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetkern für einen Transduktorregler und Verwendung von Transduktorreglern sowie Verfahren zur Herstellung von Magnetkernen für Transduktorregler
FR2817999B1 (fr) * 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
JP2003017782A (ja) 2001-07-04 2003-01-17 Rikogaku Shinkokai キャリヤスピン注入磁化反転型磁気抵抗効果膜と該膜を用いた不揮発性メモリー素子及び該素子を用いたメモリー装置
JP3897348B2 (ja) 2002-03-29 2007-03-22 株式会社東芝 固体磁気素子及び固体磁気素子アレイ
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US7394626B2 (en) * 2002-11-01 2008-07-01 Nec Corporation Magnetoresistance device with a diffusion barrier between a conductor and a magnetoresistance element and method of fabricating the same
JP3824600B2 (ja) 2003-07-30 2006-09-20 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP2005064050A (ja) * 2003-08-14 2005-03-10 Toshiba Corp 半導体記憶装置及びそのデータ書き込み方法
US7282755B2 (en) * 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7369376B2 (en) * 2005-03-15 2008-05-06 Headway Technologies, Inc. Amorphous layers in a magnetic tunnel junction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103420A (ja) * 2009-12-08 2014-06-05 Qualcomm Inc 磁気トンネル接合デバイス

Also Published As

Publication number Publication date
CN101071628B (zh) 2011-01-26
CN101071628A (zh) 2007-11-14
US20070263429A1 (en) 2007-11-15
US7616475B2 (en) 2009-11-10

Similar Documents

Publication Publication Date Title
JP4682998B2 (ja) 記憶素子及びメモリ
JP4380693B2 (ja) 記憶素子、メモリ
US9224942B2 (en) Memory element and memory device
JP5104090B2 (ja) 記憶素子及びメモリ
JP5040105B2 (ja) 記憶素子、メモリ
JP4277870B2 (ja) 記憶素子及びメモリ
JP2007305882A (ja) 記憶素子及びメモリ
US10665775B2 (en) Memory element and memory device
JP2008160031A (ja) 記憶素子及びメモリ
JP2007048790A (ja) 記憶素子及びメモリ
JP2012059906A (ja) 記憶素子、メモリ装置
JP5504704B2 (ja) 記憶素子及びメモリ
JP2006190838A (ja) 記憶素子及びメモリ
JP2004071897A (ja) 磁気抵抗効果素子及び磁気メモリ装置
JP2012151213A (ja) 記憶素子、メモリ装置
JP2012151213A5 (ja)
JP2006196612A (ja) 記憶素子及びメモリ
JP2008153527A (ja) 記憶素子及びメモリ
JP2006165059A (ja) 記憶素子及びメモリ
JP2006295000A (ja) 記憶素子及びメモリ
JP2006295001A (ja) 記憶素子及びメモリ
JP5034317B2 (ja) 記憶素子及びメモリ
JP4187021B2 (ja) 記憶素子及びメモリ
JP5742142B2 (ja) 記憶素子、メモリ装置
JP2012074716A (ja) 記憶素子及びメモリ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118