RU2335831C2 - Высокоэффективные аккумуляторные батареи - Google Patents

Высокоэффективные аккумуляторные батареи Download PDF

Info

Publication number
RU2335831C2
RU2335831C2 RU2006112836/09A RU2006112836A RU2335831C2 RU 2335831 C2 RU2335831 C2 RU 2335831C2 RU 2006112836/09 A RU2006112836/09 A RU 2006112836/09A RU 2006112836 A RU2006112836 A RU 2006112836A RU 2335831 C2 RU2335831 C2 RU 2335831C2
Authority
RU
Russia
Prior art keywords
lead
electrode
capacitor
negative
positive
Prior art date
Application number
RU2006112836/09A
Other languages
English (en)
Other versions
RU2006112836A (ru
Inventor
Лэн Трию ЛЭМ (AU)
Лэн Трию ЛЭМ
Найджел Питер ХЭЙ (AU)
Найджел Питер ХЭЙ
Кристофер Дж. ФИЛЭНД (AU)
Кристофер Дж. ФИЛЭНД
Дейвид Энтони Джеймс РЭНД (AU)
Дейвид Энтони Джеймс РЭНД
Original Assignee
Коммонвелт Сайентифик Энд Индастриал Рисерч Органайзейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003905086A external-priority patent/AU2003905086A0/en
Application filed by Коммонвелт Сайентифик Энд Индастриал Рисерч Органайзейшн filed Critical Коммонвелт Сайентифик Энд Индастриал Рисерч Органайзейшн
Publication of RU2006112836A publication Critical patent/RU2006112836A/ru
Application granted granted Critical
Publication of RU2335831C2 publication Critical patent/RU2335831C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cell Separators (AREA)

Abstract

Изобретение относится к высокоэффективным аккумулятоным батареям. Техническим результатом изобретения является повышение срока службы и улучшения характеристик. Согласно изобретению свинцово-кислотная батарея содержит, по меньшей мере, один отрицательный электрод на основе свинца, по крайней мере, один положительный электрод на основе двуокиси свинца, по крайней мере, один электрод конденсатора и электролит, находящийся в контакте с электродами. Одна часть батареи сформирована из отрицательного электрода на основе свинца и положительного электрода на основе двуокиси свинца, а другая часть, представляющая собой асимметричный конденсатор, сформирована из электрода конденсатора и одного либо отрицательного электрода на основе свинца, либо положительного электрода на основе двуокиси свинца. При этом все отрицательные электроды соединены с отрицательной шиной, а все положительные электроды соединены с положительной шиной. 7 н. и 68 з.п. ф-лы, 8 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к высокоэффективным аккумуляторным батареям, включающим в себя свинцово-кислотные батареи и батареи другого типа, а также электроды конденсаторов и асимметричные конденсаторы.
Уровень техники
В настоящее время возрастает потребность в разработке и внедрении автомобилей, которые почти не используют природное топливо, не загрязняют окружающую среду и в большой степени сокращают расход ограниченных запасов природного топлива. Такого рода автомобили делятся на три основных класса: электромобили (EVs), гибридные электромобили (HEVs) и умеренно гибридные электромобили (также известные как автомобили с электросистемой 42 В).
В электромобилях и гибридных электромобилях могут использоваться различные типы батарей, включая свинцово-кислотные. В умеренно гибридных электромобилях, в основном, используются свинцово-кислотные батареи благодаря их невысокой стоимости.
Гибридные и умеренно гибридные электромобили рассчитаны на сочетание двигателя внутреннего сгорания и батареи в качестве источника питания. В связи с возрастающими потребностями в электроэнергии в современных автомобилях класса люкс (автомобили с двигателем внутреннего сгорания) мощность 14-вольтного генератора не удовлетворяет этим потребностям. В связи с этим разработаны умеренно гибридные электромобили, в которых применяются 36-вольтная батарея и 42-вольтный генератор. Умеренно гибридные электромобили имеют ряд преимуществ перед существующими автомобилями с двигателями внутреннего сгорания, заключающихся в большем использовании электроэнергии и в сокращении выбросов.
Несмотря на значительный прогресс в области развития новых видов батарей и электрических систем для автомобилей, использующих хотя бы частично электрическую энергию, существует ряд проблем при применении батарей в таких автомобилях.
На разных этапах работы автомобиля к батарее предъявляются различные требования в отношении разрядного тока. Например, необходима высокая скорость разряда батареи при разгоне и включении двигателя в электромобилях и гибридных электромобилях соответственно. Высокая скорость разряда батареи связана с рекуперативным торможением.
При использовании свинцово-кислотных батарей, особенно в гибридных и умеренно гибридных электромобилях, высокая скорость разряда и перезарядки вызывает формирование слоя сульфата свинца на поверхности отрицательной пластины и образование водорода/кислорода на положительной и отрицательной пластинах. Это возникает в значительной степени как результат высоких значений тока батареи.
Уровень заряда (PSoC), при котором батареи обычно работают, составляет 20-100% для электромобилей, 40-60% для гибридных электромобилей и 70-90% для умеренно гибридных электромобилей. Это высокий уровень заряда (HR PSoC). При имитации работы гибридного и умеренно гибридного электромобиля в таком режиме свинцово-кислотные батареи вырабатывали свой ресурс досрочно, главным образом, в связи с возрастающим накапливанием сульфата свинца на поверхности отрицательных пластин. Это происходит за счет того, что сульфат свинца не может возвращаться в состояние губчатого свинца во время разряда ни при рекуперативном торможении, ни при запуске двигателя. Этот слой сульфата свинца увеличивается до такой степени, что площадь рабочей поверхности пластины значительно сокращается, и пластина не может вырабатывать ток, требуемый для работы автомобиля. Это существенно сокращает срок службы батареи.
В других областях техники, включая технологию мобильных или сотовых телефонов, следует использовать такие типы батарей, которые позволяют увеличить срок службы и усовершенствовать рабочие характеристики, в то же время удовлетворяя требованиям различных по мощности устройств.
Таким образом, возникает необходимость модифицировать батареи, включая свинцово-кислотные, с целью повышения срока их службы и/или усовершенствования общих характеристик по сравнению с ныне существующими.
Раскрытие изобретения
В соответствии с первым вариантом реализации изобретения представлена свинцово-кислотная батарея, содержащая:
- по меньшей мере, один отрицательный электрод на основе свинца,
- по меньшей мере, один положительный электрод на основе двуокиси свинца,
- по меньшей мере, один отрицательный электрод конденсатора и
- электролит в контакте с электродами,
в которой положительный электрод и отрицательный электрод на основе свинца образуют одну часть батареи, а положительный электрод и отрицательный электрод конденсатора образуют асимметричный конденсатор, являющийся второй частью батареи; при этом положительный электрод является общим для батарейной части и части ассиметричного конденсатора, причем отрицательный электрод на основе свинца и отрицательный электрод конденсатора соединены с отрицательной шиной, а положительный электрод или электроды соединены с положительной шиной.
Часть батареи на основе двуокиси свинца и ассиметричная конденсаторная часть свинцово-кислотной батареи соединены параллельно в одном общем блоке. Асимметричный конденсатор избирательно накапливает или отдает заряд в процессе быстропротекающей зарядки или разрядки. Это происходит за счет того, что асимметричный конденсатор имеет более низкое внутреннее сопротивление по сравнению с первой частью батареи, а потому в первую очередь будет заряжаться при зарядке с высокой скоростью (например, во время рекуперативного торможения) или разряжаться при разряде с высокой скоростью (например, во время разгона автомобиля и запуска двигателя). Асимметричный конденсатор будет разделять работу первой части свинцово-кислотной батареи при высокой скорости и обеспечивать увеличение ее срока службы. Это достигается без использования какого-либо электронного управления или коммутации между первой частью батареи и конденсатором.
В соответствии с этим вариантом реализации положительный электрод, общий для обеих частей, размещается между отрицательным электродом на основе свинца и отрицательным электродом конденсатора. Допускается обратная схема расположения, при которой общим электродом является отрицательный электрод на основе свинца. Этот отрицательный электрод на основе свинца и положительный электрод конденсатора составляют асимметричный конденсатор.
Второй альтернативный вариант изобретения представляет собой свинцово-кислотную батарею, состоящую из:
- по меньшей мере, одного отрицательного электрода на основе свинца;
- по меньшей мере, одного положительного электрода на основе двуокиси свинца;
- по меньшей мере, одного электрода конденсатора;
- и электролита, в котором находятся электроды;
в которой первая часть батареи сформирована из отрицательного электрода на основе свинца и положительного электрода на основе двуокиси свинца; а вторая часть в виде асимметричного конденсатора сформирована из электрода конденсатора и одного электрода, либо отрицательного на основе свинца, либо положительного на основе двуокиси свинца; причем все отрицательные электроды соединены с отрицательной шиной, а все положительные электроды соединены с положительной шиной.
Согласно этому варианту любой из электродов конденсатора может быть положительным или отрицательным электродом.
Предпочтительно, чтобы свинцово-кислотная батарея состояла из последовательности чередующихся положительных и отрицательных электродов. Каждый из этих чередующихся электродов может быть электродом батареи, электродом конденсатора или комбинированным электродом батареи/конденсатора. Эти типы электродов будут детально рассмотрены в дальнейшем описании.
В соответствии с третьим вариантом настоящего изобретения представлена свинцово-кислотная батарея, состоящая из последовательности чередующихся положительных и отрицательных электродов и электролита в контакте с электродами, в которой:
- по меньшей мере, одна пара зон соседних положительного и отрицательного электродов аккумулирует энергию по типу конденсатора,
- по меньшей мере, одна пара зон соседних положительного электрода из двуокиси свинца и отрицательного свинцового электрода аккумулируют энергию в результате электрохимических процессов, и в которой положительные электроды напрямую соединены с первым проводником и отрицательные электроды напрямую соединены со вторым проводником.
Следующий вариант изобретения рассматривает случай, при котором имеет место разброс рабочего напряжения одного из электродов, влекущий за собой выделение водорода. В частности, такое возможно, когда напряжение ячейки больше, чем напряжение электрода. Выделение водорода нежелательно, поскольку приводит к преждевременному отказу батареи из-за электрода, на котором выделяется газ.
Во избежание разброса согласно следующему варианту изобретения по меньшей мере один из отрицательных электродов конденсатора должен состоять из материала с большой удельной площадью поверхности и одной или более добавок, выбранных из оксидов, гидроксидов или сульфатов свинца, цинка, кадмия, серебра или висмута. Добавки преимущественно вносят в форме оксидов. Предпочтительные добавки - свинец и/или цинк, а наиболее предпочтительные - свинец и/или оксид цинка.
Разброс возможен в положительном электроде конденсатора. Поэтому в соответствии с вариантом, в котором батарея включает в себя положительный электрод конденсатора, последний состоит из:
- материала с высокой удельной площадью поверхности,
- Pb2O3,
- оксида, гидроксида или сульфата сурьмы и
- необязательно одной или более добавок, выбранных из оксидов, гидрооксидов и сульфатов железа и свинца.
Этот вариант может быть в равной степени применен и для других типов смешанных батарей для исключения выделения газа.
В соответствии с четвертым вариантом реализации изобретения рассматривается смешанная батарея-конденсатор, состоящая из:
- по меньшей мере, одного положительного электрода батареи,
- по меньшей мере, одного отрицательного электрода батареи,
- по меньшей мере, одного электрода конденсаторного типа, выбранного из отрицательного электрода конденсатора и положительного электрода конденсатора, в котором отрицательный электрод конденсатора состоит из конденсаторного материала с высокой удельной площадью поверхности и одной или более добавок, выбранных из оксида, гидроокиси или сульфатов свинца, цинка, кадмия, серебра и висмута, и в котором положительный электрод конденсатора состоит из:
- конденсаторного материала с высокой удельной площадью поверхности,
- Pb2O3,
- оксида, гидроксида или сульфата сурьмы и
- необязательно одной или более добавок, выбранных из оксидов, гидроксидов и сульфатов железа и свинца;
- электролита в контакте с электродами, характеризующаяся тем, что одна часть батареи сформирована из положительного электрода батареи и отрицательного электрода батареи, а другая часть батареи из асимметричного конденсатора сформирована из электрода конденсатора и одного из электродов батареи; при этом один из электродов батарейного типа является общим для батарейной части и части асимметричного конденсатора, причем отрицательные электроды напрямую электрически соединены с первым проводником, а положительные электроды электрически соединены со вторым.
В соответствии со следующим вариантом изобретения рассматривается новый электрод конденсатора на базе вышеприведенных положений. Новый отрицательный электрод конденсатора содержит токосъемник и пастообразное покрытие, состоящее из конденсаторного материала с высокой удельной площадью поверхности, связующего вещества и 5-40 мас.% от массы пастообразного покрытия добавок или смеси добавок, выбранных из оксидов, гидроксидов или сульфатов свинца, цинка, кадмия, серебра и висмута, при условии, что добавки включают в себя, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка.
Новый положительный электрод конденсатора содержит токосъемник и пастообразное покрытие, состоящее из материала с высокой удельной площадью поверхности, связующего вещества и 10-40 мас.% от массы покрытия смеси добавок, включающей в себя:
-Pb2О3,
- оксид, гидроксид или сульфат сурьмы и
- необязательно один или более оксид, гидроксид или сульфат железа и свинца.
Также предложен асимметричный конденсатор, включающий в себя электроды конденсатора, описанные выше.
Краткое описание чертежей
Фиг.1 - схематическое изображение (вид сбоку) свинцово-кислотной батареи в соответствии с первым вариантом реализации изобретения;
Фиг.2 - схематическое изображение (вид сверху) свинцово-кислотной батареи, представленной на фиг.1;
Фиг.3 - график, представляющий ток одного цикла при испытании батареи, показанной на фиг.1 и 2;
Фиг.4 - график, представляющий циклическую работу батареи, показанной на фиг.1 и 2, по сравнению со сравнительной батареей;
Фиг.5 - схематическое изображение (вид сбоку) свинцово-кислотной батареи в соответствии со вторым вариантом реализации изобретения;
Фиг.6 - схематическое изображение (вид сбоку) одного из отрицательных электродов свинцово-кислотной батареи, представленной на фиг.5;
Фиг.7 - график, представляющий скорость выделения водорода отрицательного электрода конденсатора, в четвертом варианте изобретения, по сравнению со стандартным угольным электродом и стандартным отрицательным электродом на основе свинца;
Фиг.8 - схематическое изображение (вид сбоку) конструкции электрода батареи в соответствии с третьим вариантом изобретения.
Осуществление изобретения
Настоящее изобретение в дальнейшем подробно описано со ссылками на предпочтительные варианты его реализации.
Во избежание любых неясностей, возможных в контексте данного изобретения или из-за языковых различий или при необходимости толкования смысла слово «содержать» и все его производные, такие как «содержит», «содержащий» использованы в смысле «включает», т.е. указывают на наличие упомянутых признаков, но не исключает включение или наличие других признаков в различных вариантах изобретения.
Термин «свинцово-кислотная батарея» употребляется в широком смысле для обозначения любого блока, содержащего одну или более секций свинцово-кислотных батарей.
Описанные свинцово-кислотные батареи содержат, по меньшей мере, один отрицательный электрод или зону электрода на основе свинца, по меньшей мере, один положительный электрод или зону электрода на основе двуокиси свинца и, по меньшей мере, один отрицательный электрод конденсатора или зону электрода конденсатора.
В дальнейшем рассматривается каждый из этих типов электродов и определения зон электродов.
Структура электрода
Обычно электроды включают в себя токосъемник (или иначе называемый сеткой или пластиной) с нанесенным на него активным электродным материалом. Активный электродный материал в большинстве случаев наносится на токосъемник в виде пасты. В настоящем описании термин «паста» применим ко всем активным материалам, наносимым любым способом на токосъемник.
Термин «на основе» применительно к электродам предназначен для ссылки на активный электродный материал. Термин применяется, чтобы избежать предположения, что электрод сформирован полностью из активного материала, хотя это не факт. При помощи этого термина указывается, что активный материал данного электрода может содержать добавки или материалы, отличающиеся от упомянутого активного материала.
Электроды на основе свинца и диоксида свинца
Свинцовые электроды и электроды из двуокиси свинца могут иметь различные конструкцию или тип, пригодные для использования в свинцово-кислотной батарее. Как правило, подобные электроды имеют форму металлической сетки (обычно изготовленной из свинца или двуокиси свинца), являющейся основой для химически активного материала (свинца или двуокиси свинца), наносимого в виде пасты на эту сетку. В данной области техники такой процесс достаточно известен. Хотя могут применяться любой подходящий свинец или двуокись свинца, известные в уровне техники, преимущество имеют составы, раскрытые в находящейся на рассмотрении заявке PCT/AU 2003/001404 (приоритетная заявка Австралии AU 2002952234). Необходимо отметить, что перед изготовлением батареи активный материал необязательно должен находиться в активной форме (то есть в виде металла или в виде его двуокиси). Следовательно, указанные термины включают и другие формы, которые превращаются в металлический свинец или двуокись свинца при изготовлении батареи.
Электроды конденсатора
Электроды конденсатора также включают в себя токосъемник и покрытие из активного материала, который, в основном, применяется в виде пасты.
Термин «конденсатор» употребляется применительно к электродам, чтобы обозначить, что эти электроды служат емкостными элементами, способными накапливать энергию посредством взаимодействия между частицами материала с высокой удельной площадью поверхности и раствором электролита.
Существуют два основных класса конденсаторов. Один класс представляют собой двухслойные конденсаторы (иначе называемые «симметричные конденсаторы»), содержащие два электрода, один из которых положительный, а другой отрицательный. Второй класс представляют асимметричные конденсаторы, которые также именуются гибридными конденсаторами, «ультраконденсаторами» и «суперконденсаторами».
Асимметричные конденсаторы включают в себя один электрод, который аккумулирует энергию путем двойного конденсаторного слоя между поверхностью электрода и поверхностью раствора электролита, и второй электрод, являющийся фарадеивым электродом или электродом батареи, который накапливает энергию псевдоемкостным способом. Префиксы «ультра» и «супер» применяются в одном случае для обозначения асимметричных конденсаторов, в другом случае для обозначения конденсаторов, имеющих большую емкость. В настоящей заявке префикс «ультра» используется, по большей части, в своем первом значении, но иногда используется и во втором значении в связи с высоким значением емкости конденсаторной части батареи. Предпочтительно иметь емкость асимметричного конденсатора, равной емкости ультраконденсатора или суперконденсатора.
Обычно, как и в случае свинцового электрода и электрода из окиси свинца, электрод конденсатора состоит из металлической сетки (как правило, выполненной из сплава свинца) с нанесенной на нее пастой, содержащей конденсаторный материал обычно со связующим веществом. В качестве связующего вещества в составе пасты используются карбоксиметилцеллюлоза и неопрен.
Электрод конденсатора состоит из материалов с высокой удельной площадью поверхности (высокопроизводительные), применяемых в конденсаторах. Такие материалы общеизвестны. К ним относятся уголь, оксид рутения, оксид серебра, оксид кобальта с высокой удельной площадью поверхности и проводящие полимеры. Предпочтительно в качестве отрицательного электрода конденсатора использовать материалы с высокой удельной поверхностью на основе угля, например активированный уголь, сажу, аморфный уголь, угольные наночастицы, угольные нанотрубки, угольные волокна или их смесь.
Обычно смеси материалов применяют для получения соответствующего равновесия между площадью поверхности (и, следовательно, емкости) и проводимостью. В настоящее время по причине малой стоимости наиболее распространенным является активированный уголь, материал с удельной площадью поверхности в диапазоне 1000-2500 м2/г, а более предпочтительно 1000-2000 м2/г. Этот материал используется в комбинации с материалом, обладающим высокой проводимостью, таким как сажа, и имеющим удельную площадь поверхности 60-1000 м2/г. Смесь таких материалов содержит 5-20% сажи, 40-80% активированного угля, 0-10% угольных волокон и связующего вещества 5-25%. Все значения приведены в мас.%, если не указано иное.
Состав добавок электродов конденсатора
Как описано выше, было обнаружено, что если существует разброс величины потенциала одного из электродов, может возникнуть выделение водорода и/или кислорода. В соответствии с одним из вариантов реализации изобретения для устранения выделения водорода в состав отрицательных электродов конденсатора вводятся добавки или смесь добавок, состоящие из оксида, гидроксида или сульфата свинца, цинка, кадмия, серебра и висмута или их смеси. Предпочтительно, чтобы добавка включала в себя, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка. В целях удобства добавка состоит из одного или более оксидов, выбранных из оксида свинца, оксида цинка, оксида кадмия, оксида серебра и оксида висмута. Желательно, чтобы каждый отрицательный электрод конденсатора включал в себя добавку в дополнение к материалу с высокой удельной площадью поверхности. Нежелательно применять соединения кадмия по причине их токсичности. Поэтому предпочтительно применение соединений свинца и/или цинка, и необязательно серебра. Обычно избегают применять оксиды серебра и висмута в связи с их стоимостью.
Независимо от формы внесения добавки при взаимодействии проводника с электролитом (например, серной кислотой) добавка может вступить в реакцию с электролитом и вследствие этого перейти в соединение металла, производное от оксида, гидроксида или сульфата металла. Выражение оксиды, сульфаты и гидроксиды, как добавки следует воспринимать как обобщение продуктов реакций между добавками и электролитом. Если в течение заряда или разряда батареи добавка переходит в другую форму в результате окислительно-восстановительной реакции, то выражение оксиды, сульфаты и гидроксиды следует понимать как обобщение продуктов этой окислительно-восстановительной реакции.
Для устранения выделения кислорода предлагается следующий состав положительных электродов конденсатора:
- материал с высокой удельной площадью поверхности (как описан выше),
- Pb2О3 («красный свинец»),
- оксид, гидроксид или сульфат сурьмы и
- необязательно одна или более добавок, выбранных из оксидов, гидроксидов или сульфатов железа и свинца.
Соединения сурьмы оказывают полезное действие при устранении выделения кислорода на положительном электроде конденсатора. Однако при их переходе к отрицательному электроду конденсатора наблюдается негативный эффект в отношении выделения водорода на этом электроде. В случае отсутствия средства для закрепления на положительном электроде конденсатора соединений сурьмы последние при контакте с электролитом могут в нем растворяться и осаждаться на отрицательном электроде при протекании тока. Красный свинец употребляется для закрепления или для предотвращения перехода сурьмы на отрицательный электрод. Присутствие соединений свинца и железа (оксиды, сульфаты и гидроксиды) также желательны в составе электрода. Они могут быть использованы в виде смеси в качестве добавок.
В любом случае добавки используются в таком количестве, чтобы избежать выделения кислорода или водорода. Это такое количество, при использовании которого напряжение положительного и отрицательного электрода конденсатора увеличивается от стандартных ±0,9 В или ±1,0 В до, по крайней мере, ±1,2 В, преимущественно, по крайней мере, ±1,3 В. Общее содержание оксидов в массовом отношении составляет 5-40 мас.% в составе всего активного материала (включая активный материал с высокой удельной площадью поверхности, связующее вещество и другие компоненты сухой пасты).
Предпочтительный состав добавок отрицательного электрода конденсатора включает в себя 1-40 мас.% соединений свинца (преимущественно 1-20 мас.%), 1-20 мас.% соединений цинка (преимущественно 1-10 мас.%), 0-5 мас.% соединений кадмия и 0-5% мае. соединений серебра. Общее содержание вышеупомянутого желательно иметь в пределах 5-40 мас.% Хорошие результаты дает использование только оксида цинка (ZnO), а также только оксида свинца (PbO), а также их смеси.
Предпочтительный состав добавок положительного электрода конденсатора включает в себя 0-30 мас.% оксида (любого), сульфата или гидроксида свинца (преимущественно 1-30 мас.%), 1-10 мас.% Pb2O3, 0-2 мас.% оксида, сульфата или гидроксида железа (преимущественно 1-2 мас.%) и 0,05-1 мас.% оксида, сульфата или гидроксида сурьмы. Предпочтительно добавлять сурьму в форме оксида. Общее массовое содержание добавок желательно иметь в пределах 5-40 мас.%.
Другие варианты применения электродов конденсатора
Электроды конденсатора, содержащие добавки, можно использовать вместе с отдельным электродом батарейного типа (свинец или двуокись свинца) и электролитом для формирования асимметричного конденсатора без участия положительного и отрицательного электродов непосредственно батареи. Такой асимметричный конденсатор, содержащий новые компоненты, может быть соединен с батареей наружно традиционным образом без помощи какого-либо электронного устройства.
Другие типы электродов
Ниже детально описано, что батарея может содержать электроды других типов в дополнение или в качестве замены электродов, описанных выше. В частности, батарея может включать в себя один или более электродов смешанного конденсаторно-батарейного типа, то есть содержащих электрод конденсатора и электрод батареи, такой как, положительный конденсаторно-батарейный электрод.
В случае, когда положительный электрод конденсатора (как описано выше) содержит оксид свинца, то во время разряда батареи он переходит в двуокись свинца. Таким образом, электрод конденсатора, содержащий источник свинца, который переходит в двуокись свинца при работе батареи, может рассматриваться как электрод конденсаторно-батарейного типа, обладающий свойствами как электрода конденсатора, так и электрода батареи.
Введение материала с высокой удельной площадью поверхности, например угля, в состав положительных электродов может быть выполнено с целью уравновесить площадь поверхности положительного электрода по отношению к отрицательному электроду. В отсутствии какого-либо положительного электрода конденсатора следует добавлять отрицательные электроды с высокой площадью удельной поверхности для увеличения общей площади поверхности отрицательных электродов по сравнению с положительными электродами. При дисбалансе площадей поверхности электродов происходит повреждение электрода с меньшей площадью поверхности. Равновесие достигается путем увеличения площади поверхности положительного электрода за счет введения углерода с высокой удельной площадью поверхности.
Как следует из вышеизложенного, для специалиста ясно, что батарея может включать в себя последовательность чередующихся положительных и отрицательных электродов, находящихся в контакте с электролитом, а также первый проводник для прямого соединения с положительными электродами и второй проводник для прямого соединения с отрицательными электродами. При этом, по меньшей мере, одна пара зон соседних положительного и отрицательного электродов формирует конденсатор (путем накопления емкостной энергии) и, по меньшей мере, одна пара зон соседних положительного и отрицательного электродов формирует батарею (путем накопления энергии за счет электрохимических процессов между двумя электродными парами).
Зоны
Электроды согласно данному изобретению могут быть составными электродами (то есть они могут быть составлены из электродных материалов батареи и электродных материалов конденсатора). Ссылка на выражения «на основе свинца», «на основе двуокиси свинца» и «конденсатор», относящиеся к электроду, выделяет зоны электрода, которые имеют особое назначение независимо от того, имеет или не имеет отдельный электрод другие зоны различного типа.
Согласно одному варианту реализации изобретения преднамеренно применяются электроды, имеющие зоны различных типов. Согласно этому варианту один или более отрицательных электродов имеют, по меньшей мере, две зоны, заключающие в себе зону с материалом электрода батареи и зону с материалом электрода конденсатора. Например, электрод, имеющий две зоны, содержит токосъемник, тип которого рассмотрен выше, имеющий одну поверхность с нанесенным на нее электродным материалом батареи (свинец) и противоположную поверхность с нанесенным на него материалом отрицательного электрода конденсатора. Альтернативно электрод батареи, содержащий на обеих сторонах материал электрода батареи, может иметь покрытие одной стороны или любой другой области, состоящее из материала электрода конденсатора.
Другие типы электродов батареи
Выше указывалось, что во избежание выделения водорода в электрод конденсатора следует включать уголь с добавками. Но могут использоваться электроды батареи других типов, отличные от электродов свинцово-кислотных батарей. Это могут быть никелевые перезаряжаемые батареи, литиевые металлические или литиевые ионные перезаряжаемые батареи и т.д. В этом случае материалы положительных электродов батареи содержат оксид никеля, оксид серебра, оксид марганца, литиевые полимерные материалы, смешанные литиевые оксиды, включая литиево-никелевые оксиды, литиево-кобальтовые оксиды, литиево-магниевые оксиды, литиево-ванадиевые оксиды и литиевые полимерные катодные материалы. Материалы отрицательных электродов батареи содержат цинк, кадмий, гидриды металлов, литий металлический или в виде сплавов с такими металлами, как алюминий, а также материалы интеркалированные ионами лития. Детальное описание или альтернативы этих электродов могут быть найдены в уровне техники.
Конструкция
Электроды могут быть любой подходящей формы, например в форме плоской пластины или спираленавивной пластины для образования либо призматических, либо спиралевидных ячеек. С целью простоты конструкции предпочтительно использование плоских пластин.
Электролит
В свинцово-кислотных батареях возможно использование любого кислотного электролита в виде жидкости или геля. Однако предпочтительным вариантом является использование серной кислоты в качестве электролита.
Для других типов батарей применяется водный или органический электролит, включая щелочи такие как гидроокись калия и другие гидроокиси, литий, содержащие органические растворители, полимерные электролиты, ионные электролиты в твердом или жидком состоянии и т.д. Подходящие электролиты для определенного типа батареи могут быть выбраны в рабочем порядке специалистом в данной области.
Шины или проводники
Шина свинцово-кислотной батареи может иметь любую подходящую конструкцию и выполняться из любых известных проводящих материалов. Термин «соединенный» применительно к шинам относится к электрическому соединению, хотя прямой физический контакт более предпочтителен. В случае, когда конструкция свинцово-кислотной батареи с шиной не является типичной, может использоваться любой проводник, который не включает в себя внешнюю цепь батареи.
Другие свойства батареи
В общем случае компоненты батареи обладают свойствами, зависящими от типа используемой батареи. Например, свинцово-кислотная батарея может иметь конструктивное исполнение или с заливом электролита, или с регулировочным клапаном. В случае использования свинцово-кислотной батареи с регулировочным клапаном батарея может иметь любую подходящую конструкцию и может, например, применяться электролит в виде геля. Признаки батареи такой конструкции хорошо известны из уровня техники.
Давление, которое может выдерживать свинцово-кислотная батарея, лежит в пределах 5-20 кРа для батарей с заливом электролита и 20-80 кРа для батарей с регулировочным клапаном.
Сепараторы
Каждый из положительных и отрицательных электродов отделен от соседнего электрода пористыми сепараторами.
Сепараторы обеспечивают соответствующее расстояние между соседними электродами. Сепараторы, размещенные между соседними отрицательными электродами на основе свинца и положительными электродами на основе двуокиси свинца, могут быть изготовлены из любого пористого общеизвестного материала, например, пористого полимерного материала или абсорбционного стекловолокна (AGM). Соответствующее расстояние, т.е. толщина такого сепаратора составляет 1-2,5 миллиметра. В качестве полимерных материалов для сепаратора между положительными и отрицательными электродами используются полиэтилен и AGM. Полиэтиленовые сепараторы имеют толщину 1-1,5 миллиметров, а AGM сепараторы 1,2 - 2,5 миллиметров.
В случае, когда сепаратор находится между положительным электродом и отрицательным электродом конденсатора, его толщина должна быть меньше, чем толщина сепаратора батарейной части свинцово-кислотной батареи, то есть находиться в пределах 0,01-0,1 миллиметров и предпочтительней 0,03-0,07 миллиметров. Эти сепараторы выполнены из микропористого полимерного материала, например, из микропористого полиэтилена. Другие сепараторы могут быть выполнены из AGM. Толщина сепараторов из AGM находится в пределах 0,1-1 миллиметр, предпочтительно 0,1-0,5 миллиметра.
Формирование свинцово-кислотных батарей
После сборки соответствующих компонентов батареи свинцово-кислотную батарею следует сформировать. Выполнение этой операции широко известно в данной области техники. Выражения «на основе свинца» и «на основе двуокиси свинца» относится как непосредственно к свинцу и двуокиси свинца, так и к материалам, состоящим из металла/двуокиси металла, или к материалам, которые превращаются в свинец или двуокись свинца в данном электроде.
Как было указано выше, свинцово-кислотная батарея содержит, по меньшей мере, по одному электроду каждого типа. Количество отдельных секций батареи (выполненных из отрицательной и положительной пластин) зависит от величины желаемого напряжения. 36-вольтная батарея, используемая в умеренно гибридном электромобиле (которая может быть дозаряжена до 42 В), включает в себя 18 секций.
Расположение электродов
С целью получения хороших результатов работы батареи согласно оному из вариантов положительный и отрицательный электроды чередуются таким образом, что каждый положительный электрод имеет один отрицательный электрод на основе свинца по одну сторону от себя и один отрицательный электрод конденсатора по другую сторону. Согласно развитию изобретения, когда батарея имеет чередующиеся положительные и отрицательные электроды, то с отрицательным электродом на основе свинца чередуется отрицательный электрод конденсатора. Все отрицательные электроды (свинцовые и угольные) соединены с отрицательной шиной, а положительные электроды соединены с положительной шиной, при этом каждая секция батареи и секция ультраконденсатора включаются параллельно в общей свинцово-кислотной аккумуляторной батарее.
Функционирование
Как объяснено выше, секция ультраконденсатора в свинцово-кислотной батарее имеет более низкое внутреннее сопротивление, чем секция свинцово-кислотной батареи, поэтому она в первую очередь накапливает энергию при зарядке с высокой скоростью (при торможении) или отдает энергию при разряде с высокой скоростью (при разгоне автомобиля и запуске двигателя). Таким образом, асимметричный конденсатор разделяет работу свинцово-кислотной секции батареи и обеспечивает более высокий срок службы аккумуляторной батареи. Образование сульфата свинца на электродах секции батареи, которое обычно происходит во время быстро протекающего заряда или разряда батареи, минимизировано за счет того, что заряд и разряд обеспечивается при функционировании асимметричного конденсатора.
Каждый элемент батареи обеспечивает напряжение, равное 2 В. Свинцово-кислотная аккумуляторная батарея широкого применения в электромобилях содержит 8 отрицательных и 9 положительных электродов в чередующемся порядке, при этом 4 из отрицательных электродов являются свинцовыми, а 4 других - электродами конденсатора. Возможны вариации количества электродов и порядка их чередования при условии, что необходимо минимум по одному каждого из электродов.
ПРИМЕРЫ
Пример 1
Конструкция свинцово-кислотной аккумуляторной батареи для испытаний согласно первому варианту реализации изобретения представлена на Фиг.1 и 2.
Два пористых свинцовых (отрицательные пластины) электрода (1), две положительные пластины электрода из двуокиси свинца (2) и одна угольная отрицательная электродная пластина с высокой удельной площадью поверхности (3) расположены в чередующемся порядке, как показано на Фиг.1, в батарее (4). Положительные электроды из двуокиси свинца (2) и отрицательные свинцовые электроды (1) имеют ширину 40 мм, высоту 68 мм, толщину 3,3 мм. Угольный электрод (3) имеет ширину 40 мм, высоту 68 мм и толщину 1,4 мм. Электроды батареи имеют стандартную для свинцово-кислотных батарей конфигурацию и состав и изготовлены способом, детально описанным выше. Технология изготовления свинцового электрода, используемого в данном примере, в более полном объеме описана в нашей заявке, находящейся на рассмотрении PCT/AU 2003/001404, полное содержание которой включено как ссылка. Вкратце, в состав пасты для свинцового отрицательного электрода входят оксид свинца (1 кг), волокно 0,6 г, BaSO4 4,9 г, сажа 0,26 г, H2SO4 (плотность 1,400) 57 см3, вода 110 см3, кислота по отношению к оксиду 4%, при этом паста имеет плотность 4,7 г/см3. Состав пасты для положительного электрода из двуокиси свинца содержит оксид свинца 1 кг, волокно 0,3 г, H2SO4 (плотность 1,400) 57 см3, воды 130 см3, кислота по отношению к оксиду 4%, и паста имеет плотность 4,5 г/см3. Оксид свинца превращается в двуокись свинца и свинец, что описано в нашей заявке, находящейся на рассмотрении.
Электрод конденсатора (3) содержит сажу 20 мас.% с удельной площадью поверхности 60 м2/г (Denki Kadaku, Japan), 7,5 мас.% карбоксиметилцеллюлозы, 7,5 мас.% неопрена и 65 мас.% активированного угля с удельной площадью поверхности 2000 м2/г (Kurarekemikaru Co. LTL, Japan).
Сепараторы (5, 6) расположены между соседними электродами. Абсорбционное стекловолокно (AGM) сепаратора (5) толщиной 2 мм расположено между электродом из двуокиси свинца (2) и свинцовым электродом (1); микропористые полипропиленовые сепараторы (6) толщиной 0,05 мм заключены между положительными электродами (2) и угольным электродом (3).
Батарея (4) заполнена раствором серной кислоты (7). Положительные электроды соединены с положительной шиной (8), а отрицательные электроды с отрицательной шиной (9). Как указано ниже в целях сравнения для моделирования батареи без ультраконденсатора его отрицательная пластина может быть отсоединена от отрицательной шины.
При проведении испытаний имитировался типичные для 42-вольтной батареи, используемой в умеренно гибридных электромобилях, зарядка и разряд. Смоделированный процесс имеет малую продолжительность (2,35 мин) и состоит из нескольких этапов, которые имитируют требуемые для работы автомобиля возможности аккумуляторной батареи. Эти этапы следующие:
(a) разряд током 2 А в течение 60 секунд при работе без нагрузки;
(b) разряд током 17,5 А в течение 0,5 секунд при имитации запуска двигателя;
(c) усиленный разряд током 8,5 А длительностью 0,5 секунд;
(d) имитация зарядки батареи в стандартных условиях езды при максимум 14 В/2 А, длительность 70 секунд;
(e) 5-секундный перерыв;
(f) зарядка при рекуперативном торможении в течение 5 секунд при 14 В/2 А.
Критическим является период, когда батарея должна снабжать током 17,5 А в течение 5 секунд.
Испытания
Испытание батареи на срок службы в этом примере производится следующим образом: берут две идентичные батареи, в одной из них отрицательный угольный электрод конденсатора отсоединяют от отрицательной шины, что соответствует батарее без ультраконденсатора, называемой «сравнительной батареей».
Каждую батарею подвергают воздействию повторяющихся зарядно-разрядных циклов, показанных на Фиг.3 и описанных выше. Устанавливают напряжение отсечки, равное 1,6 В и являющееся общей величиной для подобного типа батарей. Затем батареи подвергаются воздействию повторяющихся зарядно-разрядных циклов до тех пор, пока самое низкое напряжение разряда не достигнет величины напряжения отсечки.
Результаты испытания приведены на Фиг.4, где линия 10 представляет внутреннее сопротивление сравнительной батареи, линия 11 представляет внутреннее сопротивление батареи примера 1, линия 12 представляет минимальное напряжение разряда сравнительной батареи, линия 13 представляет минимальное напряжение разряда батареи примера 1.
В течение процесса циклического заряда были сделаны следующие выводы:
(i) максимальное напряжение заряда сравнительной батареи и батареи примера 1 находятся на уровне 2,35 В, что представлено линией 14.
(ii) внутреннее сопротивление обеих батарей возрастает при увеличении количества циклов. При этом внутреннее сопротивление сравнительной батареи возрастает быстрее по отношению к батарее примера 1, то есть от 19 до 25 мОм для сравнительной батареи и от 18 до 25 мОм для батареи примера 1.
(iii) минимальное напряжение разряда обеих батарей понижается при увеличении количества циклов, но скорость изменения больше для сравнительной батареи.
Сравнительная батарея выполняет около 2150 циклов, в то время как батарея примера 1 выполняет 8940 циклов до того момента, когда минимальное напряжение разряда каждой из батарей достигнет величины напряжения отсечки, равной 1,6 В, представленной в виде прямой 15. Таким образом, работоспособность батареи примера 1, по меньшей мере, в четыре раза выше сравнительной батареи.
Пример 2
Разновидность батареи, рассмотренной в примере 1, изображена на Фиг.5 и 6. Для облегчения сравнения батарей приведены одинаковые цифровые обозначения одинаковых признаков.
Батарея в этом примере содержит три положительных электрода в виде пластин из двуокиси свинца (2) и два композиционных отрицательных электрода (16). Отрицательные электроды включают в себя токосъемник или решетку (17) с нанесенной на одну ее зону (лицевую) (18) пасты, содержащей свинец и описанный выше. На противоположную сторону (19) наносится паста, содержащая угольный электродный материал с высокой удельной площадью поверхности. Формирование электрода производится способом, известным в данной области техники. Преимуществом этого варианта является простота изготовления. Вариантом этого выполнения является нанесение свинца на отрицательный электрод с помощью традиционной технологии погружения в пасту из свинца с последующим формированием, а затем на зону или зоны отрицательного электрода на основе свинца наносят конденсаторный материал, например, на одну сторону. Положительный (2) и отрицательный (16) электроды расположены в чередующемся порядке в корпусе батареи (4), как показано на Фиг.5.
Положительные электроды из двуокиси свинца (2) и отрицательные композиционные электроды (16), представленные на Фиг.5, имеют ширину 40 миллиметров, высоту 68 миллиметров и толщину 3,3 миллиметра. Уголь занимает зону (19) отрицательного электрода, равную 1,4 миллиметра.
Сепараторы (5, 6) помещаются между соседними электродами. Сепараторы (5) из абсорбционного стекловолокна (AGM) толщиной 2 миллиметра расположены между положительным электродом из двуокиси свинца (2) и поверхностью свинца (18) отрицательного электрода, а сепараторы (6) из микропористого полипропилена толщиной 0,05 миллиметра находятся между положительным электродом (2) и угольной поверхностью отрицательного электрода (19). Корпус батареи 4 заполнен раствором серной кислоты (7). Положительные электроды соединены с положительной шиной (8), а отрицательные электроды - с отрицательной шиной (9).
Пример 3
Дальнейшие испытания батареи примера 1 показали, что положительный эффект при использовании безводного электролита может быть получен за счет согласования скорости выделения водорода с угольного электрода (3) во время зарядки батареи и со свинцового отрицательного электрода (1). Это достигается путем замены угольного электрода в примере 1 модифицированным угольным электродом (103). Массовое содержание пастообразного состава следующее: 2,5% PbO и 2,5% ZnO, 65% активированного угля, 20% сажи и 10% связующего вещества.
Проведены сравнительные испытания скорости выделения водорода для модифицированного электрода и электрода из примера 1, а также свинцового отрицательного электрода из примера 1. Результаты показаны на Фиг.7, где кривая 20 представляет скорость выделения водорода на угольном электроде, кривая 21 представляет скорость выделения водорода на свинцово-кислотной отрицательной пластине, а кривая 22 представляет скорость выделения водорода на угольном электроде с добавками. Уровень плотности тока для угольного электрода, не содержащего оксидных добавок, значительно возрастает при напряжении ниже - 1,2 В и даже больше при 1,3 В. При более точном согласовании скорости выделения водорода обоими электродами батарея может работать более надежно при высоких напряжениях благодаря применению обезвоженного электролита.
Включение CdO могло бы дать результат, подобный включению ZnO или PbO, но по причине токсичности не использовалось при испытаниях. AgO дает такой же результат, но его использование дорого и он не так эффективен. При испытаниях уровни содержания ZnO и PbO варьировались в диапазоне 1-10% и 1-20% соответственно, а AgO в диапазоне 1-5%. Другие оксиды, упомянутые в вышеприведенном подробном описании, оказывают такой же эффект, как AgO.
Пример 4
Следующая разновидность батареи, приведенной в примере 1, показана на Фиг.8. Для простоты сравнения используются одинаковые цифровые обозначения общих признаков обеих батарей. Кроме того, для простоты изображены только электроды батареи. Понятно, что помимо электродов батарея содержит сепараторы, корпус, электролит, шины, клеммы и другие признаки, известные из уровня техники.
Батарея в этом примере составлена из последовательности чередующихся положительных и отрицательных электродов. Электроды в порядке слева направо расположены следующим образом: положительный электрод батареи из двуокиси свинца (2), отрицательный электрод батареи на основе свинца (3), второй положительный электрод батареи из двуокиси свинца (2), угольный с добавками отрицательный электрод конденсатора, описанный в примере 3 (103), положительный конденсатор-батарея электрод (23), как описано ниже, второй угольный с добавками отрицательный электрод конденсатора (103), описанный в примере 3, второй отрицательный электрод батареи на основе свинца (3) и третий положительный электрод батареи из двуокиси свинца (2). Каждый из положительных и отрицательных электродов соответственно соединен с положительным проводником и отрицательным проводником, а также с положительной и отрицательной клеммами батареи.
Общий электрод конденсатор-батарея (23) включает в себя металлический токосъемник с нанесенной на него смесью, содержащей активированный уголь (60 мас.%), сажу (20 мас.%) и 10 мас.% оксида свинца. В состав пасты входит также 10 мас.% связующего вещества, состоящего из 5 мас.% карбоксиметилцеллюлозы и 5 мас.% неопрена. Пасту наносят на токосъемник и спекают. Толщина электрода составляет 0,8 мм. Испытания показали, что внесение SbO и красного свинца в положительный электрод конденсатора дает положительный эффект при выделении газа и следовательно эти добавки могут в дальнейшем быть включены в положительный электрод конденсатора.
Батарея в этом примере может содержать чередующиеся положительные и отрицательные электроды любого типа.
Желательно обеспечивать определенное соотношение между площадями поверхности и скоростями выделения водорода всех положительных и отрицательных электродов и включать в состав батареи требуемое количество положительных и отрицательных электродов для получения необходимого напряжения.
Итак, в рамках изобретения можно выполнять различные варианты его реализации и примеры, не нарушая его смысла и области его действия.

Claims (73)

1. Свинцово-кислотная батарея, содержащая: по меньшей мере, один отрицательный электрод на основе свинца; по меньшей мере, один положительный электрод на основе двуокиси свинца; по меньшей мере, один электрод конденсатора и электролит в контакте с электродами, характеризующаяся тем, что одна часть батареи сформирована из отрицательного электрода на основе свинца и положительного электрода на основе двуокиси свинца, а другая ее часть, представляющая собой асимметричный конденсатор, сформирована из электрода конденсатора и либо из отрицательного электрода на основе свинца, либо из положительного электрода на основе двуокиси свинца; причем все отрицательные электроды соединены с отрицательной шиной, а все положительные электроды соединены с положительной шиной.
2. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что положительные и отрицательные электроды чередуются между собой.
3. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что электрод конденсатора состоит из материала с высокой удельной площадью поверхности, выбранного из ряда: уголь, оксид рутения, оксид серебра, оксид кобальта и проводящие полимеры.
4. Свинцово-кислотная батарея по п.3, характеризующаяся тем, что материалом с высокой удельной площадью поверхности является уголь.
5. Свинцово-кислотная батарея по п.4, характеризующаяся тем, что материалом с высокой удельной площадью поверхности является активированный уголь.
6. Свинцово-кислотная батарея по п.5, характеризующаяся тем, что активированный уголь имеет удельную площадь поверхности в диапазоне от 1000 до 2500 м2/г.
7. Свинцово-кислотная батарея по п.3, характеризующаяся тем, что электрод конденсатора содержит сажу.
8. Свинцово-кислотная батарея по п.7, характеризующаяся тем, что покрытие электрода конденсатора содержит 5-20% сажи, 40-80% активированного угля, 0-10% угольного волокна и 5-25% связующего вещества.
9. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что свинцово-кислотная батарея содержит, по меньшей мере, один отрицательный электрод конденсатора, содержащий активный материал с высокой удельной площадью поверхности с добавкой или смесью добавок из оксида, гидроксида или сульфата свинца, цинка, кадмия, серебра, висмута или их смеси.
10. Свинцово-кислотная батарея по п.9, характеризующаяся тем, что добавки включают, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка.
11. Свинцово-кислотная батарея по п.9, характеризующаяся тем, что добавки присутствуют в покрытии отрицательного электрода конденсатора в таком количестве, что потенциал отрицательного электрода конденсатора увеличивается, по меньшей мере, до -1,2 В.
12. Свинцово-кислотная батарея по п.9, характеризующаяся тем, что общее содержание добавок составляет 5-40 мас.% от общего состава композиции покрытия конденсатора.
13. Свинцово-кислотная батарея по п.9, характеризующаяся тем, что состав добавок отрицательного электрода конденсатора содержит следующие металлы в форме оксидов, сульфатов или гидроксидов: 1-40 мас.% Pb, 1-20 мас.% Zn, 0-5 мас.% Cd и 0-5% мас.% Ag.
14. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что свинцово-кислотная батарея содержит, по меньшей мере, один положительный электрод конденсатора, содержащий конденсаторный материал с высокой удельной площадью поверхности и с добавками, содержащими: Pb2О3, оксиды, гидроксиды и сульфаты сурьмы и необязательно одну или более добавок, выбранных из оксидов, гидроксидов и сульфатов железа и свинца.
15. Свинцово-кислотная батарея по п.14, характеризующаяся тем, что добавки положительного электрода конденсатора присутствуют в таком количестве, что потенциал положительного электрода конденсатора возрастает, по меньшей мере, до величины +1,2 В.
16. Свинцово-кислотная батарея по п.14, характеризующаяся тем, что содержание добавки положительного электрода конденсатора составляет 5-40 мас.% от общего состава композиции покрытия положительного электрода конденсатора.
17. Свинцово-кислотная батарея по п.14, характеризующаяся тем, что содержание добавок положительного электрода конденсатора составляет 0-30 мас.% Pb в форме оксида, сульфата или гидроксида, 1-10 мас.% Pb2О3, 0-2 мас.% Fe в форме оксида, сульфата или гидроксида и 0,05-1 мас.% Sb в форме оксида, сульфата или гидроксида.
18. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что свинцово-кислотная батарея содержит отрицательный электрод, по меньшей мере, с двумя зонами, включающими зону электродного материала батареи, и зону материала электрода конденсатора.
19. Свинцово-кислотная батарея по п.18, характеризующаяся тем, что отрицательный электрод содержит зону электродного материала свинцово-кислотной батареи, находящуюся на одной стороне, и зону материала отрицательного электрода конденсатора - на противоположной.
20. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что асимметричный конденсатор, представляющий часть батареи, имеет емкость ультраконденсатора.
21. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что асимметричный конденсатор, представляющий часть батареи, имеет емкость суперконденсатора.
22. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что в качестве электролита используют серную кислоту.
23. Свинцово-кислотная батарея по п.1, характеризующаяся тем, что каждый положительный и отрицательный электрод отделен от соседнего электрода пористым сепаратором.
24. Свинцово-кислотная батарея по п.23, характеризующаяся тем, что толщина сепараторов, находящихся между соседними отрицательными электродами на основе свинца и положительными электродами на основе двуокиси свинца, составляет от 1 до 2,5 мм.
25. Свинцово-кислотная батарея по п.23, характеризующаяся тем, что толщина сепараторов, находящихся в контакте с поверхностью электрода конденсатора, составляет от 0,01 до 0,1 мм.
26. Свинцово-кислотная батарея, содержащая: по меньшей мере, один отрицательный электрод на основе свинца, по меньшей мере, один положительный электрод на основе двуокиси свинца, по меньшей мере, один отрицательный электрод конденсатора и электролит в контакте с электродами, характеризующаяся тем, что положительный электрод и отрицательный электрод на основе свинца образуют одну часть батареи, а положительный электрод и отрицательный электрод конденсатора образуют часть батареи, представленную асимметричным конденсатором, при этом положительный электрод является общим для батарейной части и части ассиметричного конденсатора, причем отрицательный электрод на основе свинца и отрицательный электрод конденсатора соединены с отрицательной шиной, а положительный электрод соединен с положительной шиной.
27. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что положительные и отрицательные электроды чередуются между собой.
28. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что электродный материал конденсатора содержит угольный материал с высокой удельной площадью поверхности.
29. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что отрицательный электрод конденсатора содержит материал с высокой удельной площадью поверхности и добавки или смесь добавок, содержащих оксид, гидроксид или сульфат свинца, цинка, кадмия, серебра и висмута или их смеси.
30. Свинцово-кислотная батарея по п.29, характеризующаяся тем, что добавка включает в себя, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка.
31. Свинцово-кислотная батарея по п.29, характеризующаяся тем, что добавка присутствует в покрытии отрицательного электрода конденсатора в таком количестве, которое увеличивает потенциал отрицательного электрода конденсатора до, по меньшей мере, -1,2 В.
32. Свинцово-кислотная батарея по п.29, характеризующаяся тем, что общее содержание добавок составляет 5-40 мас.% от общего состава композиции покрытия конденсатора.
33. Свинцово-кислотная батарея по п.29, характеризующаяся тем, что добавки отрицательного электрода конденсатора содержат соединения следующих металлов в виде оксида, сульфата или гидроксида: 1-40 мас.% Pb, 1-20 мас.% Zn, 0-5 мас.% Cd и 0-5 мас.% Ag.
34. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что содержит, по меньшей мере, один положительный электрод конденсатора из материала с высокой удельной площадью поверхности и добавки, содержащие: Pb2О3, оксид, гидроксид или сульфат сурьмы, необязательно одну или более добавок, выбранных из оксидов, гидроксидов и сульфатов железа и свинца.
35. Свинцово-кислотная батарея по п.34, характеризующаяся тем, что содержание добавок положительного электрода конденсатора составляет 5-40 мас.%.
36. Свинцово-кислотная батарея по п.34, характеризующаяся тем, что положительный электрод конденсатора содержит в качестве добавок 0-30 мас.% Pb в виде оксида, сульфата или гидроксида, 1-10 мас.% Pb2О3, 0-2 мас.% Fe в виде оксида, сульфата или гидроксида и 0,05-1 мас.% Sb в виде оксида, сульфата или гидроксида.
37. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что свинцово-кислотная батарея содержит отрицательный электрод с, по меньшей мере, двумя зонами, включающими зону материала электрода батареи, и зону материал электрода конденсатора.
38. Свинцово-кислотная батарея по п.37, характеризующаяся тем, что отрицательный электрод содержит зону, материала электрода батареи на основе свинца на одной стороне и зону материала отрицательного электрода конденсатора, на противоположной стороне.
39. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что часть батареи, в которую входит асимметричный конденсатор, имеет емкость ультраконденсатора.
40. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что часть батареи, в которую входит асимметричный конденсатор, имеет емкость суперконденсатора.
41. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что в качестве электролита используют серную кислоту.
42. Свинцово-кислотная батарея по п.26, характеризующаяся тем, что каждый положительный и отрицательный электрод отделен от соседнего электрода пористыми сепараторами.
43. Свинцово-кислотная батарея по п.42, характеризующаяся тем, что толщина сепараторов, расположенных между соседними отрицательными электродами на основе свинца и положительными электродами на основе двуокиси свинца, составляет 1-2,5 мм.
44. Свинцово-кислотная батарея по п.42, характеризующаяся тем, что толщина сепараторов, соприкасающихся с поверхностью электрода конденсатора, составляет 0,01-0,1 мм.
45. Свинцово-кислотная батарея, включающая в себя набор чередующихся положительных и отрицательных электродов и электролит, характеризующаяся тем, что, по меньшей мере, одна пара зон соседних положительного и отрицательного электродов аккумулирует энергии по типу конденсатора, по меньшей мере, одна пара зон соседних положительного электрода на основе двуокиси свинца и отрицательного электрода на основе свинца аккумулирует энергию за счет электрохимических процессов, причем положительные электроды напрямую связаны с первым проводником, а отрицательные электроды напрямую соединены со вторым проводником.
46. Свинцово-кислотная батарея по п.45, характеризующаяся тем, что одна из зон положительных или отрицательных электродов является зоной электрода конденсатора.
47. Свинцово-кислотная батарея по п.46, характеризующаяся тем, что зона электрода конденсатора содержит угольный материал с высокой удельной площадью поверхности.
48. Свинцово-кислотная батарея по п.47, характеризующаяся тем, что зона электрода конденсатора является зоной отрицательного электрода конденсатора и содержит угольный материал с высокой удельной площадью поверхности, и добавку или смеси добавок, включающих в себя оксид, гидроксид или сульфат свинца, цинка, кадмия, серебра и висмута или их смесь.
49. Свинцово-кислотная батарея по п.48, характеризующаяся тем, что добавка включает в себя хотя бы один оксид, гидроксид или сульфат свинца или цинка.
50. Свинцово-кислотная батарея по п.48, характеризующаяся тем, что общее содержание добавки составляет 5-40 мас.%.
51. Свинцово-кислотная батарея по п.47, характеризующаяся тем, что добавка отрицательного электрода конденсатора содержит соединения следующих металлов в виде оксида, сульфата или гидроксида: 1-40 мас.% Pb, 1-20 мас.% Zn, 0-5 мас.% Cd, 0-5 мас.% Ag.
52. Свинцово-кислотная батарея по п.47, характеризующаяся тем, что зона электрода конденсатора является зоной положительного электрода конденсатора и содержит материал конденсатора с высокой удельной площадью поверхности и добавку, содержащую: Pb2О3, оксид, гидроксид или сульфат сурьмы и необязательно одну или более добавок, выбранных из оксидов, гидроксидов или сульфатов железа и свинца.
53. Свинцово-кислотная батарея по п.52, характеризующаяся тем, что содержание добавки положительного электрода конденсатора составляет 5-40 мас.%.
54. Свинцово-кислотная батарея по п.52, характеризующаяся тем, что добавка положительного электрода конденсата содержит 0-30 мас.% Pb в виде оксида, сульфата или гидроксида, 1-10 мас.% Pb2O3, 0-2 мас.% Fe в виде оксида, сульфата или гидроксида, 0,05-1 мас.% Sb в виде оксида, сульфата или гидроксида.
55. Свинцово-кислотная батарея по п.45, характеризующаяся тем, что с одной стороны отрицательного электрода находится зона отрицательной батареи на основе свинца, и с противоположной стороны находится зона материала отрицательного электрода конденсатора.
56. Свинцово-кислотная батарея по п.45, характеризующаяся тем, что качестве электролита используют серную кислоту.
57 Свинцово-кислотная батарея по п.45, характеризующаяся тем, что каждый положительный и отрицательный электроды отделены от соседних электродов пористыми сепараторами.
58 Свинцово-кислотная батарея по п.57, характеризующаяся тем, что толщина сепараторов, расположенных между зонами соседних отрицательного электрода на основе свинца и положительного электрода на основе двуокиси свинца, составляет 1-2,5 мм.
59. Свинцово-кислотная батарея по п.57, характеризующаяся тем, что толщина сепаратора, соприкасающегося с зоной электрода конденсатора, составляет 0,01-0,1 мм.
60. Смешанная батарея-конденсатор, содержащая: по меньшей мере, один положительный электрод батареи, по меньшей мере, один отрицательный электрод батареи, по меньшей мере, один положительный или отрицательный электрод конденсаторного типа, причем отрицательный электрод конденсатора содержит материал с высокой удельной площадью поверхности и одну или более добавок, выбранных из оксидов, гидроксидов или сульфатов свинца, цинка, кадмия, серебра и висмута, положительный электрод конденсатора содержит: конденсаторный материал с высокой удельной площадью поверхности, Pb2O3, оксид, гидроксид или сульфат сурьмы и необязательно одну или более добавок, выбранных из оксидов, гидроксидов и сульфатов железа и свинца, электролит в контакте с электродами, характеризующаяся тем, что одна часть батареи сформирована из положительного и отрицательного электродов батареи, а другая часть представляет собой ассимитричный конденсатор, сформированный из электрода конденсатора и одного из электродов батареи, причем один из электродов батареи является общим для батарейной части и части ассиметричного конденсатора, а отрицательные электроды напрямую электрически соединены с первым проводником, а положительные электроды напрямую электрически соединены со вторым проводником.
61. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что положительный электрод батареи содержит электродный материал, выбранный из ряда: двуокись свинца, оксид никеля, оксид серебра, оксид марганца, литиевые полимерные материалы, смешанные литиевые оксиды, включающие в себя оксиды лития и никеля, лития и кобальта, лития и марганца, лития и ванадия, а также проводящие литиевые полимерные катодные материалы.
62. Смешанная батарея-конденсатор по п.60 или 61, характеризующаяся тем, что отрицательный электрод батареи содержит электродный материал, выбранный из ряда: свинец, цинк, кадмий, гидриды металлов, литий в виде металла или сплава с такими металлами, как алюминий, и материалы интеркалированные литием.
63. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что положительные и отрицательные электроды чередуются между собой.
64. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что материалом с высокой удельной площадью поверхности является уголь.
65. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что электродом конденсатора является отрицательный электрод конденсатора, а добавка включает в себя, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка.
66. Смешанная батарея-конденсатор по п.65, характеризующаяся тем, что покрытие отрицательного электрода конденсатора содержит добавку в таком количестве, которое позволяет повысить потенциал отрицательного электрода конденсатора до, по крайней мере, -1,2 В.
67. Смешанная батарея-конденсатор по п.65, характеризующаяся тем, что общее содержание добавки в составе покрытия конденсатора находится в диапазоне 5-40 мас.% от общего состава композиции покрытия конденсатора.
68. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что добавка отрицательного электрода конденсатора содержит соединения следующих металлов в виде оксида, сульфата или гидроксида: 1-40 мас.% Pb, 1-20 мас.% Zn, 0-5 мас.% Cd и 0-5 мас.% Ag.
69. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что электродом конденсатора является положительный электрод конденсатора, в котором содержание добавки находится в диапазоне 5-40 мас.%.
70. Смешанная батарея-конденсатор по п.69, характеризующаяся тем, что добавка положительного электрода конденсатора содержит 0-30 мас.% Pb в виде оксида, сульфата или гидроксида, 1-10 мас.% Pb2О3, 0-2 мас.% Fe в виде оксида, сульфата или гидроксида и 0,05-1 мас.% Sb в виде оксида, сульфата или гидроксида.
71. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что содержит как положительный, так и отрицательный электроды конденсатора.
72. Смешанная батарея-конденсатор по п.60, характеризующаяся тем, что каждый положительный и отрицательный электрод отделен от соседнего электрода пористыми сепараторами.
73. Отрицательный электрод конденсатора, содержащий токосъемник и пастообразное покрытие, которое содержит конденсаторный материал с высокой удельной площадью поверхности, связующее вещество и 5-40 мас.% от массы пастообразного покрытия добавки или смеси добавок, выбранных из оксидов, гидроксидов или сульфатов свинца, цинка, кадмия, серебра и висмута при условии, что добавка включает в себя, по меньшей мере, один оксид, гидроксид или сульфат свинца или цинка.
74. Положительный электрод конденсатора, содержащий токосъемник и пастообразное покрытие, которое содержит материал с высокой удельной площадью поверхности, связующее вещество и 10-40 мас.% от массы покрытия смеси добавок содержащей: Pb2О3, оксид, гидроксид или сульфат сурьмы и необязательно один или более оксид, гидроксид или сульфат железа и свинца.
75. Асимметричный конденсатор, содержащий отрицательный электрод конденсатора в соответствии с п.73 или положительный электрод конденсатора в соответствии с п.74, электрод батареи либо на основе свинца, либо на основе двуокиси свинца и электролит.
RU2006112836/09A 2003-09-18 2004-09-16 Высокоэффективные аккумуляторные батареи RU2335831C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003905086A AU2003905086A0 (en) 2003-09-18 High performance lead-acid battery
AU2003905086 2003-09-18

Publications (2)

Publication Number Publication Date
RU2006112836A RU2006112836A (ru) 2007-11-10
RU2335831C2 true RU2335831C2 (ru) 2008-10-10

Family

ID=34280538

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006112836/09A RU2335831C2 (ru) 2003-09-18 2004-09-16 Высокоэффективные аккумуляторные батареи

Country Status (11)

Country Link
US (2) US7923151B2 (ru)
EP (3) EP1665446B1 (ru)
JP (2) JP4960702B2 (ru)
KR (1) KR101227779B1 (ru)
CN (2) CN101494297B (ru)
AT (1) ATE550804T1 (ru)
AU (1) AU2004273104B2 (ru)
ES (3) ES2386915T3 (ru)
PL (3) PL1665446T3 (ru)
RU (1) RU2335831C2 (ru)
WO (1) WO2005027255A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533207C2 (ru) * 2009-08-27 2014-11-20 Дзе Фурукава Бэттери Ко., Лтд. Способ изготовления гибридной отрицательной пластины для свинцово-кислотной аккумуляторной батареи и свинцово-кислотная аккумуляторная батарея

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1665446T3 (pl) * 2003-09-18 2012-10-31 Commw Scient Ind Res Org Urządzenia o wysokiej sprawności do magazynowania energii
JP2006252902A (ja) * 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd ハイブリッド電池
CA2934724C (en) 2005-03-18 2019-04-09 Gatekeeper Systems, Inc. Two-way communication system for tracking locations and statuses of wheeled vehicles
JP5092272B2 (ja) * 2005-05-31 2012-12-05 新神戸電機株式会社 鉛蓄電池および鉛蓄電池の製造方法
CA2620062C (en) 2005-08-25 2015-10-27 Gatekeeper Systems, Inc. Systems and methods for locating and controlling powered vehicles
US20070128472A1 (en) * 2005-10-27 2007-06-07 Tierney T K Cell Assembly and Casing Assembly for a Power Storage Device
JP2009516916A (ja) * 2005-11-22 2009-04-23 マックスウェル テクノロジーズ, インク ウルトラキャパシタ圧力制御システム
KR100614118B1 (ko) * 2006-02-24 2006-08-22 주식회사 비츠로셀 하이브리드 전지
JP2008047452A (ja) * 2006-08-18 2008-02-28 Shin Kobe Electric Mach Co Ltd ペースト式電極板及びその製造方法
US7658247B2 (en) * 2006-09-20 2010-02-09 Gatekeeper Systems, Inc. Systems and methods for power storage and management from intermittent power sources
US20090035657A1 (en) * 2006-10-23 2009-02-05 Buiel Edward R Electrode for Hybrid Energy Storage Device and Method of Making Same
US20080113268A1 (en) * 2006-10-23 2008-05-15 Buiel Edward R Recombinant Hybrid Energy Storage Device
CA2667299C (en) * 2006-10-23 2013-01-08 Axion Power International, Inc. Negative electrode for hybrid energy storage device
US8202653B2 (en) 2006-10-23 2012-06-19 Axion Power International, Inc. Electrode with reduced resistance grid and hybrid energy storage device having same
US7881042B2 (en) * 2006-10-26 2011-02-01 Axion Power International, Inc. Cell assembly for an energy storage device with activated carbon electrodes
BRPI0718811B1 (pt) 2006-11-15 2020-05-19 Basf Se dispositivo elétrico de capacitância de camada dupla
JP4997948B2 (ja) * 2006-12-07 2012-08-15 新神戸電機株式会社 鉛蓄電池
AR064292A1 (es) 2006-12-12 2009-03-25 Commw Scient Ind Res Org Dispositivo mejorado para almacenamiento de energia
AR067238A1 (es) * 2007-03-20 2009-10-07 Commw Scient Ind Res Org Dispositivos optimizados para el almacenamiento de energia
US7761198B2 (en) 2007-06-25 2010-07-20 General Electric Company Methods and systems for power system management
US20090103242A1 (en) * 2007-10-19 2009-04-23 Axion Power International, Inc. Electrode with Reduced Resistance Grid and Hybrid Energy Storage Device Having Same
FR2927472B1 (fr) * 2008-02-11 2010-07-30 Commissariat Energie Atomique Systeme hybride de stockage d'energie electrique a electrodes bipolaires
JP5106174B2 (ja) * 2008-02-25 2012-12-26 三洋電機株式会社 固体電解コンデンサの製造方法
JP5412909B2 (ja) * 2008-03-24 2014-02-12 日本ゼオン株式会社 鉛蓄電池用電極および鉛蓄電池
JP5348131B2 (ja) * 2008-03-24 2013-11-20 日本ゼオン株式会社 鉛蓄電池用電極およびその利用
WO2009137422A1 (en) 2008-05-05 2009-11-12 Gatekeeper Systems, Inc. Brake mechanism for a non-motorized wheeled vehicle
JP5494487B2 (ja) 2008-09-22 2014-05-14 日本ゼオン株式会社 鉛蓄電池用電極および鉛蓄電池
JP5343083B2 (ja) 2008-10-15 2013-11-13 株式会社キャタラー 炭素材料及び蓄電素子
US8232005B2 (en) 2008-11-17 2012-07-31 Eliot Gerber Lead acid battery with titanium core grids and carbon based grids
ES2957854T3 (es) 2008-12-18 2024-01-26 Molecular Rebar Design Llc Nanotubos de carbono exfoliados, métodos para la producción de los mismos y productos obtenidos de estos
EP2424011A4 (en) 2009-04-23 2014-01-15 Furukawa Battery Co Ltd METHOD FOR PRODUCING A NEGATIVE PLATE FOR A LEAD CELLULAR AND BLEED CELLULATOR
JP2011009128A (ja) * 2009-06-29 2011-01-13 Gs Yuasa Corp キャパシタハイブリッド鉛蓄電池及びその製造方法
US8404384B2 (en) 2009-07-01 2013-03-26 Energ2 Technologies, Inc. Ultrapure synthetic carbon materials
CN102576607A (zh) * 2009-07-27 2012-07-11 纸电池公司 柔性能量储存结构薄片
US20110027653A1 (en) * 2009-08-03 2011-02-03 Ho Marvin C Negative plate for lead acid battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
JP5797384B2 (ja) 2009-08-27 2015-10-21 古河電池株式会社 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
US8737547B2 (en) 2009-10-26 2014-05-27 Indian Institute Of Science Adaptive digital baseband receiver
EP2497136B1 (en) 2009-11-02 2019-07-17 Cabot Corporation High surface area and low structure carbon blacks for energy storage applications
HUE046871T2 (hu) * 2009-11-02 2020-03-30 Cabot Corp Ólom-sav akkumulátorok és paszták azokhoz
US9912009B2 (en) 2009-12-18 2018-03-06 Molecular Rebar Design, Llc Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes
CN102110861A (zh) * 2009-12-25 2011-06-29 旭丽电子(广州)有限公司 电池保护方法和***
US20110189507A1 (en) * 2010-02-03 2011-08-04 International Battery, Inc. Extended energy storage unit
US8481203B2 (en) * 2010-02-03 2013-07-09 Bren-Tronies Batteries International, L.L.C. Integrated energy storage unit
US8593787B2 (en) * 2010-04-21 2013-11-26 Corning Incorporated Electrochemical capacitor having lithium containing electrolyte
US9036332B2 (en) * 2010-06-22 2015-05-19 Indian Institute Of Science Energy storage device, an inorganic gelled electrolyte and methods thereof
BR112012032527A2 (pt) 2010-06-22 2016-11-22 Indian Inst Scient ultracapacitor híbrido, e, métodos para preparar eletrodo de dióxido de chumbo integrado pelo substrato, de montagem de um ultracapacitor híbrido, de utilizar o ultracapacitor híbrido e para obter um ultracapacitor híbrido em série.
WO2012045002A1 (en) 2010-09-30 2012-04-05 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US20120098501A1 (en) * 2010-10-26 2012-04-26 Tesla Motors, Inc. Efficient lead acid battery charging
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US10881448B2 (en) 2010-11-05 2021-01-05 Ethicon Llc Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US10959769B2 (en) 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9782215B2 (en) 2010-11-05 2017-10-10 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US10085792B2 (en) 2010-11-05 2018-10-02 Ethicon Llc Surgical instrument with motorized attachment feature
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US20120116265A1 (en) * 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US10660695B2 (en) 2010-11-05 2020-05-26 Ethicon Llc Sterile medical instrument charging device
KR101898303B1 (ko) 2010-12-14 2018-09-12 몰레큘라 레바 디자인 엘엘씨 개선된 탄성 중합체 배합물
JP2012133959A (ja) * 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
KR102048196B1 (ko) * 2010-12-28 2019-11-25 바스프 에스이 향상된 전기화학적 특성을 포함하는 탄소 물질
US8765297B2 (en) 2011-01-04 2014-07-01 Exide Technologies Advanced graphite additive for enhanced cycle-life of lead-acid batteries
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
US9365939B2 (en) 2011-05-31 2016-06-14 Wisconsin Alumni Research Foundation Nanoporous materials for reducing the overpotential of creating hydrogen by water electrolysis
CN107785180A (zh) * 2011-06-03 2018-03-09 巴斯福股份公司 用于混合能量存储装置中的碳‑铅共混物
KR20140068850A (ko) * 2011-06-15 2014-06-09 유니버시티 오브 써던 캘리포니아 충전식 철-기반 배터리에 사용되는 고효율 철 전극 및 첨가제
US8808909B2 (en) 2011-06-23 2014-08-19 Melecular Rebar Design, LLC Lithium ion batteries using discrete carbon nanotubes, methods for production thereof and products obtained therefrom
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
KR101930978B1 (ko) 2011-06-23 2018-12-19 몰레큘라 레바 디자인 엘엘씨 개별형 탄소 나노튜브를 함유하는 납산 배터리 제제
CA2839318A1 (en) 2011-06-23 2012-12-27 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
CN103582974A (zh) * 2011-07-05 2014-02-12 株式会社杰士汤浅国际 液式铅蓄电池
CN102306555B (zh) * 2011-08-23 2013-04-17 华南师范大学 一种超级电池用炭负极板
CN102306844B (zh) * 2011-09-01 2016-03-16 奇瑞汽车股份有限公司 一种超级电容蓄电池
US9595360B2 (en) 2012-01-13 2017-03-14 Energy Power Systems LLC Metallic alloys having amorphous, nano-crystalline, or microcrystalline structure
US9263721B2 (en) 2012-01-13 2016-02-16 Energy Power Systems LLC Lead-acid battery design having versatile form factor
US8808914B2 (en) 2012-01-13 2014-08-19 Energy Power Systems, LLC Lead-acid battery design having versatile form factor
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
US20140377596A1 (en) * 2012-03-14 2014-12-25 Energy Power Systems, LLC Hybrid battery system for electric and hybrid electric vehicles
US20130244063A1 (en) * 2012-03-14 2013-09-19 Energy Power Systems LLC Hybrid battery system for electric and hybrid electric vehicles
EP2831896B1 (en) 2012-03-27 2021-02-17 CPS Technology Holdings LLC Lead-acid battery including capacitor electrode with surface-modified additives
US8597996B1 (en) * 2012-05-10 2013-12-03 Universal Supercapacitors Llc Method of manufacturing heterogeneous electrochemical capacitors having a double electric layer and of manufacturing and balancing the coulombic capacities of electrodes for use therein
IN2015DN00506A (ru) 2012-07-08 2015-06-26 Molecular Rebar Design Llc
CN102881866B (zh) * 2012-09-29 2017-03-01 浙江南都电源动力股份有限公司 一种含有铅石墨烯复合材料的铅炭电池负极板
US9892865B2 (en) 2012-10-17 2018-02-13 Ramot At Tel Aviv University Ltd. Super hybrid capacitor
US10014520B2 (en) 2012-10-31 2018-07-03 Exide Technologies Gmbh Composition that enhances deep cycle performance of valve-regulated lead-acid batteries filled with gel electrolyte
US20140120386A1 (en) * 2012-10-31 2014-05-01 Exide Technologies Over-Saturated Absorbed Glass Mat Valve Regulated Lead-Acid Battery Comprising Carbon Additives
CN110112377A (zh) 2013-03-14 2019-08-09 14族科技公司 包含锂合金化的电化学改性剂的复合碳材料
US9812732B2 (en) 2013-08-16 2017-11-07 Johnson Controls Technology Company Dual storage system and method with lithium ion and lead acid battery cells
ES2776170T3 (es) 2013-09-30 2020-07-29 Molecular Rebar Design Llc Fluidos con alto contenido de nanotubos de carbón
CN105900267B (zh) 2013-10-16 2020-12-18 彭怡婷 钨基材料超级电池及超级电容器
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
TWI479717B (zh) 2013-11-28 2015-04-01 Csb Battery Co Ltd Lead-acid capacitor batteries and the preparation of lead-acid battery method
FR3016245B1 (fr) * 2014-01-03 2021-07-16 Commissariat Energie Atomique Cellule electrochimique, systeme de stockage et de restitution d'energie electrique comprenant une telle cellule electrochimique et vehicule comprenant un tel systeme
US20150214710A1 (en) * 2014-01-27 2015-07-30 Humberto Arenas Portable grounding system
JP6665121B2 (ja) 2014-03-14 2020-03-13 グループ14・テクノロジーズ・インコーポレイテッドGroup14 Technologies, Inc. 無溶媒中におけるゾル−ゲル重合のための新規方法、及びゾル−ゲル重合由来の可変炭素構造の作製
US20150357643A1 (en) * 2014-06-10 2015-12-10 Cabot Corporation Electrode compositions comprising carbon additives
US10136938B2 (en) 2014-10-29 2018-11-27 Ethicon Llc Electrosurgical instrument with sensor
US11881593B2 (en) 2015-02-26 2024-01-23 Daramic, Llc Vapor pressure barriers for lead acid batteries for improved water loss performance, separators, systems, and methods of manufacture and use thereof
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
CN107820643B (zh) 2015-06-24 2021-07-20 卡博特公司 用于铅酸电池的碳质材料
JP2015216123A (ja) * 2015-07-15 2015-12-03 株式会社Gsユアサ 液式鉛蓄電池
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
EP4286355A3 (en) 2015-08-28 2024-05-01 Group14 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
CN105355980B (zh) * 2015-11-06 2018-02-16 深圳市力赛科技有限公司 一种铝电解电容器型锂离子电池的制备方法
CN105355848B (zh) * 2015-11-06 2018-05-29 广东石油化工学院 一种铝电解电容器型锂离子电池
CN105406133A (zh) * 2015-11-30 2016-03-16 李朝 一种高安全性的铝电解电容器型钴酸锂锂离子电池
WO2017142522A1 (en) * 2016-02-17 2017-08-24 Daramic, Llc Improved battery separators which reduce water loss in lead acid batteries and improved lead acid batteries including such improved battery separators
CN106099209B (zh) * 2016-06-17 2017-09-22 湖北骆驼海峡新型蓄电池有限公司 一种动力铅酸蓄电池电解液添加剂及其制备方法
CN107565086B (zh) 2016-06-30 2022-12-13 卢云峰 一种电池极板制备方法
CN110582823A (zh) 2017-03-09 2019-12-17 14集团技术公司 含硅前体在多孔支架材料上的分解
US11936032B2 (en) 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery
KR20200014317A (ko) 2017-06-09 2020-02-10 씨피에스 테크놀로지 홀딩스 엘엘씨 납산 배터리
US11646453B2 (en) * 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
GB2570112B (en) * 2018-01-10 2022-12-14 Zapgo Ltd Hybrid energy pack
US11549631B2 (en) 2018-01-10 2023-01-10 Lydall, Inc. Asymmetrical stretch composite for pipe liner
CN108387797A (zh) * 2018-02-06 2018-08-10 天能电池集团有限公司 一种用于检测蓄电池电极材料性能的装置和方法
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
CN114039041B (zh) * 2021-11-04 2022-09-09 昆明理工恒达科技股份有限公司 一种大容量铅炭储能电池及制备方法

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856162B2 (ja) 1996-07-30 1999-02-10 日本電気株式会社 電気二重層コンデンサ及びその製造方法
US4215190A (en) 1979-06-08 1980-07-29 Ferrando William A Lightweight battery electrode
DE3436290A1 (de) 1983-10-08 1985-04-25 Honda Giken Kogyo K.K., Tokio/Tokyo Abgedichtete blei-saeure-batterie
US4882132A (en) 1983-12-27 1989-11-21 Monsanto Company Solvent extraction of cobalt using hydroxamic acids
US4567284A (en) 1983-12-27 1986-01-28 Monsanto Company Cobalt complex of N-alkylalkanohydroxamic acid
US4975253A (en) 1983-12-27 1990-12-04 Monsanto Company Solvent extraction of nickel using hydroxamic acids
US4770954A (en) 1987-10-16 1988-09-13 Halliburton Company Switching power supply and method
DE68926642T2 (de) 1988-01-22 1996-11-28 Japan Storage Battery Co Ltd Alkalische batterien und verfahren zur herstellung
JP2541342B2 (ja) * 1990-06-06 1996-10-09 株式会社ユアサコーポレーション ハイブリット電池
CH678556A5 (ru) 1990-12-17 1991-09-30 Hugues Edwin Luedi Baertschi
US5154989A (en) 1991-09-04 1992-10-13 Medtronic, Inc. Energy storage device
US5260855A (en) 1992-01-17 1993-11-09 Kaschmitter James L Supercapacitors based on carbon foams
FR2692077A1 (fr) 1992-06-03 1993-12-03 Sorapec Accumulateurs à électrodes bipolaires.
AU681351B2 (en) 1992-09-18 1997-08-28 Ultracap Technologies Corporation Energy storage device and methods of manufacture
US5464453A (en) 1992-09-18 1995-11-07 Pinnacle Research Institute, Inc. Method to fabricate a reliable electrical storage device and the device thereof
US5384685A (en) 1992-09-18 1995-01-24 Pinnacle Research Institute, Inc. Screen printing of microprotrusions for use as a space separator in an electrical storage device
US5491399A (en) 1993-05-28 1996-02-13 William E. Gregory Lead acid battery rejuvenator
US5604426A (en) 1993-06-30 1997-02-18 Asahi Glass Company Ltd. Electric apparatus with a power supply including an electric double layer capacitor
JP3185508B2 (ja) 1993-12-29 2001-07-11 日本電池株式会社 密閉形鉛蓄電池
US5429893A (en) 1994-02-04 1995-07-04 Motorola, Inc. Electrochemical capacitors having dissimilar electrodes
US5439756A (en) * 1994-02-28 1995-08-08 Motorola, Inc. Electrical energy storage device and method of charging and discharging same
US5419977A (en) 1994-03-09 1995-05-30 Medtronic, Inc. Electrochemical device having operatively combined capacitor
JPH07249405A (ja) 1994-03-10 1995-09-26 Haibaru:Kk 電 池
US5518833A (en) 1994-05-24 1996-05-21 Eagle-Picher Industries, Inc. Nonwoven electrode construction
US5458043A (en) 1994-07-28 1995-10-17 The United States Of America As Represented By The Secretary Of The Air Force Battery charging capacitors electromagnetic launcher
US5705259A (en) 1994-11-17 1998-01-06 Globe-Union Inc. Method of using a bipolar electrochemical storage device
US5526223A (en) * 1994-12-01 1996-06-11 Motorola, Inc. Electrode materials and electrochemical capacitors using same
US5574353A (en) 1995-03-31 1996-11-12 Motorola, Inc. Electrochemical charge storage device having constant voltage discharge
US5587250A (en) 1995-09-27 1996-12-24 Motorola, Inc. Hybrid energy storage system
US5626729A (en) 1996-02-01 1997-05-06 Motorola, Inc. Modified polymer electrodes for energy storage devices and method of making same
JPH1021900A (ja) * 1996-07-01 1998-01-23 Tokuyama Corp 密閉型鉛蓄電池用正極板および密閉型鉛蓄電池
US5821007A (en) 1996-08-19 1998-10-13 Motorola, Inc. Power source for an electrical device
JPH1094182A (ja) 1996-09-13 1998-04-10 Honda Motor Co Ltd 電源装置および電気自動車
US5849426A (en) 1996-09-20 1998-12-15 Motorola, Inc. Hybrid energy storage system
US5670266A (en) 1996-10-28 1997-09-23 Motorola, Inc. Hybrid energy storage system
JP3661725B2 (ja) 1996-12-20 2005-06-22 旭硝子株式会社 電源装置
US5744258A (en) * 1996-12-23 1998-04-28 Motorola,Inc. High power, high energy, hybrid electrode and electrical energy storage device made therefrom
US6011379A (en) 1997-03-12 2000-01-04 U.S. Nanocorp, Inc. Method for determining state-of-charge using an intelligent system
US5993983C1 (en) 1997-03-14 2001-09-18 Century Mfg Co Portable power supply using hybrid battery technology
US5935728A (en) 1997-04-04 1999-08-10 Wilson Greatbatch Ltd. Electrochemical cell having multiplate and jellyroll electrodes with differing discharge rate regions
US5935724A (en) 1997-04-04 1999-08-10 Wilson Greatbatch Ltd. Electrochemical cell having multiplate electrodes with differing discharge rate regions
US5916699A (en) 1997-05-13 1999-06-29 Motorola, Inc. Hybrid energy storage system
BR9705871C3 (pt) 1997-05-26 2004-08-10 Guacemmi Participacoees Societ Sistema radiante em acumuladores e produto resultante
US6316563B2 (en) 1997-05-27 2001-11-13 Showa Denko K.K. Thermopolymerizable composition and use thereof
US6087812A (en) 1997-06-13 2000-07-11 Motorola, Inc. Independent dual-switch system for extending battery life under transient loads
US5821006A (en) 1997-07-07 1998-10-13 Motorola, Inc. Hybrid cell/capacitor assembly for use in a battery pack
JPH1141664A (ja) 1997-07-24 1999-02-12 Toshiba Corp 無線電話装置
US6117585A (en) * 1997-07-25 2000-09-12 Motorola, Inc. Hybrid energy storage device
US6190805B1 (en) 1997-09-10 2001-02-20 Showa Denko Kabushiki Kaisha Polymerizable compound, solid polymer electrolyte using the same and use thereof
AU719684B2 (en) 1997-11-11 2000-05-18 Zakrytoe Aktsionernoe Obschestvo "Esma" Capacitor with dual electric layer
US6765363B2 (en) 1998-03-10 2004-07-20 U.S. Microbattery, Inc. Micro power supply with integrated charging capability
US6610440B1 (en) 1998-03-10 2003-08-26 Bipolar Technologies, Inc Microscopic batteries for MEMS systems
US6088217A (en) * 1998-05-31 2000-07-11 Motorola, Inc. Capacitor
US6208502B1 (en) 1998-07-06 2001-03-27 Aerovox, Inc. Non-symmetric capacitor
US6631073B1 (en) 1998-08-25 2003-10-07 Kanebo, Limited Electrode material and method for producing the same
US6331365B1 (en) 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
US6222723B1 (en) 1998-12-07 2001-04-24 Joint Stock Company “Elton” Asymmetric electrochemical capacitor and method of making
US6252762B1 (en) 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
US6310789B1 (en) 1999-06-25 2001-10-30 The Procter & Gamble Company Dynamically-controlled, intrinsically regulated charge pump power converter
DE60015972T2 (de) 1999-06-25 2005-11-10 The Board Of Trustees Of The University Of Illinois, Chicago Batterie mit eingebautem dynamisch geschalteten kapazitiven leistungsumwandler
JP3348405B2 (ja) 1999-07-22 2002-11-20 エヌイーシートーキン株式会社 インドール系高分子を用いた二次電池及びキャパシタ
US20030129458A1 (en) 1999-09-02 2003-07-10 John C. Bailey An energy system for delivering intermittent pulses
US6576365B1 (en) 1999-12-06 2003-06-10 E.C.R. - Electro Chemical Research Ltd. Ultra-thin electrochemical energy storage devices
EP1126536B1 (en) 2000-02-16 2007-05-16 Nisshinbo Industries, Inc. Multi-layer electrode structure, and method of manufacturing same
JP2001284188A (ja) 2000-04-03 2001-10-12 Asahi Glass Co Ltd 電気二重層キャパシタ電極用炭素材料の製造方法及びこの炭素材料を用いた電気二重層キャパシタの製造方法
WO2001095410A1 (en) 2000-06-07 2001-12-13 Andelman Marc D Fluid and electrical connected flow-through electrochemical cells, system and method
US20020037452A1 (en) 2000-06-23 2002-03-28 Schmidt David G. Novel compositions for use in batteries, capacitors, fuel cells and similar devices and for hydrogen production
US6333123B1 (en) 2000-06-28 2001-12-25 The Gillette Company Hydrogen recombination catalyst
US6623884B1 (en) 2000-08-07 2003-09-23 Wilson Greatbatch Ltd. Electrochemical lithium ion secondary cell having multiplate and jellyroll electrodes with differing discharge rate regions
US6541140B1 (en) 2000-08-07 2003-04-01 Wilson Greatbatch Technologies, Inc. Electrochemical lithium ion secondary cell having multiplate electrodes with differing discharge rate regions
JP3471304B2 (ja) 2000-09-18 2003-12-02 Necトーキン株式会社 インドール系化合物を用いた二次電池及びキャパシタ
US6517972B1 (en) 2000-09-29 2003-02-11 Telcordia Technologies, Inc. High energy density hybrid battery/supercapacitor system
CN1357899A (zh) 2000-12-13 2002-07-10 中国科学院成都有机化学研究所 碳纳米管用于超级电容器电极材料
US7110242B2 (en) 2001-02-26 2006-09-19 C And T Company, Inc. Electrode for electric double layer capacitor and method of fabrication thereof
US7119047B1 (en) 2001-02-26 2006-10-10 C And T Company, Inc. Modified activated carbon for capacitor electrodes and method of fabrication thereof
EP1248307A1 (en) 2001-04-03 2002-10-09 Hitachi, Ltd. Lead-acid battery
JP3573102B2 (ja) 2001-04-20 2004-10-06 ソニー株式会社 負極活物質及び非水電解質二次電池
TW543230B (en) 2001-04-24 2003-07-21 Reveo Inc Hybrid electrochemical cell system
US6628504B2 (en) 2001-05-03 2003-09-30 C And T Company, Inc. Electric double layer capacitor
US6466429B1 (en) 2001-05-03 2002-10-15 C And T Co., Inc. Electric double layer capacitor
US6653014B2 (en) 2001-05-30 2003-11-25 Birch Point Medical, Inc. Power sources for iontophoretic drug delivery systems
TW571494B (en) 2001-06-05 2004-01-11 Us Microbattery Inc Micro power supply with integrated charging capability
US20040121204A1 (en) 2001-06-07 2004-06-24 Adelman Marc D. Fluid electrical connected flow-through electrochemical cells, system and method
JP4364460B2 (ja) * 2001-08-07 2009-11-18 古河電池株式会社 鉛蓄電池用負極
KR20030014988A (ko) 2001-08-14 2003-02-20 한국전자통신연구원 하이브리드 전원소자 및 그 제조방법
JP3815774B2 (ja) 2001-10-12 2006-08-30 松下電器産業株式会社 電解質を含む電気化学素子
JP4004769B2 (ja) 2001-10-17 2007-11-07 Necトーキン株式会社 電解液、並びにこれを用いた電気化学セル
WO2003055791A2 (en) 2001-10-17 2003-07-10 Applied Materials, Inc. Improved etch process for etching microstructures
FR2831318B1 (fr) 2001-10-22 2006-06-09 Commissariat Energie Atomique Dispositif de stockage d'energie a recharge rapide, sous forme de films minces
JP3809549B2 (ja) 2001-11-22 2006-08-16 株式会社日立製作所 電源装置と分散型電源システムおよびこれを搭載した電気自動車
JP2005293850A (ja) 2002-03-08 2005-10-20 Akira Fujishima 電力貯蔵体用電極、電力貯蔵体、および電力貯蔵方法
KR100416617B1 (ko) 2002-03-25 2004-02-05 삼성전자주식회사 tDQSS 윈도우를 개선할 수 있는 데이터 입력방법 및데이터 입력버퍼
CN100499227C (zh) 2002-04-18 2009-06-10 古河电池株式会社 铅蓄电池用铅基合金、铅蓄电池用基板和铅蓄电池
US6706079B1 (en) 2002-05-03 2004-03-16 C And T Company, Inc. Method of formation and charge of the negative polarizable carbon electrode in an electric double layer capacitor
EP1418428A1 (en) 2002-11-07 2004-05-12 GenOdyssee Method to provide natural therapeutic agents with high therapeutic index
CA2394056A1 (fr) 2002-07-12 2004-01-12 Hydro-Quebec Particules comportant un noyau non conducteur ou semi conducteur recouvert d'un couche conductrice, leurs procedes d'obtention et leur utilisation dans des dispositifs electrochimiques
JP4324798B2 (ja) 2002-08-01 2009-09-02 株式会社ジーエス・ユアサコーポレーション 乗物用電源装置およびこの電源装置を備えた乗物
EP1391961B1 (en) 2002-08-19 2006-03-29 Luxon Energy Devices Corporation Battery with built-in load leveling
AU2002952234A0 (en) 2002-10-24 2002-11-07 Commonwealth Scientific And Industrial Research Organisation Lead compositions for lead-acid batteries
US7006346B2 (en) 2003-04-09 2006-02-28 C And T Company, Inc. Positive electrode of an electric double layer capacitor
JP2005026349A (ja) 2003-06-30 2005-01-27 Tdk Corp 電気化学キャパシタ用電極の製造方法及び電気化学キャパシタの製造方法
PL1665446T3 (pl) 2003-09-18 2012-10-31 Commw Scient Ind Res Org Urządzenia o wysokiej sprawności do magazynowania energii
JP2005129446A (ja) 2003-10-27 2005-05-19 Hitachi Ltd 電気化学エネルギー貯蔵デバイス
TWI276240B (en) 2003-11-26 2007-03-11 Ind Tech Res Inst Fuel cell power supply device
CN1985340A (zh) 2004-07-09 2007-06-20 大阪瓦斯株式会社 双电层电容器用活性炭、双电层电容器用活性炭电极以及使用它的双电层电容器
KR100758482B1 (ko) 2004-12-07 2007-09-12 주식회사 엘지화학 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자
WO2007058421A1 (en) 2005-11-16 2007-05-24 Vina Technology Co., Ltd. Hybrid battery
KR100570359B1 (ko) 2004-12-23 2006-04-12 비나텍주식회사 하이브리드 전지
KR100700711B1 (ko) 2005-04-15 2007-03-27 주식회사 에너랜드 하이브리드 전기에너지 저장장치
JP5092272B2 (ja) 2005-05-31 2012-12-05 新神戸電機株式会社 鉛蓄電池および鉛蓄電池の製造方法
US7649335B2 (en) 2005-06-07 2010-01-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
JP4506571B2 (ja) 2005-06-07 2010-07-21 トヨタ自動車株式会社 車両用電源システムおよび車両
DE102005038351A1 (de) 2005-08-11 2007-02-15 Siemens Ag Elektrochemischer Energiespeicher
KR100614118B1 (ko) 2006-02-24 2006-08-22 주식회사 비츠로셀 하이브리드 전지
WO2008016236A1 (en) 2006-07-31 2008-02-07 Lg Chem, Ltd. Hybrid-typed electrode assembly of capacitor-battery structure
AR064292A1 (es) 2006-12-12 2009-03-25 Commw Scient Ind Res Org Dispositivo mejorado para almacenamiento de energia
US20080199737A1 (en) 2007-02-16 2008-08-21 Universal Supercapacitors Llc Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
AR067238A1 (es) 2007-03-20 2009-10-07 Commw Scient Ind Res Org Dispositivos optimizados para el almacenamiento de energia
KR101310176B1 (ko) 2007-07-20 2013-09-24 에낙스 가부시키가이샤 축전 디바이스 및 그 제조방법
JP2009081949A (ja) 2007-09-26 2009-04-16 Toshiba Corp 組電池の保護装置及びこれを含む組電池システム
DE102007058837A1 (de) 2007-12-05 2009-06-10 Technische Universität Clausthal Elektrochemisches Energieumwandlungssystem
WO2009094931A1 (en) 2008-01-28 2009-08-06 Ang Yang Charge-and-work type charging battery
FR2927472B1 (fr) 2008-02-11 2010-07-30 Commissariat Energie Atomique Systeme hybride de stockage d'energie electrique a electrodes bipolaires
WO2009128482A1 (ja) 2008-04-16 2009-10-22 日清紡ホールディングス株式会社 蓄電装置
CN101414691A (zh) 2008-11-27 2009-04-22 苏州大学 碳板负极板密封铅酸电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533207C2 (ru) * 2009-08-27 2014-11-20 Дзе Фурукава Бэттери Ко., Лтд. Способ изготовления гибридной отрицательной пластины для свинцово-кислотной аккумуляторной батареи и свинцово-кислотная аккумуляторная батарея

Also Published As

Publication number Publication date
EP2273602B1 (en) 2015-03-25
EP2273602A2 (en) 2011-01-12
EP2290737B1 (en) 2015-03-11
EP1665446A4 (en) 2007-09-26
US7923151B2 (en) 2011-04-12
ES2537655T3 (es) 2015-06-10
PL2273602T3 (pl) 2015-10-30
US8232006B2 (en) 2012-07-31
EP2273602A3 (en) 2011-07-20
ES2386915T3 (es) 2012-09-05
EP2290737A2 (en) 2011-03-02
AU2004273104A1 (en) 2005-03-24
PL1665446T3 (pl) 2012-10-31
JP2007506230A (ja) 2007-03-15
PL2290737T3 (pl) 2015-10-30
ATE550804T1 (de) 2012-04-15
AU2004273104B2 (en) 2010-09-30
JP2011181513A (ja) 2011-09-15
CN100539287C (zh) 2009-09-09
US20110151286A1 (en) 2011-06-23
US20070104981A1 (en) 2007-05-10
JP4960702B2 (ja) 2012-06-27
EP2290737A3 (en) 2011-07-20
EP1665446B1 (en) 2012-03-21
CN101494297A (zh) 2009-07-29
EP1665446A1 (en) 2006-06-07
WO2005027255A1 (en) 2005-03-24
KR20060084441A (ko) 2006-07-24
JP5314080B2 (ja) 2013-10-16
KR101227779B1 (ko) 2013-01-29
CN1853306A (zh) 2006-10-25
ES2537534T3 (es) 2015-06-09
RU2006112836A (ru) 2007-11-10
CN101494297B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
RU2335831C2 (ru) Высокоэффективные аккумуляторные батареи
CA2677940C (en) Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
US6628504B2 (en) Electric double layer capacitor
RU2460180C2 (ru) Усовершенствованное устройство аккумулирования энергии
WO2009128482A1 (ja) 蓄電装置
EP3635805B1 (en) Lead-acid battery
US10511055B2 (en) Metal plating-based electrical energy storage cell
CN102770926B (zh) 具有纳米复合材料的电子电池
CN101764264A (zh) 一种超级铅酸电池
JP2005302395A (ja) 鉛蓄電池
CN101707143B (zh) 混合电化学电容器
CN201886904U (zh) 一种叠片式高电压混合电化学电容器
JP4904675B2 (ja) 鉛蓄電池
CN202262463U (zh) 纽扣超级电容器
CN201518282U (zh) 混合电化学电容器
CN109088053A (zh) 一种聚苯胺基超级电容铅酸电池
CN202797140U (zh) 铅碳复合电极极板及其构成的电极
Calasanzio et al. Development of a valve-regulated lead/acid battery for automotive use