JPH04361619A - Carbon fiber and its production - Google Patents

Carbon fiber and its production

Info

Publication number
JPH04361619A
JPH04361619A JP13283991A JP13283991A JPH04361619A JP H04361619 A JPH04361619 A JP H04361619A JP 13283991 A JP13283991 A JP 13283991A JP 13283991 A JP13283991 A JP 13283991A JP H04361619 A JPH04361619 A JP H04361619A
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
anode
measured
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13283991A
Other languages
Japanese (ja)
Other versions
JP2530767B2 (en
Inventor
Kenji Mitsuyasu
光安 研二
Masanobu Kobayashi
正信 小林
Noriaki Takada
高田 則明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3132839A priority Critical patent/JP2530767B2/en
Publication of JPH04361619A publication Critical patent/JPH04361619A/en
Application granted granted Critical
Publication of JP2530767B2 publication Critical patent/JP2530767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fiber, remarkably improved in bonding strength of composites and applicable to structural members by carrying out electrically conductive treatment in a specific electric quantity at a specified treatment frequency of electrical conduction treatment in an electrolytic solution using carbon fiber having a specified strand elastic modulus as an anode. CONSTITUTION:Acrylonitrile fiber yarn is subjected to flameproofing treatment while being drawn in air at 240-260 deg.C and subsequently carbonized in a nitrogen atmosphere at 1400 deg.C temperature to provide raw material carbon fiber yarn 1, which is then fed to a non-contact type electrical conductive type electrolytic cell having cathode vessels 2 provided with a cathode plate 3 and anode vessels 4 and subjected to electrical conductive treatment in an electrolytic solution at 10-100C/g electric quantity of electrical conduction and >=4 times treatment frequency of the electrical conduction using the carbon fiber 1 as the anode. Thereby, the objective carbon fiber having >=30t/mm<2> strand elastic modulus, <=0.20 surface oxygen concentration (O/C) of the carbon fiber measured by an electron spectroscopy for chemical analysis (ESCA) and the surface hydroxyl group concentration index (S) and the surface carboxyl group concentration index (K) measured by a chemically modified ESCA satisfying the formula is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭素繊維及びその製造
方法に関するものである。さらに詳細には、母材樹脂と
の反応性に優れた特定の表面官能基を豊富に有し、母材
樹脂との接着力に優れた炭素繊維及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carbon fibers and methods for producing the same. More specifically, the present invention relates to a carbon fiber having an abundance of specific surface functional groups having excellent reactivity with a base resin and excellent adhesive strength to the base resin, and a method for producing the same.

【0002】0002

【従来の技術】再生セルロース、ポリアクリロニトリル
、ピッチなどからなる繊維を酸化熱処理し、炭素化ない
し黒鉛化することによって得られる炭素繊維は、比強度
、比弾性率が大きいという力学的特性に基づき、複合材
料(コンポジット)の補強繊維として極めて優れた性能
を有する。この炭素繊維を補強繊維とする複合材料は航
空、宇宙用途或いは自動車、船舶等の輸送機械における
軽量化もしくは燃費低減の要請から、それらの構造材料
として広く、大量に使用されるようになってきた。
[Prior Art] Carbon fibers obtained by subjecting fibers made of regenerated cellulose, polyacrylonitrile, pitch, etc. to oxidative heat treatment and carbonization or graphitization have mechanical properties such as high specific strength and specific modulus. It has extremely excellent performance as a reinforcing fiber for composite materials. Composite materials using carbon fiber as reinforcing fibers have come to be widely used in large quantities as structural materials for aviation and space applications, as well as for transportation machinery such as automobiles and ships, due to demands for weight reduction and fuel efficiency reduction. .

【0003】しかしながら、炭素繊維の優れた力学的性
質を複合材料に反映させるためには複合材料の母材樹脂
と炭素繊維とが十分に接着し一体化する必要がある。一
般に炭素繊維は何等かの表面処理を行わないと母材樹脂
に対する接着性が十分でなく、母材樹脂からの“すぬけ
”が起き易く、複合材料としての曲げ、或いは剪断強度
が低くなり十分な補強効果を発揮しない。
However, in order to reflect the excellent mechanical properties of carbon fibers in a composite material, it is necessary that the base resin of the composite material and the carbon fibers are sufficiently bonded and integrated. In general, carbon fibers do not have sufficient adhesion to the base resin unless they are subjected to some kind of surface treatment, and tend to "slip" from the base resin, resulting in low bending or shear strength as a composite material. It does not have a reinforcing effect.

【0004】そこで、従来から炭素繊維には液相あるい
は気相での表面酸化処理が施されており、例えば、特開
昭63−85167号公報や特開昭64−45868号
公報には、酸性電解質中で電解酸化処理を行なった後に
、アルカリ性電解液中で電解処理を行なう方法が提案さ
れている。
[0004] Therefore, carbon fibers have conventionally been subjected to surface oxidation treatment in a liquid phase or a gas phase. A method has been proposed in which electrolytic oxidation treatment is performed in an electrolyte and then electrolytic treatment is performed in an alkaline electrolyte.

【0005】しかし、かかる技術によっても、結果とし
て得られるコンポジットの機械的特性は処理方法及び条
件により大きく影響を受け、例えば酸化処理程度の指標
として従来広く用いられているX線光電子分光法(以下
、ESCA)により得られる表面酸素濃度O/Cは増加
しても、炭素繊維と母材樹脂との接着力の指標であるコ
ンポジットの層間剪断強度ILSSや90°引張強度(
以下、90°TS)などがこれに伴なって向上するとは
限らなかった。
However, even with such technology, the mechanical properties of the resulting composite are greatly affected by the processing method and conditions. For example, X-ray photoelectron spectroscopy (hereinafter referred to as Even if the surface oxygen concentration O/C obtained by
Hereinafter, 90° TS) etc. were not necessarily improved accordingly.

【0006】特に、熱処理温度を高めて弾性率を高めた
黒鉛繊維にかかる技術を適用した場合には、繊維表層の
黒鉛構造、換言すれば、炭素網面が発達していること等
に起因して、表面酸素濃度をいくら高めても、樹脂との
接着力は向上せず、前記コンポジット特性は、より弾性
率の低い炭素繊維に比べて低いものしか得られない。こ
れは、酸化処理により形成される官能基が炭素網面の端
に局在化するものと考えられ、炭素網面が発達している
黒鉛化繊維に対し酸化処理を施しても接着性に関与する
官能基を炭素繊維表面に均一に分散させて形成するのが
困難であるためと推定される。
[0006] In particular, when applying technology to graphite fibers whose elastic modulus has been increased by increasing the heat treatment temperature, the graphite structure of the surface layer of the fibers, in other words, due to the development of the carbon network surface, etc. Therefore, no matter how much the surface oxygen concentration is increased, the adhesion to the resin does not improve, and the composite properties are only lower than those of carbon fiber, which has a lower modulus of elasticity. This is thought to be because the functional groups formed by oxidation treatment are localized at the edges of the carbon network surface, and even if oxidation treatment is applied to graphitized fibers with a well-developed carbon network surface, they do not affect adhesion. This is presumed to be because it is difficult to uniformly disperse and form functional groups on the surface of carbon fibers.

【0007】一方、全体の官能基の量を増やそうとして
、単に処理電気量を上げるだけでは、処理すべき炭素繊
維、黒鉛繊維に損傷を与えることは避けられず、繊維の
基質強度を低下させてしまうという問題があり、炭素繊
維、黒鉛繊維コンポジットの構造部材への使用を制限し
てきた。
On the other hand, simply increasing the amount of electricity processed in an attempt to increase the total amount of functional groups will inevitably damage the carbon fibers and graphite fibers to be processed, and will reduce the matrix strength of the fibers. This problem has limited the use of carbon fiber and graphite fiber composites for structural members.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解決すること、すなわち、炭素繊維の最表面に
露出した特定の表面官能基を豊富に有し、マトリックス
樹脂との接着力を向上させ、結果として得られるコンポ
ジットの機械的特性の良好なものとする炭素繊維および
その製造方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned problems, that is, to have carbon fibers with abundant specific surface functional groups exposed on the outermost surface, and to have adhesive strength with matrix resin. An object of the present invention is to provide a carbon fiber and a method for producing the same, which improve the mechanical properties of the resulting composite.

【0009】[0009]

【課題を解決するための手段】上記した本発明の課題を
解決するために本発明の炭素繊維は、次のいずれかの構
成を有する。すなわち、ストランド弾性率が30t/m
m2 以上であり、かつESCAにより測定される炭素
繊維の表面酸素濃度O/Cが0.20以下であり、かつ
O/Cと化学修飾ESCAにより測定される炭素繊維の
表面水酸基濃度指数S及び表面カルボキシル基濃度指数
KがS−0.010≧0.10(O/C)≧K−0.0
15を満足することを特徴とする炭素繊維、または、ス
トランド強度が350 kg/mm2 以上であり、広
角X線回折による結晶の大きさLcが40オングストロ
ーム以上であり、Lcとラマン分光法による炭素繊維表
層部の非晶化度Δν(cm−1)がΔν≧1200/L
c+30を満足することを特徴とする炭素繊維である。 ここで、表層部の非晶化度Δνはラマン分光法で観察さ
れる1580cm−1のラマンバンドの半価幅を表わす
[Means for Solving the Problems] In order to solve the above problems of the present invention, the carbon fiber of the present invention has one of the following structures. That is, the strand elastic modulus is 30t/m
m2 or more, and the surface oxygen concentration O/C of the carbon fiber measured by ESCA is 0.20 or less, and the surface hydroxyl group concentration index S and surface of the carbon fiber measured by O/C and chemical modification ESCA. Carboxyl group concentration index K is S-0.010≧0.10 (O/C)≧K-0.0
15, or a carbon fiber having a strand strength of 350 kg/mm2 or more, a crystal size Lc measured by wide-angle X-ray diffraction of 40 angstroms or more, and a carbon fiber characterized by satisfying Lc and Raman spectroscopy. The amorphous degree Δν (cm-1) of the surface layer is Δν≧1200/L
It is a carbon fiber characterized by satisfying c+30. Here, the amorphous degree Δν of the surface layer portion represents the half width of the Raman band of 1580 cm −1 observed by Raman spectroscopy.

【0010】また、本発明の炭素繊維の製造方法は、次
の構成を有する。すなわち、ストランド弾性率が30t
/mm2 以上である炭素繊維を陽極として電解質溶液
中で通電処理する炭素繊維の製造方法において、通電電
気量が10〜100クーロン/g、通電処理回数を4回
以上とすることを特徴とする炭素繊維の製造方法である
[0010] Furthermore, the method for manufacturing carbon fiber of the present invention has the following configuration. That is, the strand elastic modulus is 30t
/mm2 or more in a carbon fiber manufacturing method in which a carbon fiber having a carbon fiber size of 10 to 100 coulombs/g is used as an anode and is energized in an electrolyte solution, the carbon fiber being energized for 4 or more times. This is a method for producing fibers.

【0011】まず、本発明の炭素繊維について詳細に説
明する。本発明は、ストランド弾性率30t/mm2 
以上の炭素繊維を対象とするものである。ストランド弾
性率が30t/mm2 未満の炭素繊維については、従
来公知の方法によっても比較的容易に母材樹脂との接着
力を向上させることができるから、本発明の対象外とし
た。なお、後述する本発明の処理方法の前後でストラン
ド弾性率の値そのものは変化しない。
First, the carbon fiber of the present invention will be explained in detail. The present invention has a strand elastic modulus of 30t/mm2.
The above carbon fibers are targeted. Carbon fibers with a strand modulus of elasticity of less than 30 t/mm2 were excluded from the scope of the present invention because their adhesive strength with the base resin can be relatively easily improved by conventionally known methods. Note that the value of the strand elastic modulus itself does not change before and after the treatment method of the present invention, which will be described later.

【0012】本発明において炭素繊維のストランド弾性
率とは、JIS−R−7601の樹脂含浸ストランド試
験法に準じ、樹脂処方としては“BAKELITE”E
RL4221/3フッ化ホウ素モノエチルアミン/アセ
トン=100/3/4(重量部)を用いて測定した弾性
率をいう。
In the present invention, the strand elastic modulus of carbon fiber is defined as "BAKELITE" E in accordance with the resin-impregnated strand test method of JIS-R-7601.
RL4221/3 refers to the elastic modulus measured using boron fluoride monoethylamine/acetone = 100/3/4 (parts by weight).

【0013】本発明の炭素繊維は、ESCAにより測定
される表面酸素濃度O/Cを0.20以下とするもので
ある。該O/Cが0.2を越える炭素繊維は表面酸化処
理を強めに程こすことにより得られるのであるが、この
場合には、樹脂の官能基と炭素繊維最表面との化学結合
は強固になるものの、本来炭素繊維基質自身が有する強
度よりもかなり低い強度を有する酸化物層が炭素繊維表
層を被うことになるため、結果として得られるコンポジ
ットの機械的特性は低いものとなってしまう問題がある
The carbon fiber of the present invention has a surface oxygen concentration O/C of 0.20 or less as measured by ESCA. Carbon fibers with O/C exceeding 0.2 can be obtained by subjecting them to strong surface oxidation treatment, but in this case, the chemical bonds between the resin functional groups and the outermost surface of the carbon fibers are not strong enough. However, since the carbon fiber surface layer is covered with an oxide layer that has a strength considerably lower than that of the carbon fiber matrix itself, the resulting composite has poor mechanical properties. There is.

【0014】本発明において、ESCAにより測定され
る表面酸素濃度O/Cとは、ESCAにより次の手順に
従って求められる値をいう。先ず、溶媒でサイジング剤
などを除去した炭素繊維束をカットしてステンレス製の
試料支持台上に拡げて並べた後、光電子脱出角度を90
゜とし、X線源としてMgKα1,2 を用い、試料チ
ャンバー中を1×10−8Torrの真空度に保つ。測
定時の帯電に伴うピークの補正としてC1Sの主ピーク
の結合エネルギー値(B.E.)を284.6 eVに
合わせる。C1Sピーク面積をB.E.として 282
〜296 eVの範囲で直線のベースラインを引くこと
により求める。O1Sピーク面積をB.E.として 5
40〜528 eVの範囲で直線のベースラインを引く
ことにより求める。ここで、表面酸素濃度O/Cは、上
記O1Sピーク面積とC1Sピーク面積の比から、装置
固有の感度補正値で割ることにより算出した原子数比を
いうものである。なお、例えば、島津製作所(株)製E
SCA−750を用いた場合には、上記装置固有の感度
補正値は2.85となる。
In the present invention, the surface oxygen concentration O/C measured by ESCA refers to a value determined by ESCA according to the following procedure. First, carbon fiber bundles from which the sizing agent and other substances have been removed with a solvent are cut, spread out and arranged on a stainless steel sample support stand, and then the photoelectron escape angle is adjusted to 90°.
The sample chamber was kept at a vacuum of 1 x 10-8 Torr using MgKα1,2 as an X-ray source. The binding energy value (B.E.) of the main peak of C1S is adjusted to 284.6 eV as a correction for the peak due to charging during measurement. The C1S peak area is expressed as B. E. as 282
It is determined by drawing a straight baseline in the range of ~296 eV. The O1S peak area is shown in B. E. as 5
It is determined by drawing a straight baseline in the range of 40 to 528 eV. Here, the surface oxygen concentration O/C is an atomic ratio calculated by dividing the ratio of the O1S peak area to the C1S peak area by a sensitivity correction value specific to the device. For example, E manufactured by Shimadzu Corporation
When SCA-750 is used, the sensitivity correction value unique to the above device is 2.85.

【0015】また、本発明の炭素繊維は、O/Cと化学
修飾ESCAにより測定される炭素繊維の表面水酸基濃
度指数S及び表面カルボキシル基濃度指数KがS−0.
010≧0.10(O/C)≧K−0.015を満足す
るものである。
Further, the carbon fiber of the present invention has a surface hydroxyl group concentration index S and a surface carboxyl group concentration index K measured by O/C and chemical modification ESCA of S-0.
010≧0.10 (O/C)≧K−0.015.

【0016】かかる式を満足しない場合には、相対的に
水酸基よりもカルボキシル基の量が多いこととなり、こ
れでは、一般にコンポジットに使用される樹脂であるエ
ポキシ樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポ
リエーテルイミド樹脂、ポリアミド樹脂、ポリエステル
樹脂、ポリカーボネート樹脂などとの反応性及び結合性
が向上せず、ひいては、コンポジットのILSS及び9
0°TSの向上は望めないし、また、樹脂の硬化速度を
遅延させることがあるなどの問題を有する。
If this formula is not satisfied, the amount of carboxyl groups will be relatively greater than the amount of hydroxyl groups, and this will cause the resins generally used in composites, such as epoxy resins, bismaleimide resins, polyimide resins, and The reactivity and bonding properties with etherimide resin, polyamide resin, polyester resin, polycarbonate resin, etc. are not improved, and as a result, the ILSS and 9 of the composite are not improved.
It cannot be expected to improve the 0°TS, and it also has problems such as slowing down the curing speed of the resin.

【0017】ここで、表面水酸基濃度指数Sとは、化学
修飾ESCAにより、次の手順に従って求めた値をいう
。先ず、溶媒でサイジング剤などを除去した炭素繊維束
をカットして白金製の試料支持台上に拡げて並べ、0.
04モル/lの無水3弗化酢酸気体を含んだ乾燥窒素ガ
ス中に30℃で10分間さらし、化学修飾処理した後、
X線光電子分光装置に光電子脱出角度を35゜としてマ
ウントし、X線源としてAlKα1,2 を用い、試料
チャンバー内を1×10−8Torrの真空度に保つ。 測定時の帯電に伴うピークの補正としてC1Sの主ピー
クの運動エネルギー値B.E.を284.6 eVに合
わせる。C1Sピーク面積をB.E.として 282〜
296 eVの範囲で直線のベースラインを引くことに
より求める。F1Sピーク面積をB.E.として 68
2〜695 eVの範囲で直線のベースラインを引くこ
とにより求める。ここで表面水酸基濃度指数Sは、上記
F1Sピーク面積とC1Sピーク面積の比を、装置固有
の感度補正値で割ることにより算出した原子数比をいう
ものである。なお、例えば、米国SSI社製SSX−1
00−206を用いた場合には上記装置固有の感度補正
値は3.919となる。
[0017] Here, the surface hydroxyl group concentration index S refers to a value determined by chemically modified ESCA according to the following procedure. First, carbon fiber bundles from which the sizing agent and the like have been removed with a solvent are cut, spread out and arranged on a platinum sample support stand, and placed at 0.
After chemical modification treatment by exposing it to dry nitrogen gas containing 04 mol/l of anhydrous trifluoroacetic acid gas at 30°C for 10 minutes,
It is mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35°, AlKα1,2 is used as the X-ray source, and the inside of the sample chamber is maintained at a vacuum of 1×10 −8 Torr. The kinetic energy value B. of the main peak of C1S is used to correct the peak due to charging during measurement. E. is adjusted to 284.6 eV. The C1S peak area is expressed as B. E. As 282~
It is determined by drawing a straight baseline in the range of 296 eV. The F1S peak area is shown in B. E. as 68
It is determined by drawing a straight baseline in the range of 2 to 695 eV. Here, the surface hydroxyl group concentration index S is an atomic ratio calculated by dividing the ratio of the F1S peak area to the C1S peak area by a sensitivity correction value specific to the device. For example, SSX-1 manufactured by SSI, USA
When 00-206 is used, the sensitivity correction value unique to the above device is 3.919.

【0018】また、表面カルボキシル基濃度指数Kとは
、化学修飾ESCAにより、次の手順に従って求めた値
をいう。先ず、溶媒でサイジング剤などを除去した炭素
繊維束をカットして白金製の試料支持台上に拡げて並べ
、0.02モル/lの3弗化エタノール気体,0.00
1モル/lのジシクロヘキシルカルボジイミド気体及び
0.04モル/lのピリジン気体を含む空気中に60℃
で8時間さらし、化学修飾処理した後、X線光電子分光
装置に光電子脱出角度を35゜としてマウントし、X線
源としてAlKα1,2 を用い、試料チャンバー内を
1×10−8Torrの真空度に保つ。測定時の帯電に
伴うピークの補正としてC1Sの主ピークの運動エネル
ギー値B.E.を284.6 eVに合わせる。C1S
ピーク面積をB.E.として282〜296 eVの範
囲で直線のベースラインを引くことにより求める。F1
Sピーク面積をB.E.として 682〜695 eV
の範囲で直線のベースラインを引くことにより求める。 ここで表面カルボキシル基濃度指数とは、上記F2 ピ
ーク面積とC1Sピーク面積の比を、装置固有の感度補
正値で割ることにより算出した原子数比をいうものであ
る。なお、例えば、米国SSI社製SSX−100−2
06を用いた場合には、上記感度補正値は3.919と
なる。
Furthermore, the surface carboxyl group concentration index K refers to a value determined by chemically modified ESCA according to the following procedure. First, carbon fiber bundles from which sizing agents and the like have been removed with a solvent are cut, spread out and arranged on a platinum sample support stand, and treated with 0.02 mol/l of trifluoroethanol gas and 0.00 mol/l of trifluoroethanol gas.
60°C in air containing 1 mol/l dicyclohexylcarbodiimide gas and 0.04 mol/l pyridine gas.
After exposure for 8 hours and chemical modification treatment, it was mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35°, and using AlKα1,2 as the X-ray source, the inside of the sample chamber was kept at a vacuum level of 1 x 10-8 Torr. keep. The kinetic energy value B. of the main peak of C1S is used to correct the peak due to charging during measurement. E. is adjusted to 284.6 eV. C1S
The peak area is B. E. It is determined by drawing a straight baseline in the range of 282 to 296 eV. F1
The S peak area is expressed as B. E. as 682-695 eV
It is determined by drawing a straight baseline within the range of . Here, the surface carboxyl group concentration index refers to the atomic ratio calculated by dividing the ratio of the F2 peak area to the C1S peak area by a sensitivity correction value specific to the device. For example, SSX-100-2 manufactured by SSI, USA
06, the sensitivity correction value will be 3.919.

【0019】また、本発明の課題は次の炭素繊維によっ
ても達成できる。すなわち、本発明の炭素繊維はストラ
ンド強度を350 kg/mm2 以上とするものであ
る。ストランド強度は350 kg/mm2 未満の場
合には補強繊維として優れた機能を示さないという問題
がある。ここで、本発明においてストランド強度は、前
記ストランド弾性率の測定と同条件でJIS−R−76
01の樹脂含浸ストランド試験法に準じて測定した強度
をいう。
The objects of the present invention can also be achieved by the following carbon fibers. That is, the carbon fiber of the present invention has a strand strength of 350 kg/mm2 or more. When the strand strength is less than 350 kg/mm2, there is a problem that it does not exhibit an excellent function as a reinforcing fiber. Here, in the present invention, the strand strength is determined according to JIS-R-76 under the same conditions as the measurement of the strand elastic modulus.
This refers to the strength measured according to the resin-impregnated strand test method of No. 01.

【0020】また、本発明の炭素繊維の広角X線回折に
よる結晶の大きさLcを40オングストローム以上とす
るものである。該結晶の大きさLcが40オングストロ
ーム未満の炭素繊維の場合には、表層の炭素網面があま
り発達していないため表面処理を特に厳しくしなくとも
官能基を多量に導入することが比較的容易であり、本発
明のようなマトリックス樹脂との接着力を向上させるた
めの技術を適用する必要性に乏しいからである。
Further, the carbon fiber of the present invention has a crystal size Lc of 40 angstroms or more as measured by wide-angle X-ray diffraction. In the case of carbon fibers in which the crystal size Lc is less than 40 angstroms, the carbon network surface of the surface layer is not very developed, so it is relatively easy to introduce a large amount of functional groups without particularly severe surface treatment. This is because there is little need to apply the technique of the present invention for improving the adhesive force with the matrix resin.

【0021】ここで、広角X線回折による結晶の大きさ
Lcとは、広角X線回折により、次の手順に従って求め
た値をいう。すなわち、X線源として、Niフィルター
で単色化されたCuのKα線を用い、2θ=26.0°
付近に観察される面指数(002)のピークを赤道方向
にスキャンして得られたピークからその半価幅を求め、
次式により算出した値を結晶の大きさLcとする。
[0021] Here, the crystal size Lc determined by wide-angle X-ray diffraction refers to a value determined by wide-angle X-ray diffraction according to the following procedure. That is, using Cu Kα rays monochromated with a Ni filter as an X-ray source, 2θ = 26.0°
Scan the peak of the surface index (002) observed nearby in the equator direction and find the half-width from the peak obtained,
Let the value calculated by the following formula be the crystal size Lc.

【0022】Lc=λ/(β0  cosθ)ここで、
λ:X線の波長(この場合1.5418オングストロー
ム)、θ:回折角、β0 :真の半価幅をいう。なお、
β0 は次式より算出される値を用いる。
Lc=λ/(β0 cosθ) where,
λ: X-ray wavelength (1.5418 angstroms in this case), θ: diffraction angle, β0: true half-width. In addition,
For β0, use the value calculated from the following equation.

【0023】β0 =(βe 2 −β1 2 )1/
2 ここで、βe :見かけの半価幅、β1 :装置定
数(理学電気社製4036A2型X線発生装置を出力3
5KV, 15mAで使用した場合には、1.05×1
0−2 rad)をいう。
[0023] β0 = (βe 2 - β1 2 ) 1/
2 Here, βe: Apparent half-width, β1: Device constant (Rigaku Denki 4036A2 type X-ray generator output 3
When used at 5KV, 15mA, 1.05×1
0-2 rad).

【0024】本発明の炭素繊維は、Lcとラマン分光法
による炭素繊維表層部の非晶化度Δν(cm−1)がΔ
ν≧1200/Lc+30を満足するものである。Lc
が大きくなるほど炭素網面が発達し、Lcに応じて樹脂
との接着力を向上させるために必要な炭素繊維表層部の
非晶化度Δνの値の適正範囲が存在することが判明した
ものである。LcとΔνがかかる関係を満足しない場合
には、接着性に関与する官能基を炭素繊維表面に均一に
分散させて形成することができず、樹脂との接着力が不
十分になる問題がある。
The carbon fiber of the present invention has an amorphous degree Δν (cm-1) of the carbon fiber surface layer measured by Lc and Raman spectroscopy.
It satisfies ν≧1200/Lc+30. Lc
It was found that the carbon network surface develops as Lc increases, and that there is an appropriate range of the value of the amorphous degree Δν of the carbon fiber surface layer necessary to improve the adhesive strength with the resin, depending on Lc. be. If Lc and Δν do not satisfy this relationship, the functional groups involved in adhesiveness cannot be uniformly dispersed and formed on the carbon fiber surface, leading to a problem of insufficient adhesive force with the resin. .

【0025】ここで、ラマン分光法による炭素繊維表層
部の非晶化度Δν(cm−1)とは、レーザーラマン分
光法により次の手順に従って求めた値をいう。すなわち
、炭素繊維束をそのまま解析に供し、励起波長5145
オングストロームのアルゴンイオンレーザー(ビーム径
:200 μm×300 μm)を用い、炭素繊維表面
のラマンスペクトルを測定し、1580cm−1近傍に
認められるピークの半価幅を炭素繊維表層部の非晶化度
Δν(cm−1)とする。
[0025] Here, the amorphous degree Δν (cm-1) of the carbon fiber surface layer measured by Raman spectroscopy refers to a value determined by laser Raman spectroscopy according to the following procedure. That is, the carbon fiber bundle is subjected to analysis as it is, and the excitation wavelength is 5145.
The Raman spectrum of the carbon fiber surface was measured using an Angstrom argon ion laser (beam diameter: 200 μm x 300 μm), and the half-width of the peak observed near 1580 cm was calculated as the degree of amorphousness of the surface layer of the carbon fiber. Let it be Δν (cm-1).

【0026】次に本発明の炭素繊維を得るための方法に
ついて説明する。表面酸化処理前の炭素繊維として特に
重要な特性は、後の表面酸化処理過程で酸化処理が炭素
繊維内部にまで進行し難い緻密な表面構造を有すること
である。表面緻密性の高い炭素繊維を得るためには、プ
リカーサーとして緻密な表面構造を形成させることが効
果的であり、例えば、ポリアクリロニトリル系炭素繊維
の場合、具体的には、プリカーサーの表面緻密性の尺度
であるヨウ素吸着法による明度差ΔLが30以下、さら
には、20以下であるプリカーサーを用いることが好ま
しい。
Next, a method for obtaining the carbon fiber of the present invention will be explained. A particularly important characteristic of carbon fibers before surface oxidation treatment is that they have a dense surface structure that prevents oxidation treatment from progressing into the interior of the carbon fibers during the subsequent surface oxidation treatment process. In order to obtain carbon fibers with high surface density, it is effective to form a dense surface structure as a precursor. For example, in the case of polyacrylonitrile carbon fibers, specifically, the surface density of the precursor is It is preferable to use a precursor whose lightness difference ΔL as measured by the iodine adsorption method is 30 or less, more preferably 20 or less.

【0027】このような表面緻密性の高いプリカーサー
を焼成して炭素繊維に変換する。該プリカーサーの焼成
工程の条件、すなわち酸化(耐炎化)工程、炭化工程の
条件としては特に限定されるものではないが、プリカー
サーの緻密性を炭素繊維となった後も維持する条件が好
ましい。
[0027] Such a precursor with high surface density is converted into carbon fiber by firing. The conditions for the firing step of the precursor, that is, the conditions for the oxidation (flame resistance) step and the carbonization step, are not particularly limited, but conditions that maintain the denseness of the precursor even after it becomes carbon fiber are preferred.

【0028】例えば、窒素などの不活性雰囲気中での炭
化条件としては、300〜700℃ならびに1000〜
1200℃の温度領域における昇温速度を1000℃/
分以下、好ましくは500℃/分以下とすることが好ま
しい。
For example, the carbonization conditions in an inert atmosphere such as nitrogen are 300-700°C and 1000-700°C.
The temperature increase rate in the 1200℃ temperature range is 1000℃/
The heating rate is preferably 500° C./min or less, preferably 500° C./min or less.

【0029】また、後に続く表面酸化処理過程において
、酸化が繊維内部にまで進行し難くし、表面処理後の炭
素繊維の強度等が低下するのを防止する観点から、表面
処理を施すべき炭素繊維の弾性率を30t/mm2 以
上、好ましくは40t/mm2 以上とするものである
。かかる弾性率の炭素繊維は、より高温で炭化あるいは
黒鉛化することにより得ることができる。
[0029] In addition, in the subsequent surface oxidation treatment process, carbon fibers to be subjected to surface treatment are made from the viewpoint of making it difficult for oxidation to progress to the inside of the fibers and preventing the strength etc. of the carbon fibers from decreasing after the surface treatment. The modulus of elasticity is 30 t/mm2 or more, preferably 40 t/mm2 or more. Carbon fibers having such an elastic modulus can be obtained by carbonization or graphitization at higher temperatures.

【0030】かくして得られる炭素繊維を電解表面処理
する方式としては、図2に示す直接通電方式と図1に示
す非接触通電方式とがあるが、毛羽の発生、ロールへの
巻き付きを少なく、給電ロールと炭素繊維の間でのスパ
ークの発生などの問題を軽減する観点からは非接触通電
方式が好ましい。
Methods for electrolytically surface-treating the carbon fibers thus obtained include the direct energization method shown in FIG. 2 and the non-contact energization method shown in FIG. 1. A non-contact energization method is preferable from the viewpoint of reducing problems such as generation of sparks between the roll and the carbon fibers.

【0031】図1、図2、図3において、1は処理され
る炭素繊維、2は陰極層、3は陰極板、4は陽極層、5
は陽極板を示し、図2において、6は陽極ローラー、7
は浴中ガイドローラーを示す。なお、炭素繊維1は矢印
の方向に走行する。
In FIGS. 1, 2, and 3, 1 is a carbon fiber to be treated, 2 is a cathode layer, 3 is a cathode plate, 4 is an anode layer, and 5 is a carbon fiber to be treated.
indicates an anode plate; in FIG. 2, 6 is an anode roller, 7 is an anode plate;
indicates an in-bath guide roller. Note that the carbon fiber 1 runs in the direction of the arrow.

【0032】非接触通電方式で電解処理する場合、炭素
繊維が陰極として作用する電流給電槽すなわち陽極槽内
で、炭素繊維表面が還元されるため、図3に示すように
陰極槽2を1層配置しその後段に陽極層4を1層配置し
たのみの場合、陰極槽2において炭素繊維表面に生成し
た官能基は、引続き陽極槽4内を通過するに際して還元
され、せっかく生成した表面官能基の減少が起こること
となる。
In the case of electrolytic treatment using the non-contact energization method, the surface of the carbon fiber is reduced in the current feeding tank, that is, the anode tank, where the carbon fiber acts as a cathode, so the cathode tank 2 is formed in one layer as shown in FIG. In the case where only one layer of the anode layer 4 is placed after the carbon fiber, the functional groups generated on the surface of the carbon fiber in the cathode bath 2 are reduced as they continue to pass through the anode bath 4, and the surface functional groups that have been generated are reduced. A decrease will occur.

【0033】したがって、複数の陰極槽を配置し、該陰
極槽の間に陽極槽を配置した電解槽を用いて電解表面処
理を行うことにより、陽極槽での印加電圧を小さくして
還元反応を起き難くする必要があり、かかる観点から本
発明の製造方法においては、陰極槽2の数、すなわち、
通電処理回数を4回以上とするものである。なお、陰極
槽2の数、すなわち、通電処理回数が多いほど陽極と陰
極間の電圧は小さくなるが、無制限に段数を増すことは
工業上実際的ではなく、陰極層を50槽以下、さらには
8槽以上12槽以下とすることが好ましい。
Therefore, by performing electrolytic surface treatment using an electrolytic cell in which a plurality of cathode cells are arranged and an anode cell is arranged between the cathode cells, the reduction reaction can be carried out by reducing the applied voltage in the anode cell. From this point of view, in the manufacturing method of the present invention, the number of cathode tanks 2, that is,
The number of times of energization processing is set to four or more times. Note that the voltage between the anode and the cathode decreases as the number of cathode tanks 2 increases, that is, the number of times of energization treatment increases, but it is not industrially practical to increase the number of stages indefinitely, and the number of cathode layers is limited to 50 or less, or even It is preferable that the number of tanks is 8 or more and 12 or less.

【0034】また、このように通電処理回数を4回以上
、すなわち陰極槽の数を4層以上とし、該陰極槽の間に
陽極槽を配置した電解槽では、陽極と陰極の間にかける
電圧を後述の範囲内に容易に設定できるため、安全に操
業を行いうるという利点もある。
In addition, in an electrolytic cell in which the number of times of energization is four or more, that is, the number of cathode cells is four or more layers, and an anode cell is arranged between the cathode cells, the voltage applied between the anode and the cathode is can be easily set within the range described below, which also has the advantage of allowing safe operation.

【0035】電解処理に用いられる電解質としては、電
解処理に際して陽極から酸素を発生し得、かつ表面カル
ボキシル基濃度指数を小さくして、表面水酸基濃度指数
をできるかぎり大きくするものであれば限定されないが
、生成した水酸基が還元され易いため、前記した還元反
応を抑制することができる観点からは、特に、アルカリ
性の電解質を用いることが有効であり、さらに好ましく
はpHが10以上である電解質水溶液を用いることが好
ましい。なお、請求項1の炭素繊維を得るためは、アル
カリ性電解質を用いる必要がある。一方、請求項2の炭
素繊維を得るにはかかる制限はなく、アルカリ性電解質
のみならず酸性電解質を用いてもよい。アルカリ性電解
質としては、例えば、水酸化ナトリウム、水酸化カリウ
ム、水酸化テトラメチルアンモニウム、水酸化テトラエ
チルアンモニウム等の無機あるいは有機の強アルカリあ
るいはそれらの混合物等を用いることができる。また、
酸性電解質としては、燐酸、硝酸、硫酸、ホウ酸、炭酸
等の無機塩、酢酸、酪酸、アクリル酸、マレイン酸、シ
ュウ酸等の有機酸、硝酸アンモニウム、硫酸アンモニウ
ム、硫化水素アンモニウム、燐酸二水素アンモニウム等
の無機塩を用いることができる。中性電解質としては、
硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム等の無
機塩、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸
アンモニウム等の有機塩を用いることができる。
The electrolyte used in the electrolytic treatment is not limited as long as it can generate oxygen from the anode during the electrolytic treatment, and it can reduce the surface carboxyl group concentration index and increase the surface hydroxyl group concentration index as much as possible. Since the generated hydroxyl groups are easily reduced, it is particularly effective to use an alkaline electrolyte from the viewpoint of being able to suppress the reduction reaction described above, and more preferably to use an electrolyte aqueous solution having a pH of 10 or more. It is preferable. Note that in order to obtain the carbon fiber of claim 1, it is necessary to use an alkaline electrolyte. On the other hand, to obtain the carbon fiber of claim 2, there is no such restriction, and not only an alkaline electrolyte but also an acidic electrolyte may be used. As the alkaline electrolyte, for example, inorganic or organic strong alkalis such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, or mixtures thereof can be used. Also,
Examples of acidic electrolytes include inorganic salts such as phosphoric acid, nitric acid, sulfuric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, acrylic acid, maleic acid, and oxalic acid, ammonium nitrate, ammonium sulfate, ammonium hydrogen sulfide, ammonium dihydrogen phosphate, etc. Inorganic salts of can be used. As a neutral electrolyte,
Inorganic salts such as sodium nitrate, potassium nitrate, and sodium sulfate, and organic salts such as ammonium formate, ammonium acetate, and ammonium oxalate can be used.

【0036】電解処理の処理量としては、使用する炭素
繊維の弾性率により異なるが、小さすぎると酸化が有効
に進行せず、また大きすぎると前記した還元の悪影響も
顕著となる。具体的には、1つの槽における炭素繊維へ
の通電電気量が10クーロン/g以上、100クーロン
/g以下とするものであり、10クーロン/g以上、8
0クーロン/g以下とすれば好ましい。10クーロン/
g未満では、表層の結晶性の低下が十分に進まず、処理
回数を多くする必要があり生産性が悪化する。一方、1
00クーロン/gを越える場合には炭素繊維基質の強度
低下が大きくなる。処理時間については、数秒から数十
分、さらには10秒から2分程度が好ましい。また、表
層の結晶性の低下を適度な範囲に維持する観点からは、
通電処理の総電気量は120クーロン/g以上1000
クーロン/g以下、さらには200クーロン/g以上5
00クーロン/g以下とするのが好ましい。
The amount of electrolytic treatment varies depending on the elastic modulus of the carbon fiber used, but if it is too small, oxidation will not proceed effectively, and if it is too large, the above-mentioned adverse effects of reduction will become significant. Specifically, the amount of electricity applied to the carbon fibers in one tank is 10 coulombs/g or more and 100 coulombs/g or less, and 10 coulombs/g or more and 8
It is preferable to set it to 0 coulomb/g or less. 10 coulombs/
If it is less than g, the crystallinity of the surface layer will not decrease sufficiently, and it will be necessary to increase the number of treatments, resulting in poor productivity. On the other hand, 1
If it exceeds 0.00 coulombs/g, the strength of the carbon fiber matrix will decrease significantly. The processing time is preferably from several seconds to several tens of minutes, and more preferably from about 10 seconds to 2 minutes. In addition, from the perspective of maintaining the decrease in crystallinity of the surface layer within an appropriate range,
The total amount of electricity for energization treatment is 120 coulombs/g or more 1000
Coulombs/g or less, even 200 coulombs/g or more5
It is preferable to set it to 00 coulombs/g or less.

【0037】また、電解処理を行った後、水洗・乾燥す
る工程において、乾燥温度が高すぎると炭素繊維の最表
面に露出した官能基は熱分解により消失し易い。したが
って、できる限り低い温度で乾燥することが望ましく、
具体的には乾燥温度が200℃以下、さらに好ましくは
170℃以下で乾燥することが望ましい。
Furthermore, in the washing and drying steps after the electrolytic treatment, if the drying temperature is too high, the functional groups exposed on the outermost surface of the carbon fibers are likely to disappear due to thermal decomposition. Therefore, it is desirable to dry at the lowest possible temperature.
Specifically, it is desirable to dry at a drying temperature of 200°C or lower, more preferably 170°C or lower.

【0038】[0038]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。なお、実施例中、ストランド物性、ΔL、毛
羽発生数、ILSS及び90°TSは次の方法に従って
測定した。
[Examples] The present invention will be explained in more detail with reference to Examples below. In the examples, strand physical properties, ΔL, number of fluffs, ILSS, and 90°TS were measured according to the following methods.

【0039】<プリカーサーの緻密性ΔL>繊維長が5
〜7cmの乾燥試料を約0.5g精秤し、200mlの
共栓付き三角フラスコに採り、これにヨウ素溶液(I2
 :51g,2,4−ジクロロフェノール:10g、酢
酸:90g、およびヨウ化カリウム:100gを秤量し
、1lのメスフラスコに移して、水で溶かして定容とす
る)100mlを加えて、60±0.5℃で50分間振
とうしながら吸着処理を行う。ヨウ素を吸着した試料を
流水中で30分間水洗した後、延伸脱水(2000rp
m,1分)を行い、すばやく風乾する。この試料を開繊
した後、ハンター型色差計で明度(L値)を測定する(
L1 )。一方ヨウ素の吸着処理を行わない対応の試料
を開繊し、同様にハンター型色差計で明度を測定する(
L0 )。L1 −L0 より明度差ΔLを求める。な
お本発明者らは、カラーマシン(株)製、カラーマシン
CM−25型のハンター型色差計を用いて測定した。
<Precursor denseness ΔL> Fiber length is 5
Approximately 0.5 g of a ~7 cm dry sample was accurately weighed, placed in a 200 ml Erlenmeyer flask with a stopper, and iodine solution (I2
Weigh out 10 g of 2,4-dichlorophenol, 90 g of acetic acid, and 100 g of potassium iodide, transfer to a 1 L volumetric flask, dissolve with water to make a constant volume), add 100 ml, and add 100 ml of Adsorption treatment is performed while shaking at 0.5°C for 50 minutes. After washing the iodine-adsorbed sample in running water for 30 minutes, it was subjected to stretching dehydration (2000 rpm).
m, 1 minute) and quickly air-dry. After opening this sample, the lightness (L value) is measured using a Hunter color difference meter (
L1). On the other hand, a corresponding sample without iodine adsorption treatment was opened, and the brightness was similarly measured using a Hunter color difference meter (
L0). The brightness difference ΔL is determined from L1 −L0. The inventors of the present invention carried out the measurement using a Hunter type color difference meter, Model Color Machine CM-25, manufactured by Color Machine Co., Ltd.

【0040】<毛羽発生数>電解処理後の乾燥工程を経
て走行する炭素繊維糸条に対し、側面から直角にレーザ
ー光線を照射し、発生した毛羽数を毛羽検出装置で検出
、カウントし、炭素繊維糸条1m当りの毛羽個数(個/
m)で表示した。
<Number of fuzz generated> A laser beam is irradiated from the side at right angles to the carbon fiber thread running through the drying process after electrolytic treatment, and the number of fuzz generated is detected and counted by a fuzz detection device. Number of fuzz pieces per meter of yarn (pieces/
m).

【0041】<層間剪断強度ILSS>■コンポジット
試験片の作製 円周約2.7mの鋼製ドラムに炭素繊維と組み合わせる
樹脂をシリコン塗布ペーパー上にコーティングした樹脂
フィルムを巻き、次に該樹脂フィルム上にクリールから
引き出した炭素繊維をトラバースを介して巻き取り、配
列して、さらにその繊維の上から前記樹脂フィルムを再
度かぶせた後、加圧ロールで回転加圧して樹脂を繊維内
に含浸せしめ、巾300mm、長さ2.7mの一方向プ
リプレグを作製する。このとき、繊維間への樹脂含浸を
良くするためにドラムは50〜60℃に加熱し、またプ
リプレグの繊維目付はドラムの回転数とトラバースの送
り速度を調整することによって、繊維目付約200g/
m2 、樹脂量約35重量%のプリプレグを作製した。 このように作製したプリプレグを裁断、一方向に積層し
、オートクレーブを用いて180℃、6 kg/cm2
下で2時間加熱硬化して、ILSS測定用として肉厚約
2mmの一方向硬化板を作製した。このように作製した
一方向硬化板を、長さ方向に繊維が平行に配向するよう
に、巾12.7mm、長さ28mmに切断して、ILS
S用の試験片を作製した。 ■ILSSの測定 測定は通常の3点曲げ試験治具を用いて支持スパンを試
験片肉厚の4倍に設定し、島津製オートグラフを用いて
負荷速度2.5mm/minで測定した。なお、樹脂と
しては下記組成のものを用いた。   ELM434[住友化学(株)]        
                    :35部 
 EP828 [ペトロケミカルズ(株)]     
               :35部  エピクロ
ン152 [大日本インキ(株)]         
       :30部  4,4’−ジアミノジフェ
ニルスルフォン[住友化学(株)]:32部  3フッ
化ホウ素モノエチルアミン             
         : 0.5部
<Interlaminar Shear Strength ILSS> ■ Preparation of Composite Test Piece A resin film in which a resin combined with carbon fiber is coated on silicone coated paper is wound around a steel drum with a circumference of about 2.7 m, and then a resin film is coated on silicone coated paper. The carbon fibers pulled out from the creel are wound up through a traverse and arranged, and the resin film is again placed over the fibers, and then the resin is impregnated into the fibers by rotating and pressurizing them with a pressure roll, A unidirectional prepreg with a width of 300 mm and a length of 2.7 m is produced. At this time, the drum is heated to 50 to 60°C to improve the resin impregnation between the fibers, and the fiber weight of the prepreg is adjusted to approximately 200 g/200 g by adjusting the rotation speed of the drum and the traverse feed speed.
m2 and a prepreg having a resin amount of about 35% by weight was produced. The prepreg prepared in this way was cut, laminated in one direction, and heated to 6 kg/cm2 at 180°C using an autoclave.
A unidirectionally cured plate with a wall thickness of approximately 2 mm was prepared for use in ILSS measurement by heating and curing for 2 hours. The unidirectionally cured board thus produced was cut into pieces of 12.7 mm in width and 28 mm in length so that the fibers were oriented parallel to each other in the length direction.
A test piece for S was prepared. (2) Measurement of ILSS Measurement was carried out using an ordinary three-point bending test jig, with the support span set to four times the thickness of the test piece, and using a Shimadzu Autograph at a loading rate of 2.5 mm/min. The resin used had the following composition. ELM434 [Sumitomo Chemical Co., Ltd.]
:35 copies
EP828 [Petrochemicals Co., Ltd.]
: 35 parts Epicron 152 [Dainippon Ink Co., Ltd.]
: 30 parts 4,4'-diaminodiphenylsulfone [Sumitomo Chemical Co., Ltd.]: 32 parts Boron trifluoride monoethylamine
: 0.5 part

【0042】<90°
引張強度(90°TS)>■コンポジット試験片の作製 上記したILSS試験片の作製と同様の方法で作製した
一方向硬化板を、長さ方向に繊維が直角に配向するよう
に、巾25.4mm、長さ250mmに切断して、90
°TS用の試験片を作製した。
<90°
Tensile strength (90°TS)>■ Preparation of composite test piece A unidirectionally cured plate prepared in the same manner as the above-mentioned method for preparing the ILSS test piece was cured to a width of 25 mm so that the fibers were oriented at right angles in the length direction. Cut to 4 mm and 250 mm long, 90
A test piece for °TS was prepared.

【0043】■90°TSの測定 測定は試験長127mmに設定し、島津製オートグラフ
を用いて負荷速度1.0mm/minで測定した。
■Measurement of 90°TS The test length was set to 127 mm, and the measurement was carried out using a Shimadzu autograph at a loading rate of 1.0 mm/min.

【0044】なお、レーザーラマン分光法による炭素繊
維表層部の非晶化度Δνの測定は、フランス国Jobi
n−Yvon社製Ramanor U−1000マクロ
ラマンシステムを用いておこなった。
[0044]Measurement of the amorphous degree Δν of the carbon fiber surface layer by laser Raman spectroscopy was carried out by Jobi, France.
This was carried out using a Ramanor U-1000 Macro Raman system manufactured by n-Yvon.

【0045】(実施例1〜3、比較例1)アクリロニト
リル(以下、AN)99.5モル%、イタコン酸0.5
モル%からなる固有粘度[η]が1.80のAN共重合
体のジメチルスルホキシド(以下、DMSO)溶液にア
ンモニアを吹き込み、該共重合体のカルボキシル末端基
をアンモニウム基で置換してポリマを変性し、この変性
ポリマの濃度が20重量%であるDMSO溶液を作成し
、紡糸原液とした。
(Examples 1 to 3, Comparative Example 1) Acrylonitrile (hereinafter referred to as AN) 99.5 mol%, itaconic acid 0.5
Ammonia is blown into a dimethyl sulfoxide (DMSO) solution of an AN copolymer with an intrinsic viscosity [η] of 1.80 consisting of mol%, and the carboxyl terminal group of the copolymer is replaced with an ammonium group to modify the polymer. Then, a DMSO solution containing the modified polymer at a concentration of 20% by weight was prepared and used as a spinning stock solution.

【0046】この紡糸原液を45℃にて、孔径0.15
mm、孔数1500ホールの紡糸口金を通して、一旦空
気中に吐出させ、約3mmの空間を走行させた後に、1
0℃の30%DMSO水溶液中に導入して、凝固糸とし
た。この凝固糸条を水洗した後、温水中で4段の延伸を
行い、浴延伸糸を得た。延伸倍率は全体で4倍であり、
延伸浴の最高温度は60℃であった。次に、この浴延伸
糸に変性シリコン系化合物を主成分とする油剤を付与し
た後、130℃の加熱ロールを用いて乾燥、および緻密
化を行った。さらに引き続いて、加圧スチーム中で3倍
に延伸して、単糸繊度が0.8デニール、トータル繊度
が1200デニールのアクリル系繊維糸条を得た。ここ
で得られた繊維糸条のΔLは17であった。
[0046] This spinning dope was heated to 45°C and the pore size was 0.15.
Once discharged into the air through a spinneret with 1,500 holes and running through a space of approximately 3 mm, 1
It was introduced into a 30% DMSO aqueous solution at 0°C to form a coagulated thread. After washing the coagulated yarn with water, it was drawn in four stages in warm water to obtain a bath-drawn yarn. The overall stretching ratio is 4 times,
The maximum temperature of the stretching bath was 60°C. Next, an oil agent containing a modified silicone compound as a main component was applied to the bath-drawn yarn, followed by drying and densification using a heated roll at 130°C. Subsequently, it was drawn three times in pressurized steam to obtain an acrylic fiber yarn having a single yarn fineness of 0.8 denier and a total fineness of 1200 denier. The fiber yarn obtained here had a ΔL of 17.

【0047】このアクリル系繊維糸条を240〜260
℃の空気中で1.05倍に延伸しながら耐炎化処理を行
い、引き続いて最高温度が1400℃の窒素雰囲気中で
、300〜700℃の温度域における昇温速度を250
℃/分、1000〜1200℃の温度域における昇温速
度を400℃/分に設定した炭化炉で処理を行い、炭素
繊維に変換した。得られた炭素繊維の目付は0.061
g/m、比重は1.80、ストランド引張強度は520
 kg/mm2 、弾性率は31t/mm2 であった
[0047] This acrylic fiber thread has a diameter of 240 to 260
Flame-retardant treatment is performed while stretching 1.05 times in air at a temperature of 1,400 °C, followed by a temperature increase rate of 250 °C in a temperature range of 300 to 700 °C in a nitrogen atmosphere with a maximum temperature of 1,400 °C.
The carbonization process was carried out in a carbonization furnace in which the heating rate in the temperature range of 1000 to 1200°C was set to 400°C/min, and the carbon fibers were converted into carbon fibers. The obtained carbon fiber has a basis weight of 0.061
g/m, specific gravity is 1.80, strand tensile strength is 520
kg/mm2, and the elastic modulus was 31t/mm2.

【0048】かくして得られた原料炭素繊維糸条を図1
に示す陰極槽を4槽配置した非接触通電方式電解槽を用
いて、濃度0.1%の水酸化ナトリウム水溶液を電解液
として、糸速度1m/分で、1つの陰極槽における通電
電気量を5,10,30,80,120クーロン/gと
変更して電解処理した。このような電解処理の施された
炭素繊維糸条を続いて水洗し、150℃の加熱空気中で
乾燥した。
The raw carbon fiber yarn thus obtained is shown in FIG.
Using a non-contact energizing electrolytic cell with four cathode cells arranged as shown in Figure 1, the amount of electricity energized in one cathode cell was calculated using an aqueous sodium hydroxide solution with a concentration of 0.1% as the electrolyte at a yarn speed of 1 m/min. The electrolytic treatment was performed by changing the coulombs/g to 5, 10, 30, 80, and 120 coulombs/g. The electrolytically treated carbon fiber yarn was then washed with water and dried in heated air at 150°C.

【0049】このようにして得られた表面処理炭素繊維
糸条の力学特性および表面特性の評価結果を原料炭素繊
維と対比して表1に示す。また乾燥工程後の毛羽発生数
を表1に併せて示した。
Table 1 shows the evaluation results of the mechanical properties and surface properties of the surface-treated carbon fiber yarn thus obtained, in comparison with the raw carbon fiber. Table 1 also shows the number of fluffs generated after the drying process.

【0050】[0050]

【表1】[Table 1]

【0051】(比較例2)電解処理装置として図3に示
す陰極槽を1段配置した非接触通電方式電解槽を用いた
以外は実施例3と同様の方法で表面処理炭素繊維糸条を
得た。得られた表面処理炭素繊維の糸条の力学特性及び
表面特性の評価結果を表1に示す。また乾燥工程後の毛
羽発生数を表1に併せて示した。
(Comparative Example 2) A surface-treated carbon fiber yarn was obtained in the same manner as in Example 3, except that a non-contact energizing electrolytic cell having one stage of cathode cells shown in FIG. 3 was used as the electrolytic treatment apparatus. Ta. Table 1 shows the evaluation results of the mechanical properties and surface properties of the yarn of the surface-treated carbon fiber obtained. Table 1 also shows the number of fluffs generated after the drying process.

【0052】(比較例3)電解液として0.1%の硝酸
水溶液を用いた以外は実施例2と同様の方法で表面処理
炭素繊維糸条を得た。得られた表面処理炭素繊維の糸条
の力学特性及び表面特性の評価結果を表1に示す。また
乾燥工程後の毛羽発生数を表1に併せて示した。
(Comparative Example 3) A surface-treated carbon fiber yarn was obtained in the same manner as in Example 2 except that a 0.1% nitric acid aqueous solution was used as the electrolyte. Table 1 shows the evaluation results of the mechanical properties and surface properties of the yarn of the surface-treated carbon fiber obtained. Table 1 also shows the number of fluffs generated after the drying process.

【0053】(実施例4)実施例1で用いたのと同様の
アクリル系繊維糸条を240〜260℃の空気中で1.
05倍に延伸しながら耐炎化処理を行い、引き続いて最
高温度が1700℃の窒素雰囲気中で、300〜700
℃の温度域における昇温速度を250℃/分、1000
〜1200℃の温度域における昇温速度を400℃/分
に設定した炭化炉で処理を行った後、最高温度が240
0゜Cの窒素雰囲気中で1.02倍の延伸を行いながら
1分間熱処理を行い、黒鉛繊維に変換した。得られた炭
素繊維の目付は0.057g/m、比重は1.84、ス
トランド引張強度は500 kg/mm2 、弾性率は
45t/mm2 であった。
(Example 4) Acrylic fiber yarn similar to that used in Example 1 was heated in air at 240 to 260°C for 1.
Flameproofing treatment is performed while stretching to 0.5 times, and then 300 to 700
Temperature increase rate in the temperature range of ℃ 250℃/min, 1000℃
After processing in a carbonization furnace with a heating rate of 400°C/min in the temperature range of ~1200°C, the maximum temperature was 240°C.
Heat treatment was performed for 1 minute while stretching 1.02 times in a nitrogen atmosphere at 0°C to convert it into graphite fiber. The obtained carbon fiber had a basis weight of 0.057 g/m, a specific gravity of 1.84, a strand tensile strength of 500 kg/mm2, and an elastic modulus of 45 t/mm2.

【0054】かくして得られた原料黒鉛繊維糸条を、陰
極槽を8槽配置した非接触通電方式電解槽を用いて、濃
度0.1%の水酸化テトラエチルアンモニウム(以下、
TEAH)水溶液を電解液として、糸速度1m/分で、
1槽当りの電気量が60クーロン/gとなるよう電解処
理した。このような電解処理の施された炭素繊維糸条を
続いて水洗し、150℃の加熱空気中で乾燥した。
[0054] The raw graphite fiber yarn obtained in this way was heated to 0.1% tetraethylammonium hydroxide (hereinafter referred to as
TEAH) aqueous solution as the electrolyte, at a yarn speed of 1 m/min,
Electrolytic treatment was performed so that the amount of electricity per tank was 60 coulombs/g. The electrolytically treated carbon fiber yarn was then washed with water and dried in heated air at 150°C.

【0055】このようにして得られた表面処理炭素繊維
糸条の力学特性および表面特性の評価結果を原料炭素繊
維と対比して表2に示す。
Table 2 shows the evaluation results of the mechanical properties and surface properties of the surface-treated carbon fiber yarn thus obtained, in comparison with the raw carbon fiber.

【0056】[0056]

【表2】[Table 2]

【0057】(実施例5)電解処理装置として図2に示
す直接通電方式電解槽を用いた以外は実施例4と同様の
方法で表面処理炭素繊維糸条を得た。得られた表面処理
炭素繊維の糸条の力学特性及び表面特性の評価結果を表
2に示す。
(Example 5) A surface-treated carbon fiber yarn was obtained in the same manner as in Example 4, except that the direct current electrolytic cell shown in FIG. 2 was used as the electrolytic treatment apparatus. Table 2 shows the evaluation results of the mechanical properties and surface properties of the yarn of the surface-treated carbon fiber obtained.

【0058】(比較例4)電解液として0.1%硫酸水
溶液を用いた以外は実施例4と同様の方法で表面処理炭
素繊維糸条を得た。得られた表面処理炭素繊維の糸条の
力学特性及び表面特性の評価結果を表2に併せて示す。
(Comparative Example 4) A surface-treated carbon fiber yarn was obtained in the same manner as in Example 4, except that a 0.1% sulfuric acid aqueous solution was used as the electrolyte. Table 2 also shows the evaluation results of the mechanical properties and surface properties of the yarn of the surface-treated carbon fibers obtained.

【0059】(実施例6〜8、比較例5、6)AN99
.5モル%、イタコン酸0.5モル%の共重合体をアン
モニアで変性し、この共重合体の濃度が13%であるD
MSO溶液を紡糸原液に用いた。この原液中の共重合体
の極限粘度は1.80であった。表4に示すように、種
々の共重合体の濃度と温度からなる紡糸原液を、孔径0
.15mm、孔数3000ホールの紡糸口金を通して、
一旦空気中に吐出させ、約3mmの空間を走行させた後
に、5℃にコントロールした30%DMSO水溶液中に
導入して、凝固糸とした。この凝固糸条を水洗した後、
温水中で4段の延伸を行い、浴延伸糸を得た。最終延伸
浴の温度は、単繊維同士の融着が発生しない範囲で、最
も高い温度に設定した。ここで得られた浴延伸糸に、乾
燥糸重量に対して0.7〜0.9%の付着量となるよう
に、実施例1と同様のシリコン系成分を含む油剤を付与
した後、130℃の加熱ロールを用いて乾燥、および緻
密化を行った。この乾燥緻密化後の糸条を、さらに、延
伸後に得られる前駆体繊維の伸度が10.5〜11.2
%となるように、3〜5kg/cm2・G の飽和スチ
ーム中で2〜3倍に延伸して、単糸繊度が0.8デニー
ル、トータル繊度が2400デニールのアクリル系繊維
糸条を得た。
(Examples 6 to 8, Comparative Examples 5 and 6) AN99
.. A copolymer containing 5 mol% of itaconic acid and 0.5 mol% of itaconic acid was modified with ammonia, and the concentration of this copolymer was 13%.
MSO solution was used as the spinning stock solution. The intrinsic viscosity of the copolymer in this stock solution was 1.80. As shown in Table 4, spinning stock solutions consisting of various copolymer concentrations and temperatures were mixed with a pore size of 0.
.. Through a spinneret with a diameter of 15 mm and 3000 holes,
Once it was discharged into the air and run through a space of about 3 mm, it was introduced into a 30% DMSO aqueous solution controlled at 5° C. to form a coagulated thread. After washing this coagulated thread with water,
Four stages of drawing were performed in warm water to obtain a bath-drawn yarn. The temperature of the final drawing bath was set at the highest temperature within the range where single fibers did not fuse together. The bath-drawn yarn obtained here was coated with an oil agent containing a silicone component similar to that in Example 1 so that the coating amount was 0.7 to 0.9% based on the weight of the dry yarn. Drying and densification were performed using a heating roll at .degree. The elongation of the precursor fiber obtained after drawing the yarn after drying and densification is 10.5 to 11.2.
%, it was drawn 2 to 3 times in saturated steam at 3 to 5 kg/cm2・G to obtain an acrylic fiber yarn with a single yarn fineness of 0.8 denier and a total fineness of 2400 denier. .

【0060】このアクリル繊維糸条を炭化炉の最高温度
を1600゜Cとした以外は実施例1と同様の方法で炭
素繊維に変換した。得られた炭素繊維の目付は0.12
g/m、比重は1.82、ストランド試験法により測定
される弾性率は34t/mm2 であった。
[0060] This acrylic fiber yarn was converted into carbon fiber in the same manner as in Example 1 except that the maximum temperature of the carbonization furnace was 1600°C. The obtained carbon fiber has a basis weight of 0.12
g/m, the specific gravity was 1.82, and the elastic modulus measured by the strand test method was 34 t/mm2.

【0061】かくして得られた原料炭素繊維糸条を図1
に示す陰極槽を4槽配置した非接触通電方式電解槽を用
いて、濃度0.1%の水酸化ナトリウム水溶液を電解液
として、糸速度0.5m/分で、1槽当りの電気量が4
0クーロン/gとなるよう電解処理した。このような電
解処理の施された炭素繊維糸条を続いて水洗し、150
℃の加熱空気中で乾燥した。
The raw carbon fiber yarn thus obtained is shown in FIG.
Using a non-contact energizing electrolytic cell with four cathode cells as shown in Figure 1, using a sodium hydroxide aqueous solution with a concentration of 0.1% as the electrolyte, at a thread speed of 0.5 m/min, the amount of electricity per cell was 4
Electrolytic treatment was carried out so that the concentration was 0 coulomb/g. The electrolytically treated carbon fiber yarn was then washed with water and heated to 150 ml.
Dry in heated air at °C.

【0062】このようにして得られた表面処理炭素繊維
糸条の力学特性および表面特性の評価結果を表3に示す
Table 3 shows the evaluation results of the mechanical properties and surface properties of the surface-treated carbon fiber yarn thus obtained.

【0063】[0063]

【表3】[Table 3]

【0064】(実施例9,比較例7,8)AN99.4
モル%とメタクリル酸0.6モル%からなる共重合体を
用いて、乾湿式紡糸方法により単繊維デニール0.7d
,フィラメント数12000のアクリル系繊維を得た。 得られた繊維束を240〜280℃の空気中で、延伸比
1.05で加熱し、耐炎化繊維に転換し、ついで窒素雰
囲気中300〜900℃の温度領域での昇温速度を20
0℃/分とし10%の延伸を行なった後、1700℃で
炭化し、更に窒素雰囲気中2400℃で黒鉛化し、得ら
れた炭素繊維を、1.5重量%のTEAH水溶液中、1
槽当りの電気量が60C/gの電解酸化処理を電解槽8
槽を用いて行った。得られた炭素繊維のストランド強度
は420 kg/mm2 であり、ILSSは8.0 
kg/mm2 であった。1槽当りの電気量が480C
/gで1回処理を施した炭素繊維のストランド強度およ
びILSSはそれぞれ、290 kg/mm2 ,6.
5 kg/mm2 であり、電解を繰り返すことにより
基質強度の低下を抑えてILSSが大幅に向上したこと
がわかる。  得られた炭素繊維の特性を表4に示した
(Example 9, Comparative Examples 7 and 8) AN99.4
Using a copolymer consisting of mol % and methacrylic acid 0.6 mol %, a single fiber denier of 0.7 d was produced by a dry-wet spinning method.
, an acrylic fiber having 12,000 filaments was obtained. The obtained fiber bundle was heated in air at 240 to 280°C at a drawing ratio of 1.05 to convert it into flame-resistant fibers, and then the temperature increase rate in the temperature range of 300 to 900°C was increased to 20°C in a nitrogen atmosphere.
After 10% stretching at 0°C/min, carbonization at 1700°C and further graphitization at 2400°C in a nitrogen atmosphere, the obtained carbon fiber was drawn in 1.5% by weight TEAH aqueous solution.
Electrolytic oxidation treatment with electricity amount per tank of 60C/g is carried out in electrolytic tank 8.
This was done using a tank. The strand strength of the obtained carbon fiber was 420 kg/mm2, and the ILSS was 8.0.
kg/mm2. Electricity amount per tank is 480C
The strand strength and ILSS of the carbon fiber treated once at 290 kg/mm2 and 6.
5 kg/mm2, and it can be seen that repeating electrolysis suppressed the decrease in substrate strength and significantly improved ILSS. Table 4 shows the properties of the obtained carbon fibers.

【0065】[0065]

【表4】[Table 4]

【0066】(実施例10〜12,比較例9〜15)実
施例9において処理条件を表4のように変更した以外は
、実施例9と同様に処理して炭素繊維を得た。得られた
炭素繊維の特性を表4に併せて示した。本発明により、
繰り返し電解することにより基質強度の低下を抑えてI
LSSが大幅に向上したことがわかる。
(Examples 10 to 12, Comparative Examples 9 to 15) Carbon fibers were obtained in the same manner as in Example 9, except that the treatment conditions were changed as shown in Table 4. The properties of the obtained carbon fibers are also shown in Table 4. According to the present invention,
By repeating electrolysis, the decrease in substrate strength is suppressed and I
It can be seen that LSS has been significantly improved.

【0067】(実施例13)2400℃で黒鉛化処理を
行った炭素繊維を陽極として、1.0重量%の硫酸水溶
液中、1槽当りの電気量が60C/gの電解酸化を電解
槽4槽用いて行い、水洗、乾燥を行ったのち、続けて得
られた炭素繊維を陽極として1.5重量%のEAH水溶
液中、1槽当りの電気量が60C/gの電解酸化処理を
電解槽4槽用いて行った。得られた炭素繊維は、実施例
9より非晶化が進みILSSは8.3kg/mm2 ま
で向上したことがわかる。
(Example 13) Using a carbon fiber graphitized at 2400° C. as an anode, electrolytic oxidation was carried out in electrolytic bath 4 in a 1.0% by weight sulfuric acid aqueous solution with an amount of electricity of 60 C/g per bath. After washing with water and drying, electrolytic oxidation treatment was carried out using the obtained carbon fiber as an anode in a 1.5% by weight EAH aqueous solution with an amount of electricity of 60 C/g per tank in an electrolytic tank. The experiment was conducted using 4 tanks. It can be seen that the obtained carbon fiber was more amorphous than in Example 9, and the ILSS was improved to 8.3 kg/mm2.

【0068】[0068]

【発明の効果】本発明の炭素繊維は、母材樹脂との結合
に直接関与する特定の表面官能基を豊富に有しているた
め、コンポジットの接着強度を著しく向上することが可
能となるため、樹脂との接着強度の不足により従来使用
が困難であった構造部材にも炭素繊維を使用できるよう
になり、材料設計の自由度を向上させることができる。
[Effects of the Invention] The carbon fibers of the present invention have an abundance of specific surface functional groups that are directly involved in bonding with the base resin, making it possible to significantly improve the adhesive strength of the composite. Carbon fibers can now be used in structural members that were previously difficult to use due to lack of adhesive strength with resin, and the degree of freedom in material design can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の炭素繊維を製造するのに好適な非接触
通電法による多段電解表面処理装置の一例を示す側面図
である。
FIG. 1 is a side view showing an example of a multi-stage electrolytic surface treatment apparatus using a non-contact energization method suitable for producing the carbon fiber of the present invention.

【図2】本発明の炭素繊維を製造するのに用いられる直
接通電法による炭素繊維の多段電解表面処理装置の一例
を示す側面図である。
FIG. 2 is a side view showing an example of an apparatus for multi-stage electrolytic surface treatment of carbon fibers using a direct energization method, which is used to produce the carbon fibers of the present invention.

【図3】比較例に用いられる非接触通電法による1段の
電解表面処理装置を示す側面図である。
FIG. 3 is a side view showing a one-stage electrolytic surface treatment apparatus using a non-contact energization method used in a comparative example.

【符号の説明】[Explanation of symbols]

1:炭素繊維 2:電解槽(陰極槽) 3:陰極板 4:陽極槽 5:陽極板 6:陽極ローラー 7:浴中ガイドローラー 1: Carbon fiber 2: Electrolytic cell (cathode cell) 3: Cathode plate 4: Anode tank 5: Anode plate 6: Anode roller 7: Bath guide roller

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ストランド弾性率が30t/mm2 以上
であり、かつX線光電子分光法により測定される炭素繊
維の表面酸素濃度O/Cが0.20以下であり、かつO
/Cと化学修飾X線光電子分光法により測定される炭素
繊維の表面水酸基濃度指数S及び表面カルボキシル基濃
度指数Kが次式を満足することを特徴とする炭素繊維。           S−0.010≧0.10(O/
C)≧K−0.015
Claim 1: The strand elastic modulus is 30 t/mm2 or more, and the surface oxygen concentration O/C of the carbon fiber measured by X-ray photoelectron spectroscopy is 0.20 or less, and
/C and chemical modification A carbon fiber characterized in that a surface hydroxyl group concentration index S and a surface carboxyl group concentration index K, which are measured by X-ray photoelectron spectroscopy, satisfy the following formula. S-0.010≧0.10(O/
C)≧K-0.015
【請求項2】ストランド強度が3
50 kg/mm2 以上であり、広角X線回折による
結晶の大きさLcが40オングストローム以上であり、
Lcとラマン分光法による炭素繊維表層部の非晶化度Δ
ν(cm−1)が次式を満足することを特徴とする炭素
繊維。 Δν≧1200/Lc+30
[Claim 2] Strand strength is 3
50 kg/mm2 or more, and the crystal size Lc by wide-angle X-ray diffraction is 40 angstroms or more,
Amorphousity Δ of carbon fiber surface layer measured by Lc and Raman spectroscopy
A carbon fiber characterized in that ν (cm-1) satisfies the following formula. Δν≧1200/Lc+30
【請求項3】ストランド弾性率が30t/mm2 以上
である炭素繊維を陽極として電解質溶液中で通電処理す
る炭素繊維の製造方法において、通電電気量が10〜1
00クーロン/g、通電処理回数を4回以上とすること
を特徴とする炭素繊維の製造方法。
3. A method for producing carbon fibers in which a carbon fiber having a strand modulus of elasticity of 30 t/mm2 or more is used as an anode and is energized in an electrolyte solution, wherein the amount of electricity to be energized is 10 to 1.
00 coulomb/g, and the number of times of energization treatment is 4 or more times.
【請求項4】電解質溶液としてアルカリ性電解質溶液を
用いることを特徴とする請求項3の炭素繊維の製造方法
4. The method for producing carbon fibers according to claim 3, wherein an alkaline electrolyte solution is used as the electrolyte solution.
【請求項5】電解質溶液中で非接触的に通電処理するこ
とを特徴とする請求項3または請求項4の炭素繊維の製
造方法。
5. The method for producing carbon fibers according to claim 3 or 4, wherein the carbon fiber is subjected to a non-contact energization treatment in an electrolyte solution.
【請求項6】通電処理の総電気量が120クーロン/g
以上1000クーロン/g以下であることを特徴とする
請求項3、請求項4または請求項5の炭素繊維の製造方
法。
Claim 6: The total amount of electricity in the energization process is 120 coulombs/g.
6. The method for producing carbon fibers according to claim 3, 4 or 5, wherein the carbon fiber is 1000 coulombs/g or less.
【請求項7】ストランド弾性率30t/mm2 以上の
炭素繊維が、ヨウ素吸着法による表面緻密性ΔL30以
下のアクリル繊維を前駆体繊維として得られるものであ
ることを特徴とする請求項3、請求項4、請求項5また
は請求項6記載の炭素繊維の製造方法。
7. The carbon fiber having a strand elastic modulus of 30 t/mm 2 or more is obtained by using an acrylic fiber having a surface density ΔL of 30 or less by an iodine adsorption method as a precursor fiber. 4. The method for producing carbon fiber according to claim 5 or 6.
JP3132839A 1991-06-04 1991-06-04 Carbon fiber and manufacturing method thereof Expired - Fee Related JP2530767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132839A JP2530767B2 (en) 1991-06-04 1991-06-04 Carbon fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132839A JP2530767B2 (en) 1991-06-04 1991-06-04 Carbon fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04361619A true JPH04361619A (en) 1992-12-15
JP2530767B2 JP2530767B2 (en) 1996-09-04

Family

ID=15090728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132839A Expired - Fee Related JP2530767B2 (en) 1991-06-04 1991-06-04 Carbon fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2530767B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
JP2010229572A (en) * 2009-03-26 2010-10-14 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber and method for producing the same
US8012584B2 (en) 2003-08-28 2011-09-06 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
WO2012002266A1 (en) 2010-06-30 2012-01-05 東レ株式会社 Method for producing sizing agent-coated carbon fibers, and sizing agent-coated carbon fibers
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
WO2013051404A1 (en) 2011-10-04 2013-04-11 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
WO2013084669A1 (en) 2011-12-05 2013-06-13 東レ株式会社 Carbon fiber molding material, molding material, and carbon fiber-strengthening composite material
WO2013099707A1 (en) 2011-12-27 2013-07-04 東レ株式会社 Carbon fiber coated with sizing agent, process for producing carbon fiber coated with sizing agent, prepreg, and carbon fiber reinforced composite material
WO2014061336A1 (en) 2012-10-18 2014-04-24 東レ株式会社 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
US9149828B2 (en) 2013-08-09 2015-10-06 Uht Unitech Co., Ltd. Carbon fiber surface oil changing device
WO2018154867A1 (en) 2017-02-24 2018-08-30 東レ株式会社 Sizing-coated carbon fiber bundle, thermoplastic resin composition, molded body, method for manufacturing sizing-coated carbon fiber bundle, and method for manufacturing molded body
WO2019026328A1 (en) 2017-08-01 2019-02-07 株式会社日立製作所 Fiber-reinforced resin and method for manufacturing same
KR20190107677A (en) * 2017-02-01 2019-09-20 도레이 카부시키가이샤 Method for producing acrylic fiber bundle and method for producing carbon fiber bundle
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle
WO2023002876A1 (en) 2021-07-19 2023-01-26 東レ株式会社 Carbon fiber bundle containing sizing agent and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936588B2 (en) * 2000-12-15 2012-05-23 東邦テナックス株式会社 Carbon fiber for metal oxide coating and method for producing the same
JP5264150B2 (en) * 2007-11-06 2013-08-14 東邦テナックス株式会社 Carbon fiber strand and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259118A (en) * 1988-12-06 1990-10-19 Mitsubishi Rayon Co Ltd Graphite fiber having high tensile strength
JPH02269867A (en) * 1989-04-11 1990-11-05 Nippon Steel Corp Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH02307967A (en) * 1989-05-18 1990-12-21 Mitsubishi Rayon Co Ltd Production of surface-modified carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259118A (en) * 1988-12-06 1990-10-19 Mitsubishi Rayon Co Ltd Graphite fiber having high tensile strength
JPH02269867A (en) * 1989-04-11 1990-11-05 Nippon Steel Corp Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH02307967A (en) * 1989-05-18 1990-12-21 Mitsubishi Rayon Co Ltd Production of surface-modified carbon fiber

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
US5587240A (en) * 1993-08-25 1996-12-24 Toray Industries, Inc. Carbon fibers and process for preparing same
US5589055A (en) * 1993-08-25 1996-12-31 Toray Industries, Inc. Method for preparing carbon fibers
US5691055A (en) * 1993-08-25 1997-11-25 Toray Industries, Inc. Carbon fibers and process for preparing same
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
US8012584B2 (en) 2003-08-28 2011-09-06 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
JP2010229572A (en) * 2009-03-26 2010-10-14 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber and method for producing the same
WO2012002266A1 (en) 2010-06-30 2012-01-05 東レ株式会社 Method for producing sizing agent-coated carbon fibers, and sizing agent-coated carbon fibers
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
KR20150055089A (en) 2011-10-04 2015-05-20 도레이 카부시키가이샤 Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
WO2013051404A1 (en) 2011-10-04 2013-04-11 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
US10184034B2 (en) 2011-12-05 2019-01-22 Toray Industries, Inc. Carbon fiber forming raw material, formed material, and carbon fiber-reinforced composite material
WO2013084669A1 (en) 2011-12-05 2013-06-13 東レ株式会社 Carbon fiber molding material, molding material, and carbon fiber-strengthening composite material
WO2013099707A1 (en) 2011-12-27 2013-07-04 東レ株式会社 Carbon fiber coated with sizing agent, process for producing carbon fiber coated with sizing agent, prepreg, and carbon fiber reinforced composite material
US10138593B2 (en) 2011-12-27 2018-11-27 Toray Industries, Inc. Sizing agent-coated carbon fibers, process for producing sizing agent-coated carbon fibers, prepreg, and carbon fiber reinforced composite material
KR20150047638A (en) 2012-10-18 2015-05-04 도레이 카부시키가이샤 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
WO2014061336A1 (en) 2012-10-18 2014-04-24 東レ株式会社 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
US10501605B2 (en) 2012-10-18 2019-12-10 Toray Industries, Inc. Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon fiber-reinforced resin molded article
US9149828B2 (en) 2013-08-09 2015-10-06 Uht Unitech Co., Ltd. Carbon fiber surface oil changing device
KR20190107677A (en) * 2017-02-01 2019-09-20 도레이 카부시키가이샤 Method for producing acrylic fiber bundle and method for producing carbon fiber bundle
KR20190058676A (en) 2017-02-24 2019-05-29 도레이 카부시키가이샤 Sizing agent-coated carbon fiber bundle, thermoplastic resin composition, molded article, sizing agent-coated carbon fiber bundle manufacturing method, and molded article manufacturing method
WO2018154867A1 (en) 2017-02-24 2018-08-30 東レ株式会社 Sizing-coated carbon fiber bundle, thermoplastic resin composition, molded body, method for manufacturing sizing-coated carbon fiber bundle, and method for manufacturing molded body
WO2019026328A1 (en) 2017-08-01 2019-02-07 株式会社日立製作所 Fiber-reinforced resin and method for manufacturing same
WO2023002876A1 (en) 2021-07-19 2023-01-26 東レ株式会社 Carbon fiber bundle containing sizing agent and method for producing same
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle

Also Published As

Publication number Publication date
JP2530767B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JPH04361619A (en) Carbon fiber and its production
Zhang et al. The effect of carbon-fiber surface properties on the electron-beam curing of epoxy-resin composites
TWI395849B (en) Carbon fiber, method of producing polyacrylonitrile precursor fiber used for producing carbon fiber, and method of producing carbon fiber
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JPH11217734A (en) Carbon fiber and its production
US20100266827A1 (en) Carbon fiber and composite material using the same
USRE33537E (en) Ultrahigh strength carbon fibers
JP2000160436A (en) Carbon fiber, and production of precursor for carbon fiber
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
Fu et al. Study on multistage anodization for high‐modulus carbon fiber
JP7388193B2 (en) Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composite materials
JP4726102B2 (en) Carbon fiber and method for producing the same
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
CN113597484B (en) Carbon fiber bundle and method for producing same
JP2004277907A (en) Carbon fiber and method for producing the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JPS6385167A (en) Surface modified carbon fiber and its production
JP6522971B2 (en) Method of manufacturing fiber bundle
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JPH0258367B2 (en)
JP4238436B2 (en) Carbon fiber manufacturing method
JP2910275B2 (en) Surface treatment method for carbon fiber
JPH054463B2 (en)
JPH05214614A (en) Acrylic carbon fiber and its production
JP2005113305A (en) Flameproof fiber, carbon fiber and method for producing them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees