JP2005054326A - Method for producing natural fiber-reinforced polymeric composite material - Google Patents

Method for producing natural fiber-reinforced polymeric composite material Download PDF

Info

Publication number
JP2005054326A
JP2005054326A JP2003287957A JP2003287957A JP2005054326A JP 2005054326 A JP2005054326 A JP 2005054326A JP 2003287957 A JP2003287957 A JP 2003287957A JP 2003287957 A JP2003287957 A JP 2003287957A JP 2005054326 A JP2005054326 A JP 2005054326A
Authority
JP
Japan
Prior art keywords
strength
composite material
fiber
natural fiber
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287957A
Other languages
Japanese (ja)
Other versions
JP4489391B2 (en
Inventor
Toru Fujii
藤井  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2003287957A priority Critical patent/JP4489391B2/en
Publication of JP2005054326A publication Critical patent/JP2005054326A/en
Application granted granted Critical
Publication of JP4489391B2 publication Critical patent/JP4489391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a natural fiber-reinforced composite material that can facilitate the designing of natural fiber-reinforced composite material and further stabilizes the quality of the products. <P>SOLUTION: The optimal interface strength τ<SB>i</SB>for revealing the target tensile strength is calculated according to the composition of the composite material to be produced. Then, the surface treatment giving this interface strength τ<SB>i</SB>is selected and applied to the natural fiber. As a formula for calculating the optimal interface strength, is cited τ<SB>i</SB>= ασ<SB>f</SB>/L (wherein α is a constant defined by the kind of the matrix; σ<SB>f</SB>is an average tensile strength of the natural fiber and L is an average fiber length of the natural fiber). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、天然繊維を強化材として使用した高分子系複合材料の製造方法に関する。   The present invention relates to a method for producing a polymer composite material using natural fibers as a reinforcing material.

強化繊維を使用する高分子系複合材料では、強化繊維と母材との界面における接着性の向上が複合材料の性能向上に寄与することが知られている。この観点から従来より多種多様の界面強度向上策が検討されており、例えば、特開平6−345926号公報には、ポリスチレン樹脂、ガラス繊維強化ポリスチレン樹脂、およびマレイン酸グラフト樹脂からなるガラス繊維強化ポリスチレン樹脂組成物により、ガラス繊維とポリスチレン樹脂との界面強度を高め、引張り強度の向上を図る旨が記載されている(特許文献1)。
特開平6−345926号公報
In a polymer composite material using a reinforcing fiber, it is known that an improvement in adhesion at the interface between the reinforcing fiber and the base material contributes to an improvement in the performance of the composite material. From this viewpoint, various measures for improving the interfacial strength have been studied. For example, JP-A-6-345926 discloses a glass fiber reinforced polystyrene comprising a polystyrene resin, a glass fiber reinforced polystyrene resin, and a maleic acid graft resin. It is described that the resin composition increases the interfacial strength between the glass fiber and the polystyrene resin to improve the tensile strength (Patent Document 1).
JP-A-6-345926

ところで、上記公報に記載された複合材料は、強化繊維としてガラス繊維を使用するものにすぎない。強化繊維がガラスやカーボンなどの高強度材料であれば、界面強度が高くなるほど複合材料の強度も向上するであろうことは容易に想像できる。   By the way, the composite material described in the above publication only uses glass fibers as reinforcing fibers. If the reinforcing fiber is a high-strength material such as glass or carbon, it can be easily imagined that the strength of the composite material will improve as the interfacial strength increases.

その一方、近年では、環境問題に対する認識の高まりから、脱ガラス繊維の要請が高く、高分子系複合材料のガラス繊維代替強化材として、ジュートやケナフといった天然繊維の使用が広く試みられている。しかしながら、これら天然繊維の強度や剛性は一般にガラスやカーボン等の無機系繊維と比べて大きく劣る。また、天然繊維ではその紡糸工程で鉱物油などの潤滑剤が使用されるため、表面に付着した潤滑剤によって樹脂との接着性が低下する。さらに天然繊維では、繊維に沿って直径が変化すること、および紡糸工程で繊維に傷がつくこと等から繊維自体の強度のばらつきも大きい。従って、上記無機系強化繊維の場合における界面強度と複合材料強度との関係(界面強度が向上すれば複合材料強度も向上する)が天然繊維でもそのまま成り立つとは限らない。   On the other hand, in recent years, there has been a high demand for deglass fibers due to increased awareness of environmental problems, and the use of natural fibers such as jute and kenaf has been widely attempted as a glass fiber alternative reinforcing material for polymer composite materials. However, the strength and rigidity of these natural fibers are generally greatly inferior to those of inorganic fibers such as glass and carbon. Further, since natural fibers use a lubricant such as mineral oil in the spinning process, the adhesion to the resin is lowered by the lubricant attached to the surface. Furthermore, natural fibers have large variations in strength due to changes in diameter along the fibers and damage to the fibers during the spinning process. Therefore, the relationship between the interfacial strength and the composite material strength in the case of the inorganic reinforcing fibers (the composite material strength increases as the interfacial strength improves) does not always hold true for natural fibers.

そこで、本発明は強化材として天然繊維を使用した高分子系複合材料における、界面強度と複合材料強度との関係解明を通じて、この種の複合材料の強度向上を図ることを目的とする。   Therefore, the present invention aims to improve the strength of this type of composite material by elucidating the relationship between the interfacial strength and the composite material strength in a polymer composite material using natural fibers as a reinforcing material.

本発明者らは、天然繊維で複合材料を製作し、これを引張試験に供したところ、天然繊維の界面強度と複合材料の引張り強度との間で図2に示す関係が成り立つことを見出した(図2参照)。すなわち、ガラス繊維等のように界面強度と引張り強度とが単純な比例関係にあるのではなく、界面強度が高すぎても低すぎても十分な引張り強度は発揮されず、適当な界面強度である時に複合材料の引張り強度が最も高くなり、かつ安定化することが明らかになった。   The inventors of the present invention manufactured a composite material with natural fibers and used it for a tensile test, and found that the relationship shown in FIG. 2 was established between the interfacial strength of the natural fiber and the tensile strength of the composite material. (See FIG. 2). That is, the interface strength and the tensile strength are not in a simple proportional relationship as in glass fibers, etc., and if the interface strength is too high or too low, sufficient tensile strength is not exhibited, and the appropriate interface strength At some point, it was found that the tensile strength of the composite material was the highest and stabilized.

この現象は以下の理由によると考えられる。   This phenomenon is considered to be due to the following reasons.

一般に、繊維強化複合材料の破壊は、繊維の破断、繊維に沿う母材剥離(デボンディング)、あるいは繊維直角方向に延びる亀裂の成長によって生じる。ここで、母材と繊維の界面における接着強度が高いと、母材亀裂とデボンディングは抑えることができるが、その一方で僅かでも母材の亀裂が発生すると、応力集中により亀裂の先端で繊維に作用する応力が高くなるため、強度に劣る天然繊維では繊維破断が容易に生じて複合材料の破壊に至る。接着強度が弱すぎると、繊維に沿う剥離が大きく成長するが、この場合は母材を通じての応力の再配分に支障を来すため、同様に複合材料の引張り強度が低下する。一方、接着強度が適度に弱い界面であれば、母材の亀裂が繊維に到達する直前に亀裂前方の界面で剥離が生じ、この剥離が亀裂の両側で繊維に沿って成長するため、亀裂先端の繊維への応力集中が緩和され、繊維破断が生じにくくなる。   In general, the failure of fiber reinforced composite materials is caused by fiber breakage, delamination of the base material along the fiber (debonding), or growth of cracks extending in the direction perpendicular to the fiber. Here, if the bond strength at the interface between the base material and the fiber is high, cracks and debonding of the base material can be suppressed. On the other hand, if even a slight crack in the base material occurs, the fiber concentrates at the tip of the crack due to stress concentration. Since the stress acting on the fiber becomes high, the natural fiber having inferior strength easily breaks the fiber, leading to the destruction of the composite material. If the adhesive strength is too weak, the separation along the fibers grows greatly. In this case, however, the stress redistribution through the base material is hindered, so that the tensile strength of the composite material similarly decreases. On the other hand, if the interface has a moderately weak bond strength, peeling occurs at the interface in front of the crack just before the crack of the base material reaches the fiber, and this peeling grows along the fiber on both sides of the crack. The stress concentration on the fiber is relaxed, and the fiber breakage hardly occurs.

以上の検証から、天然繊維においては、複合材料の引張り強度を最大限に発揮できる最適な界面強度が存在すると考えられる。ここで、一般に複合材料の界面強度は、母材の種類や強化繊維の種類・サイズ・配向性等によって異なる値をとり、かつこれらが同じであっても強化繊維に施す表面処理方法によって異なる値をとる。   From the above verification, it is considered that there is an optimum interfacial strength capable of maximizing the tensile strength of the composite material in the natural fiber. Here, the interfacial strength of the composite material generally takes different values depending on the type of base material, the type, size, orientation, etc. of the reinforcing fibers, and even if they are the same, the values differ depending on the surface treatment method applied to the reinforcing fibers. Take.

そこで、本発明では、天然繊維を強化材とする高分子系複合材料を製造するにあたり、目標強度を発現させるのに最適な界面強度τiを、製造する複合材料の組成に応じて求め、その後、この界面強度τiを与える表面処理を天然繊維に施すこととした。なお、ここでいう「複合材料の組成」は、母材種類の他、強化繊維の種類、サイズ、配向、織組織等を含むものであり、これら組成を考慮して最適な界面強度τiが決定される。 Therefore, in the present invention, in producing a polymer composite material using natural fiber as a reinforcing material, the optimum interface strength τ i for expressing the target strength is determined according to the composition of the composite material to be produced, and thereafter Therefore, the natural fiber is subjected to a surface treatment that gives the interface strength τ i . The “composite material composition” herein includes not only the base material type but also the type, size, orientation, woven structure, and the like of the reinforcing fiber, and the optimum interface strength τ i is determined in consideration of these compositions. It is determined.

この場合の最適界面強度τi(MPa)は、例えばτi=ασf/Lなる式から算出できる。但し、αは母材種類によって定まる定数、σfは天然繊維の平均引張り強度(MPa)、Lは天然繊維の平均繊維長(mm)である。 In this case, the optimum interface strength τ i (MPa) can be calculated from, for example, an expression of τ i = ασ f / L. Where α is a constant determined by the type of base material, σ f is the average tensile strength (MPa) of natural fibers, and L is the average fiber length (mm) of natural fibers.

また、天然繊維に施す表面処理としては、オイル処理、エタノール洗浄、アミン系シラン処理、イソシアネート系シラン処理が代表的である。天然繊維の種類によっても異なるが、一般に後で述べた処理ほど得られる界面強度も高くなる傾向にあるので、算出した最適界面強度と同程度の界面強度が得られる表面処理をこの中から選択し、これを天然繊維に施すことにより、最も高い複合材料強度が安定的に得られるようになる。   Typical surface treatments applied to natural fibers are oil treatment, ethanol washing, amine silane treatment, and isocyanate silane treatment. Although it varies depending on the type of natural fiber, generally the interface strength obtained later tends to be higher as the treatment described later, so the surface treatment that can obtain the interface strength equivalent to the calculated optimum interface strength is selected from these. By applying this to natural fibers, the highest composite material strength can be stably obtained.

本発明によれば、簡易な手段で確実に複合材料の強度を高めることができ、ばらつきの多い天然繊維で強化した複合材料の設計を容易化し、さらにその品質安定化を図ることができる。   According to the present invention, the strength of the composite material can be reliably increased by simple means, the design of the composite material reinforced with natural fibers with many variations can be facilitated, and the quality can be stabilized.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明にかかる天然繊維強化高分子系複合材料は、強化材としてジュート繊維、ケナフ、あるいは竹繊維等の天然繊維を使用すると共に、母材としてPP等の高分子系樹脂材料を使用するものである。この複合材料は、図1に示すように、最適界面強度τiを算出するステップ1と、この最適界面強度τiを与える表面処理方法を選択するステップ2と、当該表面処理を施すステップ3と、公知の成形法(押出し成形、射出成形等)で成形するステップ4を経て製造される。 The natural fiber reinforced polymer composite material according to the present invention uses a natural fiber such as jute fiber, kenaf, or bamboo fiber as a reinforcing material, and uses a polymer resin material such as PP as a base material. is there. The composite material, as shown in FIG. 1, step 1 of calculating the optimum interfacial strength tau i, and step 2 to select a surface treatment method for providing the optimal interface strength tau i, Step 3 subjected to the surface treatment It is manufactured through Step 4 of molding by a known molding method (extrusion molding, injection molding, etc.).

先ず上記ステップのうち、最適界面強度τiの算出ステップ1を説明する。 First, of the above steps, calculation step 1 for calculating the optimum interface strength τ i will be described.

図2は、異なる表面処理を施した長さ1、5、10mmのジュート繊維を母材中にランダムに配向し、マレイン酸で変成させて接着性を高めたポリプロピレンシートに挟んでホットプレス成形した複合材料について引張り強度を求めた結果を示すものである。なお、横軸の「繊維の界面強度」τmaxは、次式より求められる。
ここで、dは繊維直径、σfは平均繊維強度、Lcは臨界繊維長である。
FIG. 2 shows hot press molding of jute fibers having lengths of 1, 5, and 10 mm subjected to different surface treatments randomly oriented in a base material and modified with maleic acid to improve adhesion. The result which calculated | required the tensile strength about the composite material is shown. The “interfacial strength of fiber” τ max on the horizontal axis is obtained from the following equation.
Here, d is the fiber diameter, σ f is the average fiber strength, and L c is the critical fiber length.

また、平均繊維強度σfは以下の式から算出される。
ここで、mはワイブル分布の形状母数であり、αは位置母数、Γはガンマ関数である。
The average fiber strength σ f is calculated from the following formula.
Here, m is a shape parameter of the Weibull distribution, α is a position parameter, and Γ is a gamma function.

図2から少なくとも繊維長5mmおよび10mmの場合、界面強度を上げれば常に複合材料の引張強度が増加するわけではなく、界面強度が一定範囲の時に複合材料の引張り強度が最大化(図中の○を付した部分)されることが確認された。なお、繊維長1mmとした時の複合材料の最大引張り強度は明らかにできていないが、これは図示範囲を越える界面強度を得るための表面処理技術が現状で確立されていないことによるもので、界面強度が高くなるほど引張り強度値の伸びが鈍化していることから考えると、概ね図中の破線で描いた領域で最大の引張り強度を示すと考えられる。   From FIG. 2, at least for fiber lengths of 5 mm and 10 mm, increasing the interfacial strength does not always increase the tensile strength of the composite material, but maximizes the tensile strength of the composite material when the interfacial strength is within a certain range (circle in the figure). It is confirmed that the part marked with In addition, although the maximum tensile strength of the composite material when the fiber length is 1 mm has not been clarified, this is because the surface treatment technology for obtaining the interfacial strength exceeding the illustrated range is not established at present, Considering that the elongation of the tensile strength value becomes slower as the interfacial strength becomes higher, it is considered that the maximum tensile strength is generally shown in the region drawn by the broken line in the figure.

これら最大引張強度に対応する各界面強度(最適界面強度)の値を解析した結果、この最適界面強度τi(MPa)は次式から算出できるとの知見が得られた。
但し、αは母材種類によって定まる定数(mm)、σfは上記[数2]式から算出される天然繊維の平均引張り強度(MPa)、Lは天然繊維の平均繊維長(mm)である。
As a result of analyzing the value of each interface strength (optimum interface strength) corresponding to these maximum tensile strengths, it was found that this optimum interface strength τ i (MPa) can be calculated from the following equation.
Where α is a constant (mm) determined by the type of base material, σ f is the average tensile strength (MPa) of natural fiber calculated from the above [Equation 2], and L is the average fiber length (mm) of the natural fiber. .

定数α(単位:mm)は、母材のヤング率によって影響されると考えられ、一例として図3〜図5にポリプロピレン、ポリアミド、およびポリエステル/ビニルエステル(ヤング率250〜350MPa)の値を示している。ここではさらに天然繊維の配向性の相違も配慮し、図3に天然繊維を母材中にランダムに配向する場合、図4に天然繊維を母材中で一方向に配向する場合、図5に平織布などの織構造を有する天然繊維を用いる場合の定数αを示す。なお、この定数値には、天然繊維のばらつきを考慮して±10%の余裕を持たせるのが望ましい。   The constant α (unit: mm) is considered to be influenced by the Young's modulus of the base material. As an example, the values of polypropylene, polyamide, and polyester / vinyl ester (Young's modulus 250 to 350 MPa) are shown in FIGS. ing. Here, in consideration of the difference in the orientation of natural fibers, FIG. 3 shows the case where natural fibers are randomly oriented in the base material, FIG. 4 shows the case where natural fibers are oriented in one direction in the base material, FIG. The constant α in the case of using natural fibers having a woven structure such as a plain woven fabric is shown. It is desirable that this constant value has a margin of ± 10% in consideration of variations in natural fibers.

以上から、図3〜図5に示す定数αから該当する数値を選択し、これを予め求めた天然繊維の平均強度σfおよび平均長さLと共に、上記[数3]式に代入することにより、最大の引張り強度を発現する、複合材料の組成に対応した最適な界面強度τiが求められる。 From the above, by selecting a corresponding numerical value from the constant α shown in FIG. 3 to FIG. 5 and substituting it into the above [Equation 3] together with the average strength σ f and average length L of the natural fiber determined in advance. The optimum interface strength τ i corresponding to the composition of the composite material that expresses the maximum tensile strength is obtained.

次に表面処理方法を選択するステップ2を説明する。   Next, step 2 for selecting the surface treatment method will be described.

天然繊維の表面処理方法としては、オイル処理、エタノール洗浄、アミン系シラン処理、イソシアネート系シラン処理等が存在するが、通常、処理後の界面強度は各処理方法毎に固有の異なった値をとる。従って、算出した最適界面強度τiと同レベルの界面強度が得られる表面処理を選択し、選択した処理を天然繊維に施した上で複合材料を成形すれば、高い引張り強度を有する複合材料を安定的に得ることが可能となる。 Natural fiber surface treatment methods include oil treatment, ethanol washing, amine-based silane treatment, isocyanate-based silane treatment, etc., but usually the interfacial strength after treatment has a unique value for each treatment method. . Therefore, if a surface treatment that provides the same level of interface strength as the calculated optimum interface strength τ i is selected, and the composite material is molded after the selected treatment is applied to natural fibers, a composite material having high tensile strength can be obtained. It becomes possible to obtain stably.

ここで、オイル処理は、天然繊維に浸漬等の手段でオイルを付着させる処理であり、通常は処理前の繊維よりも界面強度を下げる方向に作用する。   Here, the oil treatment is a treatment in which oil is attached to natural fibers by means such as immersion, and usually acts to lower the interfacial strength as compared to the fibers before the treatment.

また、エタノール洗浄は、紡糸工程で繊維表面に付着した鉱物油をエタノールで除去する工程で、例えば繊維をエタノール中に数分間浸し、その後乾燥させることにより行われる。   The ethanol washing is a step of removing mineral oil adhering to the fiber surface in the spinning step with ethanol. For example, the fiber is immersed in ethanol for several minutes and then dried.

さらに、アミン系およびイソシアネート系シラン処理は、繊維表面にシラン処理化合物を均一にかつ単分子膜状に形成する処理で、例えば蒸留水にシランカップリング剤(例えばKBE−903、KBE−907:信越化学工業株式会社)を攪拌混合して1wt%の水溶液に調整し、これにエタノールで脱脂した繊維を数分間浸した後、乾燥させることにより行われる。   Furthermore, the amine-based and isocyanate-based silane treatment is a treatment for forming a silane treatment compound uniformly and in a monomolecular film on the fiber surface. For example, distilled water is treated with a silane coupling agent (eg, KBE-903, KBE-907: Shin-Etsu Chemical Industry Co., Ltd.) is stirred and mixed to prepare a 1 wt% aqueous solution, and the fiber degreased with ethanol is immersed in this for several minutes and then dried.

これらの処理を特にジュート繊維に施す場合、オイル処理、エタノール洗浄、アミン系シラン処理、イソシアネート系シラン処理の順で処理後の界面強度が高くなる。具体的には、繊維長10mm、繊維含有率30VoL%のジュート繊維強化複合材料に各処理を施した場合、オイル処理で15MPa程度、エタノール洗浄で30MPa程度、アミン系シラン処理で50MPa程度、イソシアネート系シラン処理で85MPa程度の界面強度が得られる。従って、算出した最適界面強度τiに最も近い界面強度を発現する処理を選択し、選択した処理を天然繊維に施した上で樹脂等の母材と混合して成形すことにより、高い引張り強度を有する複合材料を安定的に得ることが可能となる。 In particular, when these treatments are applied to jute fibers, the interface strength after the treatment increases in the order of oil treatment, ethanol washing, amine-based silane treatment, and isocyanate-based silane treatment. Specifically, when each treatment is applied to a jute fiber reinforced composite material having a fiber length of 10 mm and a fiber content of 30 VoL%, the oil treatment is about 15 MPa, the ethanol cleaning is about 30 MPa, the amine silane treatment is about 50 MPa, and the isocyanate type Interfacial strength of about 85 MPa is obtained by silane treatment. Therefore, by selecting the treatment that expresses the interface strength closest to the calculated optimum interface strength τ i , applying the selected treatment to natural fibers and then mixing it with a base material such as resin, it is possible to achieve high tensile strength It is possible to stably obtain a composite material having

以上の説明では、複合材料の目標強度として引張り強度を例示しているが、衝撃強度等の他の強度についても界面強度との間で図2と同様の関係が得られる場合もある。この場合、上記と同様の手順で最大の衝撃強度を発現させる最適界面強度τiを算出し、その後、この最適界面強度τiを与える表面処理を天然繊維に施すことにより、高い衝撃強度を有する複合材料を安定的に得ることが可能となる。 In the above description, the tensile strength is exemplified as the target strength of the composite material. However, the relationship similar to that in FIG. 2 may be obtained between the interface strength and other strengths such as impact strength. In this case, the optimum interface strength τ i for expressing the maximum impact strength is calculated by the same procedure as described above, and then the surface treatment that gives this optimum interface strength τ i is applied to the natural fiber, thereby having high impact strength. A composite material can be obtained stably.

また、以上の説明では、複合材料強度の最大値を目標とする場合を説明したが、必ずしも最大値に限るものではなく、ニーズに応じてこれよりも小さい値を目標強度とすることもできる。この場合、目標とする強度を発現するのに最適な界面強度を算出し、算出した最適界面強度を得られるような表面処理を選択することにより、上記と同様の効果が得られる。   In the above description, the case where the maximum value of the composite material strength is targeted has been described. However, the target strength is not necessarily limited to the maximum value, and a value smaller than this can be set as the target strength according to needs. In this case, the same effect as described above can be obtained by calculating the optimum interface strength for expressing the target strength and selecting a surface treatment that can obtain the calculated optimum interface strength.

本発明方法を概略的に説明するフローチャートである。3 is a flowchart schematically illustrating a method of the present invention. 界面強度を異ならせた時の複合材料の引張り強度を測定した結果を示す図である。It is a figure which shows the result of having measured the tensile strength of the composite material when varying interfacial strength. 定数αの具体例を示す表である。It is a table | surface which shows the specific example of the constant (alpha). 定数αの具体例を示す表である。It is a table | surface which shows the specific example of the constant (alpha). 定数αの具体例を示す表である。It is a table | surface which shows the specific example of the constant (alpha).

符号の説明Explanation of symbols

1 界面強度算出工程
2 表面処理方法選択工程
3 表面処理工程
4 成形工程
1 Interface strength calculation process 2 Surface treatment method selection process 3 Surface treatment process 4 Molding process

Claims (3)

天然繊維を強化材とする高分子系複合材料を製造するにあたり、
目標強度を発現させるのに最適な界面強度τiを、製造する複合材料の組成に応じて求め、その後、この界面強度τiを与える表面処理を天然繊維に施すことを特徴とする天然繊維強化高分子系複合材料の製造方法。
In producing a polymer composite material using natural fiber as a reinforcing material,
Natural fiber reinforcement characterized by finding the optimum interface strength τ i for expressing the target strength according to the composition of the composite material to be manufactured, and then subjecting the natural fiber to a surface treatment that gives this interface strength τ i A method for producing a polymer composite material.
最適界面強度τi(MPa)を次式より算出する請求項1記載の天然繊維強化高分子系複合材料の製造方法:
τi=ασf/L
但し、αは母材の種類によって定まる定数
σfは天然繊維の平均引張り強度(MPa)
Lは天然繊維の平均繊維長(mm)
The method for producing a natural fiber-reinforced polymer composite material according to claim 1, wherein the optimum interface strength τ i (MPa) is calculated from the following equation:
τ i = ασ f / L
Where α is a constant determined by the type of base material
σ f is the average tensile strength (MPa) of natural fibers
L is the average fiber length of natural fibers (mm)
表面処理が、オイル処理、エタノール洗浄、アミン系シラン処理、イソシアネート系シラン処理の何れかである請求項1記載の天然繊維強化高分子系複合材料の製造方法。

The method for producing a natural fiber reinforced polymer composite material according to claim 1, wherein the surface treatment is any one of oil treatment, ethanol washing, amine silane treatment, and isocyanate silane treatment.

JP2003287957A 2003-08-06 2003-08-06 Method for producing natural fiber reinforced polymer composite material Expired - Fee Related JP4489391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287957A JP4489391B2 (en) 2003-08-06 2003-08-06 Method for producing natural fiber reinforced polymer composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287957A JP4489391B2 (en) 2003-08-06 2003-08-06 Method for producing natural fiber reinforced polymer composite material

Publications (2)

Publication Number Publication Date
JP2005054326A true JP2005054326A (en) 2005-03-03
JP4489391B2 JP4489391B2 (en) 2010-06-23

Family

ID=34366789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287957A Expired - Fee Related JP4489391B2 (en) 2003-08-06 2003-08-06 Method for producing natural fiber reinforced polymer composite material

Country Status (1)

Country Link
JP (1) JP4489391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741466A (en) * 2013-12-18 2014-04-23 四川省博仁达石油科技有限公司 Modified fiber for fracturing and preparation process
JP2020169656A (en) * 2019-04-01 2020-10-15 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581725A (en) * 1981-06-26 1983-01-07 Sumitomo Chem Co Ltd Continuous production of paralleled fiber bundle sheet
JPS6028434A (en) * 1983-07-26 1985-02-13 Shin Kobe Electric Mach Co Ltd Preparation of laminate
JPS6385167A (en) * 1986-09-22 1988-04-15 東レ株式会社 Surface modified carbon fiber and its production
JPS63176341A (en) * 1987-01-06 1988-07-20 ピーピージー インダストリーズ,インコーポレーテッド Low stiffness and low- or free-boron glass fiber treated with amine-containing silane
JPH0616828A (en) * 1992-03-07 1994-01-25 Basf Ag Sheetlike composite material
JPH08109309A (en) * 1994-10-07 1996-04-30 Nagoya Yuka Kk Structural material, production of structural material and interior material for vehicle
JP2000128584A (en) * 1998-10-22 2000-05-09 Nippon Nsc Ltd Aqueous epoxy resin dispersion for greige goods of glass fiber, and greige goods of glass fiber using that
JP2001507085A (en) * 1996-11-15 2001-05-29 インスティトゥート・フュア・ノイエ・マテリアリエン・ゲーエーエム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Composite materials based on plant raw materials
JP2002060502A (en) * 2000-08-11 2002-02-26 Kobe Steel Ltd Fiber-reinforced thermoplastic resin pellet and method for producing the same
JP2002069208A (en) * 2000-08-29 2002-03-08 Chiba Inst Of Technology Composite material and method for manufacturing the same
JP2002194669A (en) * 2000-10-20 2002-07-10 Du Pont Toray Co Ltd Aramid fiber and method for producing the same
JP2002266234A (en) * 2001-03-08 2002-09-18 Kazariichi:Kk Vegetable fiber processed product supporting fine particle having degrading ability for organic compound
JP2002348148A (en) * 2001-05-25 2002-12-04 Asahi Schwebel Co Ltd Surface treating agent for glass fiber
JP2002363862A (en) * 2001-06-04 2002-12-18 Toyobo Co Ltd Fiber for forming material, fiber-reinforced forming material and formed article

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581725A (en) * 1981-06-26 1983-01-07 Sumitomo Chem Co Ltd Continuous production of paralleled fiber bundle sheet
JPS6028434A (en) * 1983-07-26 1985-02-13 Shin Kobe Electric Mach Co Ltd Preparation of laminate
JPS6385167A (en) * 1986-09-22 1988-04-15 東レ株式会社 Surface modified carbon fiber and its production
JPS63176341A (en) * 1987-01-06 1988-07-20 ピーピージー インダストリーズ,インコーポレーテッド Low stiffness and low- or free-boron glass fiber treated with amine-containing silane
JPH0616828A (en) * 1992-03-07 1994-01-25 Basf Ag Sheetlike composite material
JPH08109309A (en) * 1994-10-07 1996-04-30 Nagoya Yuka Kk Structural material, production of structural material and interior material for vehicle
JP2001507085A (en) * 1996-11-15 2001-05-29 インスティトゥート・フュア・ノイエ・マテリアリエン・ゲーエーエム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Composite materials based on plant raw materials
JP2000128584A (en) * 1998-10-22 2000-05-09 Nippon Nsc Ltd Aqueous epoxy resin dispersion for greige goods of glass fiber, and greige goods of glass fiber using that
JP2002060502A (en) * 2000-08-11 2002-02-26 Kobe Steel Ltd Fiber-reinforced thermoplastic resin pellet and method for producing the same
JP2002069208A (en) * 2000-08-29 2002-03-08 Chiba Inst Of Technology Composite material and method for manufacturing the same
JP2002194669A (en) * 2000-10-20 2002-07-10 Du Pont Toray Co Ltd Aramid fiber and method for producing the same
JP2002266234A (en) * 2001-03-08 2002-09-18 Kazariichi:Kk Vegetable fiber processed product supporting fine particle having degrading ability for organic compound
JP2002348148A (en) * 2001-05-25 2002-12-04 Asahi Schwebel Co Ltd Surface treating agent for glass fiber
JP2002363862A (en) * 2001-06-04 2002-12-18 Toyobo Co Ltd Fiber for forming material, fiber-reinforced forming material and formed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741466A (en) * 2013-12-18 2014-04-23 四川省博仁达石油科技有限公司 Modified fiber for fracturing and preparation process
JP2020169656A (en) * 2019-04-01 2020-10-15 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same

Also Published As

Publication number Publication date
JP4489391B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
Yousif et al. Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks
Shalwan et al. Investigation on interfacial adhesion of date palm/epoxy using fragmentation technique
Taha et al. A comparison of mechanical properties of natural fiber filled biodegradable and polyolefin polymers
CN104845288B (en) High-toughness glass fiber reinforced polymer alloy and preparation method thereof
ATE437990T1 (en) PLASTIC SUDDING CONTAINER FOR A WASHING MACHINE AND METHOD FOR PRODUCING A PLASTIC SUDDING CONTAINER
CN1417395A (en) Yarn with low elongation, excellent wear resistance and adjustable specific weight
KR20180127694A (en) Manufacturing Method for Polymer composite with carbon fiber for 3D printers
JP4489391B2 (en) Method for producing natural fiber reinforced polymer composite material
ATE369959T1 (en) METHOD FOR PRODUCING CONNECTION SYSTEMS AND CONNECTION SYSTEMS PRODUCED BY THIS PROCESS
Salim et al. Physical and mechanical properties of bamboo/flax fibre reinforced epoxy composite water absorption behaviour and high-temperature conditions
KR100502277B1 (en) Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
JP4944524B2 (en) Method for plating resin molded body
JP2012514164A (en) Manufacturing method for manufacturing a connecting rod made of metal reinforced with long fibers
JP5830025B2 (en) Reinforced polymer composite
JP2007051405A (en) Modified plant fiber, method for modifying the same and composite material using modified plant fiber
CN1806001A (en) Stretched polytetrafluoroethylene formed article, method for production thereof, and composite article
JP5157065B2 (en) Rubber composition for hose and hose
JP2011126987A (en) Silk fiber-reinforced biodegradable composite material
CA2144297A1 (en) Retractable sheathed wires, strands and cables; method for the manufacturing of such articles
JP5006555B2 (en) Method for producing plant fiber-containing resin composition
JP2002081041A (en) Construction method for improving concrete water channel wall surface
Zhang et al. Effect of long aramid fiber on the properties of styrene‐butadiene rubber composites based on extrusion
DE10349110B3 (en) Rovings comprising Musaceae or banana plant fibers, used to reinforce composite automobile components, have limited contamination by processing aids
TW201607604A (en) Ductile protective layer for covering filtered membrane filament and hollow membrane filament module for filtering
EP3592542B1 (en) Liner reinforced by non-woven fibres for impact resistant grp pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees