JP4238436B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method Download PDF

Info

Publication number
JP4238436B2
JP4238436B2 JP30229099A JP30229099A JP4238436B2 JP 4238436 B2 JP4238436 B2 JP 4238436B2 JP 30229099 A JP30229099 A JP 30229099A JP 30229099 A JP30229099 A JP 30229099A JP 4238436 B2 JP4238436 B2 JP 4238436B2
Authority
JP
Japan
Prior art keywords
yarn
fiber
carbon fiber
temperature
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30229099A
Other languages
Japanese (ja)
Other versions
JP2001131833A (en
JP2001131833A5 (en
Inventor
彰児 村井
基 水橋
勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30229099A priority Critical patent/JP4238436B2/en
Publication of JP2001131833A publication Critical patent/JP2001131833A/en
Publication of JP2001131833A5 publication Critical patent/JP2001131833A5/ja
Application granted granted Critical
Publication of JP4238436B2 publication Critical patent/JP4238436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維の製造方法に関する。詳しくは、複合材料の大幅な性能向上に寄与する高い圧縮強度を有する炭素繊維の製造方法に関する。
【0002】
【従来の技術】
炭素繊維は、比強度や比弾性率が優れるため、ゴルフシャフト、釣り竿などのスポーツレジャー分野や宇宙航空分野を中心として、用途が拡大している。それに伴い、一層の品質の向上が望まれているが、炭素繊維の引張強度、引張弾性率は改善傾向にあるものの、圧縮強度の向上が不充分であり、使用する用途によっては依然として適用できないことがある。
【0003】
炭素繊維を構造材に適用する場合は、高いレベルの引張弾性率を反映させながら、一層の軽量化を実現するため、構造材の厚みを薄くすることが多いが、この場合、炭素繊維自体の圧縮強度が不足すると、構造材全体の圧縮強度が低下する。
【0004】
特開昭63−211326号公報に、アクリル系繊維を炭化処理する際に、温度を2200℃以上とし、繊維を積極的に延伸して、その配向緩和を抑制し、高引張弾性率、高圧縮強度の炭素繊維を得る技術が開示されている。ところが、熱処理温度が高いために、炭素繊維の結晶サイズが大きくなり、圧縮強度は、期待された程向上していない。
【0005】
また、特開平4-19219公報に、電子線照射によって炭素繊維を非晶化する技術が開示されており、また、特開平2-259118公報に、炭素繊維表層をエッチングする技術が開示されている。これら技術によれば、炭素繊維表層の結晶サイズは小さくなるが、炭化処理の最高温度が2000℃以上となるため、炭素繊維全体として結晶サイズは小さくならず、圧縮強度の向上は不充分であった。
【0006】
圧縮強度を損なわず、炭素繊維に高引張弾性率を実現するためには、炭化処理において、温度を1800〜2000℃とするとともに、1.1以上の倍率で積極的に延伸しなければならないが、かかる方法によれば、得られる炭素繊維に糸切れや毛羽が多量に生じる傾向があった。
【0007】
また、炭素繊維の製造において通常採用されることの多い紡糸法である乾湿式紡糸法によれば、凝固浴中で、凝固が進行途上にある糸条が、糸道ガイド等に強く接触すると、糸条を構成する単糸に架かる張力に差が生じ、かかるアクリル系繊維を延伸しながら炭化処理すると、繊維束内において、伸度の低い単糸が延伸の張力に抗しきれず、糸切れが生じるなどして、得られる炭素繊維の品位が大きく低下していた。
【0008】
このように従来より、炭素繊維の特性改善のため、製糸や、炭化処理等の熱処理時の延伸倍率を調節するなど様々な手法が検討されてきたが、これらによれば、アクリル系繊維の配向性が充分に向上されず、高い強度特性が要求される用途にも問題なく適用できる、引張弾性率と圧縮強度が高レベルで両立した炭素繊維は得られていなかった。
【0009】
【発明が解決しようとする課題】
本発明は、高レベルの引張弾性率を有し、得られる複合材料に高い圧縮強度を発現させる高レベルの圧縮強度を有する炭素繊維を安定に製造する方法を提供せんとするものである。
【0010】
【課題を解決するための手段】
本発明は、上記課題を達成するために、次の構成を有する。即ち、凝固浴内において、糸条に架かる張力を、1.5〜7×10 −4 N/d(d:デニール)の範囲に規制し、前記凝固浴での処理の後、浴中で1.15〜1.5として延伸した単糸伸度変動率が10%以下であるアクリル系繊維を前駆体繊維とし、酸化性雰囲気下、温度240〜280℃で耐炎化処理し、続いて不活性雰囲気下、温度400〜500℃、昇温速度20〜100℃/分で前炭化処理し、さらに不活性雰囲気下、温度1800〜2000℃で炭化処理する炭素繊維の製造方法であって、前記前炭化処理において、アクリル系繊維の延伸倍率を1.1〜1.3として処理する引張弾性率が340〜450GPa、広角X線回折より測定される炭素網面の(002)面の結晶サイズLcが2.4〜3.2nm、ASTM D695による圧縮強度が1450〜2000MPaであるアクリル系炭素繊維の製造方法である。
【0012】
【発明の実施の形態】
本発明者らは、鋭意検討の結果、アクリル系繊維を前駆体繊維とし、酸化性雰囲気下、耐炎化、前炭化処理し、さらに不活性雰囲気下、温度1800〜2000℃で炭化処理することで得られる炭素繊維の製造方法において、前記アクリル系繊維の単糸伸度変動率を特定値以下とし、前記前炭化処理時のアクリル系繊維の延伸倍率を特定範囲内とすることにより、高レベルの引張弾性率と、圧縮強度を兼ね備える炭素繊維が容易かつ安定に得られ、前記した課題を一挙に解決することを見いだした。
【0013】
本発明によって得られる炭素繊維は、引張弾性率が340〜450GPa、好ましくは360〜420GPaである炭素繊維である。340GPa未満では、圧縮強度の不足は顕在化しないが、適用する用途によっては、引張弾性率が不足することがある。また450GPaを越えると炭素網面の結晶サイズLcが拡大し、圧縮強度が不足することがある。
【0014】
また、本発明によって得られる炭素繊維は、広角X線回折より測定される炭素網面の(002)面の結晶サイズLcが2.4〜3.2nmである炭素繊維である。2.4nm未満であると、引張弾性率が不足することがあり、3.2nmを越えると圧縮強度が不足することがある。
【0015】
さらに、本発明によって得られる炭素繊維は、後述する、ASTM D695による圧縮強度が1450MPa以上、好ましくは1500MPa以上である炭素繊維である。1450MPa未満であると、例えばゴルフシャフト等、構造材に高レベルの耐圧縮特性が要求される用途では、適用できないことがある。なお、圧縮強度は、2000MPaあれば、本発明の効果を奏するに当たり、充分であることが多い。
【0016】
本発明において、上述したような炭素繊維は、例えば、以下に示すような、本発明の炭素繊維の製造方法によって製造することができる。
【0017】
本発明の炭素繊維の前駆体である、アクリル系繊維の原料としては、通常、アクリロニトリル90重量%以上、アクリロニトリルと共重合しうる共重合体が10重量%以下で構成されるアクリル系共重合体が使用できる。
【0018】
前記共重合体としては、アクリル酸、メタアクリル酸、イタコン酸、およびそれらのメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、アルカリ金属塩、アンモニウム塩、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、及びそれらのアルカリ金属塩からなる群から選ばれる少なくとも1種が使用できる。
【0019】
アクリル系重合体は、乳化重合、塊状重合、溶液重合など従来公知の重合法により合成される。また、溶媒としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、硝酸、ロダンソ−ダ水溶液などが用いられ、紡糸原液が調整される。
【0020】
アクリル系重合体は、得られる炭素繊維の物性をより高める観点から、その極限粘度[η]が1以上、好ましくは1.35以上、より好ましくは1.7以上であるのが良い。ここで極限粘度[η]の上限値としては、紡糸を安定させる観点から、5以下とするのが良い。
【0021】
アクリル系繊維は、前記した紡糸原液を使用し、口金から、2〜10mmのエア−ギャップを通過させて凝固浴中に吐出して糸条となし、凝固浴中に設置された折返ガイドを含む複数の糸道ガイドを介して、糸条を凝固浴から引き取る乾湿式紡糸法で紡糸するのが好ましい。この際、凝固浴液には紡糸原液に用いた溶媒と同種の溶媒を主成分とする水溶液を使用するのが好ましい。ここで、「折返ガイド」とは、凝固浴内に設置された糸道ガイドの内、搬送される糸条の接触角が最大となる糸道ガイドをいう。
【0022】
本発明において、アクリル系繊維の繊度は0.3〜1d、好ましくは0.5〜0.8dであるのが良い。0.3d未満であると、製糸工程で、繊維から発生する粉塵が微細となり環境面の問題が生じることがあり、1dを越えると、後の耐炎化工程、前炭化工程、及び炭化工程で、均一な熱処理が困難となることがある。
【0023】
また、アクリル系繊維のフィラメント数は1、000〜30、000フィラメント、好ましくは3、000〜24、000フィラメントであるのが良い。1、000フィラメント未満では、糸切れが増すことがあり、30、000フィラメントを越えると、耐炎化工程で被処理繊維束中に蓄熱量が増し、燃焼消失することがある。
【0024】
本発明においては、後述する測定法による、単糸伸度変動率(CV)により、繊維を構成する単糸の伸度バラツキを指標化することができる。かかる伸度バラツキは、折返ガイド等糸道ガイドへ糸条の接触が不足する等により、糸条を構成する単糸に架かる張力差により惹起される。
【0025】
本発明では、前記単糸伸度変動率(CV)は、10%以下とすることが必要であり、好ましくは8%以下にするのが良い。10%を越えると、前炭化処理におけるアクリル系繊維の延伸性が低下し、繊維内の伸度の低い単糸が、炭化処理時の延伸に抗し切れず糸切れを生じたり、毛羽が増すことがある。
【0026】
かかる観点から、凝固浴内において、糸条に架かる張力は1.5〜7×10-4N/d(d:デニール)の範囲に規制するのが好ましい。1.5×10-4N/d未満であると、糸条を構成する単糸に架かる張力に差が生じ、繊維の配向性が低下することがある。7×10-4N/dを超えると、折返ガイドとの強い接触により糸条断面が変形したり、折返ガイドに糸条が一時的に強く圧着された後、急激に脱離することにより糸切れが生じることがある。
【0027】
糸条に架かる張力は、糸条を張力計で挟み込み測定できる。張力計としては、例えば、エイコー測器(株)製、型番:HS−4000等が使用できる。
【0028】
本発明において、前記折返ガイドは、糸条が凝固浴に導入されてから、折返ガイドに接触するまでの時間Tを0.5〜5秒の範囲に設置するのが良い。0.5秒未満であると、凝固状態が不十分なまま、糸条が折返ガイドに強く接触するため、糸切れが生じることがある。5秒を越えると、折返ガイドに接触するまでに糸条の凝固が必要以上に進行してしまい、凝固浴内で糸条に架かる張力を適宜調整しても、糸条の配向性が十分に向上しないことがある。
【0029】
凝固浴での処理の後、毛羽の増加を防ぎ、繊維の配向性をより高める観点から、浴中で1.15〜1.5として延伸する。この後、糸条に工程油剤を付与し、乾燥緻密化することもできる。ここで用いる油剤には耐熱性が高く、離型性に優れ、単糸間接着を防止する効果の高いアミノ変性シリコ−ンを主成分とする油剤を用いるのが好ましい。さらにこの後、気体雰囲気中や加熱熱媒中で延伸することもできる。この際、加圧スチ−ムを熱媒として延伸すると、繊維の配向性がさらに高まり好ましい。
【0030】
次に、耐炎化処理、前炭化処理、炭化処理と各処理を経て、炭素繊維が製造される。
【0031】
耐炎化処理では、アクリル系繊維を酸化性雰囲気中、240〜280℃で処理する。200℃未満であると、ニトリル基の閉環反応が進行しないため耐炎化が不充分となることがあり、300℃を越えると耐炎化が完了する以前に繊維が燃焼消失することがある。
【0032】
耐炎化処理時の延伸倍率は、いわゆる配向緩和を抑えるために、0.95〜1.1、好ましくは1〜1.1とするのが良い。1.1を越えると毛羽が増すことがある。
【0033】
耐炎化処理では、通常、被処理繊維の比重が1.25〜1.6g/cm3、好ましくは1.3〜1.5g/cm3になるまで処理される。1.6g/cm3を越えると、得られる炭素繊維の比重が低下し、引張弾性率が不足することがある。
【0034】
耐炎化処理後、前炭化処理する。ここでは、繊維を不活性雰囲気下、温度400〜500℃、昇温速度20〜100℃/分、好ましくは40〜70℃/分で処理する。
【0035】
昇温速度が20℃/分未満であると、糸速を遅くせねばならず、製造コストが上昇することがあり、100℃/分を越えると糸切れが生じることがある。
【0036】
前炭化処理時の延伸倍率は1.1〜1.3とする必要があり、好ましくは1.15〜1.25とするのが良い。1.1未満であると、得られる炭素繊維において、引張弾性率が不足することがあり、1.3を越えると糸切れが生じることがある。
【0037】
前炭化処理後、炭化処理する。ここでは、繊維を不活性雰囲気下、温度1800〜2000℃で処理する。1800℃未満であると、得られる炭素繊維において、引張弾性率が不足することがあり、2000℃を越えると結晶サイズが大きくなり、圧縮強度の向上が不充分となることがある。
【0038】
炭化処理時の延伸倍率は0.95〜1.1、好ましくは0.98〜1.05とするのが良い。0.95未満であると、得られる炭素繊維において、引張弾性率が不足することがあり、1.1を越えると糸切れが生じることがある。
【0039】
【実施例】
以下実施例により、本発明をさらに具体的に説明する。実施例、比較例においては、各物性値は、以下に示す方法により測定した。
<単糸伸度変動率(CV)>
被測定繊維(アクリル系繊維)を、チャック間距離(試長)を25mmとして引張試験機にセットし、引張速度を1mm/分として単糸の伸度を測定する。ここでは、引張試験機として、テンシロン万能型引張試験機、東洋ボールドウイン社製、型番:UTM−111−500を使用する。
【0040】
得られたS−Sカーブ(n=100)より、単糸伸度変動率(CV)を、次式より求める。
【0041】
CV=〔√[[ΣXi2-(ΣXi)2/n]/(n-1)]〕/(ΣXi/n)×100(Xi;単糸の伸度(%)、n;サンプル数)
<引張弾性率>
被測定炭素繊維に、ユニオンカーバイド(株)製、ベークライト(登録商標)ERL−4221を1000g(930重量%)、三フッ化ホウ素モノエチルアミン(BF3・MEA)を30g(3重量%)及びアセトンを40g(4重量%)混合したエポキシ樹脂組成物を含浸させ、次に130℃で、30分間加熱し、硬化させ、樹脂含浸ストランドとする。JIS R7601に示される樹脂含浸ストランド試験法に従い、引張強度と引張弾性率を求める。
<炭素網面の(002)面の結晶サイズLc>
A.測定試料の作製
被測定炭素繊維から、長さ4cmの試験片を切り出し、金型とコロジオン・アルコール溶液を用いて固め、角柱形状とし測定試料とする。
B.測定条件
X線源:CuKα(Niフィルター使用)
出力:40kV、20mA
C.結晶サイズLcの測定
透過法により得られた面指数(002)のピークの半値幅から、次のScherrerの式を用いて計算して求める。
Lc(hkl)=Kλ/β0cosθB
但し、
Lc(hkl):微結晶の(hkl)面に垂直な方向の平均の大きさ
K:1.0,λ:0.15418nm(X線の波長)、β0:(βE 2 −β1 2 1/2
βE:見かけの半値幅(測定値)、β1:1.05×10-2rad
θB:Braggの回折角
<毛羽数>
炭化処理後、単糸が切断された部分が炭素繊維の束から約1cmを越えて露出している部分を毛羽とみなし、繊維長10m当たりの個数を数える。その個数を1m当たりに換算して毛羽数とする。
<圧縮強度>
A.樹脂組成物の調整
次に示す原料樹脂を混合し、30分間攪拌して樹脂組成物を得る。
・ビスフェノールAジグリシジルエーテル樹脂、エピコート1001(油化シェルエポキシ社製、登録商標)、27重量%
・ビスフェノールAジグリシジルエーテル樹脂、エピコート828(油化シェルエポキシ社製、登録商標)、31重量%
・フェノールノボラックポリグリシジルエーテル樹脂、エピクロン−N740(大日本インキ化学工業社製、登録商標)、31重量%
・ポリビニルホルマール樹脂、ビニレックスK(チッソ社製、登録商標)、3重量%
・ジシアンジアミド、DICY7(大日本インキ化学工業社製、登録商標)、41重量%
・3,4−ジクロロフェニル−1,1−ジメチルウレア、DCMU99(保土谷化学社製、硬化剤)、4重量%
次に、前記樹脂組成物をシリコン塗布ペーパ上に離型紙にコーティングして得た樹脂フィルムを、円周約2.7mの、60〜70℃に温調した鋼製ドラムに巻き付ける。
【0042】
この上に、炭素繊維を、クリールから巻き出し、トラバースを介して配列する。さらにその上から、前記樹脂フィルムで再度覆い、ロールで回転しながら、加圧し樹脂を繊維内に含浸せしめ、幅300mm、長さ2.7mの一方向プリプレグを作成する。ここで、プリプレグの繊維目付はドラムの回転数とトラバースの送り速度を変化させ、190g/m2に調整する。また、プリプレグの樹脂量は約35重量%とする。
【0043】
このプリプレグを繊維方向を引き揃えて積層し、温度130℃、圧力0.3MPaで、2時間硬化させ、厚さが1mmの積層板を成形する。
【0044】
次に、この積層板に、試験片の被破壊部分以外を補強する板を接着層の厚さが均一となるよう接着剤等で固着させ、一方向積層板を作製する。
【0045】
この積層板から、被破壊部分が中心になるように、厚さ約1±0.1mm、幅12.7±0.13mm、長さ80±0.013mm、ゲージ部の長さ5±0.13mmの試験片を切り出す。
【0046】
この試験片より、ASTM D695に示される圧縮治具を使用し、歪み速度1.27mm/分の条件で測定し、繊維体積分率60%に換算して積層板の圧縮強度を得る。
(実施例1〜4、比較例1〜4)
アクリロニトリル99.5モル%、イタコン酸0.5モル%からなる極限粘度[η]が1.80のアクリル共重合体を20重量%含むジメチルスルホキシド(以下、DMSOと略記)の溶液を調整し、親水性を向上させるため、pH8.0までアンモニアガスを吹き込んで紡糸原液を調整した。
【0047】
次に、この紡糸原液を45℃に温調し、孔数3000の口金から、4mmのエア−ギャップを通過させて、DMSOと水とからなる凝固浴中に吐出し、糸条張力を5×10-4N/dに規制しつつ、折返ガイドで方向を転換し、引き取りローラで搬送速度を6m/分として水切りガイドを通過させながら、凝固浴から引き取り、単糸総数3000本の凝固糸条を得た。ここで、折返ガイドには、走行する糸条と接触する部分において、表面粗さRaが0.1、ビッカース硬度が2000のポアフリー(登録商標、日本セラテックス社製)を素材として用いた。
【0048】
次いで、糸条を水洗後、全4槽からなる浴延伸工程に導き、第4槽の温度が90℃の熱水中で倍率3で延伸した。
【0049】
さらに、糸条をアミノ変性シリコ−ンを含む、油剤濃度が2重量%のシリコ−ン系油剤浴中を通過させ、油剤を糸条重量に対して0.7重量%付与した。
【0050】
次に、150℃に温調した加熱ロ−ラで乾燥緻密化し、加圧スチ−ム延伸装置で倍率4で延伸した後、180℃に温調した加熱ロ−ラで乾燥処理し、単糸繊度0.73d、総繊度2190dのアクリル系繊維を得た。
【0051】
各実施例、比較例の製造条件、得られたアクリル系繊維の単糸について、破断伸度(n=100の平均値)とその単糸伸度変動率(CV)をそれぞれ表1に示す。
【0052】
このアクリル系繊維4本を、耐炎化処理前に合糸して、総繊度8760dの繊維とし、空気雰囲気中、温度240〜280℃、倍率1で延伸しながら耐炎化処理し、耐炎化繊維とした。
【0053】
この耐炎化繊維を、窒素雰囲気中、最高雰囲気温度が800℃の前炭化炉で、温度400〜500℃、昇温速度を100℃/分、倍率を各実施例、比較例で変化させて延伸しながら前炭化処理し、さらに窒素雰囲気中、温度1800〜2200℃、倍率0.98で延伸しながら炭化処理して、炭素繊維を得た。
【0054】
さらに、得られた炭素繊維に40ク−ロン/gの電荷を与え、硫酸水溶液中で陽極酸化処理を施した。
【0055】
各実施例、比較例の製造条件、得られた炭素繊維について、引張弾性率、結晶サイズ、毛羽数、複合材料の圧縮強度をそれぞれ表1に示す。
(比較例5、6)
凝固浴内の糸条張力を1.25×10-4N/d、糸条を凝固浴から引き取る速度を15m/分とした以外は、実施例3と同条件で炭素繊維を得た。
【0056】
各比較例の製造条件、得られたアクリル系繊維の単糸について、破断伸度(n=100の平均値)とその単糸伸度変動率(CV)を、得られた炭素繊維について、引張弾性率、結晶サイズ、毛羽数、複合材料の圧縮強度をそれぞれ表1に示す。
(比較例7)
凝固浴内の糸条張力を7.9×10-4N/d、糸条を凝固浴から引き取る速度を15m/分とした以外は、実施例3と同条件で炭素繊維を得た。
【0057】
本例の製造条件、得られたアクリル系繊維の単糸について、破断伸度(n=100の平均値)とその単糸伸度変動率(CV)を、得られた炭素繊維について、引張弾性率、結晶サイズ、毛羽数、複合材料の圧縮強度をそれぞれ表1に示す。
【0058】
【表1】

Figure 0004238436
【0059】
【発明の効果】
本発明によれば、高レベルの引張弾性率を有し、得られる複合材料に高レベルの圧縮強度を発現させる炭素繊維を安定に製造する方法が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a carbon textiles. Specifically, a method of manufacturing a carbon-containing fibers that have a high compressive strength contributes to significant improvement in performance of the composite material.
[0002]
[Prior art]
Since carbon fiber is excellent in specific strength and specific elastic modulus, its use is expanding mainly in sports and leisure fields such as golf shafts and fishing rods and in the aerospace field. Along with this, further improvement in quality is desired, but although the tensile strength and tensile modulus of carbon fiber are improving, the compression strength is insufficiently improved and cannot be applied depending on the intended use. There is.
[0003]
When carbon fiber is applied to a structural material, the thickness of the structural material is often reduced in order to achieve further weight reduction while reflecting a high level of tensile elastic modulus. When the compressive strength is insufficient, the compressive strength of the entire structural material is lowered.
[0004]
In Japanese Patent Laid-Open No. 63-212326, when carbonizing acrylic fiber, the temperature is set to 2200 ° C. or higher, the fiber is actively stretched to suppress the relaxation of orientation, and high tensile elastic modulus, high compression Techniques for obtaining strong carbon fibers are disclosed. However, since the heat treatment temperature is high, the crystal size of the carbon fiber is increased, and the compressive strength is not improved as expected.
[0005]
Japanese Patent Laid-Open No. 4-19219 discloses a technique for amorphizing carbon fibers by electron beam irradiation, and Japanese Patent Laid-Open No. 2-259118 discloses a technique for etching a carbon fiber surface layer. . According to these technologies, the crystal size of the carbon fiber surface layer is reduced, but the maximum temperature of carbonization treatment is 2000 ° C. or higher, so the crystal size of the carbon fiber as a whole is not reduced, and the compression strength is not sufficiently improved. It was.
[0006]
In order to achieve a high tensile elastic modulus in the carbon fiber without impairing the compressive strength, the carbonization treatment must be performed at a temperature of 1800 to 2000 ° C. and actively stretched at a magnification of 1.1 or more. According to such a method, there is a tendency that a large amount of yarn breakage or fluff is generated in the obtained carbon fiber.
[0007]
In addition, according to the dry and wet spinning method, which is a spinning method that is usually employed in the production of carbon fiber, when the yarn in which coagulation is in progress in the coagulation bath strongly contacts the yarn path guide and the like, There is a difference in tension over the single yarns that make up the yarn, and if such acrylic fiber is carbonized while drawing, the single yarn with low elongation cannot be resisted by the drawing tension in the fiber bundle, and the yarn breakage may occur. As a result, the quality of the obtained carbon fiber was greatly reduced.
[0008]
As described above, various methods such as adjusting the draw ratio at the time of heat treatment such as spinning and carbonization have been studied for improving the properties of carbon fibers. However, carbon fibers having a high tensile elastic modulus and a high compressive strength that can be applied without problems to applications where high strength characteristics are not sufficiently improved and which require high strength characteristics have not been obtained.
[0009]
[Problems to be solved by the invention]
The present invention, which has a tensile modulus of high-level, carbon-containing fibers that have a compressive strength high levels of expressing high compressive strength to the composite material obtained by that St. provide a process for stably producing is there.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. That is, in the coagulation bath, the tension applied to the yarn is regulated to a range of 1.5 to 7 × 10 −4 N / d (d: denier), and after treatment in the coagulation bath, 1 in the bath. .Acrylic fiber having a single yarn elongation fluctuation rate of 10% or less drawn as 15 to 1.5 is used as a precursor fiber, flameproofed at a temperature of 240 to 280 ° C. in an oxidizing atmosphere, and subsequently inactive A carbon fiber production method in which pre-carbonization is performed at a temperature of 400 to 500 ° C. and a temperature increase rate of 20 to 100 ° C./min in an atmosphere, and carbonization is further performed at a temperature of 1800 to 2000 ° C. in an inert atmosphere. in the carbonization treatment, the crystal size of the stretching ratio processing to that tensile elastic modulus as 1.1 to 1.3 is 340~450GPa, carbon net plane to be measured from the wide-angle X-ray diffraction (002) plane of the acrylic fiber Lc 2.4-3.2 nm, according to ASTM D695 This is a method for producing an acrylic carbon fiber having a compressive strength of 1450 to 2000 MPa.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies, the inventors of the present invention have made acrylic fiber a precursor fiber, subjected to flame resistance and pre-carbonization in an oxidizing atmosphere, and further carbonized at a temperature of 1800 to 2000 ° C. in an inert atmosphere. In the method for producing the obtained carbon fiber, the single yarn elongation variation rate of the acrylic fiber is set to a specific value or less, and the draw ratio of the acrylic fiber at the time of the pre-carbonization treatment is set within a specific range. It has been found that a carbon fiber having both a tensile modulus and a compressive strength can be obtained easily and stably and solve the above-mentioned problems all at once.
[0013]
The carbon fiber obtained by the present invention is a carbon fiber having a tensile elastic modulus of 340 to 450 GPa, preferably 360 to 420 GPa. Below 340 GPa, the lack of compressive strength does not become apparent, but the tensile modulus may be insufficient depending on the intended application. On the other hand, if it exceeds 450 GPa, the crystal size Lc of the carbon network surface increases, and the compressive strength may be insufficient.
[0014]
The carbon fiber obtained by the present invention is a carbon fiber having a (002) plane crystal size Lc of 2.4 to 3.2 nm as measured by wide-angle X-ray diffraction. If it is less than 2.4 nm, the tensile elastic modulus may be insufficient, and if it exceeds 3.2 nm, the compressive strength may be insufficient.
[0015]
Furthermore, the carbon fiber obtained by the present invention is a carbon fiber having a compressive strength according to ASTM D695, which will be described later, of 1450 MPa or more, preferably 1500 MPa or more. If it is less than 1450 MPa, it may not be applicable in applications where a structural material requires a high level of compression resistance, such as a golf shaft. A compressive strength of 2000 MPa is often sufficient for achieving the effects of the present invention.
[0016]
In the present invention, the carbon fiber as described above can be produced, for example, by the carbon fiber production method of the present invention as described below.
[0017]
The acrylic fiber raw material that is the precursor of the carbon fiber of the present invention is usually an acrylic copolymer composed of 90% by weight or more of acrylonitrile and 10% by weight or less of a copolymer copolymerizable with acrylonitrile. Can be used.
[0018]
Examples of the copolymer include acrylic acid, methacrylic acid, itaconic acid, and methyl ester, ethyl ester, propyl ester, butyl ester, alkali metal salt, ammonium salt, allyl sulfonic acid, methallyl sulfonic acid, and styrene sulfone. At least one selected from the group consisting of acids and alkali metal salts thereof can be used.
[0019]
The acrylic polymer is synthesized by a conventionally known polymerization method such as emulsion polymerization, bulk polymerization, or solution polymerization. Further, as the solvent, dimethylacetamide, dimethylsulfoxide, dimethylformamide, nitric acid, rhodasoda aqueous solution or the like is used, and the spinning dope is prepared.
[0020]
The acrylic polymer has an intrinsic viscosity [η] of 1 or more, preferably 1.35 or more, more preferably 1.7 or more, from the viewpoint of further improving the physical properties of the obtained carbon fiber. Here, the upper limit of the intrinsic viscosity [η] is preferably 5 or less from the viewpoint of stabilizing spinning.
[0021]
The acrylic fiber uses the above-mentioned spinning solution, passes through an air gap of 2 to 10 mm from the die, and is discharged into the coagulation bath to form a thread, and includes a folding guide installed in the coagulation bath. It is preferable that the yarn is spun by a dry and wet spinning method in which the yarn is drawn from the coagulation bath through a plurality of yarn path guides. At this time, it is preferable to use an aqueous solution containing a solvent of the same type as the solvent used for the spinning dope as a main component for the coagulation bath. Here, the “folding guide” refers to a yarn path guide in which the contact angle of the conveyed yarn is the maximum among the yarn path guides installed in the coagulation bath.
[0022]
In the present invention, the fineness of the acrylic fiber is 0.3 to 1d, preferably 0.5 to 0.8d. If it is less than 0.3d, dust generated from the fibers may become fine in the yarn production process, resulting in environmental problems. If it exceeds 1d, in the subsequent flameproofing process, pre-carbonization process, and carbonization process, Uniform heat treatment may be difficult.
[0023]
The number of filaments of the acrylic fiber is 1,000 to 30,000 filaments, preferably 3,000 to 24,000 filaments. If it is less than 1,000 filaments, thread breakage may increase. If it exceeds 30,000 filaments, the amount of heat stored in the fiber bundle to be treated may increase in the flameproofing process, and combustion may disappear.
[0024]
In the present invention, the variation in the elongation of the single yarn constituting the fiber can be indexed by the single yarn elongation fluctuation rate (CV) by the measurement method described later. Such variation in elongation is caused by a difference in tension applied to the single yarn constituting the yarn due to insufficient contact of the yarn with the yarn path guide such as a folding guide.
[0025]
In the present invention, the single yarn elongation fluctuation rate (CV) needs to be 10% or less, preferably 8% or less. If it exceeds 10%, the stretchability of the acrylic fiber in the pre-carbonization treatment will decrease, and the single yarn with low elongation in the fiber will not resist the stretch during the carbonization treatment, resulting in yarn breakage or increased fluff Sometimes.
[0026]
From this point of view, it is preferable to regulate the tension applied to the yarn in the coagulation bath in the range of 1.5 to 7 × 10 −4 N / d (d: denier). If it is less than 1.5 × 10 −4 N / d, there is a difference in tension applied to the single yarn constituting the yarn, and the fiber orientation may be lowered. If it exceeds 7 × 10 -4 N / d, the yarn cross-section may be deformed due to strong contact with the folding guide, or the yarn may be temporarily detached from the folding guide after being temporarily strongly pressed against the folding guide. Cutting may occur.
[0027]
The tension applied to the yarn can be measured by pinching the yarn with a tension meter. As the tensiometer, for example, model number: HS-4000 manufactured by Eiko Sokki Co., Ltd. can be used.
[0028]
In the present invention, it is preferable that the folding guide is provided with a time T from 0.5 to 5 seconds from when the yarn is introduced into the coagulation bath until it comes into contact with the folding guide. If the time is shorter than 0.5 seconds, the yarn may come into strong contact with the turn-back guide while the solidification state is insufficient, so that yarn breakage may occur. If it exceeds 5 seconds, the yarn will solidify more than necessary until it comes into contact with the folding guide. Even if the tension applied to the yarn in the coagulation bath is adjusted appropriately, the orientation of the yarn is sufficient. May not improve.
[0029]
After the treatment in the coagulation bath, it is stretched in the bath as 1.15 to 1.5 from the viewpoint of preventing an increase in fluff and further enhancing the fiber orientation. Thereafter, a process oil can be applied to the yarn to dry and densify it. As the oil agent used here, it is preferable to use an oil agent mainly composed of an amino-modified silicone having high heat resistance, excellent releasability, and high effect of preventing adhesion between single yarns. Furthermore, it can also extend | stretch in a gas atmosphere and a heating heat medium after this. At this time, it is preferable to stretch the pressure steam as a heat medium because the orientation of the fibers is further increased.
[0030]
Next, a carbon fiber is manufactured through a flameproofing process, a pre-carbonization process, and a carbonization process.
[0031]
In the flameproofing treatment, acrylic fibers are treated at 240 to 280 ° C. in an oxidizing atmosphere. When the temperature is lower than 200 ° C., the ring closure reaction of the nitrile group does not proceed, so that the flame resistance may be insufficient. When the temperature exceeds 300 ° C., the fiber may burn and disappear before the completion of the flame resistance.
[0032]
The draw ratio during the flameproofing treatment is 0.95 to 1.1, preferably 1 to 1.1 in order to suppress so-called orientation relaxation. If it exceeds 1.1, fluff may increase.
[0033]
In the flameproofing treatment, treatment is usually performed until the specific gravity of the fiber to be treated is 1.25 to 1.6 g / cm 3 , preferably 1.3 to 1.5 g / cm 3 . When it exceeds 1.6 g / cm 3 , the specific gravity of the obtained carbon fiber is lowered, and the tensile modulus may be insufficient.
[0034]
After the flameproofing treatment, it is pre-carbonized. Here, the fiber is treated in an inert atmosphere at a temperature of 400 to 500 ° C. and a heating rate of 20 to 100 ° C./min, preferably 40 to 70 ° C./min.
[0035]
If the rate of temperature increase is less than 20 ° C./min, the yarn speed must be slowed, and the production cost may increase, and if it exceeds 100 ° C./min, yarn breakage may occur.
[0036]
The draw ratio at the time of the pre-carbonization needs to be 1.1 to 1.3, preferably 1.15 to 1.25. If it is less than 1.1, the resulting carbon fiber may have insufficient tensile elastic modulus, and if it exceeds 1.3, thread breakage may occur.
[0037]
After pre-carbonization, carbonization is performed. Here, the fiber is treated at a temperature of 1800 to 2000 ° C. in an inert atmosphere. If the temperature is less than 1800 ° C., the resulting carbon fiber may have insufficient tensile elastic modulus, and if it exceeds 2000 ° C., the crystal size may increase and the compression strength may not be sufficiently improved.
[0038]
The draw ratio during carbonization is 0.95 to 1.1, preferably 0.98 to 1.05. If it is less than 0.95, the resulting carbon fiber may have insufficient tensile elastic modulus, and if it exceeds 1.1, yarn breakage may occur.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples and comparative examples, each physical property value was measured by the following method.
<Single yarn elongation fluctuation rate (CV)>
The fiber to be measured (acrylic fiber) is set in a tensile tester with a chuck distance (test length) of 25 mm, and the elongation of the single yarn is measured with a tensile speed of 1 mm / min. Here, Tensilon universal type tensile tester, manufactured by Toyo Baldwin Co., Ltd., model number: UTM-111-500 is used as the tensile tester.
[0040]
From the obtained SS curve (n = 100), the single yarn elongation fluctuation rate (CV) is obtained from the following equation.
[0041]
CV = [√ [[ΣXi 2- (ΣXi) 2 / n] / (n-1)]] / (ΣXi / n) × 100 (Xi: single yarn elongation (%), n: number of samples)
<Tensile modulus>
Carbon fiber to be measured, 1000 g (930 wt%) of Bakelite (registered trademark) ERL-4221, 30 g (3 wt%) of boron trifluoride monoethylamine (BF 3 · MEA), and acetone, manufactured by Union Carbide Corporation Is impregnated with 40 g (4 wt%) of an epoxy resin composition, and then heated at 130 ° C. for 30 minutes to be cured to obtain a resin-impregnated strand. According to the resin impregnated strand test method shown in JIS R7601, the tensile strength and the tensile modulus are obtained.
<Crystal size Lc of (002) plane of carbon network plane>
A. Preparation of measurement sample A test piece having a length of 4 cm is cut out from the carbon fiber to be measured, and is solidified using a mold and a collodion / alcohol solution to obtain a prismatic shape as a measurement sample.
B. Measurement conditions X-ray source: CuKα (using Ni filter)
Output: 40kV, 20mA
C. Measurement of crystal size Lc The crystal size Lc is calculated from the half width of the peak of the plane index (002) obtained by the transmission method using the following Scherrer equation.
Lc (hkl) = Kλ / β 0 cos θ B
However,
Lc (hkl): average size in a direction perpendicular to the (hkl) plane of the microcrystal K: 1.0, λ: 0.15418 nm (wavelength of X-ray), β 0 : (β E 2 1 2 ) 1/2
β E : Apparent half width (measured value), β 1 : 1.05 × 10 −2 rad
θ B : Bragg diffraction angle <number of fuzz>
After carbonization, the part where the single yarn is cut and exposed beyond about 1 cm from the bundle of carbon fibers is regarded as fluff, and the number per 10 m of fiber length is counted. And fluff the number of the number and translated into per 1m.
<Compressive strength>
A. Preparation of Resin Composition The following raw material resins are mixed and stirred for 30 minutes to obtain a resin composition.
Bisphenol A diglycidyl ether resin, Epicoat 1001 (manufactured by Yuka Shell Epoxy, registered trademark), 27% by weight
Bisphenol A diglycidyl ether resin, Epicoat 828 (manufactured by Yuka Shell Epoxy, registered trademark), 31% by weight
Phenol novolac polyglycidyl ether resin, Epicron-N740 (manufactured by Dainippon Ink and Chemicals, registered trademark), 31% by weight
-Polyvinyl formal resin, Vinylex K (manufactured by Chisso Corporation, registered trademark), 3% by weight
Dicyandiamide, DICY7 (Dainippon Ink & Chemicals, registered trademark), 41% by weight
3,4-dichlorophenyl-1,1-dimethylurea, DCMU99 (manufactured by Hodogaya Chemical Co., Ltd., curing agent), 4% by weight
Next, a resin film obtained by coating the release composition on the silicon-coated paper with the resin composition is wound around a steel drum having a circumference of about 2.7 m and temperature-controlled at 60 to 70 ° C.
[0042]
On top of this, the carbon fibers are unwound from the creel and arranged via a traverse. Further, it is covered again with the resin film, and while being rotated with a roll, it is pressurized and impregnated with resin in a fiber, thereby producing a unidirectional prepreg having a width of 300 mm and a length of 2.7 m. Here, the fiber basis weight of the prepreg is adjusted to 190 g / m 2 by changing the rotational speed of the drum and the traverse feed speed. The resin amount of the prepreg is about 35% by weight.
[0043]
The prepregs are laminated with their fiber directions aligned, and cured at a temperature of 130 ° C. and a pressure of 0.3 MPa for 2 hours to form a laminate having a thickness of 1 mm.
[0044]
Next, a plate that reinforces the part other than the part to be destroyed of the test piece is fixed to the laminated plate with an adhesive or the like so that the thickness of the adhesive layer is uniform, thereby producing a unidirectional laminated plate.
[0045]
From this laminated plate, the thickness is about 1 ± 0.1 mm, the width is 12.7 ± 0.13 mm, the length is 80 ± 0.013 mm, and the length of the gauge portion is 5 ± 0. Cut out a 13 mm test piece.
[0046]
From this test piece, a compression jig shown in ASTM D695 is used and measured under the condition of a strain rate of 1.27 mm / min, and converted to a fiber volume fraction of 60% to obtain the compression strength of the laminate.
(Examples 1-4, Comparative Examples 1-4)
Preparing a solution of dimethyl sulfoxide (hereinafter abbreviated as DMSO) containing 20% by weight of an acrylic copolymer having an intrinsic viscosity [η] of 1.80 consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid, In order to improve hydrophilicity, the spinning dope was adjusted by blowing ammonia gas to pH 8.0.
[0047]
Next, this spinning dope is temperature-controlled at 45 ° C., passed through a 4 mm air gap through a die having a pore number of 3000, and discharged into a coagulation bath composed of DMSO and water, and the yarn tension is set to 5 ×. While regulating to 10 -4 N / d, the direction is changed by a folding guide, and with a take-up roller, the conveyance speed is 6 m / min. Got. Here, a pore-free (registered trademark, manufactured by Nippon Selatex Co., Ltd.) having a surface roughness Ra of 0.1 and a Vickers hardness of 2000 was used as a material for the folding guide at a portion in contact with the traveling yarn.
[0048]
Next, the yarn was washed with water and then led to a bath stretching process consisting of all four tanks, and the fourth tank was stretched at a magnification of 3 in hot water at 90 ° C.
[0049]
Further, the yarn was passed through a silicone-based oil bath containing an amino-modified silicone and having an oil concentration of 2% by weight, so that the oil was applied in an amount of 0.7% by weight based on the yarn weight.
[0050]
Next, it is dried and densified with a heating roller adjusted to 150 ° C., stretched at a magnification of 4 with a pressure steam drawing apparatus, then dried with a heating roller adjusted to 180 ° C., and single yarn An acrylic fiber having a fineness of 0.73d and a total fineness of 2190d was obtained.
[0051]
Table 1 shows the breaking conditions (average value of n = 100) and the single yarn elongation fluctuation rate (CV) for the production conditions of each Example and Comparative Example and the obtained single yarn of acrylic fiber.
[0052]
The four acrylic fibers were combined before the flameproofing treatment to obtain a fiber having a total fineness of 8760d, and subjected to a flameproofing treatment while stretching at a temperature of 240 to 280 ° C. and a magnification of 1 in an air atmosphere. did.
[0053]
This flame-resistant fiber was stretched in a nitrogen atmosphere in a pre-carbonization furnace having a maximum atmospheric temperature of 800 ° C., with a temperature of 400 to 500 ° C., a temperature increase rate of 100 ° C./min, and a magnification changed in each example and comparative example. The carbon fiber was pre-carbonized and further carbonized while being stretched at a temperature of 1800 to 2200 ° C. and a magnification of 0.98 in a nitrogen atmosphere to obtain carbon fibers.
[0054]
Furthermore, the obtained carbon fiber was given a charge of 40 cron / g, and anodized in an aqueous sulfuric acid solution.
[0055]
Table 1 shows the tensile modulus, the crystal size, the number of fluffs, and the compressive strength of the composite material for the production conditions of the examples and comparative examples and the obtained carbon fibers.
(Comparative Examples 5 and 6)
Carbon fibers were obtained under the same conditions as in Example 3 except that the yarn tension in the coagulation bath was 1.25 × 10 −4 N / d and the speed at which the yarn was taken out from the coagulation bath was 15 m / min.
[0056]
The production conditions of each comparative example, the single yarn of the obtained acrylic fiber, the breaking elongation (average value of n = 100) and the single yarn elongation fluctuation rate (CV), the tensile strength of the obtained carbon fiber Table 1 shows the elastic modulus, crystal size, number of fluff, and compressive strength of the composite material.
(Comparative Example 7)
Carbon fibers were obtained under the same conditions as in Example 3 except that the yarn tension in the coagulation bath was 7.9 × 10 −4 N / d and the speed at which the yarn was taken out from the coagulation bath was 15 m / min.
[0057]
The production conditions of this example, the single yarn of the obtained acrylic fiber, the breaking elongation (average value of n = 100) and the single yarn elongation fluctuation rate (CV), the tensile elasticity of the obtained carbon fiber Table 1 shows the ratio, crystal size, number of fluff, and compressive strength of the composite material.
[0058]
[Table 1]
Figure 0004238436
[0059]
【The invention's effect】
According to the present invention has a tensile modulus of high level, a method for stably producing a high-level-carbon fiber Ru expressing the compressive strength of the composite material to be obtained can be provided.

Claims (1)

凝固浴内において、糸条に架かる張力を、1.5〜7×10 −4 N/d(d:デニール)の範囲に規制し、前記凝固浴での処理の後、浴中で1.15〜1.5として延伸した単糸伸度変動率が10%以下であるアクリル系繊維を前駆体繊維とし、酸化性雰囲気下、温度240〜280℃で耐炎化処理し、続いて不活性雰囲気下、温度400〜500℃、昇温速度20〜100℃/分で前炭化処理し、さらに不活性雰囲気下、温度1800〜2000℃で炭化処理する炭素繊維の製造方法であって、前記前炭化処理において、アクリル系繊維の延伸倍率を1.1〜1.3として処理する引張弾性率が340〜450GPa、広角X線回折より測定される炭素網面の(002)面の結晶サイズLcが2.4〜3.2nm、ASTM D695による圧縮強度が1450〜2000MPaであるアクリル系炭素繊維の製造方法。 In the coagulation bath, the tension applied to the yarn is regulated to a range of 1.5 to 7 × 10 −4 N / d (d: denier), and after the treatment in the coagulation bath, 1.15 in the bath. Acrylic fiber having a single yarn elongation fluctuation rate of 10% or less drawn as ˜1.5 is used as a precursor fiber, flameproofed at a temperature of 240 to 280 ° C. in an oxidizing atmosphere, and subsequently in an inert atmosphere. , A carbon fiber manufacturing method in which pre-carbonization is performed at a temperature of 400 to 500 ° C. and a heating rate of 20 to 100 ° C./min, and carbonization is further performed at a temperature of 1800 to 2000 ° C. in an inert atmosphere. in draw ratio processing you that tensile elastic modulus as 1.1 to 1.3 for acrylic fibers 340~450GPa, the crystal size Lc of (002) plane of the hexagonal carbon layer measured from wide angle X-ray diffraction 2.4-3.2 nm, compression strength according to ASTM D695 A method for producing an acrylic carbon fiber having a degree of 1450 to 2000 MPa.
JP30229099A 1999-10-25 1999-10-25 Carbon fiber manufacturing method Expired - Fee Related JP4238436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30229099A JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30229099A JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Publications (3)

Publication Number Publication Date
JP2001131833A JP2001131833A (en) 2001-05-15
JP2001131833A5 JP2001131833A5 (en) 2006-04-13
JP4238436B2 true JP4238436B2 (en) 2009-03-18

Family

ID=17907222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30229099A Expired - Fee Related JP4238436B2 (en) 1999-10-25 1999-10-25 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4238436B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036182B2 (en) * 2005-12-01 2012-09-26 東邦テナックス株式会社 Carbon fiber, precursor and method for producing carbon fiber
KR101335140B1 (en) * 2005-12-13 2013-12-03 도레이 카부시키가이샤 Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
CN101910480B (en) 2007-12-30 2012-02-15 东邦特耐克丝株式会社 Processes for producing flameproof fiber and carbon fiber
US7638110B1 (en) 2008-07-02 2009-12-29 Toho Tenax Co., Ltd. Carbon fiber

Also Published As

Publication number Publication date
JP2001131833A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP4957251B2 (en) Carbon fiber, method for producing polyacrylonitrile-based precursor fiber for carbon fiber production, and method for producing carbon fiber
US8822029B2 (en) Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
JP4360233B2 (en) Golf shaft
JP2005256211A5 (en)
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JPH11217734A (en) Carbon fiber and its production
JP2003073932A (en) Carbon fiber
JP2006348462A (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP7388193B2 (en) Carbon fiber bundles and their manufacturing methods, prepregs and carbon fiber reinforced composite materials
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
JP4238436B2 (en) Carbon fiber manufacturing method
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2002054031A (en) Carbon fiber and method for producing the same
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
JP2007092185A (en) Polyacrylonitrile polymer for carbon fiber precursor fiber
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
RU2784511C2 (en) Carbon fiber bundle, its production method, prepreg and composite material reinforced with carbon fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
KR102197333B1 (en) Polyacrylonitrile-based STABILIZED FIBER, CARBON FIBER, AND PREPARATION METHOD THEREOF

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees