US20130196990A1 - Benzimidazole Derivatives As PI3 Kinase Inhibitors - Google Patents

Benzimidazole Derivatives As PI3 Kinase Inhibitors Download PDF

Info

Publication number
US20130196990A1
US20130196990A1 US13/876,853 US201113876853A US2013196990A1 US 20130196990 A1 US20130196990 A1 US 20130196990A1 US 201113876853 A US201113876853 A US 201113876853A US 2013196990 A1 US2013196990 A1 US 2013196990A1
Authority
US
United States
Prior art keywords
methyl
morpholinyl
benzimidazole
mmol
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/876,853
Other languages
English (en)
Inventor
Junya Qu
Ralph A. Rivero
Robert Sanchez
Rosanna Tedesco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline LLC
Original Assignee
GlaxoSmithKline LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlaxoSmithKline LLC filed Critical GlaxoSmithKline LLC
Priority to US13/876,853 priority Critical patent/US20130196990A1/en
Assigned to GLAXOSMITHKLINE LLC reassignment GLAXOSMITHKLINE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QU, JUNYA, RIVERO, RALPH A., SANCHEZ, ROBERT, TEDESCO, ROSANNA
Publication of US20130196990A1 publication Critical patent/US20130196990A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/10Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • This invention relates to the use of benzimidazole derivatives for the modulation, notably the inhibition of the activity or function of the phosphoinositide 3′ OH kinase family (hereinafter PI3 kinases), suitably, PI3K ⁇ , PI3K ⁇ , PI3K ⁇ , and/or PI3K ⁇ .
  • PI3 kinases phosphoinositide 3′ OH kinase family
  • the present invention relates to the use of benzimidazoles in the treatment of one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries. More suitably, the present invention relates to PI3K ⁇ selective benzimidazoles compounds for treating cancer.
  • PI3K phosphoinositide 3-kinase pathway
  • PIP3 phosphatidylinositol-4,5-bisphosphate
  • AKT phosphatidylinositol-3,4,5-P3
  • the PI3K family consists of 15 proteins that share sequence homology, particularly within their kinase domains, but have distinct substrate specificities and modes of regulation (Vivanco I and Sawyers C L. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nature Reviews Cancer, 2002; 2:489-501).
  • Class I PI3Ks are heterodimers consisting of a p110 catalytic subunit complexed to one of several regulatory subunits collectively referred to as p85 and have been the most extensively studied in the context of tumorgenesis.
  • the class 1A PI3K catalytic subunits comprise the p110 ⁇ , p110 ⁇ , and p110 ⁇ isoforms, which associate with one of five different regulatory subunits encoded by three separate genes.
  • a single class 1B PI3K catalytic isoform p110 ⁇ interacts with one of two associated regulatory subunits (Crabbe T, Welham M J, Ward S G, The PI3k inhibitor arsenal: choose your weapon Trends in Biochem Sci, 2007; 32:450-456).
  • Class 1 PI3Ks are primarily responsible for phosphorylating the critical PIP2 signaling molecule.
  • PI3K pathway The link between the PI3K pathway and cancer was confirmed by a study which identified somatic mutations in the PIK3CA gene encoding the p110 ⁇ protein. Subsequently, mutations in PIK3CA have been identified in numerous cancers including colorectal, breast, glioblastomas ovarian and lung. In contrast to PIK3CA, no somatic mutations in the ⁇ isoform have been identified.
  • p110 ⁇ was reported to be essential to the transformed phenotype in a PTEN-null prostate cancer model (Jia S, Liu Z, Zhang S, Liu P, Zhang L, et al., Essential roles of PI(3)K-p110b in cell growth, metabolism and tumorgenesis. Nature 2008; 10:1038).
  • fibrogenesis including systemic sclerosis (SSc), arthritis, nephropahty, liver cirrhosis, and some cancers, are related to PTEN deficiency and corresponding PI3K-Akt overexpression (Parapuram, S. K., et al., Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J. of Investigative Dermatology, advance online publication 9 Jun. 2011; doi: 10.1038/jid.2011.156). Taken together, these findings indicate PI3K p110 ⁇ as a promising target for cancer and other syndromes related to PTEN loss (Hollander, M.
  • This invention relates to novel compounds of formula (I):
  • a method of treating a susceptible neoplasm in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • a pharmaceutical composition comprising a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • This invention is directed to compounds of Formula (I).
  • the invention includes compounds of Formula (I)(A),
  • the invention includes compounds of Formula (I)(B),
  • the invention includes compounds of Formula (I)(B) wherein each Rc is independently C 1-3 alkyl, F or Cl, and n is 0.
  • the invention includes compounds of Formula (I)(B) wherein each Rc is independently CF 3 or F, and n is 0.
  • the invention includes the compounds of Formula (I)(C)
  • the invention includes the compounds of Formula (I)(D)
  • the invention includes the compounds of Formula (I)(E)
  • the invention includes compounds:
  • aryl aromatic, hydrocarbon, ring system.
  • the ring system may be monocyclic or fused polycyclic (e.g. bicyclic, tricyclic, etc.).
  • the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system.
  • a C6 ring system i.e. a phenyl ring is a suitable aryl group.
  • the polycyclic ring is a bicyclic aryl group, where suitable bicyclic aryl groups are C8-C12, or C9-C10.
  • a naphthyl ring, which has 10 carbon atoms, is a suitable polycyclic aryl group.
  • heteroaryl an aromatic ring system containing carbon(s) and at least one heteroatom.
  • Heteroaryl may be monocyclic or polycyclic.
  • a monocyclic heteroaryl group may have 1 to 4 heteroatoms in the ring, while a polycyclic heteroaryl may contain 1 to 10 hetero atoms.
  • a polycyclic heteroaryl ring may contain fused, spiro or bridged ring junctions, for example, bicyclic heteroaryl is a polycyclic heteroaryl.
  • Bicyclic heteroaryl rings may contain from 8 to 12 member atoms.
  • Monocyclic heteroaryl rings may contain from 5 to 8 member atoms (carbons and heteroatoms).
  • heteroaryl groups include: benzofuran, benzothiene, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, isoquinoline, quinazoline, quinoxaline, thiazole, and thiophene.
  • heteroaryls may be substituted with one to three alkyl groups.
  • alkoxy as used herein is meant —O(alkyl) including —OCH 3 , —OCH 2 CH 3 and —OC(CH 3 ) 3 where alkyl is as described herein.
  • heteroatom oxygen, nitrogen or sulfur.
  • halogen as used herein is meant a substituent selected from bromide, iodide, chloride and fluoride.
  • alkyl and derivatives thereof and in all carbon chains as used herein, including alkyl chains defined by the term “—(CH 2 ) n ”, “—(CH 2 ) m ” and the like, is meant a linear or branched, saturated or unsaturated hydrocarbon chain, and unless otherwise defined, the carbon chain will contain from 1 to 12 carbon atoms.
  • co-administering and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients.
  • further active ingredient or ingredients includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment.
  • the compounds are administered in a close time proximity to each other.
  • the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • compound as used herein includes all isomers of the compound. Examples of such isomers include: enantiomers, tautomers, rotamers.
  • Certain compounds described herein may contain one or more chiral atoms, or may otherwise be capable of existing as two enantiomers, or two or more diastereoisomers. Accordingly, the compounds of this invention include mixtures of enantiomers/diastereoisomers as well as purified enantiomers/diastereoisomers or enantiomerically/diastereoisomerically enriched mixtures. Also included within the scope of the invention are the individual isomers of the compounds represented by Formula (I) above as well as any wholly or partially equilibrated mixtures thereof. The present invention also covers the individual isomers of the compounds represented by the formulas above as mixtures with isomers thereof in which one or more chiral centers are inverted. The present invention also includes isotopomers of the compounds of Formula (I). Examples of such isotopomers include but not limited to compounds with one of more deuterium atoms.
  • esters can be employed, for example methyl, ethyl, pivaloyloxymethyl, and the like for —COOH, and acetate maleate and the like for —OH, and those esters known in the art for modifying solubility or hydrolysis characteristics, for use as sustained release or prodrug formulations.
  • the compounds of formula (I) may be utilized as a pharmaceutically acceptable salt version thereof.
  • the pharmaceutically acceptable salts of the compounds of formula (I) include conventional salts formed from pharmaceutically acceptable (i.e., non-toxic) inorganic or organic acids or bases as well as quaternary ammonium salts.
  • Representative salts include the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, ethanol amine, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate (methanesulfonate), methylbromide, methylnitrate, methylsulfate, monopotassium maleate, mucate, napsylate, nitrate
  • the compound of formula (I) is in the form of the free base.
  • the compound of formula (I) is in the form of the tris salt, i.e. tris(hydroxymethyl)aminomethane.
  • the compound of formula (I) is in the form of the sulfate salt.
  • the compound of formula (I) is in the form of the hydrochloride salt.
  • the compound of formula (I) is in the form of the sodium salt.
  • Certain salt versions of the compounds may be solvates, particularly hydrates.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof is in the form of a mono-, di-, tri- or hemi-hydrate.
  • compounds of the present invention are inhibitors of the Phosphatoinositides 3-kinases (PI3Ks).
  • PI3K Phosphatoinositides 3-kinases
  • PI3K phosphatoinositides 3-kinase
  • the compounds of the present invention are therefore useful in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • Compounds according to Formula (I) are suitable for the modulation, notably the inhibition of the activity of phosphatoinositides 3-kinases (PI3K) and, more particularly, selective inhibitors of the beta isoform of phosphatoinositides 3-kinase (PI3K ⁇ ). Therefore the compounds of the present invention are also useful for the treatment of disorders which are mediated by PI3Ks. Said treatment involves the modulation—notably the inhibition or the down regulation—of the phosphatoinositides 3-kinases.
  • the pharmaceutically active compounds of the present invention are active as PI3 kinase inhibitors, particularly the compounds that inhibit PI3K ⁇ , either selectively or in conjunction with one or more of PI3K ⁇ , PI3K ⁇ , and/or PI3K ⁇ , they exhibit therapeutic utility in treatment of susceptible neoplasms, particularly those neoplasms that exhibit a PTEN deficiency.
  • PTEN deficient or “PTEN deficiency” shall describe tumors with deficiencies of the tumor suppressor function of PTEN (Phosphatase and Tensin Homolog). Such deficiency includes mutation in the PTEN gene, reduction or absence of PTEN proteins when compared to PTEN wild-type, or mutation or absence of other genes that cause suppression of PTEN function.
  • treatment refers to alleviating the specified condition, eliminating or reducing the symptoms of the condition, slowing or eliminating the progression, invasion, or metastatic spread of the condition and preventing or delaying the reoccurrence of the condition in a previously afflicted subject.
  • the present invention further provides use of the compounds of the invention for the preparation of a medicament for the treatment of several conditions in a mammal (e.g., human) in need thereof.
  • “Susceptible neoplasm” as used herein refers to neoplasms which are susceptible to treatment by a kinase inhibitor and particularly neoplasms that are susceptible to treatment by a PI3K ⁇ inhibitor.
  • Neoplasms which have been associated with inappropriate activity of the PTEN phosphatase and particularly neoplasms which are exhibit mutation of PTEN, or mutation of an upstream activator of PI3K ⁇ kinase or overexpression of an upstream activator of PI3K ⁇ kinase, and are therefore susceptible to treatment with an PI3K ⁇ inhibitor are known in the art, and include both primary and metastatic tumors and cancers. According to one embodiment, description of the treatment of a susceptible neoplasm may be used interchangeably with description of the treatment of a cancer.
  • “susceptible neoplasms” includes, but are not limited to PTEN-deficient neoplasms listed as follows:
  • gliomas brain (gliomas), glioblastomas, leukemias, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast cancer, inflammatory breast cancer, colorectal cancer Wilm's tumor, Ewing's sarcoma,
  • lymphoblastic T cell leukemia chronic myelogenous leukemia, chronic lymphocytic leukemia, hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, chronic neutrophilic leukemia, acute lymphoblastic T cell leukemia,
  • Immunoblastic large cell leukemia Mantle cell leukemia, Multiple myeloma, Megakaryoblastic leukemia, multiple myeloma, Acute megakaryocytic leukemia, promyelocytic leukemia,
  • malignant lymphoma hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma, follicular lymphoma, neuroblastoma, bladder cancer, urothelial cancer, vulval cancer, cervical cancer, endometrial cancer, renal cancer, mesothelioma, esophageal cancer, salivary gland cancer, hepatocellular cancer, gastric cancer, nasopharangeal cancer, buccal cancer, cancer of the mouth, GIST (gastrointestinal stromal tumor), and testicular cancer.
  • GIST gastrointestinal stromal tumor
  • the term “susceptible neoplasm” includes and is limited to hormone refractory prostate cancer, non-small-cell lung cancer, endometrial cancer, gastric cancer, melanoma, head and neck cancer, breast cancer, including trip-negative breast cancer, and glioma.
  • PTEN deficiency has been correlated to such cancers as demonstrated in a number of published resources, e.g. Am J Clin Pathol. 2009 February; 131(2):257-63 (glioblastoma), J Clin Neurosci. 2010 December; 17(12):1543-7 (glioblastoma), Nat Genet. 2009 May; 41(5):619-24 (prostate cancer), Br J Cancer. 2008 Oct.
  • a method of treating a susceptible neoplasm in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • Fibrosis includes, alternatively or collectively, systemic sclerosis (SSc), arthritis, nephropahty, and liver cirrhosis.
  • SSc systemic sclerosis
  • a method of treating hormone refractory prostate cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating non-small-cell lung cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating endometrial cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating gastric cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating melanoma in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating head and neck cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating trip-negative breast cancer in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a method of treating glioma in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof.
  • a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • a pharmaceutical composition comprising a compound of formula (I) (including any particular sub-generic formula described herein) or a pharmaceutically acceptable salt thereof for use in the treatment of a susceptible neoplasm in a mammal in need thereof.
  • a compound of Formula (I) When a compound of Formula (I) is administered for the treatment of cancer, the term “co-administering” and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment.
  • the term further active ingredient or ingredients, as used herein includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer.
  • the compounds are administered in a close time proximity to each other.
  • the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • any anti-neoplastic agent that has activity versus a susceptible tumor being treated may be co-administered in the treatment of cancer in the present invention.
  • examples of such agents can be found in Cancer Principles and Practice f Oncology by V. T. Devita and S. Hellman (editors), 6 th edition (Feb. 15, 2001), Lippincott Williams & Wilkins Publishers.
  • a person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved.
  • Typical anti-neoplastic agents useful in the present invention include, but are not limited to, anti-microtubule agents such as diterpenoids and vinca alkaloids; platinum coordination complexes; alkylating agents such as nitrogen mustards, oxazaphosphorines, alkylsulfonates, nitrosoureas, and triazenes; antibiotic agents such as anthracycline, actinomycins and bleomycins; topoisomerase II inhibitors such as epipodophyllotoxins; antimetabolites such as purine and pyrimidine analogues and anti-folate compounds; topoisomerase I inhibitors such as camptothecins; hormones and hormonal analogues; signal transduction pathway inhibitors; non-receptor tyrosine kinase angiogenesis inhibitors; immunotherapeutic agents; proapoptotic agents; and cell cycle signaling inhibitors.
  • anti-microtubule agents such as diterpenoids and vinca alkaloids
  • Examples of a further active ingredient or ingredients for use in combination or co-administered with the present PI3 kinase inhibiting compounds are chemotherapeutic agents.
  • Anti-microtubule or anti-mitotic agents are phase specific agents active against the microtubules of tumor cells during M or the mitosis phase of the cell cycle.
  • anti-microtubule agents include, but are not limited to, diterpenoids and vinca alkaloids.
  • Diterpenoids which are derived from natural sources, are phase specific anti-cancer agents that operate at the G 2 /M phases of the cell cycle. It is believed that the diterpenoids stabilize the ⁇ -tubulin subunit of the microtubules, by binding with this protein. Disassembly of the protein appears then to be inhibited with mitosis being arrested and cell death following. Examples of diterpenoids include, but are not limited to, paclitaxel and its analog docetaxel.
  • Paclitaxel 5 ⁇ ,20-epoxy-1,2 ⁇ ,4,7 ⁇ ,10 ⁇ ,13 ⁇ -hexa-hydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)—N-benzoyl-3-phenylisoserine; is a natural diterpene product isolated from the Pacific yew tree Taxus brevifolia and is commercially available as an injectable solution TAXOL®. It is a member of the taxane family of terpenes. It was first isolated in 1971 by Wani et al. J. Am. Chem., Soc., 93:2325. 1971), who characterized its structure by chemical and X-ray crystallographic methods.
  • Paclitaxel has been approved for clinical use in the treatment of refractory ovarian cancer in the United States (Markman et al., Yale Journal of Biology and Medicine, 64:583, 1991; McGuire et al., Ann. Intem, Med., 111:273, 1989) and for the treatment of breast cancer (Holmes et al., J. Nat. Cancer Inst., 83:1797, 1991.) It is a potential candidate for treatment of neoplasms in the skin (Einzig et. al., Proc. Am. Soc. Clin. Oncol., 20:46) and head and neck carcinomas (Forastire et. al., Sem. Oncol., 20:56, 1990).
  • the compound also shows potential for the treatment of polycystic kidney disease (Woo et. al., Nature, 368:750. 1994), lung cancer and malaria.
  • Treatment of patients with paclitaxel results in bone marrow suppression (multiple cell lineages, Ignoff, R. J. et. al, Cancer Chemotherapy Pocket Guide, 1998) related to the duration of dosing above a threshold concentration (50 nM) (Kearns, C. M. et. al., Seminars in Oncology, 3(6) p. 16-23, 1995).
  • Docetaxel (2R,3S)—N-carboxy-3-phenylisoserine,N-tert-butyl ester, 13-ester with 5 ⁇ -20-epoxy-1,2 ⁇ ,4,7 ⁇ ,10 ⁇ ,13 ⁇ -hexahydroxytax-11-en-9-one 4-acetate 2-benzoate, trihydrate; is commercially available as an injectable solution as TAXOTERE®.
  • Docetaxel is indicated for the treatment of breast cancer.
  • Docetaxel is a semisynthetic derivative of paclitaxel q.v., prepared using a natural precursor, 10-deacetyl-baccatin III, extracted from the needle of the European Yew tree. The dose limiting toxicity of docetaxel is neutropenia.
  • Vinca alkaloids are phase specific anti-neoplastic agents derived from the periwinkle plant. Vinca alkaloids act at the M phase (mitosis) of the cell cycle by binding specifically to tubulin. Consequently, the bound tubulin molecule is unable to polymerize into microtubules. Mitosis is believed to be arrested in metaphase with cell death following. Examples of vinca alkaloids include, but are not limited to, vinblastine, vincristine, and vinorelbine.
  • Vinblastine vincaleukoblastine sulfate
  • VELBAN® an injectable solution.
  • Myelosuppression is the dose limiting side effect of vinblastine.
  • Vincristine vincaleukoblastine, 22-oxo-, sulfate
  • ONCOVIN® an injectable solution.
  • Vincristine is indicated for the treatment of acute leukemias and has also found use in treatment regimens for Hodgkin's and non-Hodgkin's malignant lymphomas.
  • Alopecia and neurologic effects are the most common side effect of vincristine and to a lesser extent myelosupression and gastrointestinal mucositis effects occur.
  • Vinorelbine 3′,4′-didehydro-4′-deoxy-C′-norvincaleukoblastine [R—(R*,R*)-2,3-dihydroxybutanedioate (1:2)(salt)], commercially available as an injectable solution of vinorelbine tartrate (NAVELBINE®), is a semisynthetic vinca alkaloid. Vinorelbine is indicated as a single agent or in combination with other chemotherapeutic agents, such as cisplatin, in the treatment of various solid tumors, particularly non-small cell lung, advanced breast, and hormone refractory prostate cancers. Myelosuppression is the most common dose limiting side effect of vinorelbine.
  • Platinum coordination complexes are non-phase specific anti-cancer agents, which are interactive with DNA.
  • the platinum complexes enter tumor cells, undergo, aquation and form intra- and interstrand crosslinks with DNA causing adverse biological effects to the tumor.
  • Examples of platinum coordination complexes include, but are not limited to, cisplatin and carboplatin.
  • Cisplatin cis-diamminedichloroplatinum
  • PLATINOL@ an injectable solution.
  • Cisplatin is primarily indicated in the treatment of metastatic testicular and ovarian cancer and advanced bladder cancer.
  • the primary dose limiting side effects of cisplatin are nephrotoxicity, which may be controlled by hydration and diuresis, and ototoxicity.
  • Carboplatin platinum, diammine [1,1-cyclobutane-dicarboxylate(2-)-O,O′], is commercially available as PARAPLATIN® as an injectable solution.
  • Carboplatin is primarily indicated in the first and second line treatment of advanced ovarian carcinoma. Bone marrow suppression is the dose limiting toxicity of carboplatin.
  • Alkylating agents are non-phase anti-cancer specific agents and strong electrophiles. Typically, alkylating agents form covalent linkages, by alkylation, to DNA through nucleophilic moieties of the DNA molecule such as phosphate, amino, sulfhydryl, hydroxy, carboxyl, and imidazole groups. Such alkylation disrupts nucleic acid function leading to cell death.
  • alkylating agents include, but are not limited to, nitrogen mustards such as cyclophosphamide, melphalan, and chlorambucil; alkyl sulfonates such as busulfan; nitrosoureas such as carmustine; and triazenes such as dacarbazine.
  • Cyclophosphamide 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide monohydrate, is commercially available as an injectable solution or tablets as CYTOXAN®. Cyclophosphamide is indicated as a single agent or in combination with other chemotherapeutic agents, in the treatment of malignant lymphomas, multiple myeloma, and leukemias. Alopecia, nausea, vomiting and leukopenia are the most common dose limiting side effects of cyclophosphamide.
  • Melphalan 4-[bis(2-chloroethyl)amino]-L-phenylalanine, is commercially available as an injectable solution or tablets as ALKERAN®. Melphalan is indicated for the palliative treatment of multiple myeloma and non-resectable epithelial carcinoma of the ovary. Bone marrow suppression is the most common dose limiting side effect of melphalan.
  • Chlorambucil 4-[bis(2-chloroethyl)amino]benzenebutanoic acid, is commercially available as LEUKERAN® tablets. Chlorambucil is indicated for the palliative treatment of chronic lymphatic leukemia, and malignant lymphomas such as lymphosarcoma, giant follicular lymphoma, and Hodgkin's disease. Bone marrow suppression is the most common dose limiting side effect of chlorambucil.
  • Busulfan 1,4-butanediol dimethanesulfonate, is commercially available as MYLERAN® TABLETS. Busulfan is indicated for the palliative treatment of chronic myelogenous leukemia. Bone marrow suppression is the most common dose limiting side effects of busulfan.
  • Carmustine 1,3-[bis(2-chloroethyl)-1-nitrosourea, is commercially available as single vials of lyophilized material as BiCNU®.
  • Carmustine is indicated for the palliative treatment as a single agent or in combination with other agents for brain tumors, multiple myeloma, Hodgkin's disease, and non-Hodgkin's lymphomas. Delayed myelosuppression is the most common dose limiting side effects of carmustine.
  • dacarbazine 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide, is commercially available as single vials of material as DTIC-Dome®.
  • dacarbazine is indicated for the treatment of metastatic malignant melanoma and in combination with other agents for the second line treatment of Hodgkin's Disease. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dacarbazine.
  • Antibiotic anti-neoplastics are non-phase specific agents, which bind or intercalate with DNA. Typically, such action results in stable DNA complexes or strand breakage, which disrupts ordinary function of the nucleic acids leading to cell death.
  • antibiotic anti-neoplastic agents include, but are not limited to, actinomycins such as dactinomycin, anthrocyclins such as daunorubicin and doxorubicin; and bleomycins.
  • Dactinomycin also know as Actinomycin D, is commercially available in injectable form as COSMEGEN®. Dactinomycin is indicated for the treatment of Wilm's tumor and rhabdomyosarcoma. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dactinomycin.
  • Daunorubicin (8S-cis-)-8-acetyl-10-[(3-amino-2,3,6-trideoxy- ⁇ -L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12 naphthacenedione hydrochloride, is commercially available as a liposomal injectable form as DAUNOXOME® or as an injectable as CERUBIDINE®. Daunorubicin is indicated for remission induction in the treatment of acute nonlymphocytic leukemia and advanced HIV associated Kaposi's sarcoma. Myelosuppression is the most common dose limiting side effect of daunorubicin.
  • Doxorubicin (8S,10S)-10-[(3-amino-2,3,6-trideoxy- ⁇ -L-lyxo-hexopyranosyl)oxy]-8-glycoloyl, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12 naphthacenedione hydrochloride, is commercially available as an injectable form as RUBEX® or ADRIAMYCIN RDF®.
  • Doxorubicin is primarily indicated for the treatment of acute lymphoblastic leukemia and acute myeloblastic leukemia, but is also a useful component in the treatment of some solid tumors and lymphomas. Myelosuppression is the most common dose limiting side effect of doxorubicin.
  • Bleomycin a mixture of cytotoxic glycopeptide antibiotics isolated from a strain of Streptomyces verticillus , is commercially available as BLENOXANE®. Bleomycin is indicated as a palliative treatment, as a single agent or in combination with other agents, of squamous cell carcinoma, lymphomas, and testicular carcinomas. Pulmonary and cutaneous toxicities are the most common dose limiting side effects of bleomycin.
  • Topoisomerase II inhibitors include, but are not limited to, epipodophyllotoxins.
  • Epipodophyllotoxins are phase specific anti-neoplastic agents derived from the mandrake plant. Epipodophyllotoxins typically affect cells in the S and G 2 phases of the cell cycle by forming a ternary complex with topoisomerase II and DNA causing DNA strand breaks. The strand breaks accumulate and cell death follows. Examples of epipodophyllotoxins include, but are not limited to, etoposide and teniposide.
  • Etoposide 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-ethylidene- ⁇ -D-glucopyranoside]
  • VePESID® an injectable solution or capsules
  • VP-16 an injectable solution or capsules
  • Etoposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of testicular and non-small cell lung cancers. Myelosuppression is the most common side effect of etoposide. The incidence of leucopenia tends to be more severe than thrombocytopenia.
  • Teniposide 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-thenylidene- ⁇ -D-glucopyranoside], is commercially available as an injectable solution as VUMON® and is commonly known as VM-26.
  • Teniposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia in children. Myelosuppression is the most common dose limiting side effect of teniposide. Teniposide can induce both leucopenia and thrombocytopenia.
  • Antimetabolite neoplastic agents are phase specific anti-neoplastic agents that act at S phase (DNA synthesis) of the cell cycle by inhibiting DNA synthesis or by inhibiting purine or pyrimidine base synthesis and thereby limiting DNA synthesis. Consequently, S phase does not proceed and cell death follows.
  • Examples of antimetabolite anti-neoplastic agents include, but are not limited to, fluorouracil, methotrexate, cytarabine, mercaptopurine, thioguanine, and gemcitabine.
  • 5-fluorouracil 5-fluoro-2,4-(1H,3H) pyrimidinedione
  • fluorouracil is commercially available as fluorouracil.
  • Administration of 5-fluorouracil leads to inhibition of thymidylate synthesis and is also incorporated into both RNA and DNA. The result typically is cell death.
  • 5-fluorouracil is indicated as a single agent or in combination with other chemotherapy agents in the treatment of carcinomas of the breast, colon, rectum, stomach and pancreas. Myelosuppression and mucositis are dose limiting side effects of 5-fluorouracil.
  • Other fluoropyrimidine analogs include 5-fluoro deoxyuridine (floxuridine) and 5-fluorodeoxyuridine monophosphate.
  • Cytarabine 4-amino-1- ⁇ -D-arabinofuranosyl-2 (1H)-pyrimidinone, is commercially available as CYTOSAR-U® and is commonly known as Ara-C. It is believed that cytarabine exhibits cell phase specificity at S-phase by inhibiting DNA chain elongation by terminal incorporation of cytarabine into the growing DNA chain. Cytarabine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Other cytidine analogs include 5-azacytidine and 2′,2′-difluorodeoxycytidine (gemcitabine). Cytarabine induces leucopenia, thrombocytopenia, and mucositis.
  • Mercaptopurine 1,7-dihydro-6H-purine-6-thione monohydrate, is commercially available as PURINETHOL®.
  • Mercaptopurine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Mercaptopurine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Myelosuppression and gastrointestinal mucositis are expected side effects of mercaptopurine at high doses.
  • a useful mercaptopurine analog is azathioprine.
  • Thioguanine 2-amino-1,7-dihydro-6H-purine-6-thione, is commercially available as TABLOID®.
  • Thioguanine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Thioguanine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of thioguanine administration. However, gastrointestinal side effects occur and can be dose limiting.
  • Other purine analogs include pentostatin, erythrohydroxynonyladenine, fludarabine phosphate, and cladribine.
  • Gemcitabine 2′-deoxy-2′,2′-difluorocytidine monohydrochloride ( ⁇ -isomer), is commercially available as GEMZAR®.
  • GEMZAR® 2′-deoxy-2′,2′-difluorocytidine monohydrochloride
  • Gemcitabine exhibits cell phase specificity at S-phase and by blocking progression of cells through the G1/S boundary.
  • Gemcitabine is indicated in combination with cisplatin in the treatment of locally advanced non-small cell lung cancer and alone in the treatment of locally advanced pancreatic cancer.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of gemcitabine administration.
  • Methotrexate N-[4[[(2,4-diamino-6-pteridinyl) methyl]methylamino]benzoyl]-L-glutamic acid, is commercially available as methotrexate sodium. Methotrexate exhibits cell phase effects specifically at S-phase by inhibiting DNA synthesis, repair and/or replication through the inhibition of dyhydrofolic acid reductase which is required for synthesis of purine nucleotides and thymidylate.
  • Methotrexate is indicated as a single agent or in combination with other chemotherapy agents in the treatment of choriocarcinoma, meningeal leukemia, non-Hodgkin's lymphoma, and carcinomas of the breast, head, neck, ovary and bladder.
  • Myelosuppression (leucopenia, thrombocytopenia, and anemia) and mucositis are expected side effect of methotrexate administration.
  • Camptothecins including, camptothecin and camptothecin derivatives are available or under development as Topoisomerase I inhibitors. Camptothecins cytotoxic activity is believed to be related to its Topoisomerase I inhibitory activity. Examples of camptothecins include, but are not limited to irinotecan, topotecan, and the various optical forms of 7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20-camptothecin described below.
  • Irinotecan HCl (4S)-4,11-diethyl-4-hydroxy-9-[(4-piperidinopiperidino) carbonyloxy]-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione hydrochloride, is commercially available as the injectable solution CAMPTOSAR®.
  • Irinotecan is a derivative of camptothecin which binds, along with its active metabolite SN-38, to the topoisomerase I—DNA complex. It is believed that cytotoxicity occurs as a result of irreparable double strand breaks caused by interaction of the topoisomerase I:DNA:irintecan or SN-38 ternary complex with replication enzymes. Irinotecan is indicated for treatment of metastatic cancer of the colon or rectum. The dose limiting side effects of irinotecan HCl are myelosuppression, including neutropenia, and GI effects, including diarrhea.
  • Topotecan HCl (S)-10-[(dimethylamino)methyl]-4-ethyl-4,9-dihydroxy-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione monohydrochloride, is commercially available as the injectable solution HYCAMTIN®.
  • Topotecan is a derivative of camptothecin which binds to the topoisomerase I—DNA complex and prevents religation of singles strand breaks caused by Topoisomerase I in response to torsional strain of the DNA molecule.
  • Topotecan is indicated for second line treatment of metastatic carcinoma of the ovary and small cell lung cancer.
  • the dose limiting side effect of topotecan HCl is myelosuppression, primarily neutropenia.
  • camptothecin derivative of formula A following, currently under development, including the racemic mixture (R,S) form as well as the R and S enantiomers:
  • Hormones and hormonal analogues are useful compounds for treating cancers in which there is a relationship between the hormone(s) and growth and/or lack of growth of the cancer.
  • hormones and hormonal analogues useful in cancer treatment include, but are not limited to, adrenocorticosteroids such as prednisone and prednisolone which are useful in the treatment of malignant lymphoma and acute leukemia in children; aminoglutethimide and other aromatase inhibitors such as anastrozole, letrazole, vorazole, and exemestane useful in the treatment of adrenocortical carcinoma and hormone dependent breast carcinoma containing estrogen receptors; progestrins such as megestrol acetate useful in the treatment of hormone dependent breast cancer and endometrial carcinoma; estrogens, androgens, and anti-androgens such as flutamide, nilutamide, bicalutamide, cyproterone acetate and 5 ⁇ -reductases
  • GnRH gonadotropin-releasing hormone
  • LH leutinizing hormone
  • FSH follicle stimulating hormone
  • Signal transduction pathway inhibitors are those inhibitors, which block or inhibit a chemical process which evokes an intracellular change. As used herein this change is cell proliferation or differentiation.
  • Signal tranduction inhibitors useful in the present invention include inhibitors of receptor tyrosine kinases, non-receptor tyrosine kinases, SH2/SH3domain blockers, serine/threonine kinases, phosphotidyl inositol-3 kinases, myo-inositol signaling, and Ras oncogenes.
  • protein tyrosine kinases catalyse the phosphorylation of specific tyrosyl residues in various proteins involved in the regulation of cell growth.
  • protein tyrosine kinases can be broadly classified as receptor or non-receptor kinases.
  • Receptor tyrosine kinases are transmembrane proteins having an extracellular ligand binding domain, a transmembrane domain, and a tyrosine kinase domain. Receptor tyrosine kinases are involved in the regulation of cell growth and are generally termed growth factor receptors. Inappropriate or uncontrolled activation of many of these kinases, i.e. aberrant kinase growth factor receptor activity, for example by over-expression or mutation, has been shown to result in uncontrolled cell growth. Accordingly, the aberrant activity of such kinases has been linked to malignant tissue growth. Consequently, inhibitors of such kinases could provide cancer treatment methods.
  • Growth factor receptors include, for example, epidermal growth factor receptor (EGFr), platelet derived growth factor receptor (PDGFr), erbB2, erbB4, vascular endothelial growth factor receptor (VEGFr), tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (TIE-2), insulin growth factor-I (IGFI) receptor, macrophage colony stimulating factor (cfms), BTK, ckit, cmet, fibroblast growth factor (FGF) receptors, Trk receptors (TrkA, TrkB, and TrkC), ephrin (eph) receptors, and the RET protooncogene.
  • EGFr epidermal growth factor receptor
  • PDGFr platelet derived growth factor receptor
  • erbB2 erbB4
  • VEGFr vascular endothelial growth factor receptor
  • TIE-2 vascular endothelial growth factor receptor
  • IGFI insulin growth factor
  • inhibitors of growth receptors include ligand antagonists, antibodies, tyrosine kinase inhibitors and anti-sense oligonucleotides.
  • Growth factor receptors and agents that inhibit growth factor receptor function are described, for instance, in Kath, John C., Exp. Opin. Ther. Patents (2000) 10(6):803-818; Shawver et al DDT Vol 2, No. 2 Feb. 1997; and Lofts, F. J. et al, “Growth factor receptors as targets”, New Molecular Targets for Cancer Chemotherapy, ed. Workman, Paul and Kerr, David, CRC press 1994, London.
  • Non-receptor tyrosine kinases which are not growth factor receptor kinases are termed non-receptor tyrosine kinases.
  • Non-receptor tyrosine kinases useful in the present invention include cSrc, Lck, Fyn, Yes, Jak, cAbl, FAK (Focal adhesion kinase), Brutons tyrosine kinase, and Bcr-Abl.
  • Such non-receptor kinases and agents which inhibit non-receptor tyrosine kinase function are described in Sinh, S, and Corey, S. J., (1999) Journal of Hematotherapy and Stem Cell Research 8 (5): 465-80; and Bolen, J. B., Brugge, J. S., (1997) Annual review of Immunology. 15: 371-404.
  • SH2/SH3 domain blockers are agents that disrupt SH2 or SH3 domain binding in a variety of enzymes or adaptor proteins including, PI3-K p85 subunit, Src family kinases, adaptor molecules (Shc, Crk, Nck, Grb2) and Ras-GAP.
  • SH2/SH3 domains as targets for anti-cancer drugs are discussed in Smithgall, T. E. (1995), Journal of Pharmacological and Toxicological Methods. 34(3) 125-32.
  • Inhibitors of Serine/Threonine Kinases including MAP kinase cascade blockers which include blockers of Raf kinases (rafk), Mitogen or Extracellular Regulated Kinase (MEKs), and Extracellular Regulated Kinases (ERKs); and Protein kinase C family member blockers including blockers of PKCs (alpha, beta, gamma, epsilon, mu, lambda, iota, zeta) IkB kinase family (IKKa, IKKb), PKB family kinases, AKT kinase family members, and TGF beta receptor kinases.
  • PKCs alpha, beta, gamma, epsilon, mu, lambda, iota, zeta
  • IKKa, IKKb IkB kinase family
  • PKB family kinases AKT kinase family members
  • Serine/Threonine kinases and inhibitors thereof are described in Yamamoto, T., Taya, S., Kaibuchi, K., (1999), Journal of Biochemistry. 126 (5) 799-803; Brodt, P, Samani, A., and Navab, R. (2000), Biochemical Pharmacology, 60. 1101-1107; Massague, J., Weis-Garcia, F. (1996) Cancer Surveys. 27:41-64; Philip, P. A., and Harris, A. L. (1995), Cancer Treatment and Research. 78: 3-27, Lackey, K. et al Bioorganic and Medicinal Chemistry Letters, (10), 2000, 223-226; U.S. Pat. No. 6,268,391; and Martinez-Iacaci, L., et al, Int. J. Cancer (2000), 88(1), 44-52.
  • Inhibitors of Phosphotidyl inositol-3 Kinase family members including blockers of PI3-kinase, ATM, DNA-PK, and Ku are also useful in the present invention.
  • Such kinases are discussed in Abraham, R. T. (1996), Current Opinion in Immunology. 8 (3) 412-8; Canman, C. E., Lim, D. S. (1998), Oncogene 17 (25) 3301-3308; Jackson, S. P. (1997), International Journal of Biochemistry and Cell Biology. 29 (7):935-8; and Zhong, H. et al, Cancer res, (2000) 60(6), 1541-1545.
  • Myo-inositol signaling inhibitors such as phospholipase C blockers and Myoinositol analogues.
  • signal inhibitors are described in Powis, G., and Kozikowski A., (1994) New Molecular Targets for Cancer Chemotherapy ed., Paul Workman and David Kerr, CRC press 1994, London.
  • Ras Oncogene Another group of signal transduction pathway inhibitors are inhibitors of Ras Oncogene.
  • Such inhibitors include inhibitors of farnesyltransferase, geranyl-geranyl transferase, and CAAX proteases as well as anti-sense oligonucleotides, ribozymes and immunotherapy.
  • Such inhibitors have been shown to block ras activation in cells containing wild type mutant ras, thereby acting as antiproliferation agents.
  • Ras oncogene inhibition is discussed in Scharovsky, O. G., Rozados, V. R., Gervasoni, S. I. Matar, P. (2000), Journal of Biomedical Science. 7(4) 292-8; Ashby, M. N. (1998), Current Opinion in Lipidology. 9 (2) 99-102; and BioChem. Biophys. Acta, (19899) 1423(3):19-30.
  • antibody antagonists to receptor kinase ligand binding may also serve as signal transduction inhibitors.
  • This group of signal transduction pathway inhibitors includes the use of humanized antibodies to the extracellular ligand binding domain of receptor tyrosine kinases.
  • Imclone C225 EGFR specific antibody see Green, M. C. et al, Monoclonal Antibody Therapy for Solid Tumors, Cancer Treat.
  • Herceptin® erbB2 antibody see Tyrosine Kinase Signalling in Breast cancer:erbB Family Receptor Tyrosine Kinases, Breast cancer Res., 2000, 2(3), 176-183
  • 2CB VEGFR2 specific antibody see Brekken, R. A. et al, Selective Inhibition of VEGFR2 Activity by a monoclonal Anti-VEGF antibody blocks tumor growth in mice, Cancer Res. (2000) 60, 5117-5124).
  • Non-receptor kinase angiogenesis inhibitors may also find use in the present invention.
  • Inhibitors of angiogenesis related VEGFR and TIE2 are discussed above in regard to signal transduction inhibitors (both receptors are receptor tyrosine kinases). Accordingly, non-receptor tyrosine kinase inhibitors may be used in combination with the inhibitors of the present invention.
  • anti-VEGF antibodies which do not recognize VEGFR (the receptor tyrosine kinase), but bind to the ligand; small molecule inhibitors of integrin (alpha v beta 3 ) that will inhibit angiogenesis; endostatin and angiostatin (non-RTK) may also prove useful in combination with the disclosed family inhibitors.
  • VEGFR the receptor tyrosine kinase
  • small molecule inhibitors of integrin alpha v beta 3
  • endostatin and angiostatin non-RTK
  • Agents used in immunotherapeutic regimens may also be useful in combination with the compounds of formula (I).
  • immunologic strategies to generate an immune response against erbB2 or EGFR. These strategies are generally in the realm of tumor vaccinations.
  • the efficacy of immunologic approaches may be greatly enhanced through combined inhibition of erbB2/EGFR signaling pathways using a small molecule inhibitor. Discussion of the immunologic/tumor vaccine approach against erbB2/EGFR are found in Reilly R T et al. (2000), Cancer Res. 60: 3569-3576; and Chen Y, Hu D, Eling D J, Robbins J, and Kipps T J. (1998), Cancer Res. 58: 1965-1971.
  • Agents used in proapoptotic regimens may also be used in the combination of the present invention.
  • Members of the Bcl-2 family of proteins block apoptosis. Upregulation of bcl-2 has therefore been linked to chemoresistance.
  • EGF epidermal growth factor
  • Cell cycle signalling inhibitors inhibit molecules involved in the control of the cell cycle.
  • a family of protein kinases called cyclin dependent kinases (CDKs) and their interaction with a family of proteins termed cyclins controls progression through the eukaryotic cell cycle. The coordinate activation and inactivation of different cyclin/CDK complexes is necessary for normal progression through the cell cycle.
  • CDKs cyclin dependent kinases
  • Several inhibitors of cell cycle signalling are under development. For instance, examples of cyclin dependent kinases, including CDK2, CDK4, and CDK6 and inhibitors for the same are described in, for instance, Rosania et al, Exp. Opin. Ther. Patents (2000) 10(2):215-230.
  • the cancer treatment method of the claimed invention includes the co-administration a compound of formula I and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof and at least one anti-neoplastic agent, such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • anti-neoplastic agent such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyros
  • Solid or liquid pharmaceutical carriers are employed.
  • Solid carriers include, starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid.
  • Liquid carriers include syrup, peanut oil, olive oil, saline, and water.
  • the carrier or diluent may include any prolonged release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
  • the amount of solid carrier varies widely but, preferably, will be from about 25 mg to about 1 g per dosage unit.
  • the preparation will be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampoule, or an aqueous or nonaqueous liquid suspension.
  • the pharmaceutical preparations are made following conventional techniques of a pharmaceutical chemist involving mixing, granulating, and compressing, when necessary, for tablet forms, or mixing, filling and dissolving the ingredients, as appropriate, to give the desired oral or parenteral products.
  • Doses of the presently invented pharmaceutically active compounds in a pharmaceutical dosage unit as described above will be an efficacious, nontoxic quantity preferably selected from the range of 0.001-100 mg/kg of active compound, preferably 0.001-50 mg/kg.
  • the selected dose is administered preferably from 1-6 times daily, orally or parenterally.
  • Preferred forms of parenteral administration include topically, rectally, transdermally, by injection and continuously by infusion.
  • Oral dosage units for human administration preferably contain from 0.05 to 3500 mg of active compound.
  • the oral dosage for human administration contains 100 to 1000 mg per day.
  • Oral administration which uses lower dosages is preferred. Parenteral administration, at high dosages, however, also can be used when safe and convenient for the patient.
  • Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular PI3 kinase inhibitor in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular patient being treated will result in a need to adjust dosages, including patient age, weight, diet, and time of administration.
  • Exemplary dosages include oral formulations equivalent to 10 mg, 25 mg, and 100 mg of the compound of formula (I), to be administered alone, in multiples, or in combination.
  • Another exemplary dosage includes oral formulations of the tris(hydroxymethyl)aminomethane salt of 2-methyl-1- ⁇ [2-methyl-3-(trifluoromethyl)phenyl]methyl ⁇ -6-(4-morpholinyl)-1H-benzimidazole-4-carboxylic acid equivalent to 10 mg, 25 mg, or 100 mg of the free base of 2-methyl-1- ⁇ [2-methyl-3-(trifluoromethyl)phenyl]methyl ⁇ -6-(4-morpholinyl)-1H-benzimidazole-4-carboxylic acid.
  • the method of this invention of inducing PI3 kinase inhibitory activity in mammals, including humans, comprises administering to a subject in need of such activity an effective PI3 kinase modulating/inhibiting amount of a pharmaceutically active compound of the present invention.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use as a PI3 kinase inhibitor.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in therapy.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in treating autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • the invention also provides for a pharmaceutical composition for use as a PI3 inhibitor which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • the invention also provides for a pharmaceutical composition for use in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries, which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • the pharmaceutically active compounds of the present invention can be co-administered with further active ingredients, including compounds known to have utility when used in combination with a PI3 kinase inhibitor.
  • 2,6-dinitro aniline 1 can be brominated with bromine in acetic acid to provide 4-bromo-2,6-dinitroaniline 2 that can be reduced to the di-amino nitro benzene 3 with (NH 4 + ) 2 S.
  • Alkylation to afford substituted benzimidazole 5 can be accomplished with a suitably substituted alkyl halide with a base, such as K 2 CO 3 , in a polar aprotic solvent, such as DMF.
  • 2,6-dinitro aniline 1 can be brominated with bromine in acetic acid to provide 4-bromo-2,6-dinitroaniline 2 that can be reduced to the di-amino nitro benzene 3 with (NH 4 + ) 2 S.
  • Subsequent reaction of 3 with a carboxylic acid in the presence of strong acid at elevated temperatures affords nitrobenzimidazole 4.
  • Alkylation to afford substituted benzimidazole 5 can be accomplished with a suitably substituted alkyl halide with a base, such as K 2 CO 3 , in a polar aprotic solvent, such as DMF.
  • 2-amino-3-nitrophenol 1 can be methylated with MeI and K 2 CO 3 in DMF to afford methoxy nitro aniline 2.
  • Bromination, with bromine in acetic acid, followed by acetylation with acetic anhydride in acetic acid and sulfuric acid, can provide intermediate 4.
  • Palladium-catalyzed displacement of the aromatic bromide with morpholine can then afford intermediate 5.
  • Iron-induced nitro reduction followed by ring closure can then provide benzimidazole 6 that can be alkylated with a suitably substituted alkyl bromide using a base, such as K 2 CO 3 , in a polar aprotic solvent such as DMF, to afford final products 7.
  • Aminobenzimidazole 1 can be converted to bromobenzimidazole 2 using sodium nitrite with NaBr in aqueous HBr. Palladium catalyzed coupling with an aryl boronic acid in the presence of a suitable phosphine with an inorganic base in a polar non-protic solvent can then provide final substituted benzimidazoles 3. Het includes 2-, 3-furanyls, and 1,3-thiozols.
  • Palladium catalyzed carbonylaton of bromo-benzimidazole 1 can be accomplished by bubbling carbon-monoxide gas in methanol with triethylamine to provide methyl ester 2. Ester hydrolysis can then be accomplished with lithium hydroxide in THF/water to provide final product benzimidazole acid 3.
  • Palladium catalyzed cyanation of bromo-benzimidazole 1 can be accomplished with zinc cyanide in DMF to provide benzimidazole nitrile 2.
  • the nitrile can be converted to the primary carboxamide with KOH and peroxide in THF to provide amide 3.
  • Treatment of the carboxamide 3 with DMF-DMA can provide intermediate 4 that can then be cyclized to triazole analogs 5 with hydrazine in acetic acid.
  • Amination of 5-chloro-2-nitrobenzoic acid with O-methyl hydroxylamine and t-butoxide in the presence of copper acetate can provide 3-amino-5-chloro-2-nitrobenzoic acid 2.
  • Esterification can be accomplished with methanol and sulfuric acid to provide methyl ester 3 that can be reacted with morpholine in DMF with K 2 CO 3 to provide phenyl morpholine analog 4.
  • Nitro reduction can be accomplished using a variety of metal reductions to provide diamine 5.
  • Example 1 A mixture of Example 1 (1.17 g) (prepared as described previously described), 1-(bromomethyl)-2,3-dichlorobenzene (1.19 g) and K 2 CO 3 (1.27 g) in DMF (80 mL) was stirred at 80° C. for 3 h. When TLC showed no starting material, the mixture was cooled to room temperature and filtered. The filtrate was then poured into water.
  • step d a solution of methyl 2-methyl-5-(4-morpholinyl)-1H-benzimidazole-7-carboxylate prepared as described in Example 26, step d (0.22 g, 0.799 mmol) in N,N-Dimethylformamide (DMF) (10 mL) was added in 4-(chloromethyl)-1,2-dimethylbenzene (0.185 g, 1.199 mmol) and potassium carbonate (0.331 g, 2.397 mmol). The resulting reaction mixture was stirred at 80° C. for 3 h. It was cooled to room temperature and poured into water (30 mL). The mixture was extracted with EtOAc (50 mL ⁇ 3).
  • DMF N,N-Dimethylformamide
  • the mixture was diluted with ethyl acetate (50 mL) and the aqueous phase was extracted with ethyl acetate (50 mL ⁇ 2).
  • the combined organic phases were washed with brine (50 mL), dried over (MgSO 4 ), and filtered.
  • the solution was concentrated under reduced pressure.
  • the crude product was purified on a silica column (40 ⁇ 60% EtOAc/Hexane) to give the product (46 mg, 59%).
  • reaction mixture was quenched with water (0.04 mL), NaOH (15%, 0.04 mL) then water (0.12 mL) Anhydrous MgSO 4 was added and the reaction mixture was filtered through celite and washed with EtOAc. Evaporation of the solvent gave the crude product.
  • the crude product was purified on a silica column (1 ⁇ 4% MeOH/DCM) to give the solid (0.32 g, 88%).
  • the precipitate was collected by filtration, washed with water, then hexanes (turned into a gum on the filter paper—some material was lost).
  • the crude material was purified on a silica gel column (ISCO, eluting with 0-5% MeOH in DCM) to give the desired product (580 mg, 1.099 mmol, 24.12% yield) (several mixed fractions obtained were discarded).
  • Oxalyl chloride (0.251 mL, 2.87 mmol) was added to a suspension of 1- ⁇ [2-methyl-3-(trifluoromethyl)phenyl]methyl ⁇ -6-(4-morpholinyl)-2-(trifluoromethyl)-1H-benzimidazole-4-carboxylic acid, prepared as described in Example 47 (350 mg, 0.718 mmol) in Dichloromethane (DCM) (6 mL). The reaction mixture was stirred at rt for 10 minutes (turned into a solution) and then the solvent was evaporated. The residue (crude acid chloride), was dissolved in Tetrahydrofuran (THF) (6 mL).
  • THF Tetrahydrofuran
  • Oxalyl chloride (0.332 mL, 3.80 mmol) was added to a suspension of 1-[(2,3-dichlorophenyl)methyl]-6-(4-morpholinyl)-2-(trifluoromethyl)-1H-benzimidazole-4-carboxylic acid, prepared as described in Example 52 (450 mg, 0.949 mmol) in Dichloromethane (DCM) (7 mL). The reaction mixture was stirred at rt for 10 minutes and then the solvent was evaporated. The residue (crude acid chloride), was suspended in Tetrahydrofuran (THF) (7 mL).
  • THF Tetrahydrofuran
  • step a A suspension of 1-[(2,3-dichlorophenyl)methyl]-6-(4-morpholinyl)-2-(trifluoromethyl)-1H-benzimidazole-4-carboxamide, prepared as described in Example 56, step a (389 mg, 0.822 mmol) in N,N-dimethylformamide dimethyl acetal (9 mL, 67.2 mmol) was stirred at 105° C. for 1 hour. The reaction was concentrated under reduced pressure and the residue was suspended in Acetic Acid (7 mL). After the addition of hydrazine monohydrate (0.181 mL, 5.75 mmol) the reaction mixture was heated at 100° C. for 1 hour.
  • Oxalyl chloride (0.347 mL, 3.97 mmol) was added to a suspension of 1-[(3-chloro-2-methylphenyl)methyl]-6-(4-morpholinyl)-2-(trifluoromethyl)-1H-benzimidazole-4-carboxylic acid, prepared as described in Example 53 (450 mg, 0.992 mmol) in Dichloromethane (DCM) (8 mL). The reaction mixture was stirred at rt for 10 minutes and then the solvent was evaporated. The residue (crude acid chloride), was suspended in Tetrahydrofuran (THF) (8 mL).
  • THF Tetrahydrofuran
  • the residue was purified on a Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in-vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on a Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in-vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the crude product was purified on a silica column (0 ⁇ 10% MeOH/DCM). The fractions were concentrated and DCM (50 mL) was added in. The organic phase was washed with saturated NaHCO 3 solution (20 mL), Brine (20 mL), dried (MgSO 4 ) and concentrated to give the product as a white solid (0.18 g, 64%).
  • the reaction mixture was transferred in a microwavable vial and irradiated in a microwave reactor at 120° C. for 90 min.
  • the reaction mixture was diluted with EtOAc and CHCl 3 , washed with aq sat sol NH 4 Cl, brine, dried over Na 2 SO 4 and the solvent was evaporated under reduced pressure.
  • the residue was purified on a silica gel column (ISCO, 0-70% EtOAc in Hexanes—no product peak observed—then 0-10% MeOH in CH 2 Cl 2 ) to give desired product (94.8 mg, 0.204 mmol, 63.5% yield) as a yellow powder.
  • step a (11.0 g, 4.0 mmol) in DMF (50 mL) was added urea (720 mg, 12 mmol) and the mixture was heated to 170° C. for 4 h.
  • urea 720 mg, 12 mmol
  • the mixture was cooled to room temperature then diluted with DCM (200 mL), washed with water (50 mL ⁇ 2) and dried over anhydrous Na 2 SO 4 , filtered and concentrated in-vacuo.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • reaction mixture was diluted with EtOAc and CHCl 3 , washed with NH 4 Cl aq sat sol, brine, dried over Na 2 SO 4 and evaporated under reduced pressure.
  • the residue was purified on silica gel (ISCO, 0-70% EtOAc in Hexanes, then 0-10% MeOH in CH 2 Cl 2 ) to give the desired product (127 mg, 0.255 mmol, 59.8% yield) as a yellow powder.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl.
  • the residue was purified on Biotage Isolera purification system using a Biotage 10 g SNAP silica gel cartridge and eluted with a gradient of DCM to 5% MeOH/DCM over 10 column volumes.
  • the expected compound was collected and evaporated to yield a tan solid.
  • the tan solid was dissolved in tetrahydrofuran (THF) (10.00 mL) followed by the addition of 1M lithium hydroxide solution (10 mL, 10 mmol). The reaction was stirred at 50° C. for 2 h. The reaction was cooled to room temperature and the organic solvent was removed in vacuo.
  • the solution was diluted with water (20 mL) and acidified with 1 N HCl. The mixture was then filtered and a gray solid was isolated.
  • PI3 kinases particularly PI3K ⁇ .
  • the activities (IC 50 ) of exemplified compounds range from about 1 nM to about 10 ⁇ M against PI3K ⁇ . The majority of the compounds were under 500 nM; the most active compounds were under 10 nM. The IC 50 value can be converted and presented as pIC 50 value.
  • the PI3-Kinase profiling assays were developed to measure the compound-dependent inhibition of the alpha, beta, delta, and gamma isoforms of PI3Kin an in vitro catalytic assay.
  • This assay was developed and optimized from a kit produced by Upstate (Millipore catalog #33-017). Briefly, this procedure utilizes a pre-formed HTRF (Homogeneous Time-Resolved Fluorescence energy transfer) complex between four binding partners: 1) biotinylated PIP3, 2) GST tagged pleckstrin homology (PH) domain, 3) Europium labeled anti-GST monoclonal antibody, and 4) Streptavidin-Allophycocyanin (APC).
  • HTRF Homogeneous Time-Resolved Fluorescence energy transfer
  • the native PIP3 produced by PI 3-Kinase activity displaces biotin-PIP3 from the PH domain, resulting in the dissociation of the HTRF complex and a decrease in the fluorescence signal.
  • the format of this assay is the same for all 4 isoforms of PI3K; the differences lie in the concentration of enzyme used to achieve the most robust signal.
  • the alpha and delta assays are run at 400 pM enzyme; the beta assay is at 200 pM enzyme and the gamma assay is run at 1 nM enzyme.
  • the alpha, beta and delta assays are run with 150 mM NaCl while the gamma assay is run in the absence of NaCl.
  • the ATP concentration is 100 uM in the alpha, beta, and delta assays and 15 uM ATP in the gamma assay. All reactions are run at 10 uM PIP2
  • PIP3 was added at 40 ⁇ M in 1 ⁇ Reaction buffer (1 ⁇ L of 200 ⁇ M PIP3) to alternating rows of column 18 (wells 18 B, D, F, H, J, L, N, P).
  • the no-enzyme control reactions were run in wells 18 A, C, E, G, I, K, M, O (0.1 ⁇ L of 100% DMSO).
  • the PI3-Kinase profiling assay was optimized using the HTRF kit provided by Upstate (Millipore).
  • the assay kit contained seven reagents: 1) 4 ⁇ Reaction Buffer; 2) native PIP2 (substrate); 3) Stop A (EDTA); 4) Stop B (Biotin-PIP3); 5) Detection Mix A (Streptavidin-APC); 6) Detection Mix B (Eu-labeled Anti-GST plus GST-tagged PH-domain); 7) Detection Mix C (KF).
  • PI3Kinase prepared by GSK BR&AD
  • dithiothreitol Sigma, D-5545
  • Adenosine-5′-triphosphate ATP, Teknova cat. #A0220
  • native PIP3 (1,2-dioctanoyl-sn-glycero-3-[phosphoinositil-3,4,5-triphosphate] tetraammonium salt
  • DMSO Stemolar lipids
  • PI3Kinase Reaction Buffer was prepared by diluting the stock 1:4 with de-ionized water. Freshly prepared DTT was added at a final concentration of 5 mM on the day of use. Enzyme addition and compound pre-incubation were initiated by the addition of 2.5 ⁇ L of PI3K (at twice its final concentration) in 1 ⁇ reaction buffer to all wells using a Multidrop Combi. Plates were incubated at room temperature for 15 minutes. Reactions were initiated by addition of 2.5 ⁇ L of 2 ⁇ substrate solution (PIP2 and ATP in 1 ⁇ reaction buffer) using a Multidrop Combi. Plates were incubated at room temperature for one hour.
  • Reactions were quenched by the addition of 2.5 ⁇ L of stop solution (Stop A and Stop B pre-mixed at a ratio of 5:1, respectively) to all wells using the Multidrop Combi.
  • the quenched reactions were then processed to detect product formation by adding 2.5 ⁇ L of Detection Solution to all wells using the Mulitdrop Combi (Detection mix C, Detection mix A, and Detection mix B combined together in an 18:1:1 ratio, i.e.: for a 6000 ⁇ L total volume, mix 5400 ⁇ L Detection mix C, 300 ⁇ L Detection mix A, and 300 ⁇ L Detection mix B. Note: this solution should be prepared 2 hours prior to use). Following a one hour incubation in the dark, the HTRF signal was measured on the Envision plate reader set for 330 nm excitation and dual emission detection at 620 nm (Eu) and 665 nm (APC).
  • the loss of the HTRF signal is due to the displacement of biotinylated-PIP3 from the PH domain by the PI3K-dependent conversion of PIP2 to PIP3.
  • This loss of signal is nonlinear with respect to both increasing product and time. This non-linear detection will impact accuracy of IC 50 calculations; therefore, there is a need for a correction factor to obtain more accurate IC 50 values.
  • This correction is derived from the assay standards in the wells of column 6 and 18 of the assay plate.
  • Table 1 lists the pIC50 values for either an experimental run or an average of two or more experimental runs with the examples shown.
  • PTEN wild-type or PTEN deficient tumor cell lines were cultured generally according to instructions supplied by cell culture supplier American Type Culture Collection, Manassas, Va., with 10% fetal bovine serum at 5% CO 2 and 37° C. Cells were seeded into either a T-75 or a T-175 flask 3-4 days prior to 96-well assay plating such that the flasks were approximately 70-80% confluent of the time of harvest. Cells were harvested using 0.25% trypsin-EDTA (Invitrogen #25200056). Trypan Blue exclusion staining was used to determine cell number.
  • Viable cells were plated in clear, flat bottom 96-well plates (BD #353075) under anchorage independent conditions at 2,000-10,000 cells per well depending on the cell line.
  • a 5% agar stock solution in water was made and autoclaved to melt and sterilize.
  • a 0.6% agar/media+10% fetal bovine serum (FBS) solution was made to generate a bottom agar layer in the plates to prevent cell attachment. Seventy five microliters per well of the 0.6% agar-media solution was added to the plates.
  • FBS fetal bovine serum
  • a cell solution of 266,870 to 1,334,022 cells (depending on the cell line) in 10 ml of 0.3% agar/media+10% FBS was made and 75 ⁇ l of the cell/media/agar suspension was added to the plates.
  • 50 ⁇ l of media+10% FBS was added to the top of the cells.
  • a 0.3% Brij 35 (Sigma B4184) solution in media+10% FBS was added to column 12 as a background subtraction control.
  • the EC 50 is the midpoint of active compound effect window (between Ymax plateau and Ymin plateau of compound) and represents the concentration of the compound of example 31 where 50% of its maximal effect is observed. Values from wells containing 0.3% Brij 35 (under anchorage independent conditions) were subtracted from all samples for background correction.
  • PC-3 prostate carcinoma cell line encoding a deficient PTEN protein
  • the activity of the compound of example 31 was evaluated in vivo against PC-3 (prostate carcinoma cell line encoding a deficient PTEN protein) xenograft mouse model.
  • the PC-3 tumor bearing mice were generated by injecting 2.5 ⁇ 10 6 PC-3 cells suspended 1:1 in Matrigel subcutaneously in the flank of female nude mice (Charles River—Wilmington; strain Crl: CD-1-Foxn1).
  • One set of mice, each approximately 19 weeks of age were implanted with the cells for the 100, 30, and 10 mg/kg doses and another set of mice, each approximately 11 weeks of age, were implanted with the cells for the 10, 3, and 1 mg/kg doses.
  • Tumor growth was measured twice weekly in two dimensions with vernier callipers; the longest dimension was defined as the length (l), and the width (w) was measured perpendicular to the length.
  • Means of the tumor volumes were used to compare treatment groups. Stable disease for this study is defined as a tumor volume which during the course of compound treatment does not substantially increase or decrease but stays similar to the volume prior to drug treatment compared to vehicle treated in which the tumor volume continues to increase during the course of the study.
  • Tumor growth delay is defined as tumor volume that is reduced during the course of the compound treatment relative to vehicle treated tumor volume.
  • the activity of the compound of example 31 was evaluated in vivo against PC-3 (prostate carcinoma cell line encoding a deficient PTEN protein) xenograft mouse model.
  • PC-3 prostate carcinoma cell line encoding a deficient PTEN protein
  • Female nude mice (Charles River Laboratories, Wilmington, Del.; strain CD-1-Foxn1, ⁇ 6 weeks of age) were injected subcutaneously with 2 million PC-3 (human prostate carcinoma) cells mixed 1:1 with Matrigel in the flank. Tumors were allowed to grow for approximately 5 weeks.
  • Tumor lysates were serially diluted in 96-well polypropylene plates on wet ice. Lysates (150 ⁇ L) were loaded in row 1; rows 2-12 were loaded with 75 ⁇ L of complete Meso Scale Discovery (MSD) lysis buffer (supplied in MSD kit; #K15100D-3). Samples were serially diluted 2-fold across the plate by sequential transfer of 75 ⁇ L through well 11; row 12 contained lysis buffer only. MSD Multi-Spot assay plates (whole cell lysate kit: Phospho(ser473), Total AKT Assay, catalog #K15100D-3) were blocked with 150 ⁇ L of 3% Blocker A overnight at 4° C.
  • MSD Multi-Spot assay plates whole cell lysate kit: Phospho(ser473), Total AKT Assay, catalog #K15100D-3
  • MSD Tris wash buffer Fifty microliters of the serially diluted lysates were pipetted onto the blocked MSD plates, covered, and incubated overnight at 4° C. with shaking Plates were washed with Tris buffer as before. Detection antibody was added (25 ⁇ L/well) at a final concentration of 10 nM in 1 mL Blocker A and 2 mLTris wash buffer and incubated for 1 hour at room temperature with shaking Plates were washed as described above, before the addition of 150 ⁇ L of MSD read buffer and read immediately on a 6000 MSD plate reader. All work was performed in accordance with Institutional Animal Care and Use Committee (IACUC) protocols PA0079 and PA0271.
  • IACUC Institutional Animal Care and Use Committee
  • P/T AKT was calculated as shown: (phospho AKT(Ser473) signal)/[(phospho AKT(Ser473) signal)+(total AKT signal)]. Values from three points in each row of diluted samples identified as being in the linear range of detection were averaged to represent each tumor sample's P/T AKT value. Averages and standard deviations of the P/T AKT value for each group of 3 mice were determined. Percent inhibition was calculated for each group as follows: 100—[(sample P/T AKT value)/(vehicle P/T AKT value)]*100.
  • the compound of example 31 exhibited dose dependent inhibition of the pharmacodynamic marker pAKT (pAKT/tAKT).
  • the compounds of the present invention can also be tested to determine their inhibitory activity at PI3K ⁇ , PI3K ⁇ , PI3K ⁇ and PI3K ⁇ according to international patent publication No. WO2009/039140.
  • the pharmaceutically active compounds within the scope of this invention are useful as PI3 Kinase inhibitors in mammals, particularly humans, in need thereof.
  • the present invention therefore provides a method of treating diseases associated with PI3 kinase inhibition, particularly: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries and other conditions requiring PI3 kinase modulation/inhibition, which comprises administering an effective compound of Formula (I) or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof.
  • the compounds of Formula (I) also provide for a method of treating the above indicated disease states because of their ability to act as PI3 inhibitors.
  • the drug may be administered to a patient in need thereof by any conventional route of administration, including, but not limited to, intravenous, intramuscular, oral, subcutaneous, intradermal, and parenteral.
  • An oral dosage form for administering the present invention is produced by filing a standard two piece hard gelatin capsule with the ingredients in the proportions shown in Table 3, below.
  • An injectable form for administering the present invention is produced by stirring 1.5% by weight of compound of example 1 in 10% by volume propylene glycol in water.
  • sucrose, calcium sulfate dihydrate and an PI3K inhibitor as shown in Table 4 below are mixed and granulated in the proportions shown with a 10% gelatin solution.
  • the wet granules are screened, dried, mixed with the starch, talc and stearic acid; screened and compressed into a tablet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
US13/876,853 2010-10-06 2011-09-23 Benzimidazole Derivatives As PI3 Kinase Inhibitors Abandoned US20130196990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/876,853 US20130196990A1 (en) 2010-10-06 2011-09-23 Benzimidazole Derivatives As PI3 Kinase Inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39031410P 2010-10-06 2010-10-06
US201161528397P 2011-08-29 2011-08-29
US13/876,853 US20130196990A1 (en) 2010-10-06 2011-09-23 Benzimidazole Derivatives As PI3 Kinase Inhibitors
PCT/US2011/052857 WO2012047538A1 (en) 2010-10-06 2011-09-23 Benzimidazole derivatives as pi3 kinase inhibitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/052857 A-371-Of-International WO2012047538A1 (en) 2010-10-06 2011-09-23 Benzimidazole derivatives as pi3 kinase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/031,136 Continuation US8674090B2 (en) 2010-10-06 2013-09-19 Benzimidazole derivatives as PI3 kinase inhibitors

Publications (1)

Publication Number Publication Date
US20130196990A1 true US20130196990A1 (en) 2013-08-01

Family

ID=45925614

Family Applications (10)

Application Number Title Priority Date Filing Date
US13/876,853 Abandoned US20130196990A1 (en) 2010-10-06 2011-09-23 Benzimidazole Derivatives As PI3 Kinase Inhibitors
US13/251,476 Active US8435988B2 (en) 2010-10-06 2011-10-03 Benzimidazole derivatives as P13 kinase inhibitors
US13/798,923 Active US8541411B2 (en) 2010-10-06 2013-03-13 Benzimidazole derivatives as PI3 kinase inhibitors
US14/031,136 Active US8674090B2 (en) 2010-10-06 2013-09-19 Benzimidazole derivatives as PI3 kinase inhibitors
US14/164,414 Active US8865912B2 (en) 2010-10-06 2014-01-27 Benzimidazole derivatives as PI3 kinase inhibitors
US14/481,098 Active US9062003B2 (en) 2010-10-06 2014-09-09 Benzimidazole derivatives as PI3 kinase inhibitors
US14/712,991 Active US9156797B2 (en) 2010-10-06 2015-05-15 Benzimidazole derivatives as PI3 kinase inhibitors
US14/844,051 Active US9872860B2 (en) 2010-10-06 2015-09-03 Benzimidazole derivatives as PI3 kinase inhibitors
US15/865,703 Active US10314845B2 (en) 2010-10-06 2018-01-09 Benzimidazole derivatives as PI3 kinase inhibitors
US16/393,210 Active US10660898B2 (en) 2010-10-06 2019-04-24 Benzimidazole derivatives as PI3 kinase inhibitors

Family Applications After (9)

Application Number Title Priority Date Filing Date
US13/251,476 Active US8435988B2 (en) 2010-10-06 2011-10-03 Benzimidazole derivatives as P13 kinase inhibitors
US13/798,923 Active US8541411B2 (en) 2010-10-06 2013-03-13 Benzimidazole derivatives as PI3 kinase inhibitors
US14/031,136 Active US8674090B2 (en) 2010-10-06 2013-09-19 Benzimidazole derivatives as PI3 kinase inhibitors
US14/164,414 Active US8865912B2 (en) 2010-10-06 2014-01-27 Benzimidazole derivatives as PI3 kinase inhibitors
US14/481,098 Active US9062003B2 (en) 2010-10-06 2014-09-09 Benzimidazole derivatives as PI3 kinase inhibitors
US14/712,991 Active US9156797B2 (en) 2010-10-06 2015-05-15 Benzimidazole derivatives as PI3 kinase inhibitors
US14/844,051 Active US9872860B2 (en) 2010-10-06 2015-09-03 Benzimidazole derivatives as PI3 kinase inhibitors
US15/865,703 Active US10314845B2 (en) 2010-10-06 2018-01-09 Benzimidazole derivatives as PI3 kinase inhibitors
US16/393,210 Active US10660898B2 (en) 2010-10-06 2019-04-24 Benzimidazole derivatives as PI3 kinase inhibitors

Country Status (37)

Country Link
US (10) US20130196990A1 (ar)
EP (2) EP2624696B1 (ar)
JP (1) JP5719028B2 (ar)
KR (1) KR101594002B1 (ar)
CN (1) CN103124496B (ar)
AR (1) AR083296A1 (ar)
AU (1) AU2011312594B2 (ar)
BR (1) BR112013008259A2 (ar)
CA (1) CA2812608C (ar)
CL (1) CL2013000935A1 (ar)
CO (1) CO6700852A2 (ar)
CR (1) CR20130192A (ar)
CY (1) CY1118792T1 (ar)
DK (1) DK2624696T3 (ar)
DO (1) DOP2013000059A (ar)
EA (1) EA022623B1 (ar)
ES (2) ES2616238T3 (ar)
HR (1) HRP20170279T1 (ar)
HU (1) HUE033209T2 (ar)
IL (1) IL225140A (ar)
JO (1) JO3194B1 (ar)
LT (1) LT2624696T (ar)
MA (1) MA34591B1 (ar)
ME (1) ME02663B (ar)
MX (1) MX337662B (ar)
MY (1) MY170236A (ar)
NZ (1) NZ608069A (ar)
PE (1) PE20140192A1 (ar)
PL (1) PL2624696T3 (ar)
PT (1) PT2624696T (ar)
RS (1) RS55662B1 (ar)
SG (1) SG188974A1 (ar)
SI (1) SI2624696T1 (ar)
TW (1) TWI513690B (ar)
UY (1) UY33648A (ar)
WO (1) WO2012047538A1 (ar)
ZA (1) ZA201301951B (ar)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095838A3 (en) * 2013-12-20 2015-11-12 Biomed Valley Discoveries, Inc. Cancer treatments using combinations of mek type i and erk inhibitors

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA34591B1 (fr) 2010-10-06 2013-10-02 Glaxosmithkline Llc Dérivés de benzimidazole utilisés comme inhibiteurs de pi3 kinase
US8778937B2 (en) * 2011-12-20 2014-07-15 Glaxosmithkline Llc Benzimidazole boronic acid derivatives as PI3 kinase inhibitors
KR20150103735A (ko) * 2013-01-09 2015-09-11 글락소스미스클라인 인털렉츄얼 프로퍼티 (넘버 2) 리미티드 조합물
US20160287610A1 (en) * 2013-09-19 2016-10-06 GlaxoSmithKline LLCC Combination Drug Therapy
CN105530934A (zh) * 2013-09-19 2016-04-27 葛兰素史克有限责任公司 组合药物疗法
MX2016004964A (es) 2013-10-16 2016-07-11 Shanghai Yingli Pharm Co Ltd Compuesto heterociclico fusionado, metodo de preparacion del mismo, composicion farmaceutica, y usos del mismo.
CN103910682B (zh) * 2013-11-28 2016-03-02 大连理工大学 一种基于邻苯二胺环化的苯并咪唑类化合物制备方法
KR20170012558A (ko) 2014-06-13 2017-02-02 길리애드 사이언시즈, 인코포레이티드 포스파티딜이노시톨 3-키나제 억제제
EA201692266A1 (ru) 2014-06-13 2017-06-30 Джилид Сайэнс, Инк. Ингибиторы фосфатидилинозитол-3-киназы
ES2833025T3 (es) 2014-06-13 2021-06-14 Gilead Sciences Inc Inhibidores de fosfatidilinositol 3-quinasa
BR112016028642A2 (pt) 2014-06-13 2017-08-22 Gilead Sciences Inc composto, composição farmacêutica, método de tratamento de uma doença ou condição, método de inibição da atividade de um polipeptídeo de fosfatidilinositol 3-quinase, método de inibição de reações imunes ou crescimento excessivo ou destrutivo ou de proliferação de células cancerosas, kit, e, uso de um composto, de um sal, de um isômero ou de uma mistura farmaceuticamente aceitável do mesmo.
KR20170010063A (ko) 2014-06-13 2017-01-25 길리애드 사이언시즈, 인코포레이티드 포스파티딜이노시톨 3-키나제 억제제
AU2015366202B2 (en) 2014-12-19 2020-01-02 Janssen Pharmaceutica Nv Heterocyclyl linked imidazopyridazine derivatives as PI3Kbeta inhibitors
PT3233862T (pt) 2014-12-19 2019-10-09 Janssen Pharmaceutica Nv Derivados de imidazopiridazina como inibidores de pi3kbeta
GB201504689D0 (en) 2015-03-19 2015-05-06 Glaxosmithkline Ip Dev Ltd Chemical compounds
CA2999818C (en) 2015-10-09 2023-11-07 Janssen Pharmaceutica Nv Quinoxaline and pyridopyrazine derivatives as pi3k.beta. inhibitors
US10729680B2 (en) * 2016-01-14 2020-08-04 Bayer Pharma Aktiengesellschaft 5-substituted 2-(morpholin-4-yl)-1,7-naphthyridines
KR102472198B1 (ko) * 2016-06-16 2022-11-28 얀센 파마슈티카 엔.브이. Pi3k 베타 저해제로서의 아자벤즈이미다졸 유도체
BR112018075999A2 (pt) 2016-06-16 2019-04-02 Janssen Pharmaceutica Nv derivados de piridina, pirazina e pirimidina bicíclicos como inibidores de pi3k beta
CN109689062B (zh) * 2016-07-11 2023-02-17 丹娜法伯癌症研究院 使用抗PI3Kβ和抗免疫检查点药剂的组合治疗PTEN缺陷型上皮癌的方法
TW201813963A (zh) 2016-09-23 2018-04-16 美商基利科學股份有限公司 磷脂醯肌醇3-激酶抑制劑
TW201825465A (zh) 2016-09-23 2018-07-16 美商基利科學股份有限公司 磷脂醯肌醇3-激酶抑制劑
TW201815787A (zh) 2016-09-23 2018-05-01 美商基利科學股份有限公司 磷脂醯肌醇3-激酶抑制劑
WO2018057808A1 (en) 2016-09-23 2018-03-29 Gilead Sciences, Inc. Benzimidazole derivatives and their use as phosphatidylinositol 3-kinase inhibitors
WO2018106667A1 (en) 2016-12-05 2018-06-14 Microbiotix, Inc. Broad-spectrum inhibitors of filoviruses
US11130751B2 (en) 2017-03-29 2021-09-28 Janssen Pharmaceutica Nv Quinoxaline and pyridopyrazine derivatives as PI3K-beta inhibitors
CN111315742B (zh) 2017-07-28 2023-09-01 株式会社柳韩洋行 制备氨基嘧啶衍生物的方法
WO2019106605A1 (en) 2017-12-01 2019-06-06 Board Of Regents, The University Of Texas System Combination treatment for cancer
US11253189B2 (en) 2018-01-24 2022-02-22 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields
CN111000847B (zh) * 2020-01-02 2021-03-19 黑龙江中医药大学 一种治疗肺纤维化的药物制剂及其用途
CN111346095B (zh) * 2020-03-14 2021-06-08 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 用于治疗神经外科术后头痛的药物制剂

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400835A1 (en) 1989-05-15 1990-12-05 Merck & Co. Inc. Substituted benzimidazoles as angiotensin II antagonists
IL95975A (en) 1989-10-24 1997-06-10 Takeda Chemical Industries Ltd N-benzyl- 2-alkylbenzimidazole derivatives, their production and pharmaceutical compositions containing them
US5559235A (en) 1991-10-29 1996-09-24 Glaxo Wellcome Inc. Water soluble camptothecin derivatives
TW284688B (ar) 1991-11-20 1996-09-01 Takeda Pharm Industry Co Ltd
ATE197051T1 (de) 1992-04-03 2000-11-15 Upjohn Co Pharmazeutisch wirksame bicyclisch heterocyclische amine
US5502187A (en) 1992-04-03 1996-03-26 The Upjohn Company Pharmaceutically active bicyclic-heterocyclic amines
GB9210400D0 (en) 1992-05-15 1992-07-01 Merck Sharp & Dohme Therapeutic agents
US5342947A (en) 1992-10-09 1994-08-30 Glaxo Inc. Preparation of water soluble camptothecin derivatives
JPH0867674A (ja) 1993-07-02 1996-03-12 Senju Pharmaceut Co Ltd 眼圧降下剤
CZ154994A3 (en) 1993-07-02 1995-09-13 Senju Pharma Co Visual hypotensive agent
US5681835A (en) 1994-04-25 1997-10-28 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
CZ104795A3 (en) 1994-04-29 1996-02-14 Lilly Co Eli Benzimidazole derivative, process of its preparation, its use for preparing a pharmaceutical preparation and the pharmaceutical composition containing thereof
US5491237A (en) 1994-05-03 1996-02-13 Glaxo Wellcome Inc. Intermediates in pharmaceutical camptothecin preparation
US5563143A (en) 1994-09-21 1996-10-08 Pfizer Inc. Catechol diether compounds as inhibitors of TNF release
DE19514579A1 (de) 1995-04-20 1996-10-24 Boehringer Ingelheim Kg Verwendung von alpha¶1¶¶L¶-Agonisten zur Behandlung der Harninkontinenz
JP2000501107A (ja) 1996-01-09 2000-02-02 イーライ・リリー・アンド・カンパニー ベンズイミダゾリル神経ペプチドy受容体アンタゴニスト
AU2139097A (en) 1996-03-01 1997-09-16 Eli Lilly And Company Methods of treating or preventing sleep apnea
US6025379A (en) 1996-03-11 2000-02-15 Eli Lilly And Company Methods of treating or preventing interstitial cystitis
AU6691498A (en) 1997-03-07 1998-09-22 Metabasis Therapeutics, Inc. Novel benzimidazole inhibitors of fructose-1,6-bisphosphatase
GB9716557D0 (en) 1997-08-06 1997-10-08 Glaxo Group Ltd Benzylidene-1,3-dihydro-indol-2-one derivatives having anti-cancer activity
DE60014339T8 (de) 1999-04-02 2006-04-27 Neurogen Corp., Branford Aryl- und heteroaryl-kondensierte aminoalkyl-imidazol-derivate: selektive modulatoren der gabaa-rezeptoren
US6380235B1 (en) 1999-05-04 2002-04-30 American Home Products Corporation Benzimidazolones and analogues
JP2000323278A (ja) 1999-05-14 2000-11-24 Toray Ind Inc 発光素子
JP2003505369A (ja) 1999-07-15 2003-02-12 エヌピーエス アレリックス コーポレーション 偏頭痛を治療するための複素環式化合物
AU6762400A (en) 1999-08-12 2001-03-13 Cor Therapeutics, Inc. Inhibitors of factor xa
EP1214330A1 (en) 1999-09-21 2002-06-19 LION Bioscience AG Benzimidazole derivatives and combinatorial libraries thereof
MXPA02005465A (es) 1999-12-03 2003-10-15 Ono Pharmaceutical Co Derivados de triazaspiro(5.5)undecano y composiciones farmaceuticas que los comprenden, como un ingrediente activo.
AU2001236605A1 (en) 2000-02-01 2001-08-14 Cor Therapeutics, Inc. Indole and benzimidazole inhibitors of factor xa
PA8535601A1 (es) 2000-12-21 2002-11-28 Pfizer Derivados benzimidazol y piridilimidazol como ligandos para gabaa
US6472095B2 (en) 2000-12-29 2002-10-29 Utc Fuel Cells, Llc Hybrid fuel cell reactant flow fields
TW593278B (en) 2001-01-23 2004-06-21 Wyeth Corp 1-aryl-or 1-alkylsulfonylbenzazole derivatives as 5-hydroxytryptamine-6 ligands
US6951848B2 (en) 2001-03-12 2005-10-04 Millennium Pharmaceuticals, Inc., Functionalized heterocycles as modulators of chemokine receptor function and methods of use therefor
PL364469A1 (en) 2001-03-19 2004-12-13 Ono Pharmaceutical Co, Ltd. Drugs containing triazaspiro[5.5]undecane derivatives as the active ingredient
FR2822463B1 (fr) 2001-03-21 2004-07-30 Lipha Derives bicycliques de guanidines et leurs applications en therapeutique
US20030009034A1 (en) 2001-03-22 2003-01-09 Neil Wishart Transition metal mediated process
CN1514833A (zh) * 2001-03-28 2004-07-21 ����˹�ж�-����˹˹������˾ 新型酪氨酸激酶抑制剂
US7081454B2 (en) * 2001-03-28 2006-07-25 Bristol-Myers Squibb Co. Tyrosine kinase inhibitors
US6677365B2 (en) 2001-04-03 2004-01-13 Telik, Inc. Antagonists of MCP-1 function and methods of use thereof
PL367297A1 (en) 2001-04-20 2005-02-21 Wyeth Heterocyclyloxy-, -thioxy- and -aminobenzazole derivatives as 5-hydroxytryptamine-6 ligands
US6831094B2 (en) 2001-04-20 2004-12-14 Wyeth Heterocyclylalkoxy-,-alkylthio-and -alkylaminobenzazole derivatives as 5-hydroxytryptamine-6 ligands
US7030150B2 (en) 2001-05-11 2006-04-18 Trimeris, Inc. Benzimidazole compounds and antiviral uses thereof
JP2005500303A (ja) 2001-06-15 2005-01-06 ジェネンテック・インコーポレーテッド ヒト成長ホルモンアンタゴニスト
WO2003007945A1 (en) 2001-07-20 2003-01-30 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
FR2827862A1 (fr) 2001-07-27 2003-01-31 Lipha Derives imidazolylalkylarylalcanoiques et leurs applications en therapeutique
DE10139416A1 (de) 2001-08-17 2003-03-06 Aventis Pharma Gmbh Aminoalkyl substituierte aromatische Bicyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
FR2829765A1 (fr) 2001-09-14 2003-03-21 Lipha Derives imidazolylalkoxylarylalcanoiques leurs applications en therapeutique
WO2004089942A2 (en) 2001-10-02 2004-10-21 Acadia Pharmaceuticals Inc. Benzimidazolidinone derivatives as muscarinic agents
TWI310034B (en) 2001-10-02 2009-05-21 Acadia Pharmaceuticais Inc Benzimidazolidinone derivatives as muscarinic agents
WO2003030902A1 (en) 2001-10-09 2003-04-17 Tularik Inc. Imidazole derivates as anti-inflammatory agents
EP1442028A4 (en) 2001-11-06 2009-11-04 Bristol Myers Squibb Co SUBSTITUTED ACID DERIVATIVES, WHICH APPRECIATE AS ANTIDIBILICS AND AGENTS AGAINST OBESITAS, AND METHODS
US7622479B2 (en) 2001-11-26 2009-11-24 Takeda Pharmaceutical Company Limited Bicyclic derivative, its production and use
CA2473740A1 (en) 2002-01-18 2003-07-31 David Solow-Cordero Methods of treating conditions associated with an edg receptor
EP1475408B1 (en) 2002-02-15 2011-04-06 Bridgestone Corporation Rubber composition and pneumatic tire made therefrom
US7235537B2 (en) 2002-03-13 2007-06-26 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as MEK inhibitors
CA2478534A1 (en) 2002-03-13 2003-09-25 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as mek inhibitors
AU2003218157C1 (en) 2002-03-13 2011-11-24 Array Biopharma, Inc N3 alkylated benzimidazole derivatives as mek inhibitors
BR0306016A (pt) 2002-03-13 2005-01-04 Array Biopharma Inc Derivados de benzimidazol n3 alquilado como inibidores da mek
SE0200843D0 (sv) 2002-03-19 2002-03-19 Astrazeneca Ab Chemical compounds
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
DE10229777A1 (de) 2002-07-03 2004-01-29 Bayer Ag Indolin-Phenylsulfonamid-Derivate
US7205412B2 (en) 2002-07-03 2007-04-17 Samsung Electronics Co., Ltd. Antibiotic additive and ink composition comprising the same
WO2004014905A1 (en) 2002-08-08 2004-02-19 Boehringer Ingelheim Pharmaceuticals, Inc. Substituted benzimidazole compounds
US20040063938A1 (en) 2002-09-30 2004-04-01 Pfizer Inc Process for preparing haloalkyl pyrimidines
WO2004043913A2 (en) 2002-11-08 2004-05-27 Trimeris, Inc. Hetero-substituted benzimidazole compounds and antiviral uses thereof
US7759336B2 (en) 2002-12-10 2010-07-20 Ono Pharmaceutical Co., Ltd. Nitrogen-containing heterocyclic compounds and medicinal use thereof
US7135493B2 (en) 2003-01-13 2006-11-14 Astellas Pharma Inc. HDAC inhibitor
WO2004082621A2 (en) 2003-03-15 2004-09-30 Bethesda Pharmaceuticals, Inc. Novel ppar agonists, pharmaceutical compositions and uses thereof
KR20050119201A (ko) * 2003-04-09 2005-12-20 니뽄 다바코 산교 가부시키가이샤 5원 헤테로방향족 고리 화합물 및 이의 의약적 용도
JPWO2004093912A1 (ja) 2003-04-23 2006-07-13 協和醗酵工業株式会社 好中球性炎症疾患の予防および/または治療剤
EP1620413A2 (en) 2003-04-30 2006-02-01 Cytokinetics, Inc. Compounds, compositions, and methods
SE0301699D0 (sv) * 2003-06-10 2003-06-10 Astrazeneca Ab Benzimidazole derivatives, compositions containing them, preparation thereof and uses thereof
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
BRPI0412003A (pt) 2003-07-02 2006-08-15 Sugen Inc arilmetil triazol e imidazopirazinas como inibidores de c-met
US7312215B2 (en) * 2003-07-29 2007-12-25 Bristol-Myers Squibb Company Benzimidazole C-2 heterocycles as kinase inhibitors
DE10342503A1 (de) 2003-09-12 2005-04-14 Merck Patent Gmbh Benzyl-Benzimidazolylderivate
US7781595B2 (en) 2003-09-22 2010-08-24 S*Bio Pte Ltd. Benzimidazole derivatives: preparation and pharmaceutical applications
WO2005051928A1 (en) 2003-11-28 2005-06-09 Ranbaxy Laboratories Limited Process for production of tetrazolyl compounds
WO2005051929A1 (en) 2003-11-28 2005-06-09 Ranbaxy Laboratories Limited Conversion of aromatic nitriles into tetrazoles
WO2005066151A2 (en) 2003-12-19 2005-07-21 Takeda San Diego, Inc. Histone deacetylase inhibitors
WO2005079791A1 (en) 2004-02-12 2005-09-01 Boehringer Ingelheim Pharmaceuticals, Inc. Thiophene -2- carboxylic acid - (1h - benzimidazol - 2 yl) - amide derivatives and related compounds as inhibitors of the tec kinase itk (interleukin -2- inducible t cell kinase) for the treatment of inflammation, immunological and allergic disorders
JP4866723B2 (ja) 2004-02-26 2012-02-01 協和発酵キリン株式会社 好中球性炎症疾患の予防及び/または治療剤
ATE420858T1 (de) 2004-03-15 2009-01-15 Lilly Co Eli 4-(5-(aminomethyl)-indol-1- ylmethyl)benzamidderivate und verwandte verbindungen als opioidrezeptorantagonisten zur behandlung von fettleibigkeit
AU2005224079A1 (en) 2004-03-15 2005-09-29 Anormed, Inc. Process for the synthesis of a CXCR4 antagonist
CA2565200C (en) 2004-05-07 2013-12-24 Exelixis, Inc. Raf modulators and methods of use
WO2005118555A1 (en) 2004-06-04 2005-12-15 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
WO2006000020A1 (en) 2004-06-29 2006-01-05 European Nickel Plc Improved leaching of base metals
AR050522A1 (es) 2004-08-16 2006-11-01 Smithkline Beecham Corp Derivados de bencimidazol como moduladores de la actividad de los receptores de quimioquina; composiciones farmaceuticas que los contienen; metodos para su preparacion y su uso en la fabricacion de medicamentos para el tratamiento contra infecciones por hiv
EP2433634A3 (en) 2004-09-17 2012-07-18 The Whitehead Institute for Biomedical Research Compounds, compositions and methods of inhibiting a-synuclein toxicity
CA2585766A1 (en) 2004-11-01 2006-05-11 Nuada, Llc Compounds and methods of use thereof
US20090264384A1 (en) 2004-11-01 2009-10-22 Nuada, Inc. Indole, benzimidazole, and benzolactam boronic acid compounds, analogs thereof and methods of use thereof
WO2007134169A2 (en) 2006-05-10 2007-11-22 Nuada, Llc Indole, benzimidazole, and benzolactam boronic acid compounds, analogs thereof and methods of use thereof
EP1828144A2 (en) 2004-11-12 2007-09-05 OSI Pharmaceuticals, Inc. Integrin antagonists useful as anticancer agents
US20100093767A1 (en) 2004-12-03 2010-04-15 Takeda San Diego, Inc. Mitotic Kinase Inhibitors
DE602006016566D1 (de) 2005-01-10 2010-10-14 Bristol Myers Squibb Co Als antikoagulanzien verwendbare phenylglycinamid-derivate
US7429608B2 (en) 2005-01-20 2008-09-30 Amgen Inc. Benzo[d]imidazol analogs as vanilloid receptor ligands and their use in treatments
CN1834090B (zh) 2005-03-18 2011-06-29 中国科学院上海药物研究所 苯并咪唑类化合物、其制备方法以及用途
US7777040B2 (en) 2005-05-03 2010-08-17 Cgi Pharmaceuticals, Inc. Certain substituted ureas, as modulators of kinase activity
WO2006132625A1 (en) 2005-06-03 2006-12-14 Ppg Industries Ohio, Inc. Composition for the vapor phase dehydrohalogenation of 1,1,2-trihaloethane to 1,1-dihaloethylene and methods for preparing and using such compositions
CN101227857B (zh) 2005-06-29 2011-10-19 电脑医师有限公司 具有导电桥的传感器组件
EP1904501A2 (en) 2005-07-11 2008-04-02 Smithkline Beecham Corporation Chemical compounds
JP2007063261A (ja) 2005-08-01 2007-03-15 Kyowa Hakko Kogyo Co Ltd X線照射による肺障害の予防及び/または治療剤
WO2007023880A1 (ja) 2005-08-24 2007-03-01 Kyowa Hakko Kogyo Co., Ltd. ケモカイン産生阻害剤
CA2620269A1 (en) 2005-08-29 2007-03-08 Vertex Pharmaceuticals Incorporated 3,5-disubstituted pyrid-2-ones useful as inhibitors of tec family of non-receptor tyrosine kinases
TW200720261A (en) 2005-08-31 2007-06-01 Sankyo Co Phenylene derivatives
EP1937650B1 (en) 2005-09-08 2011-06-15 S*BIO Pte Ltd Heterocyclic compounds
WO2007054965A2 (en) 2005-09-23 2007-05-18 Alembic Limited Process for preparation of tetrazoles from aromatic cyano derivatives
GB0520164D0 (en) 2005-10-04 2005-11-09 Novartis Ag Organic compounds
US7465795B2 (en) 2005-12-20 2008-12-16 Astrazeneca Ab Compounds and uses thereof
AU2006327300A1 (en) 2005-12-20 2007-06-28 Astrazeneca Ab Substituted Cinnoline derivatives as GABAa-receptor modulators and method for their synthesis
JP2009520785A (ja) 2005-12-23 2009-05-28 アストラゼネカ アクチボラグ 抗菌性のピロロピリジン、ピロロピリミジン、及びピロロアゼピン
US7691902B2 (en) 2005-12-28 2010-04-06 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
EP1976835A2 (en) 2006-01-13 2008-10-08 Takeda San Diego, Inc. Histone deacetylase inhibitors
JP2009525966A (ja) 2006-01-26 2009-07-16 フォールドアールエックス ファーマシューティカルズ インコーポレーティッド タンパク質輸送を調節するための化合物および方法
WO2007091950A1 (en) 2006-02-07 2007-08-16 Astrazeneca Ab Benzimidazoles and imidazopyridines useful in the treatment of diseases or disorders associated with cannabinoid receptor 2 (cb2) such as pain
WO2007101347A1 (en) 2006-03-07 2007-09-13 Aegera Therapeutics Inc. Bir domain binding compounds
US20090192169A1 (en) 2006-03-31 2009-07-30 Ian Egle Bicyclic Benzimidazole Compounds and Their Use as Metabotropic Glutamate Receptor Potentiators
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
EP1873157A1 (en) 2006-06-21 2008-01-02 Bayer Schering Pharma Aktiengesellschaft Pyrazolopyrimidines and salts thereof, pharmaceutical compositions comprising same, methods of preparing same and uses of same
TW200801513A (en) 2006-06-29 2008-01-01 Fermiscan Australia Pty Ltd Improved process
EP1878724A1 (en) 2006-07-15 2008-01-16 sanofi-aventis A regioselective palladium catalyzed synthesis of benzimidazoles and azabenzimidazoles
WO2008012623A1 (en) 2006-07-25 2008-01-31 Pfizer Products Inc. Benzimidazolyl compounds as potentiators of mglur2 subtype of glutamate receptor
WO2008019309A1 (en) 2006-08-04 2008-02-14 Metabasis Therapeutics, Inc. Novel inhibitors of fructose 1,6-bisphosphatase
WO2008020920A1 (en) 2006-08-15 2008-02-21 Duke University Ros-sensitive iron chelators and methods of using the same
US20090325954A1 (en) * 2006-09-14 2009-12-31 Sam Butterworth 2-benzimidazolyl-6-morpholino-4-phenylpyrimidine derivatives as pi3k and mtor inhibitors for the treatment of proliferative disorders
JO3598B1 (ar) 2006-10-10 2020-07-05 Infinity Discovery Inc الاحماض والاسترات البورونية كمثبطات اميد هيدروليز الحامض الدهني
WO2008051494A1 (en) 2006-10-19 2008-05-02 Signal Pharmaceuticals, Llc Heteroaryl compounds, compositions thereof, and use thereof as protein kinase inhibitors
US20080249081A1 (en) 2006-10-24 2008-10-09 Roger Olsson Compounds for the treatment of pain and screening methods therefor
MX2009007302A (es) 2007-01-23 2009-07-15 Palau Pharma Sa Derivados de purina.
US8242151B2 (en) 2007-02-07 2012-08-14 Kyowa Hakko Kirin Co., Ltd. Tricyclic compounds
EP2131840B1 (en) 2007-03-07 2018-10-17 MEI Pharma, Inc. Combination of benzimidazole anti-cancer agent and a second anti-cancer agent
ES2381446T3 (es) 2007-03-08 2012-05-28 Janssen Pharmaceutica, N.V. Derivado de quinolinona como inhibidores de PARP y TANK
AU2008256803A1 (en) 2007-05-24 2008-12-04 Wyeth Azacyclylbenzamide derivatives as histamine-3 antagonists
TW200906825A (en) 2007-05-30 2009-02-16 Scripps Research Inst Inhibitors of protein kinases
WO2009000413A1 (en) 2007-06-26 2008-12-31 Sanofi-Aventis A regioselective copper catalyzed synthesis of benzimidazoles and azabenzimidazoles
EP2014662A1 (de) 2007-07-12 2009-01-14 Bayer Schering Pharma Aktiengesellschaft Indolylalkylthienopyrimidylamine als Modulatoren des EP2-Rezeptors
EP2014663A1 (de) 2007-07-12 2009-01-14 Bayer Schering Pharma AG Thienopyrimidylamine als Modulatoren des EP2-Rezeptors
EP2487169B1 (en) 2007-08-21 2015-05-20 Senomyx, Inc. Compounds that inhibit (block) bitter taste in compositions and use thereof
WO2009027736A2 (en) 2007-08-27 2009-03-05 Astrazeneca Ab 2,4 diaminopyrimid'lnes for the treatment of myeloproliferative disorders and cancer
JP2010539239A (ja) 2007-09-17 2010-12-16 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー Pi3キナーゼ阻害剤としてのピリドピリミジン誘導体
US20090118301A1 (en) 2007-11-02 2009-05-07 Arbor Vita Corporation Compositions and Methods for Treating Cancer
UA102828C2 (en) 2007-11-27 2013-08-27 Целльзом Лимитед Amino triazoles as p13k inhibitors
US20110052562A1 (en) 2007-12-19 2011-03-03 The Scripps Research Institute Benzimidazoles and analogs as rho kinase inhibitors
AR070127A1 (es) 2008-01-11 2010-03-17 Novartis Ag Pirrolo - pirimidinas y pirrolo -piridinas
PL2231642T3 (pl) 2008-01-11 2014-04-30 Novartis Ag Pirymidyny jako inhibitory kinazy
JP2011510010A (ja) 2008-01-15 2011-03-31 ワイス・エルエルシー 3H−[1,2,3]トリアゾロ[4,5−d]ピリミジン化合物、mTORキナーゼおよびPI3キナーゼ阻害剤としてのそれらの使用、ならびにそれらの合成
TW200932218A (en) 2008-01-22 2009-08-01 Boehringer Ingelheim Int Substituted amino-benzimidazoles, medicaments comprising said compound, their use and their method of manufacture
FR2928924B1 (fr) 2008-03-21 2010-04-23 Sanofi Aventis Derives polysubstitues de 6-heteroaryle-imidazo°1,2-a! pyridines, leur preparation et leur application en therapeutique
CA2716726C (en) 2008-03-27 2017-01-24 Janssen Pharmaceutica Nv Tetrahydrophenanthridinones and tetrahydrocyclopentaquinolinones as parp and tubulin polymerization inhibitors
WO2009118384A1 (en) 2008-03-27 2009-10-01 Janssen Pharmaceutica Nv Quinazolinone derivatives as tubulin polymerization inhibitors
US20090253161A1 (en) 2008-04-03 2009-10-08 Duke University Fluorescent prochelators for cellular iron detection
JP5637982B2 (ja) 2008-04-09 2014-12-10 インフィニティー ファーマシューティカルズ, インコーポレイテッド 脂肪酸アミド加水分解酵素の阻害剤
EP2303894A1 (en) 2008-06-04 2011-04-06 AstraZeneca AB Thiazolo [5, 4-b] pyridine and oxazolo [5, 4-b] pyridine derivatives as antibacterial agents
JP2010031250A (ja) 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
WO2010000020A1 (en) 2008-06-30 2010-01-07 Cathrx Ltd A catheter
AU2009266889B2 (en) 2008-07-03 2013-05-02 Glaxosmithkline Llc Benzimidazoles and related analogs as sirtuin modulators
US8513221B2 (en) * 2008-07-07 2013-08-20 Xcovery Holding, LLC PI3K isoform selective inhibitors
US20100029655A1 (en) 2008-07-11 2010-02-04 Martin Robert Leivers Processes For The Preparation Of Anti-Viral Compounds And Compositions Containing Them
US8501957B2 (en) 2008-12-10 2013-08-06 China Medical University Benzimidazole compounds and their use as anticancer agents
AU2010206683B2 (en) 2009-01-23 2016-05-05 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
KR20130130875A (ko) 2009-02-27 2013-12-02 이난타 파마슈티칼스, 인코포레이티드 C형 간염 바이러스 억제제
JP2012520884A (ja) 2009-03-18 2012-09-10 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニバーシティー フラビウイルス科ウイルス感染症を治療する方法および組成物
US20120006688A1 (en) 2009-03-18 2012-01-12 Basf Se Electrolyte and surface-active additives for the electrochemical deposition of smooth, dense aluminum layers from ionic liquids
EP2408753A4 (en) 2009-03-20 2012-11-07 Univ Brandeis COMPOUNDS AND METHOD FOR THE TREATMENT OF MICROBIAL STOMACH DARM INFECTIONS IN MAMMALS
WO2010114726A1 (en) 2009-03-31 2010-10-07 Merck Sharp & Dohme Corp. Aminobenzotriazole derivatives
SG175001A1 (en) 2009-04-02 2011-11-28 Ct Nac Investigaciones Oncologicas Cnio Imidazo [2, 1-b] [ 1, 3, 4 ] thiadiazole derivatives
US20100305093A1 (en) 2009-04-09 2010-12-02 Exelixis, Inc. Inhibitors of mTOR and Methods of Making and Using
JP2012525390A (ja) 2009-04-27 2012-10-22 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー 置換イミダゾ[1,2−a]ピリジン誘導体、医薬組成物、及びβ−セクレターゼ阻害剤としての使用方法
WO2010126922A1 (en) 2009-04-30 2010-11-04 Glaxosmithkline Llc Benzimidazolecarboxamides as inhibitors of fak
EP2432779A1 (en) 2009-05-22 2012-03-28 Exelixis, Inc. Benzoxazepines based p13k/mt0r inhibitors against proliferative diseases
JP2012528165A (ja) 2009-05-26 2012-11-12 エクセリクシス, インク. PI3K/mTORの阻害剤としてのベンゾキサゼピンならびにそれらの使用および製造方法
WO2010141360A1 (en) 2009-06-05 2010-12-09 Merck Sharp & Dohme Corp. Biaryl benzotriazole derivatives
US9221765B2 (en) 2009-06-10 2015-12-29 North Carolina State University Inhibition and dispersion of bacterial biofilms with benzimidazole derivatives
WO2011000020A1 (en) 2009-06-12 2011-01-06 Sbc Research Pty Ltd Enhanced method of detection
JP2011003793A (ja) 2009-06-19 2011-01-06 Idemitsu Kosan Co Ltd 有機el素子
US8349576B2 (en) 2009-07-15 2013-01-08 University Of Medicine And Dentistry Of New Jersey eEF2K assays for identifying compounds that inhibit eEF2K activity
KR20120099060A (ko) 2009-10-29 2012-09-06 브리스톨-마이어스 스큅 컴퍼니 알파-7 니코틴성 아세틸콜린 수용체 리간드로서의 퀴누클리딘 화합물
US8754113B2 (en) 2009-12-15 2014-06-17 Shionogi & Co., Ltd. Oxadiazole derivative having endothelial lipase inhibitory activity
ES2362337B1 (es) 2009-12-17 2012-05-16 Consejo Superior De Investigaciones Cient�?Ficas (Csic) Derivados de aminociclitoles, procedimiento de obtencion y usos.
MA34591B1 (fr) * 2010-10-06 2013-10-02 Glaxosmithkline Llc Dérivés de benzimidazole utilisés comme inhibiteurs de pi3 kinase
WO2015053091A1 (ja) 2013-10-11 2015-04-16 ユニ・チャーム株式会社 ペットフード

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095838A3 (en) * 2013-12-20 2015-11-12 Biomed Valley Discoveries, Inc. Cancer treatments using combinations of mek type i and erk inhibitors

Also Published As

Publication number Publication date
ES2616238T3 (es) 2017-06-12
US9062003B2 (en) 2015-06-23
US20140378456A1 (en) 2014-12-25
PE20140192A1 (es) 2014-02-24
MA34591B1 (fr) 2013-10-02
PT2624696T (pt) 2017-03-21
CA2812608A1 (en) 2012-04-12
CY1118792T1 (el) 2017-07-12
EP2624696B1 (en) 2016-12-21
MY170236A (en) 2019-07-11
CA2812608C (en) 2020-07-14
IL225140A (en) 2016-09-29
MX2013003918A (es) 2013-06-05
CN103124496A (zh) 2013-05-29
JP5719028B2 (ja) 2015-05-13
AU2011312594B2 (en) 2014-10-02
US20120088767A1 (en) 2012-04-12
US10314845B2 (en) 2019-06-11
SG188974A1 (en) 2013-06-28
BR112013008259A2 (pt) 2017-12-12
US8435988B2 (en) 2013-05-07
KR20130099142A (ko) 2013-09-05
EP2624696A1 (en) 2013-08-14
US8865912B2 (en) 2014-10-21
NZ608069A (en) 2014-06-27
US20190255064A1 (en) 2019-08-22
EP3170813B1 (en) 2018-12-12
EP3170813A1 (en) 2017-05-24
EA022623B1 (ru) 2016-02-29
ME02663B (me) 2017-06-20
EA201390302A1 (ru) 2013-09-30
EP2624696A4 (en) 2014-03-26
ZA201301951B (en) 2014-08-27
AU2011312594A1 (en) 2013-04-11
JP2013539753A (ja) 2013-10-28
TWI513690B (zh) 2015-12-21
CN103124496B (zh) 2016-03-30
AR083296A1 (es) 2013-02-13
SI2624696T1 (sl) 2017-04-26
ES2714384T3 (es) 2019-05-28
TW201307297A (zh) 2013-02-16
PL2624696T3 (pl) 2017-07-31
JO3194B1 (ar) 2018-03-08
US20180263994A1 (en) 2018-09-20
DOP2013000059A (es) 2013-05-31
KR101594002B1 (ko) 2016-02-15
US9156797B2 (en) 2015-10-13
LT2624696T (lt) 2017-03-10
US20150246889A1 (en) 2015-09-03
US20140142321A1 (en) 2014-05-22
US9872860B2 (en) 2018-01-23
WO2012047538A1 (en) 2012-04-12
HUE033209T2 (hu) 2017-11-28
RS55662B1 (sr) 2017-06-30
HRP20170279T1 (hr) 2017-04-07
MX337662B (es) 2016-03-14
CL2013000935A1 (es) 2013-07-05
US20170112844A1 (en) 2017-04-27
CR20130192A (es) 2013-10-03
CO6700852A2 (es) 2013-06-28
UY33648A (es) 2012-04-30
US20140018534A1 (en) 2014-01-16
US10660898B2 (en) 2020-05-26
US8674090B2 (en) 2014-03-18
US8541411B2 (en) 2013-09-24
US20130197221A1 (en) 2013-08-01
DK2624696T3 (en) 2017-03-13

Similar Documents

Publication Publication Date Title
US10660898B2 (en) Benzimidazole derivatives as PI3 kinase inhibitors
US8906910B2 (en) Imidazopyridine derivatives as PI3 kinase
US8778937B2 (en) Benzimidazole boronic acid derivatives as PI3 kinase inhibitors
US9096605B2 (en) Pyrazolopyrimidine derivatives as PI3 kinase inhibitors

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLAXOSMITHKLINE LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QU, JUNYA;RIVERO, RALPH A.;SANCHEZ, ROBERT;AND OTHERS;REEL/FRAME:030777/0944

Effective date: 20111004

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE