KR101323917B1 - 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 - Google Patents

하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 Download PDF

Info

Publication number
KR101323917B1
KR101323917B1 KR1020110094690A KR20110094690A KR101323917B1 KR 101323917 B1 KR101323917 B1 KR 101323917B1 KR 1020110094690 A KR1020110094690 A KR 1020110094690A KR 20110094690 A KR20110094690 A KR 20110094690A KR 101323917 B1 KR101323917 B1 KR 101323917B1
Authority
KR
South Korea
Prior art keywords
minimum deflection
deflection region
charged particle
particle beam
region
Prior art date
Application number
KR1020110094690A
Other languages
English (en)
Other versions
KR20120031136A (ko
Inventor
노리아키 나카야마다
마코토 히라모토
준 야시마
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20120031136A publication Critical patent/KR20120031136A/ko
Application granted granted Critical
Publication of KR101323917B1 publication Critical patent/KR101323917B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • H01J2237/30461Correction during exposure pre-calculated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electron Beam Exposure (AREA)

Abstract

본 발명은 레지스트 히팅에 의한 패턴의 치수 변동을 억제하는 묘화가 가능한 장치를 제공하는 것을 목적으로 한다.
묘화 장치(100)는 복수단의 편향기에 의해 각각 편향되는 사이즈가 상이한 편향 영역 중 최소 편향 영역마다, 그 최소 편향 영역 내에 조사되는 하전 입자빔의 총전하량을 산출하는 TD 총전하량 계산부(58)와, 최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열에 기초하여 그 최소 편향 영역의 대표 온도를 산출하는 TD 대표 온도 산출부(62)와, 최소 편향 영역마다, 그 최소 편향 영역에 조사되는 조사량을 입력하고, 그 최소 편향 영역의 대표 온도를 이용하여 그 최소 편향 영역에 조사되는 조사량을 변조하는 조사량 변조부(66)와, 복수단의 편향기를 가지며, 복수단의 편향기를 이용하여, 변조된 조사량으로 그 최소 편향 영역 내에 패턴을 묘화하는 묘화부(150)를 포함하는 것을 특징으로 한다.

Description

하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법{CHARGED PARTICLE BEAM WRITING APPARATUS AND CHARGED PARTICLE BEAM WRITING METHOD}
본 발명은 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법에 관한 것으로, 예를 들어, 레지스트 히팅 보정을 행하는 장치 및 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일하게 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 따라, 반도체 디바이스에 요구되는 회로 선폭은 해마다 미세화되고 있다. 이러한 반도체 디바이스에 원하는 회로 패턴을 형성하기 위해서는, 매우 정밀한의 원화 패턴(레티클 또는 마스크라고도 함)이 필요해진다. 여기서, 전자선(전자빔) 묘화 기술은 본질적으로 우수한 해상성을 갖고 있어, 매우 정밀한 원화 패턴의 생산에 이용된다.
도 7은 종래의 가변 성형 타입 전자선 묘화 장치의 동작을 설명하기 위한 개념도이다.
가변 성형 타입 전자선(EB: Electron Beam) 묘화 장치는 이하와 같이 동작한다. 제1 애퍼쳐(410)에는, 전자선(330)을 성형하기 위한 직사각형, 예를 들어 장방형의 개구(411)가 형성되어 있다. 또, 제2 애퍼쳐(420)에는, 제1 애퍼쳐(410)의 개구(411)를 통과한 전자선(330)을 원하는 직사각형 형상으로 성형하기 위한 가변 성형 개구(421)가 형성되어 있다. 하전 입자 소스(430)로부터 조사되어 제1 애퍼쳐(410)의 개구(411)를 통과한 전자선(330)은 편향기에 의해 편향되어, 제2 애퍼쳐(420)의 가변 성형 개구(421)의 일부를 통과해, 정해진 한 방향(예를 들어, X방향으로 한다)으로 연속적으로 이동하는 스테이지 상에 탑재된 시료(340)에 조사된다. 즉, 제1 애퍼쳐(410)의 개구(411)와 제2 애퍼쳐(420)의 가변 성형 개구(421)의 양쪽을 통과할 수 있는 직사각형 형상이, X방향으로 연속적으로 이동하는 스테이지 상에 탑재된 시료(340)의 묘화 영역에 묘화된다. 제1 애퍼쳐(410)의 개구(411)와 제2 애퍼쳐(420)의 가변 성형 개구(421)의 양쪽을 통과시켜, 임의 형상을 작성하는 방식을 가변 성형 방식(VSB 방식)이라고 한다.
광리소그래피 기술의 진전이나, EUV에 의한 단파장화에 따라, 마스크 묘화에 필요한 전자빔의 샷수는 가속적으로 증가하고 있다. 한편, 미세화에 필요한 선폭 정밀도를 확보하기 위해, 레지스트를 저감도화하여 조사량을 높임으로써 샷노이즈나 패턴의 엣지 거칠기의 저감을 도모하고 있다. 이와 같이, 샷수와 조사량이 한없이 계속 증가하고 있기 때문에, 묘화 시간도 한없이 증가해 간다. 그 때문에, 전류 밀도를 높임으로써 묘화 시간의 단축을 도모하는 것이 검토되고 있다.
그러나, 증가한 조사 에너지량을, 보다 고밀도의 전자빔으로 단시간에 조사하고자 하면, 기판 온도가 과열되어 레지스트 감도가 변화하고, 선폭 정밀도가 악화되는 레지스트 히팅이라고 불리는 현상이 생기는 문제가 있었다.
일본 특허 공개 제2004-505462호 공보
전술한 바와 같이, 샷수와 조사량이 한없이 계속 증가하고 있는 가운데, 전류 밀도를 높임으로써 묘화 시간의 단축을 도모하지만, 이에 따라, 레지스트가 과열되어 감도가 변화하고, 선폭 정밀도가 악화되는 레지스트 히팅이라고 불리는 현상이 생기는 문제가 있었다.
따라서, 본 발명은 이러한 문제를 극복하고, 레지스트 히팅에 의한 패턴의 치수 변동을 억제하는 묘화가 가능한 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양태의 하전 입자빔 묘화 장치는,
하전 입자빔을 편향시키는 복수단의 편향기에 의해 각각 편향되는 사이즈가 상이한 편향 영역 중 최소 편향 영역마다, 그 최소 편향 영역 내에 조사되는 하전 입자빔의 총전하량을 산출하는 총전하량 산출부와,
최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열(傳熱)에 기초하여 그 최소 편향 영역의 대표 온도를 산출하는 대표 온도 산출부와,
최소 편향 영역마다, 그 최소 편향 영역에 조사되는 조사량을 입력하고, 그 최소 편향 영역의 대표 온도를 이용하여 그 최소 편향 영역에 조사되는 조사량을 변조하는 조사량 변조부와,
복수단의 편향기를 가지며, 복수단의 편향기를 이용하여, 변조된 조사량으로 그 최소 편향 영역 내에 패턴을 묘화하는 묘화부
를 포함하는 것을 특징으로 한다.
또, 묘화부는,
묘화 대상이 되는 기판을 배치하는 이동 가능한 스테이지와,
복수단의 편향기로서,
스테이지의 이동에 추종하도록, 기판의 묘화 영역이 메쉬 형상으로 가상 분할된 복수의 제1 소영역의 기준 위치에 하전 입자빔을 순서대로 편향시키는 제1 편향기와,
각 제1 소영역의 기준 위치로부터, 각 제1 소영역이 메쉬 형상으로 가상 분할된 복수의 제2 소영역의 기준 위치에 하전 입자빔을 순서대로 편향시키는 제2 편향기와,
각 제2 소영역의 기준 위치로부터, 그 제2 소영역 내에 조사되는 빔의 샷 위치에 하전 입자빔을 편향시키는 제3 편향기
를 가지며,
최소 편향 영역으로서, 제2 소영역이 이용되는 것을 특징으로 한다.
또, 최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열에 의해 생기는 온도 상승량을 산출하는 온도 상승량 산출부를 더 포함하며,
대표 온도 산출부는 상기 최소 편향 영역보다 전에 묘화되는 다른 복수의 최소 편향 영역으로부터의 전열에 의해 생기는 각 온도 상승량을 누적 가산함으로써, 상기 최소 편향 영역의 대표 온도를 구하는 것이 바람직하다.
또, 온도 상승량은 다른 최소 편향 영역이 묘화된 후에 상기 최소 편향 영역이 묘화되기까지의 경과 시간에 의존하도록 산출된다.
본 발명의 일 양태의 하전 입자빔 묘화 방법은,
하전 입자빔을 편향시키는 복수단의 편향기에 의해 각각 편향되는 사이즈가 상이한 편향 영역 중 최소 편향 영역마다, 그 최소 편향 영역 내에 조사되는 하전 입자빔의 총전하량을 산출하는 공정과,
최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열에 기초하여 그 최소 편향 영역의 대표 온도를 산출하는 공정과,
최소 편향 영역마다, 그 최소 편향 영역에 조사되는 조사량을 입력하고, 그 최소 편향 영역의 대표 온도를 이용하여 그 최소 편향 영역에 조사되는 조사량을 변조하는 공정과,
복수단의 편향기를 이용하여, 변조된 조사량으로 그 최소 편향 영역 내에 패턴을 묘화하는 공정
을 포함하는 것을 특징으로 한다.
본 발명의 일 양태에 따르면, 레지스트 히팅에 의한 패턴의 치수 변동을 억제할 수 있다. 따라서, 더욱 정밀도가 높은 치수로 패턴을 묘화할 수 있다.
도 1은 실시형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 2는 실시형태 1에서의 각 영역을 설명하기 위한 개념도이다.
도 3은 실시형태 1에서의 묘화 방법의 주요부 공정을 나타내는 플로우차트이다.
도 4는 실시형태 1에서의 SF 내의 TD 묘화 스케줄과 각 TD의 총전하량을 나타내는 개념도이다.
도 5는 실시형태 1에서의 스트라이프 영역 내의 SF의 묘화 순서의 일례를 나타내는 개념도이다.
도 6은 실시형태 1에서의 SF 내의 TD의 묘화 순서의 일례를 나타내는 개념도이다.
도 7은 종래의 가변 성형 타입 전자선 묘화 장치의 동작을 설명하기 위한 개념도이다.
이하, 실시형태에서는, 하전 입자빔의 일례로서, 전자빔을 이용한 구성에 관해 설명한다. 단, 하전 입자빔은 전자빔에 한정되지 않고, 이온빔 등의 하전 입자를 이용한 빔이라도 상관없다. 또, 하전 입자빔 장치의 일례로서, 가변 성형 타입의 묘화 장치에 관해 설명한다.
실시형태 1.
도 1은 실시형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 1에서, 묘화 장치(100)는 묘화부(150)와 제어부(160)를 포함한다. 묘화 장치(100)는 하전 입자빔 묘화 장치의 일례이다. 특히, 가변 성형 타입(VSB 타입)의 묘화 장치의 일례이다. 묘화부(150)는 전자 경통(102)과 묘화실(103)을 포함한다. 전자 경통(102) 내에는, 전자총(201), 조명 렌즈(202), 블랭킹 편향기(블랭커)(212), 블랭킹 애퍼쳐(214), 제1 성형 애퍼쳐(203), 투영 렌즈(204), 편향기(205), 제2 성형 애퍼쳐(206), 대물 렌즈(207), 주편향기(208), 부편향기(209) 및 부부편향기(216)가 배치된다. 묘화실(103) 내에는, 적어도 XY 방향으로 이동 가능한 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 레지스트가 도포된 묘화 대상이 되는 시료(101)(기판)가 배치된다. 시료(101)에는, 반도체 장치를 제조하기 위한 노광용의 마스크나 실리콘 웨이퍼 등이 포함된다. 마스크에는 마스크 블랭크가 포함된다.
제어부(160)는 제어 계산기 유닛(110), 편향 제어 회로(120), DAC(디지털ㅇ아날로그 컨버터) 증폭기 유닛(130, 132, 134, 136)(편향 증폭기) 및 자기 디스크 장치 등의 기억 장치(140)를 갖는다. 제어 계산기 유닛(110), 편향 제어 회로(120) 및 자기 디스크 장치 등의 기억 장치(140)는 도시하지 않은 버스를 통해 서로 접속된다. 편향 제어 회로(120)에는 DAC 증폭기 유닛(130, 132, 134, 136)이 접속된다. DAC 증폭기 유닛(130)은 블랭킹 편향기(212)에 접속된다. DAC 증폭기 유닛(132)은 부편향기(209)에 접속된다. DAC 증폭기 유닛(134)은 주편향기(208)에 접속된다. DAC 증폭기 유닛(136)은 부부편향기(216)에 접속된다.
또, 제어 계산기 유닛(110) 내에는, 샷 분할부(50), 언더 서브 필드(USF: 여기서는 제3 편향을 의미하는 Tertiary Deflection의 약어를 이용하여 「TD」라고 한다. 이하, 동일) 할당부(52), 서브 필드(SF) 할당부(54), TD 순서 설정부(56), TD 총전하량 계산부(58), TD 열확산 계산부(60), TD 대표 온도 계산부(62), 조사량 맵 작성부(64), 조사량 변조부(66), 조사 시간 계산부(68), 묘화 처리부(70) 및 메모리(72)가 배치된다. 샷 분할부(50), 언더 서브 필드(TD) 할당부(52), 서브 필드(SF) 할당부(54), TD 순서 설정부(56), TD 총전하량 계산부(58), TD 열확산 계산부(60) 및 TD 대표 온도 계산부(62), 조사량 맵 작성부(64), 조사량 변조부(66), 조사 시간 계산부(68), 묘화 처리부(70)와 같은 각 기능은 프로그램과 같은 소프트웨어로 구성되어도 된다. 또는, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는 이들의 조합이어도 된다. 제어 계산기 유닛(110) 내에 필요한 입력 데이터 또는 연산된 결과는 그 때마다 메모리(72)에 기억된다.
묘화 데이터는 외부로부터 입력되어 기억 장치(140)에 저장된다.
여기서, 도 1에서는, 실시형태 1을 설명하는 데에 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서, 통상 필요한 그 밖의 구성을 포함하고 있어도 상관없다.
도 2는 실시형태 1에서의 각 영역을 설명하기 위한 개념도이다. 도 2에서, 시료(101)의 묘화 영역(10)은 주편향기(208)의 편향 가능 폭이며, 예를 들어 Y방향을 향해서 직사각형으로 복수의 스트라이프 영역(20)으로 가상 분할된다. 또, 각 스트라이프 영역(20)은 부편향기(209)의 편향 가능 사이즈이며, 메쉬 형상으로 복수의 서브 필드(SF)(30)(제1 소영역)로 가상 분할된다. 그리고, 각 SF(30)는 부부편향기(216)의 편향 가능 사이즈이며, 메쉬 형상으로 복수의 언더 서브 필드(TD)(40)(제2 소영역)로 가상 분할된다. 그리고, 각 TD(40)의 각 샷 위치(42)에 샷 도형이 묘화된다. 각 SF 내의 TD 분할수는 TD의 열확산 계산에 의해 묘화 동작이 율속하지 않을 정도의 수가 바람직하다. 예를 들어, 가로 세로 10개 이하가 바람직하다. 보다 바람직하게는, 가로 세로 5개 이하인 것이 좋다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(130)에 대하여, 블랭킹 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(130)에서는, 디지털 신호를 아날로그 신호로 변환하여, 증폭시킨 다음 편향 전압으로서, 블랭킹 편향기(212)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되고, 각 샷의 빔이 형성된다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(134)에 대하여, 주편향 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(134)에서는, 디지털 신호를 아날로그 신호로 변환하여, 증폭시킨 다음 편향 전압으로서, 주편향기(208)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되고, 각 샷의 빔이 메쉬 형상으로 가상 분할된 정해진 서브 필드(SF)의 기준 위치에 편향된다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(132)에 대하여, 부편향 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(132)에서는, 디지털 신호를 아날로그 신호로 변환하여, 증폭시킨 다음 편향 전압으로서, 부편향기(209)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되고, 각 샷의 빔이 메쉬 형상으로 가상 분할된 정해진 서브 필드(SF) 내에 메쉬 형상으로 더 가상 분할된 최소 편향 영역이 되는 언더 서브 필드(TD)의 기준 위치에 편향된다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(136)에 대하여, 부부편향 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(136)에서는, 디지털 신호를 아날로그 신호로 변환하여, 증폭시킨 다음 편향 전압으로서, 부부편향기(216)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되고, 각 샷의 빔이 메쉬 형상으로 가상 분할된 정해진 서브 필드(SF) 내에 메쉬 형상으로 더 가상 분할된 최소 편향 영역이 되는 언더 서브 필드(TD) 내의 각 샷 위치에 편향된다.
묘화 장치(100)에서는, 복수단의 편향기를 이용하여, 스트라이프 영역(20)마다 묘화 처리를 진행해 간다. 여기서는, 일례로서, 주편향기(208), 부편향기(209) 및 부부편향기(216)와 같은 3단 편향기가 이용된다. XY 스테이지(105)가 예를 들어 -X방향을 향해서 연속 이동하면서, 첫번째 스트라이프 영역(20)에 관해 X방향을 향해서 묘화를 진행해 간다. 그리고, 첫번째 스트라이프 영역(20)의 묘화 종료후, 마찬가지로, 또는 역방향을 향해서 두번째 스트라이프 영역(20)의 묘화를 진행해 간다. 이후, 마찬가지로, 세번째 이후의 스트라이프 영역(20)의 묘화를 진행해 간다. 그리고, 주편향기(208)(제1 편향기)가 XY 스테이지(105)의 이동에 추종하도록, SF(30)의 기준 위치 A에 전자빔(200)을 순서대로 편향시킨다. 또, 부편향기(209)(제2 편향기)가 각 SF(30)의 기준 위치 A로부터 TD(40)의 기준 위치 B에 전자빔(200)을 순서대로 편향시킨다. 그리고, 부부편향기(216)(제3 편향기)가 각 TD(40)의 기준 위치 B로부터 상기 TD(40) 내에 조사되는 빔의 샷 위치(42)에 전자빔(200)을 편향시킨다. 이와 같이, 주편향기(208), 부편향기(209) 및 부부편향기(216)는 사이즈가 상이한 편향 영역을 갖는다. 그리고, TD(40)는 이러한 복수단의 편향기의 편향 영역 중 최소 편향 영역이 된다.
도 3은 실시형태 1에서의 묘화 방법의 주요부 공정을 나타내는 플로우차트이다. 도 3에 있어서, 실시형태 1의 묘화 방법은 샷 분할 공정(S102)과, 조사량 맵 작성 공정(S104)과, 언더 서브 필드(TD) 할당 공정(S106)과, 서브 필드(SF) 할당 공정(S108)과, TD 순서 설정 공정(S110)과, TD 내 총전하량 계산 공정(S112)과, TD 열확산 계산 공정(S114)과, TD 대표 온도 계산 공정(S116)과, 조사량 변조 공정(S118)과, 묘화 공정(S120)과 같은 일련의 공정을 실시한다.
샷 분할 공정(S102)으로서, 샷 분할부(50)는 기억 장치(140)로부터 묘화 데이터를 입력하고, 복수단의 데이터 변환 처리를 실행하여, 패턴 도형을 각 샷의 샷 도형으로 분할하고, 묘화 장치 고유의 포맷이 되는 샷 데이터를 생성한다.
조사량 맵 작성 공정(S104)으로서, 조사량 맵 작성부(64)는 정해진 사이즈의 메쉬 영역마다 필요한 조사량을 산출한다. 그리고, 묘화 영역 전체면, 또는 각 스트라이프 영역에 관해 조사량 맵을 작성한다. 예를 들어, 근접 효과를 보정하는 경우에는, 근접 효과 메쉬 영역마다 필요한 조사량을 산출하는 것이 바람직하다. 근접 효과 메쉬 영역의 사이즈는 근접 효과의 영향 범위의 1/10 정도의 사이즈가 바람직하다. 예를 들어, 1 ㎛ 정도가 바람직하다. 조사량 맵 작성 공정(S104)과 샷 분할 공정(S102)은 병렬로 처리되는 것이 바람직하다. 단, 이것에 한정되지 않고, 직렬로 실시되더라도 상관없다. 이러한 경우, 순서는 어느 쪽이 먼저라도 상관없다.
TD 할당 공정(S106)으로서, TD 할당부(52)는 샷 분할된 각 샷 데이터를 상기 샷 도형이 배치되는 TD(40)에 할당한다.
SF 할당 공정(S108)으로서, SF 할당부(54)는 샷 데이터가 TD(40)에 할당된 TD 데이터를 상기 TD가 배치되는 SF(30)에 할당한다.
TD 순서 설정 공정(S110)으로서, TD 순서 설정부(56)는 SF(30)마다 상기 SF 내의 복수의 TD의 묘화 순서를 설정한다.
TD 내 총전하량 계산 공정(S112)으로서, TD 총전하량 계산부(58)(총전하량 산출부)는 최소 편향 영역이 되는 TD(40)마다, 상기 TD(40) 내에 조사되는 전자빔(200)의 총전하량을 산출한다. TD 내 총전하량 계산 공정(S112)은 SF 할당 공정(S108) 및 TD 순서 설정 공정(S110)의 양공정과, 병렬 처리되는 것이 바람직하다. 단, 이것에 한정되지 않고, 직렬로 실시되어도 상관없다. 이러한 경우, 순서는 어느 쪽이 먼저라도 상관없다.
도 4는 실시형태 1에서의 SF 내의 TD 묘화 스케줄과 각 TD의 총전하량을 나타내는 개념도이다. 도 4에 있어서, 일례로서, SF 내에 배치되는 좌측 아래의 TD로부터 X방향 제1열의 TD열을 Y방향을 향해서 순서대로 묘화하고, X방향 제1열의 묘화 종료후, X방향 제2열의 TD열의 각 TD에 관해 Y방향을 향해서 순서대로 묘화한다. 그리고, X방향 제3열 이후의 TD열의 각 TD에 관해서도 마찬가지로 Y방향을 향해서 순서대로 묘화한다. 도 4의 예에서는, 이상과 같은 묘화 스케쥴로 묘화해 가는 경우를 나타내고 있다. 그리고, TD 총전하량 계산부(58)는 TD(40)마다 그 TD(40) 내에 조사되는 전자빔(200)의 총전하량을 산출한다. 총전하량 Q는 상기 TD 내에 조사되는 각 샷 도형의 면적과 조사량의 곱합으로 산출된다. 도 4에서는, 이러한 총전하량 Q를 상기 TD의 묘화 시간으로 나누어 구한 평균 전류를 묘화 순서를 따라서 나타내고 있다.
도 5는 실시형태 1에서의 스트라이프 영역 내의 SF의 묘화 순서의 일례를 나타내는 개념도이다. 도 5에서, 각 스트라이프 영역 내의 SF는 각 스트라이프 영역에 배치되는 복수의 SF를 Y방향으로 통합한 각 SF열에 관해, 아래의 SF로부터 Y방향을 향해서 순서대로 묘화하는 업워드(UWD)의 묘화 순서와, 위의 SF로부터 -Y방향을 향해서 순서대로 묘화하는 다운워드(DWD)의 묘화 순서의 2종류를 준비할 수 있다.
도 6은 실시형태 1에서의 SF 내의 TD의 묘화 순서의 일례를 나타내는 개념도이다. 도 6에서, 각 SF 내의 TD는 좌측 아래의 TD로부터 X방향을 향해서 순서대로 Y방향 제1열을 묘화하고, Y방향 제2열 이후도 좌측 단부의 TD로부터 X방향을 향해서 순서대로 묘화하는 묘화 순서(0)와, 좌측 아래의 TD로부터 Y방향을 향해서 순서대로 X방향 제1열을 묘화하고, X방향 제2열 이후도 하측 단부의 TD로부터 Y방향을 향해서 순서대로 묘화하는 묘화 순서(1)와, 좌측 위의 TD로부터 X방향을 향해서 순서대로 -Y방향 제1열을 묘화하고, -Y방향 제2열 이후도 좌측 단부의 TD로부터 X방향을 향해서 순서대로 묘화하는 묘화 순서(2)와, 좌측 위의 TD로부터 -Y방향을 향해서 순서대로 X방향 제1열을 묘화하고, X방향 제2열 이후도 상측 단부의 TD로부터 -Y방향을 향해서 순서대로 묘화하는 묘화 순서(3)와, 우측 아래의 TD로부터 -X방향을 향해서 순서대로 Y방향 제1열을 묘화하고, Y방향 제2열 이후도 우측 단부의 TD로부터 -X방향을 향해서 순서대로 묘화하는 묘화 순서(4)와, 우측 아래의 TD로부터 Y방향을 향해서 순서대로 -X방향 제1열을 묘화하고, -X방향 제2열 이후도 하측 단부의 TD로부터 Y방향을 향해서 순서대로 묘화하는 묘화 순서(5)와, 우측 위의 TD로부터 -X방향을 향해서 순서대로 -Y방향 제1열을 묘화하고, -Y방향 제2열 이후도 우측 단부의 TD로부터 -X방향을 향해서 순서대로 묘화하는 묘화 순서(6)와, 우측 위의 TD로부터 -Y방향을 향해서 순서대로 -X방향 제1열을 묘화하고, -X방향 제2열 이후도 상측 단부의 TD로부터 -Y방향을 향해서 순서대로 묘화하는 묘화 순서(7)를 준비할 수 있다.
도 5와 도 6의 묘화 순서를 조합하여, SF 및 TD의 묘화 순서를 설정하면 된다. 예를 들어, 열확산이 생기기 어려운 순서로 설정하는 것이 보다 바람직하다.
TD 열확산 계산 공정(S114)으로서, TD 열확산 계산부(60)는 상기 TD보다 전에 묘화되는 다른 TD로부터의 전열(傳熱)에 의해 생기는 온도 상승량 δTij를 산출한다. TD 열확산 계산부(60)는 온도 상승량 산출부의 일례이다. 온도 상승량 δTij는 i번째의 TDi에 있어서, 다른 j번째의 TDj로부터의 전열에 의해 생기는 온도 상승량을 나타낸다. 온도 상승량 δTij는 다른 TD가 시각 tj에 묘화된 후에, 시각 ti에 상기 TD가 묘화되기까지의 경과 시간(ti-tj)에 의존한다. 온도 상승량 δTij는 TDj의 총전하량 Qj에 의존한 TDj 단독에 의한 온도 상승 A(Qj), 열확산 계수 k, 그룬 레인지(Grun Range) Rg, TDi의 좌표(Xi, Yi), TDj의 좌표(Xj, Yj), TDi의 묘화 시간 ti, 및 TDj의 묘화 시간 tj를 이용하여, 다음 식 (1)로 정의할 수 있다. 이러한 식 (1)에서는, 일례로서, Z(깊이) 방향 직방체 근사로, TD 조사중 확산 무시 근사의 경우를 나타내고 있다.
Figure 112011073129569-pat00001
TD 열확산 계산부(60)는 SF 내의 각 TD에 관해, 상기 TD보다 전에 묘화되는 다른 모든 TD로부터 받는 각 온도 상승량 δTij를 산출한다.
TD 대표 온도 계산 공정(Sl16)에 있어서, TD 대표 온도 계산부(62)는 TD마다 그 TD보다 전에 묘화되는 다른 TD로부터의 전열에 기초하여 그 TD의 대표 온도 Ti를 산출한다. TD 대표 온도 계산부(62)는 대표 온도 산출부의 일례이다. TD 대표 온도 계산부(62)는 그 TD보다 전에 묘화되는 다른 복수의 TD로부터의 전열에 의해 생기는 각 온도 상승량 δTij를 누적 가산함으로써, 상기 TD의 대표 온도 Ti를 구한다. 대표 온도 Ti는 다음 식 (2)로 정의된다.
Figure 112011073129569-pat00002
조사량 변조 공정(S118)에 있어서, 조사량 변조부(66)는 TD마다 그 TDi에 조사되는 조사량 D를 입력하고, 상기 TDi의 대표 온도 Ti를 이용하여 상기 TDi에 조사되는 조사량 D를 변조한다. 변조후의 조사량 DTDi는 DTDi=D·f(Ti)로 구할 수 있다. 상기 TDi를 묘화할 때에는, 변조후의 조사량 DTDi를 일률적으로 이용한다.
실시형태 1에서는, SF보다 더 작은 TD로 분할함으로써, 편향 범위를 작게 할 수 있기 때문에, 부부편향기(216)용의 DAC 증폭기 유닛(136)을 고속화할 수 있다. 그 때문에, 각 TD 내의 묘화 속도를 열확산 속도보다 빠르게 할 수 있다. 따라서, TD 조사중의 열확산을 무시하여 근사할 수 있다. 그 결과, 레지스트 히팅 보정을 정밀하게 할 수 있다.
묘화 공정(S120)에 있어서, 우선, 조사 시간 계산부(68)가 TD마다 조사 시간을 산출한다. 조사 시간은 변조후의 조사량 DTDi를 전류 밀도로 나눔으로써 구할 수 있다. 그리고, 묘화 처리부(70)는 각 TD를 묘화할 때에는, 각 TD에 대응하는 조사 시간이 되도록 편향 제어 회로(120)를 제어한다. 묘화 처리부(70)는 편향 제어 회로(120) 등을 통해 묘화부(150)를 제어하여, 묘화 처리를 개시한다. 묘화부(150)는 TD마다 얻어진 변조후의 조사량 DTDi의 전자빔(200)을 이용하여, 시료(101) 상에 원하는 패턴을 묘화한다. 구체적으로는, 이하와 같이 동작한다. 편향 제어 회로(120)는 샷마다 조사 시간을 제어하는 디지털 신호를 DAC 증폭기 유닛(130)에 출력한다. 그리고, DAC 증폭기 유닛(130)은 디지털 신호를 아날로그 신호로 변환하여, 증폭시킨 다음 편향 전압으로서 블랭킹 편향기(212)에 인가한다.
전자총(201)(방출부)으로부터 방출된 전자빔(200)은 블랭킹 편향기(212) 내를 통과할 때 블랭킹 편향기(212)에 의해, 빔 ON 상태에서는, 블랭킹 애퍼쳐(214)를 통과하도록 제어되고, 빔 OFF 상태에서는, 빔 전체가 블랭킹 애퍼쳐(214)로 차폐되도록 편향된다. 빔 OFF 상태로부터 빔 ON이 되고, 그 후 빔 OFF가 될 때까지 블랭킹 애퍼쳐(214)를 통과한 전자빔(200)이 1회의 전자빔 샷이 된다. 블랭킹 편향기(212)는 통과하는 전자빔(200)의 방향을 제어하여, 빔 ON 상태와 빔 OFF 상태를 교대로 생성한다. 예를 들어, 빔 ON 상태에서는 전압을 인가하지 않고, 빔 OFF일 때 블랭킹 편향기(212)에 전압을 인가하면 된다. 이러한 각 샷의 조사 시간으로 시료(101)에 조사되는 전자빔(200)의 샷당 조사량이 조정되게 된다.
이상과 같이 블랭킹 편향기(212)와 블랭킹 애퍼쳐(214)를 통과함으로써 생성된 각 샷의 전자빔(200)은 조명 렌즈(202)에 의해 직사각형, 예를 들어 장방형의 구멍을 갖는 제1 성형 애퍼쳐(203) 전체를 조명한다. 여기서, 전자빔(200)을 먼저 직사각형, 예를 들어 장방형으로 성형한다. 그리고, 제1 성형 애퍼쳐(203)를 통과한 제1 애퍼쳐 상(像)의 전자빔(200)은 투영 렌즈(204)에 의해 제2 성형 애퍼쳐(206) 위에 투영된다. 편향기(205)에 의해, 이러한 제2 성형 애퍼쳐(206) 위에서의 제1 애퍼쳐 상은 편향 제어되어, 빔형상과 치수를 변화시킬 수 있다(가변 성형을 실시할 수 있다). 이러한 가변 성형은 샷마다 실시되고, 통상 샷마다 상이한 빔형상과 치수로 성형된다. 그리고, 제2 성형 애퍼쳐(206)를 통과한 제2 애퍼쳐 상의 전자빔(200)은 대물 렌즈(207)에 의해 촛점을 맞춰, 주편향기(208), 부편향기(209) 및 부부편향기(216)에 의해 편향되고, 연속적으로 이동하는 XY 스테이지(105)에 배치된 시료(101)의 원하는 위치에 조사된다. 이상과 같이, 각 편향기에 의해, 전자빔(200)의 복수의 샷이 순서대로 기판이 되는 시료(101) 위에 편향된다.
이상과 같이, 실시형태 1에 의하면, 레지스트 히팅 보정을 고밀도로 실시할 수 있다. 그 결과, 레지스트 히팅에 의한 패턴의 치수 변동을 억제할 수 있다. 따라서, 보다 정밀도가 높은 치수로 패턴을 묘화할 수 있다.
이상, 구체예를 참조하면서 실시형태에 관해 설명했다. 그러나, 본 발명은 이들 구체예에 한정되는 것은 아니다.
또, 장치 구성이나 제어 방법 등, 본 발명의 설명에 직접 필요하지 않은 부분 등에 관해서는 기재를 생략했지만, 필요한 장치 구성이나 제어 방법을 적절하게 선택하여 이용할 수 있다. 예를 들어, 묘화 장치(100)를 제어하는 제어부 구성에 관해서는 기재를 생략했지만, 필요한 제어부 구성을 적절하게 선택하여 이용하는 것은 말할 것도 없다.
그 밖에, 본 발명의 요소를 구비하며, 당업자가 적절하게 설계 변경할 수 있는 모든 하전 입자빔 묘화 장치 및 방법은 본 발명의 범위에 포함된다.
10 : 묘화 영역 20 : 스트라이프 영역
30 : SF 40 : TD
42 : 샷 위치 50 : 샷 분할부
52 : TD 할당부 54 : SF 할당부
56 : TD 순서 설정부 58 : TD 총전하량 계산부
60 : TD 열확산 계산부 62 : TD 대표 온도 계산부
64 : 조사량 맵 작성부 66 : 조사량 변조부
68 : 조사 시간 계산부 70 : 묘화 처리부
72 : 메모리 100 : 묘화 장치
101 : 시료 102 : 전자 경통
103 : 묘화실 105 : XY 스테이지
110 : 제어 계산기 유닛 120 : 편향 제어 회로
130, 132, 134, 136 : DAC 증폭기 유닛 140 : 기억 장치
150 : 묘화부 160 : 제어부
200 : 전자빔 201 : 전자총
202 : 조명 렌즈 203 : 제1 성형 애퍼쳐
204 : 투영 렌즈 205 : 편향기
206 : 제2 성형 애퍼쳐 207 : 대물 렌즈
208 : 주편향기 209 : 부편향기
212 : 블랭킹 편향기 214 : 블랭킹 애퍼쳐
216 : 부부편향기 330 : 전자선
340 : 시료 410 : 제1 애퍼쳐
411 : 개구 420 : 제2 애퍼쳐
421 : 가변 성형 개구 430 : 하전 입자 소스

Claims (5)

  1. 하전 입자빔을 편향시키는 복수단의 편향기에 의해 각각 편향되는 사이즈가 상이한 편향 영역 중 최소 편향 영역마다, 그 최소 편향 영역 내에 조사되는 하전 입자빔의 총전하량을 산출하는 총전하량 산출부와,
    상기 최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열(傳熱)에 기초하여 그 최소 편향 영역의 대표 온도를 산출하는 대표 온도 산출부와,
    상기 최소 편향 영역마다, 그 최소 편향 영역에 조사되는 조사량을 입력하고, 그 최소 편향 영역의 대표 온도를 이용하여 그 최소 편향 영역에 조사되는 조사량을 변조하는 조사량 변조부와,
    상기 복수단의 편향기를 가지며, 상기 복수단의 편향기를 이용하여, 변조된 조사량으로 그 최소 편향 영역 내에 패턴을 묘화하는 묘화부
    를 포함하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  2. 제1항에 있어서, 상기 묘화부는,
    묘화 대상이 되는 기판을 배치하는 이동 가능한 스테이지와,
    상기 복수단의 편향기로서,
    상기 스테이지의 이동에 추종하도록, 상기 기판의 묘화 영역이 메쉬 형상으로 가상 분할된 복수의 제1 소영역의 기준 위치에 하전 입자빔을 순서대로 편향시키는 제1 편향기와,
    각 제1 소영역의 기준 위치로부터, 각 제1 소영역이 메쉬 형상으로 가상 분할된 복수의 제2 소영역의 기준 위치에 상기 하전 입자빔을 순서대로 편향시키는 제2 편향기와,
    각 제2 소영역의 기준 위치로부터, 그 제2 소영역 내에 조사되는 빔의 샷 위치에 상기 하전 입자빔을 편향시키는 제3 편향기
    를 가지며,
    상기 최소 편향 영역으로서, 상기 제2 소영역이 이용되는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  3. 제1항 또는 제2항에 있어서, 상기 최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열에 의해 생기는 온도 상승량을 산출하는 온도 상승량 산출부를 더 포함하며,
    상기 대표 온도 산출부는 그 최소 편향 영역보다 전에 묘화되는 다른 복수의 최소 편향 영역으로부터의 전열에 의해 생기는 각 온도 상승량을 누적 가산함으로써, 그 최소 편향 영역의 상기 대표 온도를 구하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  4. 제3항에 있어서, 상기 온도 상승량은 상기 다른 최소 편향 영역의 묘화가 종료된 후에 그 최소 편향 영역의 묘화가 종료되기까지의 경과 시간에 의존하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  5. 하전 입자빔을 편향시키는 복수단의 편향기에 의해 각각 편향되는 사이즈가 상이한 편향 영역 중 최소 편향 영역마다, 그 최소 편향 영역 내에 조사되는 하전 입자빔의 총전하량을 산출하는 공정과,
    상기 최소 편향 영역마다, 그 최소 편향 영역보다 전에 묘화되는 다른 최소 편향 영역으로부터의 전열에 기초하여 그 최소 편향 영역의 대표 온도를 산출하는 공정과,
    상기 최소 편향 영역마다, 그 최소 편향 영역에 조사되는 조사량을 입력하고, 그 최소 편향 영역의 대표 온도를 이용하여 그 최소 편향 영역에 조사되는 조사량을 변조하는 공정과,
    상기 복수단의 편향기를 이용하여, 변조된 조사량으로 그 최소 편향 영역 내에 패턴을 묘화하는 공정
    을 포함하는 것을 특징으로 하는 하전 입자빔 묘화 방법.
KR1020110094690A 2010-09-22 2011-09-20 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 KR101323917B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010212419A JP5636238B2 (ja) 2010-09-22 2010-09-22 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JPJP-P-2010-212419 2010-09-22

Publications (2)

Publication Number Publication Date
KR20120031136A KR20120031136A (ko) 2012-03-30
KR101323917B1 true KR101323917B1 (ko) 2013-11-01

Family

ID=45816893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110094690A KR101323917B1 (ko) 2010-09-22 2011-09-20 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법

Country Status (4)

Country Link
US (1) US8563953B2 (ko)
JP (1) JP5636238B2 (ko)
KR (1) KR101323917B1 (ko)
TW (1) TWI464774B (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792513B2 (ja) * 2011-05-20 2015-10-14 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5985852B2 (ja) 2012-03-27 2016-09-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5894856B2 (ja) 2012-05-22 2016-03-30 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
US9104109B2 (en) * 2012-11-02 2015-08-11 D2S, Inc. Method and system for improving critical dimension uniformity using shaped beam lithography
JP6076708B2 (ja) * 2012-11-21 2017-02-08 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビームの照射量チェック方法
TWI534528B (zh) * 2013-03-27 2016-05-21 Nuflare Technology Inc Drawing an amount of the charged particle beam to obtain the modulation factor of a charged particle beam irradiation apparatus and method
TWI533096B (zh) * 2013-05-24 2016-05-11 Nuflare Technology Inc Multi - charged particle beam mapping device and multi - charged particle beam rendering method
JP6283180B2 (ja) 2013-08-08 2018-02-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6253924B2 (ja) * 2013-09-02 2017-12-27 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6262007B2 (ja) * 2014-02-13 2018-01-17 株式会社ニューフレアテクノロジー セトリング時間の取得方法
JP6567843B2 (ja) * 2014-07-02 2019-08-28 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016184605A (ja) * 2015-03-25 2016-10-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び描画データ作成方法
JP6523767B2 (ja) 2015-04-21 2019-06-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016225357A (ja) * 2015-05-27 2016-12-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US10032603B2 (en) 2015-09-07 2018-07-24 Nuflare Technology, Inc. Charged particle beam lithography apparatus and charged particle beam lithography method
KR102395198B1 (ko) 2015-09-22 2022-05-06 삼성전자주식회사 마스크 패턴의 보정 방법 및 이를 이용하는 레티클의 제조 방법
JP6603108B2 (ja) 2015-11-18 2019-11-06 株式会社ニューフレアテクノロジー 荷電粒子ビームの照射量補正用パラメータの取得方法、荷電粒子ビーム描画方法、及び荷電粒子ビーム描画装置
JP6547635B2 (ja) * 2016-01-08 2019-07-24 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6640040B2 (ja) * 2016-06-23 2020-02-05 株式会社ニューフレアテクノロジー 伝熱板および描画装置
JP7095395B2 (ja) * 2018-05-15 2022-07-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121303A (ja) * 1991-04-30 1993-05-18 Toshiba Corp 荷電粒子ビーム描画方法及び描画装置
JP2001185477A (ja) 1999-12-27 2001-07-06 Nikon Corp 荷電粒子線露光方法、荷電粒子線露光装置及び半導体デバイスの製造方法
JP2007087987A (ja) 2005-09-20 2007-04-05 Jeol Ltd パターン描画方法及び装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364310A (ja) 1991-06-11 1992-12-16 Mitsubishi Electric Corp 引出し形機器用リフター
JPH05267139A (ja) * 1992-03-17 1993-10-15 Fujitsu Ltd 電子ビーム描画方法
JP2910460B2 (ja) 1992-11-12 1999-06-23 日本電気株式会社 パターン露光方法
US5847959A (en) * 1997-01-28 1998-12-08 Etec Systems, Inc. Method and apparatus for run-time correction of proximity effects in pattern generation
JPH10289849A (ja) 1997-04-11 1998-10-27 Jeol Ltd 荷電粒子ビーム描画装置
US6720565B2 (en) * 1999-06-30 2004-04-13 Applied Materials, Inc. Real-time prediction of and correction of proximity resist heating in raster scan particle beam lithography
US6420717B1 (en) 2000-04-11 2002-07-16 Applied Materials, Inc. Method and apparatus for real-time correction of resist heating in lithography
US6379851B1 (en) * 2000-07-31 2002-04-30 Applied Materials, Inc. Methods to predict and correct resist heating during lithography
JP4327434B2 (ja) * 2002-10-09 2009-09-09 株式会社日立ハイテクノロジーズ 電子ビーム装置及び電子ビーム描画方法
US6870170B1 (en) * 2004-03-04 2005-03-22 Applied Materials, Inc. Ion implant dose control
JP4476975B2 (ja) 2005-10-25 2010-06-09 株式会社ニューフレアテクノロジー 荷電粒子ビーム照射量演算方法、荷電粒子ビーム描画方法、プログラム及び荷電粒子ビーム描画装置
JP4801982B2 (ja) 2005-11-30 2011-10-26 株式会社ニューフレアテクノロジー 荷電ビーム描画方法及び描画装置
US20100178611A1 (en) 2006-04-13 2010-07-15 Nuflare Technology, Inc. Lithography method of electron beam
US20070243487A1 (en) 2006-04-13 2007-10-18 Nuflare Technology, Inc. Forming method of resist pattern and writing method of charged particle beam
JP4758829B2 (ja) 2006-06-06 2011-08-31 株式会社ニューフレアテクノロジー 荷電ビーム描画装置および描画方法
JP2008021435A (ja) 2006-07-11 2008-01-31 Nuflare Technology Inc 荷電粒子ビームのビーム分解能測定方法及び荷電粒子ビーム装置
JP2008071928A (ja) 2006-09-14 2008-03-27 Nuflare Technology Inc 描画パターンのリサイズ方法及び荷電粒子ビーム描画方法
JP2008085120A (ja) 2006-09-28 2008-04-10 Nuflare Technology Inc 荷電粒子ビーム描画装置の位置補正係数算出方法及び荷電粒子ビーム描画装置の位置補正係数更新方法
JP4987554B2 (ja) 2007-04-26 2012-07-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5020849B2 (ja) 2008-02-13 2012-09-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置、パターンの寸法誤差補正装置及びパターンの寸法誤差補正方法
JP5480496B2 (ja) 2008-03-25 2014-04-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
EP2279515B1 (en) * 2008-04-15 2011-11-30 Mapper Lithography IP B.V. Projection lens arrangement
JP5243898B2 (ja) 2008-09-19 2013-07-24 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP5199896B2 (ja) 2009-01-06 2013-05-15 株式会社ニューフレアテクノロジー 描画方法及び描画装置
JP5466416B2 (ja) 2009-03-19 2014-04-09 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法および装置
JP5586183B2 (ja) 2009-07-15 2014-09-10 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法および装置
JP5480555B2 (ja) 2009-08-07 2014-04-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5567802B2 (ja) 2009-08-19 2014-08-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置、荷電粒子ビーム描画方法、および、荷電粒子ビーム描画用データの処理装置
JP5525798B2 (ja) 2009-11-20 2014-06-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその帯電効果補正方法
JP5547553B2 (ja) * 2010-05-26 2014-07-16 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその制御方法
JP5525936B2 (ja) * 2010-06-30 2014-06-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5547567B2 (ja) * 2010-06-30 2014-07-16 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその制御方法
JP5601989B2 (ja) * 2010-11-19 2014-10-08 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121303A (ja) * 1991-04-30 1993-05-18 Toshiba Corp 荷電粒子ビーム描画方法及び描画装置
JP2001185477A (ja) 1999-12-27 2001-07-06 Nikon Corp 荷電粒子線露光方法、荷電粒子線露光装置及び半導体デバイスの製造方法
JP2007087987A (ja) 2005-09-20 2007-04-05 Jeol Ltd パターン描画方法及び装置

Also Published As

Publication number Publication date
US20120068089A1 (en) 2012-03-22
JP5636238B2 (ja) 2014-12-03
JP2012069675A (ja) 2012-04-05
KR20120031136A (ko) 2012-03-30
TW201225147A (en) 2012-06-16
TWI464774B (zh) 2014-12-11
US8563953B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
KR101323917B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
JP4945380B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
KR101453805B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR101614111B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔의 조사량 변조 계수의 취득 방법
JP6603108B2 (ja) 荷電粒子ビームの照射量補正用パラメータの取得方法、荷電粒子ビーム描画方法、及び荷電粒子ビーム描画装置
JP5616674B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
KR101621784B1 (ko) 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
JP2017175079A (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
KR101477557B1 (ko) 하전 입자빔 묘화 장치 및 다중 묘화용의 하전 입자빔의 조사 시간 배분 방법
KR101504530B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR101352997B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR20200121349A (ko) 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
KR101670976B1 (ko) 세틀링 시간의 취득 방법
KR101873461B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR102238893B1 (ko) 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체
JP2012015244A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6869695B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5758325B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016219829A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016207780A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2013115373A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 6