JPS6385167A - Surface modified carbon fiber and its production - Google Patents

Surface modified carbon fiber and its production

Info

Publication number
JPS6385167A
JPS6385167A JP61222019A JP22201986A JPS6385167A JP S6385167 A JPS6385167 A JP S6385167A JP 61222019 A JP61222019 A JP 61222019A JP 22201986 A JP22201986 A JP 22201986A JP S6385167 A JPS6385167 A JP S6385167A
Authority
JP
Japan
Prior art keywords
carbon fiber
functional groups
surface treatment
resin
containing functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222019A
Other languages
Japanese (ja)
Inventor
徹 平松
高井 敏明
蓮見 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61222019A priority Critical patent/JPS6385167A/en
Publication of JPS6385167A publication Critical patent/JPS6385167A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は表面改質炭素繊維とその製造方法、特に優れた
コンポジット物性を示す表面改質炭素繊維とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a surface-modified carbon fiber and a method for producing the same, and particularly to a surface-modified carbon fiber exhibiting excellent composite physical properties and a method for producing the same.

〈従来技術〉 従来、炭素繊維はその力学的、化学的、電気的諸性性お
よび軽量性などにより、各種の用途、例えば航空機やロ
ケットなどの航空・宇宙用構造材料、テニスラケット、
ゴルフシャフト、釣竿などのスポーツ用品に広く使用さ
れ、さらに船舶、自動車などの運輸機械用途分野などに
も使用されようとしている。
<Prior Art> Conventionally, carbon fiber has been used for various purposes, such as structural materials for aerospace such as aircraft and rockets, tennis rackets,
It is widely used in sports equipment such as golf shafts and fishing rods, and is also expected to be used in transportation machinery applications such as ships and automobiles.

これらの用途において、炭素繊維は一般に該炭素繊維と
各種樹脂とからなる複合材料(コンポジット)の補強材
料として用いられているが、炭素繊維の特性、特にその
力学的性質を複合材料に反映させるためには、複合材料
の母材(7トリツクス)と炭素繊維との接着性、一体化
が重要であり、炭素繊維は予め何らかの表面処理を行な
わないとマトリックスからの“すぬけ″が生じ易く、補
強効果を充分に発揮することができない。
In these applications, carbon fibers are generally used as reinforcing materials for composite materials made of carbon fibers and various resins, but in order to reflect the characteristics of carbon fibers, especially their mechanical properties, in composite materials. For this purpose, adhesion and integration between the composite material base material (7 Trix) and carbon fibers are important. Carbon fibers tend to "sneak" from the matrix unless some kind of surface treatment is performed in advance, and reinforcing The effect cannot be fully demonstrated.

そこで、苛性ソーダなどのN解質水溶液中で。Therefore, in an aqueous N solute solution such as caustic soda.

炭素繊維を陽極として電解処理を行なうことにより、炭
素繊維の表面に酸素含有官能基を導入することが提案さ
れている。例えば、特開昭60−23952’I@公報
においては、X線光電子分光法(ESCA)による炭素
繊維表面の酸素含有官能基量(01S/C1S)が0.
07〜0.25であることが開示されている。
It has been proposed to introduce oxygen-containing functional groups onto the surface of carbon fibers by performing electrolytic treatment using the carbon fibers as anodes. For example, in Japanese Patent Application Laid-Open No. 60-23952'I@, the amount of oxygen-containing functional groups (01S/C1S) on the surface of carbon fibers determined by X-ray photoelectron spectroscopy (ESCA) is 0.
07 to 0.25.

一方、弱アミン塩基水溶液中で、炭素liA維を陽極と
して電解処理したり(例えば、特開昭60−25277
0号公報)、塩基性有機アミン類中で炭素!!ietを
陰極として通電処理すること(例えば。
On the other hand, in a weak amine base aqueous solution, carbon liA fibers are electrolytically treated as an anode (for example, JP-A No. 60-25277
0), carbon in basic organic amines! ! Applying electricity using iet as a cathode (for example.

特開昭59−82467号公報、特開昭59−1120
68@公報)により、炭素繊維表面に窒素含有官能基量
を導入することが開示され、特に前記特開昭59−11
2068号公報にはX線光電子分光法(ESCA)によ
る炭素繊維表面の窒素含有官能un (N1s/CI3
>が0.08〜0.37であることが示されている。
JP-A-59-82467, JP-A-59-1120
68@publication) discloses the introduction of a nitrogen-containing functional group amount onto the surface of carbon fibers, and in particular, the above-mentioned JP-A-59-11
Publication No. 2068 describes the nitrogen-containing functional un (N1s/CI3
> is shown to be 0.08 to 0.37.

く本発明が解決しようとする問題点〉 しかしながら、最近になって炭素繊維補強複合材料の用
途分野が大巾に拡大するに伴い、母材として使用される
樹脂の種類が大巾に増加するようになった。そのため従
来の炭素繊維は、特定の樹脂とは接着性が良好でありな
がら、他方の樹脂では接着性が著しく低く、従って、複
合材料物性が母材樹脂の種類によって大巾に変化すると
いう問題が生じてきた。
Problems to be Solved by the Present Invention> However, recently, as the application fields of carbon fiber reinforced composite materials have expanded widely, the types of resins used as base materials have increased dramatically. Became. For this reason, while conventional carbon fibers have good adhesion with certain resins, they have extremely low adhesion with other resins, resulting in the problem that the physical properties of composite materials vary widely depending on the type of base resin. It has arisen.

本発明の目的は、上記従来技術の問題を解決し、広範囲
の母材樹脂に対して、良好なる接着性を有し、ひいては
優れた複合材料物性を与え1qる表面改質炭素繊維を提
供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to provide surface-modified carbon fibers that have good adhesion to a wide range of base material resins and, in turn, provide excellent composite material properties. There is a particular thing.

く問題点を解決するための手段〉 本発明の上記目的は、 (1)X線光電子分光法によって求められる炭素繊維表
面の酸素含有官能基i (O13/C13)が0゜1〜
0.25の範囲内であり、かつ窒素含有官能基m(N1
3/C13)が0.06〜0.25の範囲内であること
を特徴とする表面改質炭素繊維 (2)陽極で発生期の酸素を発生する電解質水溶液中で
、炭素繊維を陽極として第一段の電解表面処理を行ない
、しかる後、アンモニウムイオンを含有する電解質水溶
液中で、炭素Ili維を陽極として第二段の電解表面処
理を行なうことを特徴とする表面改質炭素繊維の製造方
法 によって達成することができる。
Means for Solving the Problems> The above objects of the present invention are as follows: (1) The oxygen-containing functional group i (O13/C13) on the carbon fiber surface determined by X-ray photoelectron spectroscopy is 0°1 to
0.25, and the nitrogen-containing functional group m(N1
3/C13) is within the range of 0.06 to 0.25 (2) Carbon fiber is used as an anode in an aqueous electrolyte solution that generates nascent oxygen at the anode. A method for producing surface-modified carbon fibers, which comprises performing one stage of electrolytic surface treatment, and then performing a second stage of electrolytic surface treatment in an electrolyte aqueous solution containing ammonium ions using carbon Ili fibers as an anode. This can be achieved by

すなわち、本発明に係る炭素繊維の特徴は、炭素繊維表
面の官能基、特に酸素含有官能基と窒素含有官能基との
両方を兼備え、そのため広範囲の種類の樹脂や、硬化剤
からなる母材に対して優れた親和性ないし接着力を示し
、ひいては優れた複合材料物性を与え得ることである。
In other words, the carbon fiber according to the present invention is characterized by having both functional groups on the surface of the carbon fiber, especially oxygen-containing functional groups and nitrogen-containing functional groups, and therefore can be used with a wide variety of resins and base materials made of curing agents. It shows excellent affinity or adhesion to, and in turn, can provide excellent physical properties of the composite material.

しかも、該官能基量がX線光電子分光法によって求めら
れるO/CならびにN1s/CI3において、最適の範
Is    Is 回内に設計されているため、単に接着力だけではなく、
引張強度や圧縮強度など、各種の複合材料において、優
れた物性が得られるのである。
Moreover, since the amount of functional groups is designed to be within the optimal range for O/C and N1s/CI3 determined by X-ray photoelectron spectroscopy, it is not only effective for adhesive strength, but also for
Excellent physical properties such as tensile strength and compressive strength can be obtained in various composite materials.

本発明において、X線光電子分光法により求められる炭
素繊維の015/CIS、即ち表面酸素原子/表面炭素
原子は表面処理してなる炭素繊維表面の酸素含有官能基
(カルボキシル基、ヒドロキシル基、カルボニル基など
)の量を示す好適な指標で、OIs/ CIsの値が大
きいほど酸素含有官能基量が多く、炭素繊維と樹脂との
化学的接着が強くなる。
In the present invention, the 015/CIS of the carbon fiber determined by X-ray photoelectron spectroscopy, that is, the surface oxygen atom/surface carbon atom, is the oxygen-containing functional group (carboxyl group, hydroxyl group, carbonyl group) on the surface of the surface-treated carbon fiber. etc.), and the larger the OIs/CIs value, the greater the amount of oxygen-containing functional groups, and the stronger the chemical adhesion between the carbon fiber and the resin.

このol、/C1sは0.10〜0.25.好ましくは
0.12〜0.20の範囲に保つべきであり、0.10
未満の場合は炭素繊維と樹脂との接着が弱く、複合材料
を引張り破壊した際に炭素繊維が母材樹脂から抜出す、
所謂、“すぬけ″が生じ、炭素繊維と樹脂の接着界面の
破壊に吸収されるエネルギーが小さいため、複合材料の
引張強度が低下する。一方、OIs/ CISが0.2
5を越えると炭素繊維と樹脂との接着が強くなり過ぎて
、炭素繊維と樹脂とが一体となって破壊し、炭素繊維と
樹脂の接着界面の破壊に殆どエネルギーを吸収されなく
なるため、複合材料の引張強度が低下する。
This ol, /C1s is 0.10 to 0.25. preferably should be kept in the range 0.12-0.20, 0.10
If it is less than 1, the adhesion between carbon fiber and resin is weak, and when the composite material is tensile and broken, the carbon fiber will be pulled out from the base resin.
So-called "sneak" occurs, and the tensile strength of the composite material decreases because less energy is absorbed by the destruction of the adhesive interface between the carbon fiber and the resin. On the other hand, OIs/CIS is 0.2
If it exceeds 5, the adhesion between the carbon fiber and the resin becomes too strong, and the carbon fiber and resin break together, and almost no energy is absorbed by the destruction of the adhesive interface between the carbon fiber and the resin, so the composite material The tensile strength of

同様に、X線光電子分光法によって求められる表面窒素
原子/表面酸素原子(N1s/c1s)は表面処理して
なる炭素Inn衣表面窒素含有官能基量(アミド基、ア
ミノ基など)間を示す好適な指標で、N is/’ c
 Isの値が大きいほど窒素含有官能基ωが多く、炭素
繊維と樹脂との化学的接着が強くなる。
Similarly, surface nitrogen atoms/surface oxygen atoms (N1s/c1s) determined by X-ray photoelectron spectroscopy indicate the amount of nitrogen-containing functional groups (amide groups, amino groups, etc.) on the surface of the surface-treated carbon Inn. With the index, N is/' c
The larger the value of Is, the more nitrogen-containing functional groups ω, and the stronger the chemical adhesion between the carbon fiber and the resin.

このN1s/C1sは0.06〜0.25.好ましくは
0.08〜0.20の範囲に保つべきであり、この範囲
を外れた場合の問題点は01./c1.の場合と同様で
ある。
This N1s/C1s is 0.06 to 0.25. Preferably, it should be kept within the range of 0.08 to 0.20, and if it is out of this range, the problem will be 0.1. /c1. The same is true for .

なお、炭素w4維表面の酸素含有官能基量が接着力の強
化に充分作用し難く、窒素含有官能基を必要とする樹脂
としては、例えばマレイミド樹脂があり、逆に窒素含有
官能基量が接着力の強化に充分作用し難く、酸素含有官
能基を必要とする樹脂としては、例えばフェノール樹脂
がある。
Note that the amount of oxygen-containing functional groups on the surface of carbon W4 fibers does not have a sufficient effect on strengthening adhesive strength, and examples of resins that require nitrogen-containing functional groups include maleimide resin; Examples of resins that are difficult to sufficiently enhance force and require oxygen-containing functional groups include phenolic resins.

上述したように、炭素繊維表面に酸素含有官能基と窒素
含有官能基との両方を兼備えた表面改質炭素繊維は、陽
極で発生期の酸素を生じる電解質水溶液中で、炭素繊維
を陽極として第一段の電解表面ffi理を行ない、続い
てアンモニウム・イオンを含有する電解質水溶液中で、
炭素繊維を陽極として第二段の電解表面処理を行なうこ
とにより、初めて得られる。
As mentioned above, surface-modified carbon fibers that have both oxygen-containing functional groups and nitrogen-containing functional groups on the carbon fiber surface can be used as an anode in an electrolyte aqueous solution that generates nascent oxygen at the anode. After performing the first electrolytic surface ffi process, in an electrolyte aqueous solution containing ammonium ions,
It can only be obtained by performing a second electrolytic surface treatment using carbon fiber as an anode.

本発明の出発原料炭素繊維としては、公知の技術で作ら
れた炭素$l維(黒鉛繊維を含む)が用いられる。例え
ば、ピッチ系炭素繊維、レーヨン系炭素繊維、アクリロ
ニトリル系炭素繊維などが挙げられるが、特に好ましく
はアクリロニトリル系炭素繊維である。
As the starting material carbon fiber of the present invention, carbon fibers (including graphite fibers) made by known techniques are used. Examples include pitch-based carbon fibers, rayon-based carbon fibers, acrylonitrile-based carbon fibers, and particularly preferred are acrylonitrile-based carbon fibers.

第一段目の電解処理に用いられる電解質には、その水溶
液中で電気分解を行なった際に、陽極に発生期の酸素を
発生するものであれば特に限定されず、例えば硫酸、硝
酸、苛性ソーダなど、公知の電解質(アンモニウムイオ
ン含有水溶液は除く)が用いられる。
The electrolyte used in the first stage electrolytic treatment is not particularly limited as long as it generates nascent oxygen at the anode when electrolyzed in the aqueous solution, such as sulfuric acid, nitric acid, caustic soda, etc. Known electrolytes such as (excluding ammonium ion-containing aqueous solutions) are used.

次に第一段目の電解処理を施した炭素繊維は、水洗され
、場合によっては乾燥された後、第二段目の電解処理に
供される。
Next, the carbon fibers subjected to the first-stage electrolytic treatment are washed with water, dried in some cases, and then subjected to the second-stage electrolytic treatment.

この場合の電解質には、水溶液とした際、アンモニウム
・イオンを含有する電解質であることが必須でおり、例
えばアンモニア、ならびに炭酸アンモニウム、硫安、硝
安の如きアンモニウム塩などが挙げられるが、特に効果
が大きい上からアンモニア水が好ましい。
The electrolyte in this case must be an electrolyte that contains ammonium ions when made into an aqueous solution, such as ammonia and ammonium salts such as ammonium carbonate, ammonium sulfate, and ammonium nitrate, but they are particularly effective. Ammonia water is preferable because of its size.

ここにおいて前記第一段目と第二段目の電解処理の順序
を逆にすると、本発明の炭素繊維は得られない。その理
由は明確でないが、第一段目にアンモニウム・イオンを
含有する電解質水溶液中で電解表面処理を行ない、炭素
繊維表面に窒素含有官能基の相当量を生成させても、第
二段目に硫酸水溶液などの電解液中で電解処理を行ない
、炭素繊維表面に酸素含有官能基の相当量を生成させよ
うとすると、第一段目の電解処理で生じていた窒素含有
官能基が大巾に減少してしまい、結果として炭素繊維表
面には酸素含有官能基の生成に止どまる故と考えられる
Here, if the order of the first and second stage electrolytic treatments is reversed, the carbon fiber of the present invention cannot be obtained. The reason for this is not clear, but even if electrolytic surface treatment is performed in an electrolyte aqueous solution containing ammonium ions in the first stage and a considerable amount of nitrogen-containing functional groups are generated on the carbon fiber surface, in the second stage When attempting to generate a considerable amount of oxygen-containing functional groups on the surface of carbon fibers by performing electrolytic treatment in an electrolytic solution such as an aqueous sulfuric acid solution, the nitrogen-containing functional groups generated in the first stage of electrolytic treatment become large. This is thought to be due to the fact that as a result, only oxygen-containing functional groups are produced on the carbon fiber surface.

なお、第一段目および第二段目の電解処理における該電
解質以外の処理条件、例えば、電解質水溶液の濃度、温
度、電圧、電流密度、および処理時間などは、最終的に
得られる炭素繊維の表面官能基量がX線光電子分光法に
よって求められる01s/C1sで0.08〜0.25
、N1S/CISで0゜06〜0.25の範囲に入るよ
うに、適宜選択すればよい。
In addition, treatment conditions other than the electrolyte in the first and second stage electrolytic treatments, such as the concentration of the electrolyte aqueous solution, temperature, voltage, current density, and treatment time, are determined depending on the final carbon fiber obtained. The amount of surface functional groups is 0.08 to 0.25 in 01s/C1s determined by X-ray photoelectron spectroscopy.
, N1S/CIS may be appropriately selected so that it falls within the range of 0°06 to 0.25.

また、炭素繊維への通電方法としては炭素i1維を陽極
ローラに接する方法、電解液を通じて陽極板から炭素繊
維に通電する方法などが挙げられ、通電された炭素繊維
は電解質水溶液中において電解反応の陽極として動く。
In addition, methods for applying electricity to carbon fibers include a method in which carbon i1 fibers are brought into contact with an anode roller, and a method in which electricity is applied from an anode plate to carbon fibers through an electrolytic solution.The energized carbon fibers undergo an electrolytic reaction in an electrolyte aqueous solution. Acts as an anode.

電解質水溶液中の電極板としては白金板などが好ましく
用いられる。
A platinum plate or the like is preferably used as the electrode plate in the electrolyte aqueous solution.

次に、本発明における酸素含有官能基量(o1S/C1
S)、l、j:U’M素含有官能WIa (N1S/C
l5)の測定法について述べる。
Next, the amount of oxygen-containing functional groups (o1S/C1
S), l, j: U'M element-containing functional WIa (N1S/C
The method for measuring l5) will be described.

上記特性はX線光電子分光法(国際電気社製モデルES
−200>により、次の手順に従って求めた。
The above characteristics were measured using X-ray photoelectron spectroscopy (model ES manufactured by Kokusai Denki Co., Ltd.).
-200> according to the following procedure.

先ず、)d媒でサイジング剤などを除去した炭素繊維(
束)をカットして銅製の試料支持台上に拡げて並べた後
、X線源としてALKI、2を用い、試料チャンバー中
をI X 10’Torrに保つ。
First, the carbon fiber (
After cutting the bundles and arranging them spread out on a copper sample support stand, ALKI, 2 was used as an X-ray source, and the inside of the sample chamber was maintained at I x 10' Torr.

測定時の帯電に伴うピーク−の補正としてCISの主ピ
ークの運動エネルギー値(に、[、)を1202eVに
合せる。
The kinetic energy value (, [,) of the main peak of CIS is adjusted to 1202 eV as a correction for the peak due to charging during measurement.

CISピーク面積をに、E、として1191〜1205
 eVの範囲で直線のベースラインを引くことにより求
める。
CIS peak area as E, 1191-1205
It is determined by drawing a straight baseline in the eV range.

01Sピ一ク面積をに、E、とじて947〜959cV
の範囲で直線のベースラインを引くことにより求める。
01S peak area is E, 947~959cV
It is determined by drawing a straight baseline within the range of .

N1sピ一ク面積をに、E、とじて1078〜1091
eVの範囲で直線のベースラインを引くことにより求め
る。
The N1s peak area is divided into E and 1078 to 1091.
It is determined by drawing a straight baseline in the eV range.

本発明において、酸素含有官能基ff1(01,/Cl
5)とは、上記013ピ一ク面積とCISピーク面積と
の比として定義され、同様に窒素含有官能基量(N1S
/C1S)とは、上記NISピーク面積とCISピーク
面積との比として定義されたものである。
In the present invention, the oxygen-containing functional group ff1(01,/Cl
5) is defined as the ratio of the 013 peak area to the CIS peak area, and similarly, the amount of nitrogen-containing functional groups (N1S
/C1S) is defined as the ratio of the NIS peak area to the CIS peak area.

〈発明の効果〉 以上の如く本発明は、炭素繊維の表面官能基、特に酸素
含有官能基量と、窒素含有官能基量とを特定化したこと
により、炭素繊維補強複合材料における広範囲の母材樹
脂に対して、良好なる接着性を有し、この結果、優れた
複合材料物性を与え得る表面改質炭素i、tiが得られ
るという、顕著な効果を奏するのである。
<Effects of the Invention> As described above, the present invention specifies the surface functional groups of carbon fibers, particularly the amount of oxygen-containing functional groups and the amount of nitrogen-containing functional groups, so that it can be applied to a wide range of base materials in carbon fiber reinforced composite materials. This has the remarkable effect of providing surface-modified carbon i, ti that has good adhesion to resins and, as a result, can provide excellent composite material properties.

以下、実施例により本発明をざらに具体的に説明する。EXAMPLES Hereinafter, the present invention will be briefly and concretely explained with reference to Examples.

なお、本例中、ストランド物性、およびコンポジット物
性は次の方法に従って測定した。
In this example, the strand physical properties and composite physical properties were measured according to the following methods.

(1)ストランド物性 J l5−7601の樹脂含浸ストランド試験方法に準
じ、樹脂処方としては“BAKELITE” ERL4
221/3フッ化ホウ素モノエチルアミン/アセトン=
100/3/4 (重量部)をよく混合して用いる。
(1) Strand physical properties According to the resin-impregnated strand test method of Jl5-7601, the resin formulation was “BAKELITE” ERL4.
221/3 boron fluoride monoethylamine/acetone=
100/3/4 (parts by weight) are mixed well and used.

(2)コンポジット物性 (コンポジット試験片の作成) 先ず円周的2.7mの鋼製ドラムに炭素繊維と組合せる
樹脂をシリコン塗布ペーパー上にコーティングした樹脂
フィルムを巻き、次に該樹脂フィルム上にクリールから
引き出した炭素繊維をトラバースを介して巻き取り、配
列して、ざらにその繊維の上から前記樹脂フィルムを再
度かぶせて後、加圧ロールで回転加圧して樹脂を繊維内
に含浸せしめ、巾300 mm、長さ2.7mの一方向
プリプレグを作成する。
(2) Composite physical properties (preparation of composite test piece) First, a resin film in which a resin to be combined with carbon fiber is coated on silicone coated paper is wound around a steel drum with a circumference of 2.7 m, and then a resin film is coated on silicone coated paper. The carbon fibers pulled out from the creel are wound up through a traverse, arranged, and the resin film is roughly covered again over the fibers, and then the resin is impregnated into the fibers by rotating and pressurizing them with a pressure roll, A unidirectional prepreg with a width of 300 mm and a length of 2.7 m is created.

このとき、IM維離間の樹脂含浸を良くするためにドラ
ムは50〜60℃に加熱し、またプリプレグの繊維目付
はドラムの回転数とトラバースの送り速度を調整するこ
とによって、繊維目付200g/ m” 、樹脂伍約3
5重母%のプリプレグを作成した。
At this time, the drum was heated to 50 to 60°C to improve resin impregnation between the IM fibers, and the fiber weight of the prepreg was adjusted to 200 g/m by adjusting the drum rotation speed and traverse feed speed. ”, resin grade 3
A prepreg containing quintuplic mother was prepared.

このように作成したプリプレグを裁断、積層し、Δ−ト
クレイプを用いて180℃、 7KO/ Cm2下で2
時間加熱硬化して、引張強度測定用として肉厚的1 m
m、またはI LSS測定用として肉厚的2mmの硬化
板を作成した。
The prepreg thus prepared was cut, laminated, and heated at 180°C under 7KO/Cm2 using Δ-tocrap.
Cured by heating for a period of time to a thickness of 1 m for tensile strength measurement.
A hardened plate with a wall thickness of 2 mm was prepared for m or ILSS measurement.

なお、上記方法は所謂樹脂フィルムを用いたドラム・ワ
インド法であるが、フェノール樹脂の場合には下記のよ
うな溶液含浸法を用いた。
The above method is a drum winding method using a so-called resin film, but in the case of a phenol resin, a solution impregnation method as described below was used.

樹脂溶液を満たした樹脂槽で繊維に樹脂を含浸せしめ、
その繊維をドラム上のシリコンペーパーに配列巻き取り
後、溶媒を風乾、さらに乾燥せしめ、一方向プリプレグ
を得る。
The fibers are impregnated with resin in a resin bath filled with resin solution,
After arranging and winding up the fibers on silicone paper on a drum, the solvent is air-dried and further dried to obtain a unidirectional prepreg.

このプリプレグを積層後、約7にg/ cm2の圧力下
、180℃、2時間プレス成形して一方向硬化板とした
After laminating this prepreg, it was press-molded at 180°C for 2 hours under a pressure of about 7 g/cm2 to obtain a unidirectionally cured plate.

(引張強度および居間剪断強度(ILSS)の測定)上
記硬化板は引張強度用として巾12.7mm。
(Measurement of tensile strength and living room shear strength (ILSS)) The above-mentioned cured plate had a width of 12.7 mm for tensile strength.

長さ230mmの試験片とし、該試験片の両端に厚さ約
i、2mm、長さ50mmのGFRP製のタブを接着し
く必要に応じて試験片中央には弾性率および破壊歪を測
定するための歪ゲージを貼り付け)、島津製オートグラ
フを用いて負荷速度’l mm/minで測定した。
A test piece with a length of 230 mm is used, and a GFRP tab with a thickness of about 2 mm and a length of 50 mm is glued to both ends of the test piece, and if necessary, a tab made of GFRP is attached to the center of the test piece to measure the elastic modulus and fracture strain. (A strain gauge attached) was measured using a Shimadzu Autograph at a loading rate of 1 mm/min.

またI LSS用試験片は巾12.7m111.長さ2
3mmとし、測定は通常の3点曲げ試験治具を用いて支
持スパンを試験片肉厚の4倍に設定し、負荷速度2.5
mm/minで測定した。
In addition, the width of the ILSS test piece is 12.7m111. length 2
3mm, and the measurement was carried out using a normal three-point bending test jig, with the support span set to four times the thickness of the specimen, and a loading rate of 2.5.
Measured in mm/min.

実施例1 アクリロニトリル(八N)99.5モル%とイタ321
0.5モル%からなる固有粘度[η]が1゜80の共重
合体にアンモニアを吹込み、共重合体のカルボキシル基
末端水素をアンモニウム基で置換して変性ポリマを作成
し、この変性ポリマの濃度が20重量%のジメチルスル
ホキシド(DH3O)溶液を作成した。この溶液を温度
60°Cに調整し、温度60℃、濃度500%のDMS
O水溶液に吐出した。
Example 1 Acrylonitrile (8N) 99.5 mol% and Ita321
Ammonia is blown into a copolymer containing 0.5 mol% and has an intrinsic viscosity [η] of 1°80, and the terminal hydrogen of the carboxyl group of the copolymer is replaced with an ammonium group to create a modified polymer. A dimethyl sulfoxide (DH3O) solution with a concentration of 20% by weight was prepared. This solution was adjusted to a temperature of 60°C, and DMS was added at a temperature of 60°C and a concentration of 500%.
It was discharged into an O aqueous solution.

凝固糸条を水洗、熱水中で4倍に延伸した後、シリコー
ン系油剤処理を行なった。
After washing the coagulated yarn with water and stretching it four times in hot water, it was treated with a silicone oil.

この糸条を130〜160℃に加熱されたローラ表面g
接触させて乾燥緻密化後、4.0にg/ cm2の加圧
スチーム中で3倍に延伸して単糸繊度1゜Qd 、 ト
ータルデニール60000の繊維束を得た。
The surface of the roller heated to 130-160℃
After drying and densification by contacting, the fiber bundle was drawn three times in a pressurized steam of 4.0 g/cm2 to obtain a fiber bundle with a single fiber fineness of 1°Qd and a total denier of 60,000.

上記アクリル系繊維束を230〜260℃の空気中で、
延伸率1.00で加熱して耐炎化度が水分率で4.2%
の耐炎化繊維に転換した。次いで、最高温度が1500
℃の窒素雰囲気中で300〜700 ’Cの温度域にお
ける昇温速度を約400’C/分、1000〜1200
℃の温度域における昇温速度を約400’C/分の条件
下で炭素化して原料炭素繊維を得た。
The above acrylic fiber bundle is placed in air at 230 to 260°C.
When heated at a stretching ratio of 1.00, the degree of flame resistance is 4.2% in terms of moisture content.
It was converted into flame-resistant fiber. Then the maximum temperature is 1500
The heating rate in the temperature range of 300-700'C in a nitrogen atmosphere at 400'C/min, 1000-1200
Raw material carbon fibers were obtained by carbonization under conditions of a heating rate of about 400'C/min in the temperature range of °C.

上記原料炭素繊維を通常の電解処理装置により、先ず0
.1モル%の硫酸水溶液を電解液として、炭素繊維1g
当り10クーロンの電気量で電解表面処理し、水洗、乾
燥して第−段電解表面処理系を1qた。
The above raw material carbon fiber is first treated with a 0%
.. 1 g of carbon fiber using 1 mol% sulfuric acid aqueous solution as electrolyte
The surface was electrolytically treated with an amount of electricity of 10 coulombs per unit, washed with water, and dried to obtain 1q of the first stage electrolytic surface treatment system.

続いて、上記第−段電解表面処理系を3モル%のアンモ
ニア水溶液を電解液として、炭素繊維1g当り15クー
ロンの電気量で電解表面処理し、水洗、乾燥して第二段
電解表面処理系を得た。
Subsequently, the first stage electrolytic surface treatment system was subjected to electrolytic surface treatment using a 3 mol % ammonia aqueous solution as an electrolyte with an amount of electricity of 15 coulombs per gram of carbon fiber, washed with water, and dried to form a second stage electrolytic surface treatment system. I got it.

上記第二段電解表面処理系につき、X線光電子分光法に
より表面官能ESfflを測定の結果、N18/C1s
が012,01s/C1,が0.16であった。
Regarding the second stage electrolytic surface treatment system, the surface functionality ESffl was measured by X-ray photoelectron spectroscopy, and the result was N18/C1s.
was 012, 01s/C1, was 0.16.

またストランド引張テストを行なった結果、引張強度が
510Kg/ mm2.引張弾性率が29 t/mm2
であった。
In addition, as a result of a strand tensile test, the tensile strength was 510 kg/mm2. Tensile modulus is 29 t/mm2
Met.

ざらにマレイミド樹脂とフェノール樹脂につき、コンポ
ジット試験片を作成し、引張強度(炭素繊維の体積含有
率60%に換算した数値で示した)と層間剪断強度(I
LSS)を評価し、結果を第1表に示した。
Composite test pieces were prepared using roughly maleimide resin and phenolic resin, and the tensile strength (shown as a value converted to a volume content of 60% carbon fiber) and interlaminar shear strength (I
LSS) was evaluated and the results are shown in Table 1.

第1表に見られるように、マレイミドおよびフェノール
の両樹脂において、高い引張強度と、ILSSが得られ
ている。
As seen in Table 1, high tensile strength and ILSS are obtained for both maleimide and phenolic resins.

なお、マレイミド樹脂として具体的には下記組成のもの
を用いた。
In addition, specifically, a maleimide resin having the following composition was used.

[3T2562F (三菱瓦斯化学8丁レジン):  
90部 Ep 828 [ペトロケミカルズ(株)]:  11
0 部クミルパーオキザイド    = 0.2部また、フ
ェノール樹脂溶液として具体的には下記処方によった。
[3T2562F (Mitsubishi Gas Chemical 8-cho resin):
90 parts Ep 828 [Petrochemicals Co., Ltd.]: 11
0 parts cumyl peroxide = 0.2 parts The phenol resin solution was specifically formulated as follows.

フェノール100部、37%ホルマリン90部。100 parts of phenol, 90 parts of 37% formalin.

25%アンモニア水1.6部を混合して遅流させながら
、60分反応させた後、減圧脱水し、メタノール80部
を加えてフェノール樹脂溶液を11だ。
After mixing 1.6 parts of 25% ammonia water and reacting for 60 minutes with slow flow, dehydration was carried out under reduced pressure, and 80 parts of methanol was added to make the phenol resin solution.

比較例1 実施例1で用いた原料炭素繊維を実施例1の第一段電解
表面処理における電気量を炭素繊維1g当り20クーロ
ンに変更した以外は、同様の条件で電解表面処理し、水
洗、乾燥して電解表面処理系を19だ。 上記電解表面
処理系の表面官能基量およびコンポジット特性評価結果
を第1表に示した。
Comparative Example 1 The raw material carbon fiber used in Example 1 was subjected to electrolytic surface treatment under the same conditions except that the amount of electricity in the first stage electrolytic surface treatment of Example 1 was changed to 20 coulombs per 1 g of carbon fiber, washed with water, Dry and apply electrolytic surface treatment to 19. Table 1 shows the amount of functional groups on the surface of the electrolytic surface treatment system and the evaluation results of composite properties.

第1表に見られるように、該炭素繊維は表面NIs/C
ISが低く、そのためマレイド樹脂における引張強度、
ILSSとも低い。
As seen in Table 1, the carbon fiber has a surface NIs/C
IS is low, so tensile strength in maleide resin,
ILSS is also low.

比較例2 実施例1で用いた原料炭素繊維を実施例1の第二段電解
表面処理にあける電気口を炭素繊維1g当り10クーロ
ンに変更した以外は、同様の条件で電解表面処理し、水
洗、乾燥して電解表面処理糸を得た。
Comparative Example 2 The raw carbon fibers used in Example 1 were subjected to electrolytic surface treatment under the same conditions, except that the electric port opened in the second stage electrolytic surface treatment of Example 1 was changed to 10 coulombs per 1 g of carbon fiber, and then washed with water. , and dried to obtain an electrolytically surface-treated yarn.

上記電解表面511理系の表面官能基】およびコンポジ
ット特性評価結果を第1表に示した。
Table 1 shows the above electrolytic surface 511 surface functional groups] and composite property evaluation results.

第1表に見られるように、該炭素1@は表面01s/C
Isが低く、そのためフェノール樹脂における引張強度
、ILSSとも低い。
As seen in Table 1, the carbon 1@ is the surface 01s/C
Is is low, and therefore both the tensile strength and ILSS of phenol resins are low.

比較例3 実施例1で用いた原料炭素繊維を実施例1と同様の装置
を用いて、3モル%のアンモニア水溶液を電解液として
、炭素[tlg当り15クーロンの電気量で電解表面処
理し、水洗、乾燥して第一段電解表面処理系を得た。
Comparative Example 3 The raw carbon fiber used in Example 1 was subjected to electrolytic surface treatment using a 3 mol % ammonia aqueous solution as an electrolyte with an amount of electricity of 15 coulombs per tlg using the same apparatus as in Example 1. After washing with water and drying, a first-stage electrolytic surface treatment system was obtained.

次いで、上記電解表面処理系を0.05モル%の硫酸水
溶液を電解液として、炭素繊維1g当り10クーロンの
電気量で電解表面処理し、水洗。
Next, the electrolytic surface treatment system was subjected to electrolytic surface treatment using a 0.05 mol % sulfuric acid aqueous solution as an electrolyte with an amount of electricity of 10 coulombs per gram of carbon fiber, and washed with water.

乾燥して第二段電解表面処理系を得た。After drying, a second stage electrolytic surface treatment system was obtained.

上記第二段電解表面処理系につぎ、表面官能基量および
コンポジット物性の測定を行ない、その結果を第1表に
示した。
Next to the above-mentioned second-stage electrolytic surface treatment system, the amount of surface functional groups and the physical properties of the composite were measured, and the results are shown in Table 1.

実施例2〜5、比較例4〜5 実施例1で用いた原料炭素繊維を実施例1と同様の装置
を用いて、第一段および第二段の電解表面処理条件を第
1表に示すように変更した以外は、実施例1と同様に電
解表面処理した。
Examples 2 to 5, Comparative Examples 4 to 5 The raw material carbon fiber used in Example 1 was treated using the same equipment as in Example 1, and the conditions for electrolytic surface treatment in the first and second stages are shown in Table 1. Electrolytic surface treatment was carried out in the same manner as in Example 1, except for the following changes.

1qられた電解表面処理系の表面官能基量およびコンポ
ジット物性を測定し、その結果を第1表に示した。
The surface functional group content and composite physical properties of the electrolytic surface treatment system were measured, and the results are shown in Table 1.

(以下、余白)(Hereafter, margin)

Claims (3)

【特許請求の範囲】[Claims] (1)X線光電子分光法によつて求められる炭素繊維表
面の酸素含有官能基量(O_1_S/C_1_S)が0
.1〜0.25の範囲内であり、かつ窒素含有官能基量
(N_1_S/C_1_S)が0.06〜0.25の範
囲内であることを特徴とする表面改質炭素繊維。
(1) The amount of oxygen-containing functional groups (O_1_S/C_1_S) on the carbon fiber surface determined by X-ray photoelectron spectroscopy is 0
.. 1 to 0.25, and the amount of nitrogen-containing functional groups (N_1_S/C_1_S) is within the range of 0.06 to 0.25.
(2)陽極で発生期の酸素を発生する電解質水溶液中で
、炭素繊維を陽極として第一段の電解表面処理を行ない
、しかる後、アンモニウムイオンを含有する電解質水溶
液中で、炭素繊維を陽極として第二段の電解表面処理を
行なうことを特徴とする表面改質炭素繊維の製造方法。
(2) Perform the first electrolytic surface treatment using the carbon fiber as an anode in an electrolyte aqueous solution that generates nascent oxygen at the anode, and then perform the first stage electrolytic surface treatment using the carbon fiber as an anode in an electrolyte solution containing ammonium ions. A method for producing surface-modified carbon fiber, comprising performing a second-stage electrolytic surface treatment.
(3)特許請求の範囲第(2)項において、アンモニウ
ムイオンを含有する電解質水溶液がアンモニア水である
表面改質炭素繊維の製造方法。
(3) The method for producing a surface-modified carbon fiber according to claim (2), wherein the electrolyte aqueous solution containing ammonium ions is aqueous ammonia.
JP61222019A 1986-09-22 1986-09-22 Surface modified carbon fiber and its production Pending JPS6385167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222019A JPS6385167A (en) 1986-09-22 1986-09-22 Surface modified carbon fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222019A JPS6385167A (en) 1986-09-22 1986-09-22 Surface modified carbon fiber and its production

Publications (1)

Publication Number Publication Date
JPS6385167A true JPS6385167A (en) 1988-04-15

Family

ID=16775828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222019A Pending JPS6385167A (en) 1986-09-22 1986-09-22 Surface modified carbon fiber and its production

Country Status (1)

Country Link
JP (1) JPS6385167A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210059A (en) * 1989-01-25 1990-08-21 Mitsubishi Rayon Co Ltd Highly elastic carbon yarn having modified surface and production thereof
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
JPH08188968A (en) * 1995-01-09 1996-07-23 Toray Ind Inc Carbon fiber and method for producing same
JP2003247127A (en) * 2002-02-22 2003-09-05 Toray Ind Inc Carbon fiber bundle for rubber reinforcing, cord, and fiber-reinforced rubber
JP2004277907A (en) * 2003-03-14 2004-10-07 Toray Ind Inc Carbon fiber and method for producing the same
JP2005054326A (en) * 2003-08-06 2005-03-03 Doshisha Method for producing natural fiber-reinforced polymeric composite material
US9149828B2 (en) 2013-08-09 2015-10-06 Uht Unitech Co., Ltd. Carbon fiber surface oil changing device
JP2018538459A (en) * 2015-12-22 2018-12-27 サイテック インダストリーズ インコーポレイテッド Method for vapor phase surface treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112068A (en) * 1982-12-17 1984-06-28 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS60239521A (en) * 1984-05-14 1985-11-28 Toray Ind Inc Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture
JPS60252770A (en) * 1984-05-18 1985-12-13 オフイース ナシヨナル デチユード エ ドウ ルシエルシエ アエロスパシヤル Carbon fiber, its treatment and composite material using treated carbon fiber
JPS6123884A (en) * 1984-07-09 1986-02-01 Mazda Motor Corp Rotary compressor
JPS62276075A (en) * 1986-02-07 1987-11-30 三菱レイヨン株式会社 Carbon fiber and its production
JPS636162A (en) * 1986-05-30 1988-01-12 アモコ コ−ポレ−シヨン Multi-electrolyte shearing treatment of carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112068A (en) * 1982-12-17 1984-06-28 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS60239521A (en) * 1984-05-14 1985-11-28 Toray Ind Inc Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture
JPS60252770A (en) * 1984-05-18 1985-12-13 オフイース ナシヨナル デチユード エ ドウ ルシエルシエ アエロスパシヤル Carbon fiber, its treatment and composite material using treated carbon fiber
JPS6123884A (en) * 1984-07-09 1986-02-01 Mazda Motor Corp Rotary compressor
JPS62276075A (en) * 1986-02-07 1987-11-30 三菱レイヨン株式会社 Carbon fiber and its production
JPS636162A (en) * 1986-05-30 1988-01-12 アモコ コ−ポレ−シヨン Multi-electrolyte shearing treatment of carbon fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210059A (en) * 1989-01-25 1990-08-21 Mitsubishi Rayon Co Ltd Highly elastic carbon yarn having modified surface and production thereof
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
US5587240A (en) * 1993-08-25 1996-12-24 Toray Industries, Inc. Carbon fibers and process for preparing same
US5589055A (en) * 1993-08-25 1996-12-31 Toray Industries, Inc. Method for preparing carbon fibers
US5691055A (en) * 1993-08-25 1997-11-25 Toray Industries, Inc. Carbon fibers and process for preparing same
JPH08188968A (en) * 1995-01-09 1996-07-23 Toray Ind Inc Carbon fiber and method for producing same
JP2003247127A (en) * 2002-02-22 2003-09-05 Toray Ind Inc Carbon fiber bundle for rubber reinforcing, cord, and fiber-reinforced rubber
JP2004277907A (en) * 2003-03-14 2004-10-07 Toray Ind Inc Carbon fiber and method for producing the same
JP2005054326A (en) * 2003-08-06 2005-03-03 Doshisha Method for producing natural fiber-reinforced polymeric composite material
US9149828B2 (en) 2013-08-09 2015-10-06 Uht Unitech Co., Ltd. Carbon fiber surface oil changing device
JP2018538459A (en) * 2015-12-22 2018-12-27 サイテック インダストリーズ インコーポレイテッド Method for vapor phase surface treatment

Similar Documents

Publication Publication Date Title
JP4349118B2 (en) Method for producing sizing-coated carbon fiber
JPS6262185B2 (en)
WO2013027674A1 (en) Carbon fiber composite material
Manocha Role of fibre surface—matrix combination in carbon fibre reinforced epoxy composites
JPH04361619A (en) Carbon fiber and its production
JPS6385167A (en) Surface modified carbon fiber and its production
JP2003073932A (en) Carbon fiber
WO2004040055A1 (en) Carbon fiber strand
JPS6215329A (en) Carbon fiber
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
US3989802A (en) Treatment of carbon fibers
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP2005256226A (en) Sizing-coated carbon fiber and method for producing the same
JP2546809B2 (en) Carbon fiber composite material
JP2004169260A (en) Carbon fiber strand
JPS58214527A (en) Carbon fiber bundle of high strength and elongation
JPH0284527A (en) Treatment of carbon fiber
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2002054031A (en) Carbon fiber and method for producing the same
JP4238436B2 (en) Carbon fiber manufacturing method
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JP2005290614A (en) Carbon fiber strand
JP6139318B2 (en) Carbon fiber manufacturing method
JP3136883B2 (en) Carbon fiber reinforced resin composite and prepreg