KR870005459A - 반도체장치 - Google Patents

반도체장치 Download PDF

Info

Publication number
KR870005459A
KR870005459A KR860009284A KR860009284A KR870005459A KR 870005459 A KR870005459 A KR 870005459A KR 860009284 A KR860009284 A KR 860009284A KR 860009284 A KR860009284 A KR 860009284A KR 870005459 A KR870005459 A KR 870005459A
Authority
KR
South Korea
Prior art keywords
well region
semiconductor device
semiconductor substrate
semiconductor
mosfet
Prior art date
Application number
KR860009284A
Other languages
English (en)
Other versions
KR970000462B1 (ko
Inventor
아쓰오 와다나베
요시아끼 야자와
아쓰시 히라이시
마사다까 미나미
다까히로 나가노
다까히데 이께다
나오히로 몬마
Original Assignee
미쓰다 가쓰시게
가부시끼가이샤 히다찌 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰다 가쓰시게, 가부시끼가이샤 히다찌 세이사꾸쇼 filed Critical 미쓰다 가쓰시게
Publication of KR870005459A publication Critical patent/KR870005459A/ko
Application granted granted Critical
Publication of KR970000462B1 publication Critical patent/KR970000462B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/921Radiation hardened semiconductor device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

내용 없음

Description

반도체장치
본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음
제1도는 본 발명의 일실시예시도.
제2도는 제1도의 MOSFET의 제조프로세스 표시도.
제3도는 본 발명의 다른 실시예시도.
*도면의 주요 부분에 대한 부호의 설명
1 : 반도체기판 2 : P형 웰영역
3 : 고농도층 120 : N형 웰영역

Claims (1)

  1. 반도체기판의 소정영역에 웰영역이 형성되며 이 웰영역에 MOSFET를 형성한 반도체장치에 있어서 웰영역의 불순물 농도분포는 표면보다 깊은 부분에서 골 형상을 가지며 그 곡소점은 그 농도가 5×1015cm-3이하고 반도체기판 표면에서 1.6㎛이내의 깊은 곳에 위치하고 있는 것을 특징으로 하는 반도체 기억장치.
    ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.
KR1019860009284A 1985-11-29 1986-11-04 반도체 장치 KR970000462B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-267170 1985-11-29
JP60267170A JPH0770606B2 (ja) 1985-11-29 1985-11-29 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1019940016676A Division KR960016692A (ko) 1985-11-29 1994-07-11 반도체장치

Publications (2)

Publication Number Publication Date
KR870005459A true KR870005459A (ko) 1987-06-09
KR970000462B1 KR970000462B1 (ko) 1997-01-11

Family

ID=17441073

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019860009284A KR970000462B1 (ko) 1985-11-29 1986-11-04 반도체 장치
KR1019940016676A KR960016692A (ko) 1985-11-29 1994-07-11 반도체장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1019940016676A KR960016692A (ko) 1985-11-29 1994-07-11 반도체장치

Country Status (3)

Country Link
US (2) US4963973A (ko)
JP (1) JPH0770606B2 (ko)
KR (2) KR970000462B1 (ko)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770606B2 (ja) * 1985-11-29 1995-07-31 株式会社日立製作所 半導体装置
US5093707A (en) * 1988-04-27 1992-03-03 Kabushiki Kaisha Toshiba Semiconductor device with bipolar and cmos transistors
JP2569171B2 (ja) * 1989-04-12 1997-01-08 株式会社日立製作所 半導体装置
JP4255142B2 (ja) * 1998-02-05 2009-04-15 株式会社ルネサステクノロジ 半導体装置
US6268250B1 (en) 1999-05-14 2001-07-31 Micron Technology, Inc. Efficient fabrication process for dual well type structures
US6310366B1 (en) * 1999-06-16 2001-10-30 Micron Technology, Inc. Retrograde well structure for a CMOS imager
US6445014B1 (en) 1999-06-16 2002-09-03 Micron Technology Inc. Retrograde well structure for a CMOS imager
US6372582B1 (en) 1999-08-18 2002-04-16 Advanced Micro Devices, Inc. Indium retrograde channel doping for improved gate oxide reliability
US6426279B1 (en) 1999-08-18 2002-07-30 Advanced Micro Devices, Inc. Epitaxial delta doping for retrograde channel profile
KR20010056719A (ko) * 1999-12-16 2001-07-04 권문구 반사형 편광판의 시야각에 따른 색차 및 휘도 보상 방법
US6528850B1 (en) * 2000-05-03 2003-03-04 Linear Technology Corporation High voltage MOS transistor with up-retro well
US8329564B2 (en) * 2007-10-26 2012-12-11 International Business Machines Corporation Method for fabricating super-steep retrograde well MOSFET on SOI or bulk silicon substrate, and device fabricated in accordance with the method
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US20110079861A1 (en) * 2009-09-30 2011-04-07 Lucian Shifren Advanced Transistors with Threshold Voltage Set Dopant Structures
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8796767B1 (en) 2011-06-06 2014-08-05 Maxim Integrated Products, Inc. Low-noise, high-gain semiconductor device incorporating BCD (bipolar-CMOS-DMOS) technology
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
CN104854698A (zh) 2012-10-31 2015-08-19 三重富士通半导体有限责任公司 具有低变化晶体管***电路的dram型器件以及相关方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032372A (en) * 1971-04-28 1977-06-28 International Business Machines Corporation Epitaxial outdiffusion technique for integrated bipolar and field effect transistors
US4247862B1 (en) * 1977-08-26 1995-12-26 Intel Corp Ionzation resistant mos structure
US4258379A (en) * 1978-09-25 1981-03-24 Hitachi, Ltd. IIL With in and outdiffused emitter pocket
US4435895A (en) * 1982-04-05 1984-03-13 Bell Telephone Laboratories, Incorporated Process for forming complementary integrated circuit devices
JPS5994861A (ja) * 1982-11-24 1984-05-31 Hitachi Ltd 半導体集積回路装置及びその製造方法
JPS60113457A (ja) * 1983-11-24 1985-06-19 Nec Corp 相補型半導体装置の製造方法
US4762802A (en) * 1984-11-09 1988-08-09 American Telephone And Telegraph Company At&T, Bell Laboratories Method for preventing latchup in CMOS devices
US4604790A (en) * 1985-04-01 1986-08-12 Advanced Micro Devices, Inc. Method of fabricating integrated circuit structure having CMOS and bipolar devices
JPH0715971B2 (ja) * 1985-05-23 1995-02-22 カシオ計算機株式会社 相補型mos集積回路の製造方法
JPH0770606B2 (ja) * 1985-11-29 1995-07-31 株式会社日立製作所 半導体装置

Also Published As

Publication number Publication date
KR970000462B1 (ko) 1997-01-11
JPH0770606B2 (ja) 1995-07-31
JPS62128170A (ja) 1987-06-10
KR960016692A (ko) 1996-05-22
US5726488A (en) 1998-03-10
US4963973A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
KR870005459A (ko) 반도체장치
KR840006872A (ko) 반도체 집적회로장치 및 그 제조방법
KR900010994A (ko) 반도체 장치
KR880005684A (ko) 반도체장치
KR900004031A (ko) 바이폴러 트랜지스터 및 그 제조방법
KR890013786A (ko) 비정질 실리콘 박막 트랜지스터 어레이 기판 및 그 제조방법
KR900013585A (ko) 반도체 소자의 제조방법
KR890007381A (ko) 반도체소자 및 그 제조방법
KR870008395A (ko) 절연게이트 전계효과 트랜지스터
KR930005259A (ko) 반도체 장치 및 그 제조 방법
KR910013570A (ko) 쇼트키.다이오드
KR910019152A (ko) 실리콘 웨이퍼
KR910008853A (ko) 반도체장치와 그 제조방법
KR910005391A (ko) 반도체장치 및 그 제조방법
KR860001488A (ko) 바이폴러 트랜지스터와 iil이 있는 반도체 장치
KR860001489A (ko) 반도체장치
KR910003802A (ko) 반도체장치 및 그 제조방법
KR880011888A (ko) 반도체장치의 제조방법
KR900017213A (ko) 반도체 장치
KR890005839A (ko) 반도체 장치의 콘택 구조
KR970063674A (ko) 반도체 장치
KR860008616A (ko) 반도체 장치
KR880008460A (ko) 반도체 장치 및 그 제조방법
KR930003290A (ko) 메탈콘택 형성방법 및 그 구조
KR890005834A (ko) 반도체장치

Legal Events

Date Code Title Description
A201 Request for examination
E801 Decision on dismissal of amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030526

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee