JP2002054031A - Carbon fiber and method for producing the same - Google Patents

Carbon fiber and method for producing the same

Info

Publication number
JP2002054031A
JP2002054031A JP2000236646A JP2000236646A JP2002054031A JP 2002054031 A JP2002054031 A JP 2002054031A JP 2000236646 A JP2000236646 A JP 2000236646A JP 2000236646 A JP2000236646 A JP 2000236646A JP 2002054031 A JP2002054031 A JP 2002054031A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
gpa
acrylic
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000236646A
Other languages
Japanese (ja)
Inventor
Motoi Mizuhashi
基 水橋
Nobuaki Oki
信昭 沖
Yoji Matsuhisa
要治 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000236646A priority Critical patent/JP2002054031A/en
Publication of JP2002054031A publication Critical patent/JP2002054031A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber having an excellent tensile modulus, and capable of allowing a composite material obtained therefrom to exhibit a high compression strength, and further to provide a method for stably producing the carbon fiber. SOLUTION: This acrylic carbon fiber has 340-700 GPa tensile modulus, 3.4-5.5 GPa tensile strength, 0.5-1.4% tensile elongation, 2.5-3.2 nm crystal size Lc of the (002) face in the carbon net faces measured by a wide angle X-ray diffraction method, 3-4.5 nm crystal size La of the (100) face in the carbon net faces, 2-3.5 number n-ave of average laminated layers measured by a powder wide angle X-ray diffraction method, and 1.45-2 GPa compression strength based on ASTM D695.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維及びその
製造方法に関する。詳しくは、複合材料の大幅な性能向
上に寄与する高度の圧縮強度を有する炭素繊維、及び該
炭素繊維の製造方法に関する。
[0001] The present invention relates to a carbon fiber and a method for producing the same. More specifically, the present invention relates to a carbon fiber having a high compressive strength that contributes to a significant improvement in performance of a composite material, and a method for producing the carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維は、比強度や比弾性率が優れる
ため、スポーツレジャー分野や宇宙航空分野を中心とし
て、用途が拡大している。
2. Description of the Related Art Since carbon fibers have excellent specific strength and specific elastic modulus, their applications are expanding mainly in the field of sports and leisure and the field of aerospace.

【0003】ゴルフシャフトや釣り竿等には、特に軽量
化を目的として引張強度が3.4GPa以上、引張弾性
率が340GPa以上の高強度、高弾性率炭素繊維が使
用されることが多いが、かかる用途分野では、炭素繊維
の一層の圧縮強度の向上が望まれている。
For golf shafts, fishing rods and the like, high-strength, high-modulus carbon fibers having a tensile strength of 3.4 GPa or more and a tensile modulus of 340 GPa or more are often used, particularly for the purpose of weight reduction. In the field of application, it is desired to further improve the compressive strength of carbon fibers.

【0004】また、炭素繊維を上記した用途の構造材に
適用する場合は、高度の引張弾性率を活かしつつ、構造
材の軽量化を実現するため、構造材の厚みを薄くするこ
とが多いが、この場合、炭素繊維自体の圧縮強度が低下
すると、構造材全体の圧縮強度が低下する傾向が大きく
なる。
When carbon fiber is applied to a structural material for the above-mentioned applications, the thickness of the structural material is often reduced in order to realize a reduction in the weight of the structural material while utilizing a high tensile modulus. In this case, when the compressive strength of the carbon fiber itself decreases, the compressive strength of the entire structural material tends to decrease.

【0005】圧縮強度を向上させる技術としては、例え
ば、特開昭63−211326号公報に、アクリル系繊
維の炭化処理に際して、温度を2200℃以上とし、原
料繊維を積極的に延伸して、その配向緩和を抑制しなが
ら、高引張弾性率、高圧縮強度の炭素繊維を得る技術が
開示されているが、炭素繊維の耐炎化、炭化処理等の熱
処理温度が高いために、炭素繊維の結晶サイズが大きく
なり、圧縮強度の向上度合いは依然として不充分であっ
た。
[0005] As a technique for improving the compressive strength, for example, Japanese Patent Application Laid-Open No. 63-213326 discloses a technique in which, during the carbonization treatment of an acrylic fiber, the temperature is raised to 2200 ° C. or more, and the raw fiber is actively drawn. A technique for obtaining carbon fibers having a high tensile modulus and a high compressive strength while suppressing orientation relaxation has been disclosed.However, since the heat treatment temperature such as the flame resistance of the carbon fibers and the carbonization treatment is high, the crystal size of the carbon fibers is high. And the degree of improvement in compressive strength was still insufficient.

【0006】このように、圧縮強度は一般に熱処理温度
と負の相関関係があり、熱処理温度の上昇に伴い、圧縮
強度は低下する傾向があり、他方、引張弾性率は熱処理
温度と正の相関関係があることから、従来技術によって
は、引張弾性率と圧縮強度が高レベルで両立した炭素繊
維を得るのは困難であった。
As described above, the compressive strength generally has a negative correlation with the heat treatment temperature, and the compressive strength tends to decrease with an increase in the heat treatment temperature, while the tensile modulus has a positive correlation with the heat treatment temperature. Therefore, it has been difficult to obtain a carbon fiber having both high tensile modulus and high compressive strength at a high level, depending on the prior art.

【0007】[0007]

【発明が解決しようとする課題】本発明は、引張弾性率
に優れる一方、得られる複合材料に高レベルの圧縮強度
を発現させる炭素繊維、およびかかる炭素繊維を安定に
製造する方法を提供せんとするものである。
DISCLOSURE OF THE INVENTION The present invention is to provide a carbon fiber which is excellent in tensile elastic modulus while exhibiting a high level of compressive strength in the obtained composite material, and a method for stably producing such a carbon fiber. Is what you do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を有する。即ち、引張弾性率が3
40〜700GPa、引張強度が3.4〜5.5GP
a、引張伸度が0.5〜1.4%、広角X線回折法によ
り求まる炭素網面の(002)面の結晶サイズLcが2.5
〜3.2nm、前記炭素網面の(100)面の結晶サイズL
aが3〜4.5nm、粉末広角X線回折法により求まる
平均積層数naveが2〜3.5、かつASTM D69
5による圧縮強度が1.45〜2GPaであるアクリル
系炭素繊維である。
In order to solve the above problems, the present invention has the following arrangement. That is, the tensile modulus is 3
40-700 GPa, tensile strength 3.4-5.5 GP
a, the tensile elongation is 0.5 to 1.4%, and the crystal size Lc of the (002) plane of the carbon network plane determined by the wide-angle X-ray diffraction method is 2.5.
~ 3.2 nm, crystal size L of (100) plane of the carbon network plane
a is 3 to 4.5 nm, the average number of layers nave determined by the powder wide-angle X-ray diffraction method is 2 to 3.5, and ASTM D69
5 is an acrylic carbon fiber having a compression strength of 1.45 to 2 GPa.

【0009】また、上記課題を解決するため、本発明
は、次の構成を有する。即ち、アクリル系前駆体繊維
を、酸化性雰囲気下、温度200〜300℃で耐炎化処
理し、続いて不活性雰囲気下、温度400〜800℃、
昇温速度20〜100℃/分で前炭化処理し、さらに不
活性雰囲気下、温度1800〜2000℃で炭化処理す
る炭素繊維の製造方法であって、前記前炭化処理におけ
るアクリル系繊維の延伸倍率を1.02〜1.15とす
るアクリル系炭素繊維の製造方法である。
Further, in order to solve the above problems, the present invention has the following configuration. That is, the acrylic precursor fiber is subjected to a flame-resistant treatment in an oxidizing atmosphere at a temperature of 200 to 300 ° C., and subsequently in an inert atmosphere at a temperature of 400 to 800 ° C.
A method for producing carbon fibers in which a pre-carbonization treatment is performed at a temperature-raising rate of 20 to 100 ° C./min, and further, a carbonization treatment is performed at a temperature of 1800 to 2000 ° C. in an inert atmosphere. Is 1.02 to 1.15.

【0010】[0010]

【発明の実施の形態】本発明者等は、炭素繊維の構造と
圧縮強度との相関性に着目し、鋭意検討した結果、炭素
繊維について、結晶の積層状態を制御することにより、
引張弾性率と圧縮強度を高いレベルで両立しうることを
見出し、本発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have paid attention to the correlation between the structure of carbon fiber and compressive strength, and as a result of diligent studies, as a result, by controlling the crystal lamination state of carbon fiber,
The inventors have found that the tensile elastic modulus and the compressive strength can be compatible at a high level, and have reached the present invention.

【0011】本発明の炭素繊維は、その引張弾性率が3
40〜700GPa、好ましくは375〜640GPa
のものである。340GPa未満であると、圧縮強度の
低下は顕在化しないが、適用する用途によっては、引張
弾性率が低下することがあり、700GPaを越えると
炭素網面の結晶サイズLcが拡大し、圧縮強度が低下す
ることがある。
The carbon fiber of the present invention has a tensile modulus of 3
40 to 700 GPa, preferably 375 to 640 GPa
belongs to. If it is less than 340 GPa, the decrease in compressive strength does not become apparent, but depending on the application to which it is applied, the tensile modulus may decrease. If it exceeds 700 GPa, the crystal size Lc of the carbon network plane increases, and the compressive strength decreases. May drop.

【0012】また、本発明の炭素繊維は、その引張強度
が3.4〜5.5GPa、好ましくは4〜5.5GPa
のものである。3.4GPa未満であると、構造材へ適
用しても軽量化効果が小さくなることがあり、5.5G
Paを越えると、引張弾性率が低下することがある。さ
らに、本発明の炭素繊維は、その引張伸度が0.5〜
1.4%のものである。0.5%未満であると、製造工
程で糸切れが頻発することがあり、1.4%を越えると
優れた弾性率が得られないことがある。
The carbon fiber of the present invention has a tensile strength of 3.4 to 5.5 GPa, preferably 4 to 5.5 GPa.
belongs to. If it is less than 3.4 GPa, the effect of reducing the weight may be reduced even when applied to a structural material, and may be less than 5.5 GPa.
If it exceeds Pa, the tensile modulus may decrease. Furthermore, the carbon fiber of the present invention has a tensile elongation of 0.5 to
It is 1.4%. If it is less than 0.5%, yarn breakage may occur frequently in the production process, and if it exceeds 1.4%, an excellent elastic modulus may not be obtained.

【0013】本発明の炭素繊維は、広角X線回折法によ
り求まる炭素網面の(002)面の結晶サイズLcが2.5
〜3.2nm、炭素網面の(100)面の結晶サイズLaが
3.0〜4.5nmのアクリル系炭素繊維である。
The carbon fiber of the present invention has a crystal size Lc of the (002) plane of the carbon network plane determined by the wide-angle X-ray diffraction method of 2.5.
It is an acrylic carbon fiber having a crystal size La of 3.0 to 4.5 nm and a (100) plane of a carbon network plane of 3.0 to 4.5 nm.

【0014】Lcが2.5nm未満であると引張弾性率
が低下することがあり、Lcが3.2nmを越えると圧
縮強度が低下することがある。また、Laが3.0未満
であると、引張弾性率が低下することがあり、Laが
4.5nmを越えると、圧縮強度が低下することがあ
る。
If Lc is less than 2.5 nm, the tensile modulus may decrease, and if Lc exceeds 3.2 nm, the compressive strength may decrease. If La is less than 3.0, the tensile modulus may decrease, and if La exceeds 4.5 nm, the compressive strength may decrease.

【0015】また、本発明の炭素繊維は、粉末広角X線
回折法により求まる平均積層数nave(以下、単にnave
と略記)が2.0〜3.5、好ましくは2.5〜3.
5、ASTM D695による圧縮強度が1.4〜2G
Pa、好ましくは1.45〜1.8GPaのものであ
る。naveが2.0未満であると、炭化繊維が構造的に
安定しないことがあり、naveが3.5を越えると、圧
縮強度が著しく低下し、高度の引張弾性率と圧縮強度が
要求される用途に適用できなくなることがある。
The carbon fiber of the present invention has an average lamination number nave (hereinafter simply referred to as nave) determined by a powder wide-angle X-ray diffraction method.
Abbreviated as 2.0) to 3.5, preferably 2.5 to 3.
5. Compressive strength according to ASTM D695 is 1.4 to 2G
Pa, preferably 1.45 to 1.8 GPa. If the nave is less than 2.0, the carbonized fiber may not be structurally stable. If the nave exceeds 3.5, the compressive strength is significantly reduced, and a high tensile modulus and compressive strength are required. It may not be applicable to the application.

【0016】尚、上述したような本発明による炭素繊維
は、例えば、以下に示すような、本発明による炭素繊維
の製造方法によって安定に製造することができる。
The carbon fiber according to the present invention as described above can be stably manufactured by, for example, the following method for manufacturing a carbon fiber according to the present invention.

【0017】炭素繊維の前駆体である、アクリル系繊維
の原料としては、アクリロニトリル90重量%以上、ア
クリロニトリルと共重合しうる成分が10重量%以下で
構成されるアクリル系共重合体が使用できる。
As a raw material of acrylic fiber, which is a precursor of carbon fiber, an acrylic copolymer composed of 90% by weight or more of acrylonitrile and 10% by weight or less of a component copolymerizable with acrylonitrile can be used.

【0018】前記共重合体としては、アクリル酸、メタ
アクリル酸、イタコン酸、およびそれらのメチルエステ
ル、エチルエステル、プロピルエステル、ブチルエステ
ル、アルカリ金属塩、アンモニウム塩、アリルスルホン
酸、メタリルスルホン酸、スチレンスルホン酸、及びそ
れらのアルカリ金属塩からなる群から選ばれる少なくと
も1種が使用できる。
Examples of the copolymer include acrylic acid, methacrylic acid, itaconic acid, and their methyl esters, ethyl esters, propyl esters, butyl esters, alkali metal salts, ammonium salts, allylsulfonic acid, methallylsulfonic acid. And at least one selected from the group consisting of styrenesulfonic acid, and alkali metal salts thereof.

【0019】アクリル系重合体は、乳化重合、塊状重
合、溶液重合等従来公知の重合法により合成される。ま
た、溶媒としては、ジメチルアセトアミド、ジメチルス
ルホキシド、ジメチルホルムアミド、硝酸、ロダンソー
ダ水溶液等が用いられ、紡糸原液が調整される。
The acrylic polymer is synthesized by a conventionally known polymerization method such as emulsion polymerization, bulk polymerization, and solution polymerization. In addition, as the solvent, dimethylacetamide, dimethylsulfoxide, dimethylformamide, nitric acid, an aqueous solution of rhoda soda, or the like is used, and a spinning stock solution is prepared.

【0020】ここで、アクリル系重合体は、得られる炭
素繊維の物性をより高める観点から、その極限粘度
[η]が1以上、好ましくは1.35以上、より好まし
くは1.7以上であるのが良い。ここで極限粘度[η]
の上限値としては、紡糸を安定させる観点から、5以下
とするのが良い。
Here, the acrylic polymer has an intrinsic viscosity [η] of 1 or more, preferably 1.35 or more, more preferably 1.7 or more, from the viewpoint of further improving the physical properties of the obtained carbon fiber. Is good. Where the intrinsic viscosity [η]
Is preferably 5 or less from the viewpoint of stabilizing spinning.

【0021】本発明において、アクリル系繊維は、前記
した紡糸原液を使用し、湿式紡糸方法や乾湿式紡糸方法
によって紡糸して製造することができる。
In the present invention, the acrylic fiber can be produced by spinning the above-mentioned stock solution by a wet spinning method or a dry-wet spinning method.

【0022】ここで、アクリル系繊維は、0.33〜
1.11dtex、好ましくは0.55〜0.89dtexで
あるのが良い。0.33dtex未満であると、製糸工程
で、繊維から微細な粉塵が発生し、環境、衛生面での問
題が生じることがあり、1.11dtexを越えると、後
の耐炎化工程、前炭化工程、及び炭化工程で、均一な熱
処理が困難となることがある。
Here, the acrylic fiber is 0.33 to
It is good to be 1.11 dtex, preferably 0.55 to 0.89 dtex. If it is less than 0.33 dtex, fine dust may be generated from the fiber in the spinning process, which may cause environmental and sanitary problems. If it exceeds 1.11 dtex, the subsequent flame-resistance step and pre-carbonization step In the carbonization step, uniform heat treatment may be difficult.

【0023】また、アクリル系繊維束は、1、000〜
30、000フィラメント、好ましくは3、000〜2
4、000フィラメントであるのが良い。1、000フ
ィラメント未満であると、糸切れが増すことがあり、3
0、000フィラメントを越えると、耐炎化工程で被処
理繊維束中の蓄熱量が増し、繊維が燃焼することがあ
る。
Also, the acrylic fiber bundle is preferably 1,000 to
30,000 filaments, preferably 3,000-2
Preferably, it is 4,000 filaments. If the number of filaments is less than 1,000, yarn breakage may increase.
If it exceeds 000 filaments, the amount of heat stored in the fiber bundle to be treated increases in the flame-proofing step, and the fibers may burn.

【0024】次に、上述した方法によって得られたアク
リル系繊維から、耐炎化処理、前炭化処理、炭化処理の
各処理を経て、炭素繊維が製造される。
Next, carbon fibers are produced from the acrylic fibers obtained by the above-described method, through respective treatments such as anti-oxidation treatment, pre-carbonization treatment and carbonization treatment.

【0025】耐炎化処理では、アクリル系繊維を、空気
等の酸化性雰囲気下、200〜300℃として処理する
必要があり、好ましくは220〜280℃で処理するの
が良い。200℃未満であると、ニトリル基の閉環反応
が進行しなくなり、耐炎化の程度が不足することがあ
り、300℃を越えると耐炎化が完了する前に繊維が燃
焼することがある。
In the oxidation treatment, it is necessary to treat the acrylic fiber at 200 to 300 ° C. in an oxidizing atmosphere such as air, preferably at 220 to 280 ° C. When the temperature is lower than 200 ° C., the ring-closing reaction of the nitrile group does not proceed, and the degree of flame resistance may be insufficient. When the temperature exceeds 300 ° C., the fiber may burn before the flame resistance is completed.

【0026】また、耐炎化処理時の延伸倍率は、いわゆ
る配向緩和を抑制するために、0.95〜1.1好まし
くは1〜1.1とするのが良い。0.95未満であると
引張弾性率、引張強度が不足することがあり、1.1を
越えると毛羽が増すことがある。
The draw ratio at the time of the oxidation treatment is preferably 0.95 to 1.1, more preferably 1 to 1.1, in order to suppress so-called relaxation of orientation. If it is less than 0.95, the tensile modulus and tensile strength may be insufficient, and if it exceeds 1.1, fluff may increase.

【0027】耐炎化処理では、被処理繊維の比重が1.
25〜1.6g/cm3、好ましくは1.3〜1.5g
/cm3になるまで処理するのが良い。1.25g/c
3未満であると、前炭化処理工程で糸切れが発生する
ことがあり、1.6g/cm3を越えると、得られる炭
素繊維の比重が下がり、引張弾性率が低下することがあ
る。
In the oxidation treatment, the specific gravity of the fiber to be treated is 1.
25 to 1.6 g / cm 3 , preferably 1.3 to 1.5 g
/ Cm 3 . 1.25 g / c
If it is less than m 3 , yarn breakage may occur in the pre-carbonization step, and if it exceeds 1.6 g / cm 3 , the specific gravity of the obtained carbon fiber may decrease, and the tensile modulus may decrease.

【0028】耐炎化処理後、前炭化処理する。ここで
は、被処理繊維を、窒素等の不活性雰囲気下、温度40
0〜800℃で処理する必要があり、好ましくは400
〜700℃で処理するのが良い。また、昇温速度は20
〜100℃/分で処理する必要があり、好ましくは40
〜100℃/分で処理するのが良い。
After the oxidation treatment, a pre-carbonization treatment is performed. Here, the fiber to be treated is heated at a temperature of 40 under an inert atmosphere such as nitrogen.
It is necessary to process at 0 to 800 ° C., preferably 400
It is better to process at ~ 700 ° C. The heating rate is 20
処理 100 ° C./min, preferably 40
It is good to process at -100 ° C / min.

【0029】昇温速度が20℃/分未満であると、熱履
歴を均等化するため、糸速を低くする必要が生じ、これ
により製造コストが上昇することがあり、100℃/分
を越えると糸切れが生じることがある。
If the heating rate is less than 20 ° C./min, it is necessary to lower the yarn speed in order to equalize the heat history, which may increase the production cost and exceed 100 ° C./min. And thread breakage may occur.

【0030】また、前炭化処理時の延伸倍率は1.02
〜1.15とする必要があり、好ましくは1.04〜
1.12とするのが良い。1.02未満であると、得ら
れる炭素繊維において、引張弾性率が低下することがあ
り、1.15を越えると糸切れが生じることがある。
The stretching ratio during the pre-carbonization treatment is 1.02
1.11.15, preferably 1.04〜
1.12. If it is less than 1.02, the tensile modulus of the obtained carbon fiber may decrease, and if it exceeds 1.15, thread breakage may occur.

【0031】前炭化処理後、炭化処理する。ここでは、
被処理繊維を、窒素等の不活性雰囲気下、温度1800
〜2000℃で処理する必要があり、好ましくは185
0〜1950℃で処理するのが良い。1800℃未満で
あると、得られる炭素繊維において、引張弾性率が低下
することがあり、2000℃を越えると結晶サイズが大
きくなり、圧縮強度が低下することがある。
After the pre-carbonization, carbonization is performed. here,
The fiber to be treated is heated under an inert atmosphere such as nitrogen at a temperature of 1800.
~ 2000 ° C, preferably 185 ° C
The treatment is preferably performed at 0 to 1950 ° C. If the temperature is lower than 1800 ° C., the tensile modulus of the obtained carbon fiber may decrease. If the temperature exceeds 2000 ° C., the crystal size may increase and the compressive strength may decrease.

【0032】炭化処理時の延伸倍率は0.95〜1.
1、好ましくは0.96〜1.05とするのが良い。
0.95未満であると、得られる炭素繊維において、引
張弾性率が低下することがあり、1.1を越えると糸切
れが生じることがある。
The stretching ratio during the carbonization treatment is 0.95 to 1.
1, preferably 0.96 to 1.05.
If it is less than 0.95, the tensile modulus of the obtained carbon fiber may decrease, and if it exceeds 1.1, thread breakage may occur.

【0033】[0033]

【実施例】以下、実施例により、本発明をさらに具体的
に説明する。各実施例、比較例においては、各物性値
は、以下に示す方法により測定した。 <引張弾性率>測定する炭素繊維に、ユニオンカーバイ
ド(株)製、ベークライト(登録商標)ERL−422
1を1000g(930重量%)、三フッ化ホウ素モノ
エチルアミン(BF3・MEA)を30g(3重量%)
及びアセトンを40g(4重量%)混合したエポキシ樹
脂組成物を含浸させ、次に130℃で、30分間加熱
し、硬化させ、樹脂含浸ストランドとする。JIS R
7601の樹脂含浸ストランド試験法に従い、引張強度
と引張弾性率を求める。 <結晶サイズLc、La、平均積層数nave> A.測定試料の作製 測定する炭素繊維から、長さ4cmの試験片を切り出
し、金型とコロジオン・アルコール溶液を用いて固め、
角柱形状として結晶サイズ用の測定試料とする。
The present invention will be described more specifically with reference to the following examples. In each of Examples and Comparative Examples, each property value was measured by the following method. <Tensile modulus> Bakelite (registered trademark) ERL-422 manufactured by Union Carbide Co., Ltd. was applied to the carbon fiber to be measured.
1000 g (930% by weight) and 30 g (3% by weight) of boron trifluoride monoethylamine (BF 3 .MEA)
And an epoxy resin composition in which 40 g (4% by weight) of acetone and acetone are mixed, and then heated at 130 ° C. for 30 minutes to be cured to obtain a resin-impregnated strand. JIS R
According to the resin impregnated strand test method of 7601, the tensile strength and the tensile modulus are determined. <Crystal size Lc, La, average number of layers nave> Preparation of measurement sample From the carbon fiber to be measured, a 4 cm long test piece was cut out and hardened using a mold and a collodion-alcohol solution.
It is a prism-shaped measurement sample for crystal size.

【0034】一方、積層構造の解析用試料は、測定に供
する炭素繊維を凍結粉砕して粉末とし、粉砕後の試料を
アルミ製標準試料枠に収納して作製する。 B.測定装置 (a)広角X線回折法(透過法) 上述した方法により作成した結晶サイズ用の測定試料
を、次の構成、条件で測定する。ここでは、測定装置と
して、(株)理学電機社製、4036A型(管球型)を使
用した場合について示す。 (構成) X線源:CuKα線(Niフィルター使用) 出力 :40kV、20mA ゴニオメータ (株)理学電機社製 スリット:2mmφ−1゜−1゜ 検出器 :シンチレーションカウンター 計数記録装置:(株)理学電機社製 RAD−C型 (測定条件) 2θ/θ :ステップスキャン(赤道線方向、子午線
方向) 測定範囲 :2θ=5〜90゜ サンプリング:0.05゜ 積算時間 :2秒 尚、赤道線方向は繊維径方向、子午線方向は繊維軸方向
に相当する。 (b)広角X線回折法(反射法) 上述した方法により作成した積層構造の解析用の測定試
料を、次の構成、条件で測定する。ここでは、測定装置
として、(株)理学電機社製、RU−200(回転対陰
極型)を使用した場合について示す。 (構成) X線源:CuKα線(湾曲結晶モノクロメータ使用) 出力 :50kV、200mA ゴニオメータ (株)理学電機社製 2155D型 スリット:1゜−0.15mmφ−1゜−0.45mm 検出器 :シンチレーションカウンター 計数記録装置:(株)理学電機社製 RAD−B型 (測定条件) 2θ/θ :ステップスキャン 測定範囲 :2θ=5〜40゜ サンプリング:0.05゜ 積算時間 :2秒 C.結晶サイズLc、Laの測定 上述した透過法により得られた(002)、(100)面のピーク
の半値幅から、次のScherrerの式により求める。ここで
は、(002)面から求めた値がLc、(100)面から求めた値
がLaとなる。
On the other hand, a sample for analysis of the laminated structure is prepared by freeze-grinding carbon fibers to be used for measurement into powder, and storing the ground sample in an aluminum standard sample frame. B. Measurement device (a) Wide-angle X-ray diffraction method (transmission method) A measurement sample for a crystal size prepared by the above-described method is measured under the following configuration and conditions. Here, a case where a 4036A type (tube type) manufactured by Rigaku Corporation is used as a measuring device will be described. (Configuration) X-ray source: CuKα ray (using Ni filter) Output: 40 kV, 20 mA Goniometer Slit: 2 mm φ-1 {-1} Detector: Scintillation counter Counting and recording device: Rigaku Corporation Model RAD-C (Measurement conditions) 2θ / θ: Step scan (Equatorial line direction, Meridian direction) Measurement range: 2θ = 5-90 ° Sampling: 0.05 ° Integration time: 2 seconds Note that the equatorial line direction is The fiber diameter direction and the meridian direction correspond to the fiber axis direction. (B) Wide-angle X-ray diffraction method (reflection method) A measurement sample for analysis of a laminated structure created by the method described above is measured under the following configuration and conditions. Here, a case where RU-200 (rotating anti-cathode type) manufactured by Rigaku Corporation is used as a measuring device will be described. (Constitution) X-ray source: CuKα ray (using a curved crystal monochromator) Output: 50 kV, 200 mA Goniometer 2155D type manufactured by Rigaku Corporation Slit: 1 ゜ -0.15 mmφ-1 ゜ -0.45 mm Detector: Scintillation Counter Count recording device: RAD-B type manufactured by Rigaku Corporation (Measurement conditions) 2θ / θ: Step scan Measurement range: 2θ = 5 to 40 ° Sampling: 0.05 ° Integration time: 2 seconds Measurement of Crystal Sizes Lc and La From the half-value width of the peaks of the (002) and (100) planes obtained by the transmission method described above, it is determined by the following Scherrer equation. Here, the value obtained from the (002) plane is Lc, and the value obtained from the (100) plane is La.

【0035】L(hkl)=Kλ/β0cosθB 但し、 L(hkl):微結晶の(hkl)面に垂直な方向の平
均の大きさ K:1.0、λ:0.15418nm(X線の波長)、 β0:(βE 2−β1 21/2 βE:見かけの半値幅(測定値)、β12:1.046×
10-2rad θB:Braggの回折角 D.平均積層数nave 上述した反射法により得られた回折プロファイルに、各
種光学補正を施した補正プロファイルをフーリエ変換し
得られたパターソン関数の各ピーク面積から積層数分布
f(n)を求め、次式より平均積層数naveを求める。
[0035] L (hkl) = Kλ / β 0 cosθ B where, L (hkl): average direction perpendicular to the (hkl) plane of the crystallite size K: 1.0, λ: 0.15418nm ( X line wavelength), β 0: (β E 2 -β 1 2) 1/2 β E: half width (measured apparent), β 12: 1.046 ×
10 -2 rad θ B : Bragg diffraction angle Average stacking number nave Stacking number distribution from each peak area of Patterson function obtained by performing Fourier transform of a correction profile obtained by applying various optical corrections to the diffraction profile obtained by the above-mentioned reflection method.
f (n) is obtained, and the average number of layers nave is obtained from the following equation.

【0036】nave=Σf(n)/Σ[f(n)/n] <積層板の圧縮強度> A.樹脂組成物の調整 次に示す原料樹脂を混合し、30分間攪拌して樹脂組成
物を得る。 ・ビスフェノールAジグリシジルエーテル樹脂、エピコ
ート1001(油化シェルエポキシ社製、登録商標)、
30重量% ・ビスフェノールAジグリシジルエーテル樹脂、エピコ
ート828(油化シェルエポキシ社製、登録商標)、3
0重量% ・フェノールノボラックポリグリシジルエーテル樹脂、
エピクロン−N740(大日本インキ化学工業社製、登
録商標)、40重量% ・ポリビニルホルマール樹脂、ビニレックスK(チッソ
社製、登録商標)、5重量% ・ジシアンジアミド、DICY7(大日本インキ化学工
業社製、登録商標)、4重量% ・3,4−ジクロロフェニル−1,1−ジメチルウレ
ア、DCMU99(保土谷化学社製、硬化剤)、4重量
% 次に、前記樹脂組成物をシリコン塗布ペーパ上に離型紙
にコーティングして得た樹脂フィルムを、円周約2.7
mの、60〜70℃に温調した鋼製ドラムに巻き付け
る。
Nave = Σf (n) / Σ [f (n) / n] <Compressive strength of laminate> Preparation of Resin Composition The following starting resins are mixed and stirred for 30 minutes to obtain a resin composition. Bisphenol A diglycidyl ether resin, Epicoat 1001 (registered trademark, manufactured by Yuka Shell Epoxy),
30% by weight Bisphenol A diglycidyl ether resin, Epikote 828 (registered trademark, manufactured by Yuka Shell Epoxy), 3
0% by weight ・ Phenol novolak polyglycidyl ether resin,
Epicron-N740 (registered trademark, manufactured by Dainippon Ink and Chemicals, Inc.), 40% by weight ・ Polyvinyl formal resin, vinylex K (registered trademark, manufactured by Chisso Corporation), 5% by weight ・ Dicyandiamide, DICY7 (Dainippon Ink and Chemicals, Inc.) , 4% by weight), 3,4-dichlorophenyl-1,1-dimethylurea, DCMU99 (manufactured by Hodogaya Chemical Co., Ltd., curing agent), 4% by weight Next, the resin composition was coated on silicon-coated paper. The resin film obtained by coating the release paper on the circumference is about 2.7 circumference.
m of a steel drum temperature-controlled to 60-70 ° C.

【0037】この上に、炭素繊維を、クリールから巻き
出し、トラバースを介して配列する。さらにその上か
ら、前記樹脂フィルムで再度覆い、ロールで回転しなが
ら、加圧し樹脂を繊維内に含浸せしめ、幅300mm、
長さ2.7mの一方向プリプレグを作成する。ここで、
プリプレグの繊維目付はドラムの回転数とトラバースの
送り速度を変化させ、190g/m2に調整する。ま
た、プリプレグの樹脂量は約35重量%とする。
On this, carbon fibers are unwound from the creel and arranged via traverses. Furthermore, from above, the resin film is covered again, and while rotating with a roll, pressure is applied to impregnate the resin into the fiber, and the width is 300 mm.
Create a 2.7 m long unidirectional prepreg. here,
The basis weight of the prepreg is adjusted to 190 g / m 2 by changing the rotation speed of the drum and the feed speed of the traverse. The resin content of the prepreg is about 35% by weight.

【0038】このプリプレグを繊維方向を引き揃えて積
層し、温度130℃、圧力0.3MPaで、2時間硬化
させ、厚さが1mmの積層板を成形する。
The prepregs are laminated in the same fiber direction and cured at a temperature of 130 ° C. and a pressure of 0.3 MPa for 2 hours to form a laminated plate having a thickness of 1 mm.

【0039】次に、この積層板に、試験片の被破壊部分
以外を補強する板を接着層の厚さが均一となるよう接着
剤等で固着させ、一方向積層板を作製する。
Next, a plate for reinforcing the test piece other than the portion to be destroyed is fixed to the laminate with an adhesive or the like so that the thickness of the adhesive layer is uniform, thereby producing a one-way laminate.

【0040】この積層板から、被破壊部分が中心になる
ように、厚さ約1±0.1mm、幅12.7±0.13
mm、長さ80±0.013mm、ゲージ部の長さ5±
0.13mmの試験片を切り出す。
From this laminated plate, the thickness is about 1 ± 0.1 mm and the width is 12.7 ± 0.13 so that the portion to be destroyed is centered.
mm, length 80 ± 0.013mm, gauge part length 5 ±
A test piece of 0.13 mm is cut out.

【0041】この試験片より、ASTM D695に示
される圧縮治具を使用し、歪み速度1.27mm/分の
条件で測定し、繊維体積分率60%に換算して積層板の
圧縮強度を得る。 (実施例1〜5、比較例1〜6)アクリロニトリル9
9.5モル%、イタコン酸0.5モル%からなる極限粘
度[η]が1.80のアクリル共重合体を20重量%含
むジメチルスルホキシド(以下、DMSOと略記)の溶
液を調整し、紡糸原液とした。
The test piece was measured using a compression jig shown in ASTM D695 under the condition of a strain rate of 1.27 mm / min, and converted to a fiber volume fraction of 60% to obtain the compressive strength of the laminate. . (Examples 1 to 5, Comparative Examples 1 to 6) Acrylonitrile 9
A solution of dimethylsulfoxide (hereinafter abbreviated as DMSO) containing 20% by weight of an acrylic copolymer having an intrinsic viscosity [η] of 1.80 and consisting of 9.5% by mole and itaconic acid 0.5% by mole was prepared and spun. The stock solution was used.

【0042】次に、この紡糸原液を60℃に温調し、孔
数3000の口金から、温度60℃、DMSO濃度60
重量%の水溶液からなる凝固浴中に紡出し、フィラメン
ト数3000の凝固糸条とした。
Next, the temperature of the spinning solution was adjusted to 60 ° C., and the temperature was 60 ° C. and the DMSO concentration was 60
It was spun into a coagulation bath composed of a weight% aqueous solution to obtain a coagulated yarn having 3000 filaments.

【0043】次いで、凝固糸条を水洗後、90℃の熱水
中で3倍に延伸し、さらに糸条を、アミノ変性シリコ−
ンを含む、油剤濃度が2重量%のシリコ−ン系油剤浴中
を通過させ、油剤を糸条重量に対して0.7重量%付与
した。
Next, after washing the coagulated yarn with water, the coagulated yarn was stretched three times in hot water at 90 ° C.
The oil was passed through a silicone oil bath having an oil agent concentration of 2% by weight, and the oil agent was applied at 0.7% by weight based on the weight of the yarn.

【0044】次に、150℃に温調した加熱ロ−ラで乾
燥緻密化し、加圧スチ−ム延伸装置で倍率4で延伸した
後、180℃に温調した加熱ロ−ラで乾燥処理し、単糸
繊度0.81dtex、総繊度2430dtexのアクリル系繊
維を得た。
Next, the film was dried and densified by a heating roller adjusted to 150 ° C., stretched at a magnification of 4 by a pressure steam stretching device, and dried by a heating roller adjusted to 180 ° C. Thus, an acrylic fiber having a single yarn fineness of 0.81 dtex and a total fineness of 2,430 dtex was obtained.

【0045】このアクリル系繊維を、空気雰囲気中、温
度220〜280℃、倍率1で耐炎化処理し、耐炎化繊
維とした。
The acrylic fiber was subjected to a flameproofing treatment in an air atmosphere at a temperature of 220 to 280 ° C. at a magnification of 1 to obtain a flameproofed fiber.

【0046】この耐炎化繊維を、窒素雰囲気中、最高雰
囲気温度が800℃の前炭化炉で、温度400〜500
℃での昇温速度を100℃/分とし、延伸倍率を適宜変
更して前炭化処理し、さらに窒素雰囲気中、温度を適宜
変更し、、延伸倍率を0.96として炭化処理して、フ
ィラメント数3000の炭素繊維を得た。
The oxidized fiber was placed in a nitrogen atmosphere in a pre-carbonization furnace having a maximum atmosphere temperature of 800 ° C. and a temperature of 400 to 500.
The heating rate at 100 ° C. is 100 ° C./min, the drawing ratio is appropriately changed, the pre-carbonization treatment is performed, and the temperature is appropriately changed in a nitrogen atmosphere, the drawing ratio is set to 0.96, and the carbonization treatment is performed. Several thousand carbon fibers were obtained.

【0047】さらに、得られた炭素繊維に50ク−ロン
/gの電荷を与え、硫酸水溶液中で陽極酸化処理を施
し、水洗し、乾燥した後、エポキシを成分とする表面処
理剤を付与した。
Further, the obtained carbon fiber was given a charge of 50-colon / g, anodized in an aqueous sulfuric acid solution, washed with water and dried, and then a surface treating agent containing epoxy as a component was applied. .

【0048】各実施例、比較例の製造条件、得られた炭
素繊維について、各物性値をそれぞれ表1に示す。 (実施例6、7)実施例1で調整した紡糸原液を45℃
に温調し、孔数3000の口金から、4mmのエア−ギ
ャップを通過させて、DMSO濃度60重量%の水溶液
からなる凝固浴中に紡出し、さらに折返ガイドで方向を
転換し、水切りガイドを通過させながら、凝固浴から引
き取ってフィラメント数3000の凝固繊維とした以外
は実施例1と同様にして、単糸繊度0.81dtex、総繊
度2430dtexのアクリル系繊維を得た。
Table 1 shows the physical properties of the carbon fibers obtained in each of the examples and comparative examples. (Examples 6 and 7) The spinning solution prepared in Example 1 was heated at 45 ° C.
The mixture is spun into a coagulation bath composed of an aqueous solution having a DMSO concentration of 60% by weight through a 4 mm air gap from a base having 3,000 holes, and the direction is changed by a folding guide. An acrylic fiber having a single yarn fineness of 0.81 dtex and a total fineness of 2,430 dtex was obtained in the same manner as in Example 1 except that the fiber was taken out of the coagulation bath while passing through to obtain a coagulated fiber having 3000 filaments.

【0049】この凝固糸条から、実施例1と同様にし
て、耐炎化処理、前炭化処理、炭化処理、表面処理の各
処理工程を経て炭素繊維を得た。
[0049] From this coagulated yarn, carbon fibers were obtained in the same manner as in Example 1 through the respective steps of oxidization, pre-carbonization, carbonization, and surface treatment.

【0050】各実施例、比較例の製造条件、得られた炭
素繊維について、各物性値をそれぞれ表1に示す。
Table 1 shows the physical properties of the carbon fibers obtained in each of the examples and comparative examples.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明によれば、引張弾性率に優れる一
方、得られる複合材料に高度の圧縮強度を発現させる炭
素繊維、およびかかる炭素繊維を安定に製造する方法が
提供できる。
According to the present invention, it is possible to provide a carbon fiber which is excellent in tensile elastic modulus and which exhibits a high compressive strength in the obtained composite material, and a method for stably producing such a carbon fiber.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】引張弾性率が340〜700GPa、引張
強度が3.4〜5.5GPa、引張伸度が0.5〜1.
4%、広角X線回折法により求まる炭素網面の(002)面
の結晶サイズLcが2.5〜3.2nm、前記炭素網面
の(100)面の結晶サイズLaが3〜4.5nm、粉末広
角X線回折法により求まる平均積層数naveが2〜3.
5、かつASTM D695による圧縮強度が1.45
〜2GPaであるアクリル系炭素繊維。
1. A tensile modulus of 340 to 700 GPa, a tensile strength of 3.4 to 5.5 GPa, and a tensile elongation of 0.5 to 1.
4%, the crystal size Lc of the (002) plane of the carbon network plane determined by the wide-angle X-ray diffraction method is 2.5 to 3.2 nm, and the crystal size La of the (100) plane of the carbon network plane is 3 to 4.5 nm. The average number of layers nave determined by the powder wide-angle X-ray diffraction method is 2-3.
5, and the compression strength according to ASTM D695 is 1.45.
Acrylic carbon fiber of up to 2 GPa.
【請求項2】アクリル系前駆体繊維を、酸化性雰囲気
下、温度200〜300℃で耐炎化処理し、続いて不活
性雰囲気下、温度400〜800℃、昇温速度20〜1
00℃/分で前炭化処理し、さらに不活性雰囲気下、温
度1800〜2000℃で炭化処理する炭素繊維の製造
方法であって、前記前炭化処理におけるアクリル系繊維
の延伸倍率を1.02〜1.15とするアクリル系炭素
繊維の製造方法。
2. An acrylic precursor fiber is subjected to a flameproofing treatment in an oxidizing atmosphere at a temperature of 200 to 300.degree. C., followed by an inert atmosphere at a temperature of 400 to 800.degree.
A method for producing carbon fibers which is pre-carbonized at 00 ° C./min and further carbonized at a temperature of 1800 to 2000 ° C. in an inert atmosphere, wherein the draw ratio of the acrylic fiber in the pre-carbonizing is 1.02 to 1.02. 1. A method for producing an acrylic carbon fiber to be 1.15.
JP2000236646A 2000-08-04 2000-08-04 Carbon fiber and method for producing the same Pending JP2002054031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236646A JP2002054031A (en) 2000-08-04 2000-08-04 Carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236646A JP2002054031A (en) 2000-08-04 2000-08-04 Carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002054031A true JP2002054031A (en) 2002-02-19

Family

ID=18728656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236646A Pending JP2002054031A (en) 2000-08-04 2000-08-04 Carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002054031A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510406A (en) * 2006-11-22 2010-04-02 ヘクセル コーポレイション Carbon fibers with improved strength and modulus and related methods and apparatus for preparing them
EP1659331A4 (en) * 2003-08-28 2015-09-16 Mitsubishi Rayon Co High-performance pressure vessel and carbon fiber for pressure vessel
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
WO2017023032A3 (en) * 2015-08-03 2017-06-01 서울대학교 산학협력단 Chalcogenide-carbon nanofiber and preparation method therefor
JPWO2016158955A1 (en) * 2015-03-31 2017-12-28 東邦テナックス株式会社 Carbon fiber and method for producing carbon fiber
WO2019203088A1 (en) * 2018-04-16 2019-10-24 東レ株式会社 Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
RU2784511C2 (en) * 2018-04-16 2022-11-28 Торэй Индастриз, Инк. Carbon fiber bundle, its production method, prepreg and composite material reinforced with carbon fiber

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3273137A1 (en) * 2003-08-28 2018-01-24 Mitsubishi Chemical Corporation High-performance pressure vessel and carbon fiber for pressure vessel
EP1659331A4 (en) * 2003-08-28 2015-09-16 Mitsubishi Rayon Co High-performance pressure vessel and carbon fiber for pressure vessel
US8591859B2 (en) 2006-11-22 2013-11-26 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8734754B2 (en) 2006-11-22 2014-05-27 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8871172B2 (en) 2006-11-22 2014-10-28 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9121112B2 (en) 2006-11-22 2015-09-01 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9340905B2 (en) 2006-11-22 2016-05-17 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP2010510406A (en) * 2006-11-22 2010-04-02 ヘクセル コーポレイション Carbon fibers with improved strength and modulus and related methods and apparatus for preparing them
US10151051B2 (en) 2006-11-22 2018-12-11 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9677195B2 (en) 2006-11-22 2017-06-13 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9938643B2 (en) 2006-11-22 2018-04-10 Hexel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
CN113818103B (en) * 2015-03-31 2024-02-13 帝人株式会社 Carbon fiber and method for producing carbon fiber
CN107532341A (en) * 2015-03-31 2018-01-02 东邦泰纳克丝株式会社 The manufacture method of carbon fiber and carbon fiber
JPWO2016158955A1 (en) * 2015-03-31 2017-12-28 東邦テナックス株式会社 Carbon fiber and method for producing carbon fiber
EP3279374A1 (en) 2015-03-31 2018-02-07 Toho Tenax Co., Ltd. Carbon fiber and method for producing carbon fiber
CN113818103A (en) * 2015-03-31 2021-12-21 帝人株式会社 Carbon fiber and method for producing carbon fiber
TWI679321B (en) * 2015-03-31 2019-12-11 日商東邦帝那克斯股份有限公司 Carbon fiber and carbon fiber manufacturing method
US10316433B2 (en) 2015-03-31 2019-06-11 Toho Tenax Co., Ltd. Carbon fiber and method for producing carbon fiber
JP2017027920A (en) * 2015-07-28 2017-02-02 東洋紡株式会社 Electrode material for redox battery
US11008673B2 (en) 2015-08-03 2021-05-18 Seoul National University R&Db Foundation Chalcogenide-carbon nanofiber and preparation method therefor
KR101744132B1 (en) 2015-08-03 2017-06-20 서울대학교산학협력단 Chalcogenide-C nanofiber and methods of fabricating the same
WO2017023032A3 (en) * 2015-08-03 2017-06-01 서울대학교 산학협력단 Chalcogenide-carbon nanofiber and preparation method therefor
WO2019203088A1 (en) * 2018-04-16 2019-10-24 東レ株式会社 Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
CN111936681A (en) * 2018-04-16 2020-11-13 东丽株式会社 Carbon fiber bundle, method for producing same, prepreg, and carbon fiber-reinforced composite material
JPWO2019203088A1 (en) * 2018-04-16 2021-03-11 東レ株式会社 Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composites
RU2784511C2 (en) * 2018-04-16 2022-11-28 Торэй Индастриз, Инк. Carbon fiber bundle, its production method, prepreg and composite material reinforced with carbon fiber
CN111936681B (en) * 2018-04-16 2023-05-16 东丽株式会社 Carbon fiber bundle, method for producing same, prepreg, and carbon fiber-reinforced composite material
US11760861B2 (en) 2018-04-16 2023-09-19 Toray Industries, Inc. Carbon fiber bundle, manufacturing method therefor, prepreg, and carbon fiber-reinforced composite material
JP7388193B2 (en) 2018-04-16 2023-11-29 東レ株式会社 Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composite materials

Similar Documents

Publication Publication Date Title
JP4957251B2 (en) Carbon fiber, method for producing polyacrylonitrile-based precursor fiber for carbon fiber production, and method for producing carbon fiber
EP2080775B1 (en) Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
JP4360233B2 (en) Golf shaft
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
JP2005256211A5 (en)
JP2530767B2 (en) Carbon fiber and manufacturing method thereof
JPH11217734A (en) Carbon fiber and its production
JP7388193B2 (en) Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composite materials
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
JP2002054031A (en) Carbon fiber and method for producing the same
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP4238436B2 (en) Carbon fiber manufacturing method
JP4677862B2 (en) Carbon fiber manufacturing method and apparatus
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP2007092185A (en) Polyacrylonitrile polymer for carbon fiber precursor fiber
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
RU2784511C2 (en) Carbon fiber bundle, its production method, prepreg and composite material reinforced with carbon fiber
JP2007107106A (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber and method for producing the same
JP2002339170A (en) Carbon fiber having excellent property in twisting direction, and carbon fiber-reinforced composite material using the carbon fiber as reinforcing material
JPH08209457A (en) Carbon fiber and its production