JP5862636B2 - 車両用制駆動力制御装置 - Google Patents

車両用制駆動力制御装置 Download PDF

Info

Publication number
JP5862636B2
JP5862636B2 JP2013215341A JP2013215341A JP5862636B2 JP 5862636 B2 JP5862636 B2 JP 5862636B2 JP 2013215341 A JP2013215341 A JP 2013215341A JP 2013215341 A JP2013215341 A JP 2013215341A JP 5862636 B2 JP5862636 B2 JP 5862636B2
Authority
JP
Japan
Prior art keywords
driving force
braking
vehicle
wheel
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215341A
Other languages
English (en)
Other versions
JP2015080323A (ja
Inventor
中津 慎利
慎利 中津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013215341A priority Critical patent/JP5862636B2/ja
Priority to US14/514,940 priority patent/US9233689B2/en
Priority to DE201410220869 priority patent/DE102014220869A1/de
Priority to CN201410549368.3A priority patent/CN104554265B/zh
Publication of JP2015080323A publication Critical patent/JP2015080323A/ja
Application granted granted Critical
Publication of JP5862636B2 publication Critical patent/JP5862636B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0076Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/192Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes electric brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • B60W2030/043Control of vehicle driving stability related to roll-over prevention about the roll axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、車両の前後左右の4輪の駆動力と制動力とを独立して制御する車両用制駆動力制御装置に関する。
従来から、車両の4輪の駆動力と制動力と(両者をあわせて制駆動力と呼ぶ)を独立して制御する車両用制駆動力制御装置が知られている。例えば、電気自動車の一形態として、車輪のホイール内部もしくはその近傍にモータを配置し、このモータにより車輪を直接駆動するインホイールモータ方式の車両においては、車輪ごとに設けたモータを独立して駆動制御することができる。インホイールモータ方式の車両においては、各モータを個別に力行制御または回生制御することにより、各車輪に付与する駆動トルクまたは制動トルクを個別に制御して、車両走行および車両運動を制御することができる。例えば、特許文献1に提案された車両用走行制御装置においては、車両の旋回時のヨー運動を制御するとともに、ヨー運動を制御する結果として車両のサスペンション特性に応じて生じるロール挙動を抑制するように各インホイールモータの駆動力を制御している。
特開2009−143310号公報
しかしながら、車輪の制駆動力を制御して車両運動を制御する場合、制駆動力が前輪側あるいは後輪側に片寄ってしまい、特定の車輪が他の車輪に比べて早く出力限界に達してしまうという問題がある。以下、この理由について説明する。
各車輪は、サスペンションリンク機構を介して車体に連結されている。一般に、図3に示すように、前輪10fを車体Bに連結するサスペンションリンク機構の瞬間回転中心Cfは、前輪10fよりも後方かつ上方に位置し、後輪10rを車体Bに連結するサスペンションリンク機構の瞬間回転中心Crは、後輪10rよりも前方かつ上方に位置する。そのため、前輪10fに駆動トルクが付与されると、前輪10fの接地点に車両の進行方向に関して前向きの力Ff1が作用し、この力Ff1によってサスペンションリンク機構を介して車体Bを下向きに付勢する上下力Fzf1(サスペンションリンク機構に働く鉛直下向きの分力)が前輪10fの接地点に発生する。従って、前輪10fを駆動することにより車体Bを沈ませる方向の力が作用する。逆に、前輪10fに制動トルクが付与されると、前輪10fの接地点に車両の進行方向に関して後ろ向きの力Ff2が作用し、この力Ff2によってサスペンションリンク機構を介して車体Bを上向きに付勢する上下力Fzf2(サスペンションリンク機構に働く鉛直上向きの分力)が前輪10fの接地点に発生する。従って、前輪10fを制動することにより車体Bを浮き上がらせる方向の力が作用する。
一方、後輪10rに関しては、上下力の発生方向が前輪10fと反対方向となる。つまり、後輪10rに駆動トルクが付与されると、後輪10rの接地点に車両の進行方向に関して前向きの力Fr1が作用し、この力Fr1によってサスペンションリンク機構を介して車体Bを上向きに付勢する上下力Fzr1(サスペンションリンク機構に働く鉛直上向きの分力)が後輪10rの接地点に発生する。従って、後輪10rを駆動することにより車体Bを浮き上がらせる方向の力が作用する。逆に、後輪10rに制動トルクが付与されると、後輪10rの接地点に車両の進行方向に関して後ろ向きの力Fr2が作用し、この力Fr2によってサスペンションリンク機構を介して車体Bを下向きに付勢する上下力Fzr2(サスペンションリンク機構に働く鉛直下向きの分力)が後輪10rの接地点に発生する。従って、後輪10rを制動することにより車体Bを沈ませる方向の力が作用する。
前輪10fの接地点と瞬間回転中心Cfとを結ぶ線と接地水平面とのなす角度をθf、後輪10rの接地点と瞬間回転中心Crとを結ぶ線と接地水平面とのなす角度をθrとすると、上下力の大きさは、前輪10f側については制駆動力Ff(Ff1またはFf2)にtan(θf)を乗算した値となり、後輪10r側については制駆動力Fr(Fr1またはFr2)にtan(θr)を乗算した値となる。このtan(θf)あるいはtan(θr)が、制駆動力を車体Bの上下力に変換する変換率となる。一般的な車両においては、サスペンションリンク機構の構造から、θfに比べてθrの方が大きい(θf<θr)。従って、変換率については、前輪10fのサスペンションリンク機構のほうが後輪10rのサスペンションリンク機構よりも小さくなる。このため、制駆動力の制御範囲については、前輪10f側と後輪10r側とにおいては同一であるが、上下力の制御範囲については、前輪10f側のほうが後輪10r側よりも小さくなる。つまり、前輪10fの制駆動力の制御によって発生させることのできる上下力の範囲は、後輪10rの制駆動力の制御によって発生させることのできる上下力の範囲よりも狭くなる。
このため、ドライバーの操作量に応じたドライバー要求制駆動力を確保するとともに、上下力を発生させて車両の運動制御を行う場合には、前輪10fの制駆動力が最初にインホイールモータの制御範囲(上限)を超えてしまいやすい。これにより、車両運動制御の制御範囲が狭くなってしまう。
このことは、前輪10fのサスペンションリンク機構よりも後輪10rのサスペンションリンク機構のほうが、制駆動力を車体の上下力に変換する変換率が小さい車両においても同様であり、この場合には、後輪10rの制駆動力が最初にインホイールモータ制御範囲(上限)を超えてしまいやすい。
本発明は、上記課題を解決するためになされたものであり、各車輪の制駆動力によって車両運動制御を行う場合に、できるだけ各車輪が駆動力限界に到達しないようにすることを目的とする。
上記目的を達成するために、本発明の特徴は、
前後左右の車輪を独立して駆動して、各車輪に駆動力と制動力との両方を表す制駆動力を発生可能なアクチュエータ(30)と、前記前後左右の車輪を独立して車体に連結するとともに、前記アクチュエータにより駆動される車輪の制駆動力を車体の上下方向の力に変換するサスペンションリンク機構(20)と、ドライバーの操作量に基づいて設定されるドライバー要求制駆動力と、車両運動制御のために必要な運動制御用制駆動力とを含んだ4輪の目標制駆動力を演算する目標制駆動力演算手段(50,S17)と、
前記目標制駆動力に従って前記アクチュエータの作動を制御するアクチュエータ制御手段(50,35,S18)とを備えた車両用制駆動力制御装置において、
前記サスペンションリンク機構は、前輪側と後輪側とで、前記制駆動力を前記車体の上下方向の力に変換する変換率が異なるように構成され、
前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定する配分設定手段(50,S15)と、
前記車両運動制御が実施される場合には、前記車両運動制御が実施されない場合に比べて、前記変換率が大きい側のサスペンションリンク機構に連結される車輪への前記ドライバー要求制駆動力の配分比が大きくなるように、前記ドライバー要求制駆動力の前後輪への配分を切り替える配分切替手段(50,S13,S14,S15)とを備え、
少なくとも前記車両運動制御が実施される場合に、前記配分設定手段が、前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定することにある。
本発明においては、前後左右の車輪が、各車輪ごとに独立して設けられたサスペンションリンク機構により車体に連結されている。各車輪は、アクチュエータにより駆動力および制動力が付与される。アクチュエータとしては、例えば、車輪のホイールに組み込まれるインホイールモータが使用される。アクチュエータにより駆動される車輪の制駆動力は、サスペンションリンク機構によって車体の上下方向の力に変換される。この上下方向の力を制御することにより、車両運動を制御することができる。例えば、車両のロール状態、ピッチ状態、ヒーブ状態を制御することができる。目標制駆動力演算手段は、ドライバーの操作量、例えば、アクセル操作量やブレーキ操作量に基づいて設定されるドライバー要求制駆動力と、車両運動制御のために必要な運動制御用制駆動力とを含んだ4輪の目標制駆動力を演算する。アクチュエータ制御手段は、目標制駆動力に従ってアクチュエータの作動を制御する。
サスペンションリンク機構は、前輪側と後輪側とで、制駆動力を車体の上下方向の力に変換する変換率が異なるように構成されている。例えば、変換率は、車両の側面視において、車輪の接地点とその車輪を連結するサスペンションリンク機構の瞬間回転中心とを結ぶ線と、接地水平面とのなす角度の大きさに応じた値となる。従って、前輪における接地点とサスペンションリンク機構の瞬間回転中心とを結ぶ線と接地水平面とのなす角度と、後輪における接地点とサスペンションリンク機構の瞬間回転中心とを結ぶ線と接地水平面とのなす角度とが同一とはならない構成となっている。このため、車輪の制駆動力の制御によって発生させることのできる上下力の範囲は、前輪と後輪とでは異なり、変換率が小さい側のサスペンションリンク機構に連結される車輪の方が狭くなる。これにより、ドライバー要求制駆動力を確保するとともに、上下力を発生させて車両の運動制御を行う場合には、変換率の小さい側のサスペンションリンク機構に連結される車輪の制駆動力が先に制御範囲(アクチュエータの駆動限界、あるいは、路面摩擦によって決まる駆動限界)を超えてしまいやすい。
そこで、本発明では、配分設定手段が、ドライバー要求制駆動力の前後輪への配分を、変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定する。このため、変換率が小さい側のサスペンションリンク機構に連結される車輪においては、ドライバー要求制駆動力を満足させるとともに、車両運動制御に利用できる有効駆動力範囲を多く確保することができ、制駆動力が駆動力限界に到達しにくくなる。
本発明では、配分切替手段が、車両運動制御が実施される場合には、車両運動制御が実施されない場合に比べて、変換率が大きい側のサスペンションリンク機構に連結される車輪へのドライバー要求制駆動力の配分比が大きくなるように、ドライバー要求制駆動力の前後輪への配分を切り替える。そして、少なくとも車両運動制御が実施される場合に、配分設定手段が、ドライバー要求制駆動力の前後輪への配分を、変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定する。これにより、車両運動制御が実施される場合には、変換率が小さい側のサスペンションリンク機構に連結される車輪において、車両運動制御に利用できる有効駆動力範囲を多く確保することができ、制駆動力が駆動力限界に達しにくくなる。
本発明の他の特徴は、前記車両運動制御が実施されない場合には、前記ドライバー要求制駆動力の前後左右輪への配分を均等にする非運動制御時配分設定手段(S14)を備えたことにある。
本発明によれば、車両運動制御が実施されない場合には、タイヤ発生力の均等化が行われるため車両安定性を向上させることができる。
本発明の他の特徴は、前記配分切替手段は、車両のヨー運動制御が実施される場合には、前記車両のヨー運動制御が実施されない場合に比べて、前記変換率が大きい側のサスペンションリンク機構に連結される車輪への前記ドライバー要求制駆動力の配分比が大きくなるように、前記ドライバー要求制駆動力の前後輪への配分を切り替え、少なくとも前記車両のヨー運動制御が実施される場合に、前記配分設定手段が、前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定することにある。
車両のヨー運動制御を実施する場合、運動制御用制駆動力として、左右輪において逆相制駆動力(旋回外側輪が駆動力、旋回内側輪が制動力)が設定される。このため、左前輪のサスペンションリンク機構を介して車体に働く上下力と、右前輪のサスペンションリンク機構を介して車体に働く上下力とが互いに逆方向となって、車体前輪側にロールモーメントが発生する。また、左後輪のサスペンションリンク機構を介して車体に働く上下力と、右後輪のサスペンションリンク機構を介して車体に働く上下力とが互いに逆方向となって、車体後輪側にロールモーメントが発生する。この場合、前輪側と後輪側とでロールモーメントの方向が互いに逆となるが、ロールモーメントの大きさは、上下力の変換率の大きなサスペンションリンク機構に連結された車輪側の方が大きくなる。このヨー運動制御によって発生する車体のロールを抑制する場合には、前輪側で発生するロールモーメントと後輪側で発生するロールモーメントとを釣り合わせるようにロール制御を実施する必要がある。車体のロールを抑制するためには、変換率が小さい側のサスペンションリンク機構に連結される車輪の制駆動力を、変換率が大きい側のサスペンションリンク機構に連結される車輪の制駆動力よりも大きくする必要があるが、そのようにすると、変換率が小さい側のサスペンションリンク機構に連結される側の旋回外側輪に必要となる運動制御用制駆動力が大きくなる。
この場合であっても、本発明においては、車両のヨー運動制御が実施される場合には、車両のヨー運動制御が実施されない場合に比べて、変換率が大きい側のサスペンションリンク機構に連結される車輪へのドライバー要求制駆動力の配分比が大きくなるように、ドライバー要求制駆動力の前後輪への配分を切り替える。そして、少なくとも車両のヨー運動制御が実施される場合に、配分設定手段が、ドライバー要求制駆動力の前後輪への配分を、変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定する。このため、変換率が小さい側のサスペンションリンク機構に連結される車輪においては、ヨー運動制御およびロール制御を行うための運動制御用制駆動力を付与する余裕が確保される。この結果、変換率が小さい側のサスペンションリンク機構に連結される旋回外側輪が駆動限界に達しにくくなり、ヨー運動制御時に実施されるロール制御を良好に行うことができる。また、ヨー運動制御が実施されない場合には、ドライバー要求制駆動力の前後左右輪への配分を均等にすることができ、タイヤ発生力の均等化が行われるため車両安定性を向上させることができる。
本発明の他の特徴は、前記目標制駆動力演算手段は、車両のヨー運動制御が実施される場合には、前記ヨー運動制御時の前輪の駆動力によって発生する前輪側ロールモーメントと後輪の駆動力によって発生する後輪側ロールモーメントとを釣り合わせるように各車輪の運動制御用制駆動力を演算する(S16)ことにある。
前輪側と後輪側とで、上下力の変換率が異なるサスペンションリンク機構を備えた車両においては、車両のヨー運動制御を実施した場合に、前輪の駆動力によって発生する前輪側ロールモーメントと後輪の駆動力によって発生する後輪側ロールモーメントとは、その方向が反対となっても大きさが同一とならない。そこで目標制駆動力演算手段が、前輪側ロールモーメントと後輪側ロールモーメントとを釣り合わせるように各車輪の運動制御用制駆動力を演算する。この場合、ドライバー要求制駆動力の前後輪への配分が、上下力の変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、上下力の変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定されている。このため、良好に車体のロールを抑制することができる。
本発明の他の特徴は、前記車輪の制駆動力によって前記サスペンションリンク機構を介して車体に発生させることのできる上下方向の力の余力が、前輪側と後輪側とで同等となるように前記ドライバー要求制駆動力の前後輪への配分比を設定する余力均一化手段(S15)を備えたことにある。
本発明によれば、余力均一化手段が、車輪の制駆動力によってサスペンションリンク機構を介して車体に発生させることのできる上下方向の力の余力が、前輪側と後輪側とで同等となるようにドライバー要求制駆動力の前後輪への配分比を設定する。このため、車両運動制御を行う場合に、前後輪への制駆動力の配分を一層バランス良く行うことができる。これにより、特定の車輪の制駆動力が早く限界に到達してしまうことを抑制することができる。
本発明の他の特徴は、前記ドライバー要求制駆動力が予め設定された設定値未満となる場合には、前記ドライバー要求制駆動力を、前記変換率が大きい側のサスペンションリンク機構に連結される車輪にのみに配分するように前記前後輪への配分比を設定する低要求制駆動力時配分比設定手段(S15)を備えたことにある。
車輪の制駆動力によってサスペンションリンク機構を介して車体に発生させることのできる上下方向の力の余力が前輪側と後輪側とで同等となるようにすることは、ドライバー要求制駆動力がある値よりも小さくなるとできなくなる。そこで、本発明においては、低要求制駆動力時配分比設定手段が、ドライバー要求制駆動力が予め設定され設定値未満となる場合には、ドライバー要求制駆動力を、変換率が大きい側のサスペンションリンク機構に連結される車輪にのみに配分する。つまり、変換率が小さい側のサスペンションリンク機構に連結される車輪にはドライバー要求制駆動力を配分しない。これにより、ドライバー要求制駆動力が低いときの、ドライバー要求制駆動力の前後輪への配分を適切に行うことができる。
本発明の他の特徴は、車両の運動状態量を検出し、前記運動状態量に応じて、前記ドライバー要求制駆動力の前後輪への配分比を設定する状態量対応配分比設定手段(S15)を備えたことにある。この場合、状態量対応配分比設定手段は、前記運動状態量が大きいほど、前記ドライバー要求制駆動力の後輪側の配分比が大きくなるように設定するとよい。
本発明によれば、ドライバー要求制駆動力の前後輪への配分比を運動状態量に応じて適切に設定することができるため、特定の車輪の制駆動力が早く限界に到達してしまうことを抑制することができる。
上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は、前記符号によって規定される実施形態に限定させるものではない。
本実施形態にかかる車両用制駆動力制御装置が搭載される車両の概略構成図である。 モータ駆動制御ルーチンを表すフローチャートである。 制駆動力の制御範囲と上下力の制御範囲との関係を表す図である。 ロールモーメントを釣り合わせるため必要な前後輪における制駆動力を表す図である。 ドライバー要求駆動力を均等配分にした場合の4輪におけるドライバー要求配分駆動力と制御用駆動力と目標駆動力と表す図である。 後輪にドライバー要求駆動力を多く配分にした場合の4輪におけるドライバー要求配分駆動力と制御用駆動力と目標駆動力と表す図である。 駆動力配分係数αの特性図である。 ヨー運動時における制御用駆動力の特性図である。
以下、本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の車両用制駆動力制御装置が搭載される車両1の構成を概略的に示している。
車両1は、左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrを備えている。左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrは、それぞれ独立したサスペンション20fl、20fr、20rl、20rrを介して車体Bに懸架されている。
サスペンション20fl、20fr、20rl、20rrは、車体Bと車輪10fl、10fr、10rl、10rrとを連結する連結構造であってサスペンションアーム等によって構成されるリンク機構21fl、21fr、21rl、21rrと、上下方向の荷重を支え衝撃を吸収するサスペンションバネ22fl、22fr、22rl、22rrと、バネ上(車体B)の振動を減衰させるショックアブソーバ23fl、23fr、23rl、23rrとから構成される。本発明のサスペンションリンク機構は、瞬間回転中心を決める要素であり、バネ下の動きを決める要素全てとなるため、リンク機構21fl、21fr、21rl、21rrだけを意味しているわけではなく、リンク機構21fl、21fr、21rl、21rrに加えてサスペンションバネ22fl、22fr、22rl、22rrとショックアブソーバ23fl、23fr、23rl、23rrとを含んだサスペンション20fl、20fr、20rl、20rr全体を表す。サスペンション20fl、20fr、20rl、20rrは、ストラット型サスペンションやウイッシュボーン型サスペンションなどの公知の4輪独立懸架方式のサスペンションを採用することができる。
左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrのホイール内部には、モータ30fl、30fr、30rl、30rrが組み込まれている。モータ30fl、30fr、30rl、30rrは、いわゆるインホイールモータであって、それぞれ左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrとともに車両1のバネ下に配置され、左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrに動力伝達可能に連結されている。この車両1においては、各モータ30fl、30fr、30rl、30rrの回転をそれぞれ独立して制御することにより、左前輪10fl、右前輪10fr、左後輪10rl、右後輪10rrに発生させる駆動力および制動力をそれぞれ独立して制御することができるようになっている。
以下、各車輪10fl、10fr、10rl、10rr、サスペンション20fl、20fr、20rl、20rr、リンク機構21fl、21fr、21rl、21rr、サスペンションバネ22fl、22fr、22rl、22rr、ショックアブソーバ23fl、23fr、23rl、23rr、モータ30fl、30fr、30rl、30rrに関して、任意のものを特定する必要がない場合には、それらを、車輪10、サスペンション20、リンク機構21、サスペンションバネ22、ショックアブソーバ23、モータ30と呼ぶ。また、各車輪10fl、10fr、10rl、10rrのうち前輪10fl、10frと後輪10rl、10rrとを区別して特定する場合には、前輪10fl、10frを前輪10fと呼び、後輪10rl、10rrを後輪10rと呼ぶ。同様に、サスペンション20、リンク機構21、サスペンションバネ22、ショックアブソーバ23、モータ30に関しても、前輪側のものを特定する場合には、前輪サスペンション20f、前輪リンク機構21f、前輪サスペンションバネ22f、前輪ショックアブソーバ23f、前輪モータ30fと呼び、後輪側のものを特定する場合には、後輪サスペンション20r、後輪リンク機構21r、後輪サスペンションバネ22r、後輪ショックアブソーバ23r、後輪モータ30rと呼ぶ。
各モータ30は、例えば、ブラシレスモータが使用される。各モータ30は、モータドライバ35に接続される。モータドライバ35は、例えば、インバータであって、各モータ30に対応するように4組設けられ、バッテリ60から供給される直流電力を交流電力に変換して、その交流電力を各モータ30に独立して供給する。これにより、各モータ30は、駆動制御されてトルクを発生し、各車輪10に対して駆動力を付与する。このように、モータ30に電力供給して駆動トルクを発生させることを力行と呼ぶ。
また、各モータ30は、発電機としても機能し、各車輪10の回転エネルギーにより発電して、発電電力をモータドライバ35を介してバッテリ60に回生することができる。このモータ30の発電により発生する制動トルクは、車輪10に対して制動力を付与する。尚、各車輪10にはブレーキ装置が設けられているが、本発明とは直接関係しないため、図示および説明を省略する。
モータドライバ35は、電子制御ユニット50に接続されている。電子制御ユニット50(以下、ECU50と呼ぶ)は、CPU、ROM、RAMなどからなるマイクロコンピュータを主要部として備え、各種プログラムを実行して個々のモータ30の作動を独立して制御するものである。ECU50は、ドライバーが車両を走行させるために操作した操作状態を検出する操作状態検出装置40と、車両の運動状態を検出する運動状態検出装置45とを接続し、それらの検出装置40,45から出力される検出信号が入力されるように構成されている。
操作状態検出装置40は、アクセルペダルの踏み込み量(あるいは、角度や圧力など)からドライバーのアクセル操作量を検出するアクセルセンサ、ブレーキペダルの踏み込み量(あるいは、角度や圧力など)からドライバーのブレーキ操作量を検出するブレーキセンサ、ドライバーが操舵ハンドルを操作した操舵操作量を検出する操舵角センサなどから構成される。運動状態検出装置45は、車体Bの走行速度を検出する車速センサ、車体Bのヨーレートを検出するヨーレートセンサ、各車輪位置における車体B(バネ上)の上下方向の加速度を検出するバネ上加速度センサ、車体Bの左右方向における横加速度を検出する横加速度センサ、車体Bのピッチレートを検出するピッチレートセンサ、車体Bのロールレートを検出するロールレートセンサ、各サスペンション20のストローク量を検出するストロークセンサ、各車輪10のバネ下の上下方向における上下加速度を検出するバネ下加速度センサなどを適宜組み合わせて構成される。尚、方向要素が含まれるセンサ値については、その符号によって方向が識別される。
各車輪10を懸架するサスペンション20は、図3に示すように、車両の側面視において、前輪サスペンション20fにおける瞬間回転中心Cf(車体Bに対する前輪10fの瞬間中心)が、前輪10fよりも後方かつ上方に位置し、後輪サスペンション20rにおける瞬間回転中心Cr(車体Bに対する後輪10rの瞬間中心)が、後輪10rよりも前方かつ上方に位置するように構成されている。また、前輪10fの接地点と瞬間回転中心Cfとを結ぶ線と接地水平面とのなす角度(小さい方の角度)をθf、後輪10rの接地点と瞬間回転中心Crとを結ぶ線と接地水平面とのなす角度(小さい方の角度)をθrとすると、θfに比べてθrの方が大きいという関係を有する(θf<θr)。以下、θfを瞬間回転角θfと呼び、θrを瞬間回転角θrと呼ぶ。
このようなサスペンション20の構成(ジオメトリ)においては、前輪10fに駆動トルクが付与されると、図3に示すように、前輪10fの接地点に車両の進行方向に関して前向きの力Ff1が作用し、この力Ff1によって前輪サスペンション20fを介して車体Bを下向きに付勢する上下力Fzf1(前輪サスペンション20fに働く鉛直下向きの分力)が前輪10fの接地点に発生する。従って、前輪10fを駆動することにより車体Bを沈ませる方向の力が作用する。逆に、前輪10fに制動トルクが付与されると、前輪10fの接地点に車両の進行方向に関して後ろ向きの力Ff2が作用し、この力Ff2によって前輪サスペンション20fを介して車体Bを上向きに付勢する上下力Fzf2(前輪サスペンション20fに働く鉛直上向きの分力)が前輪10fの接地点に発生する。従って、前輪10fを制動することにより車体Bを浮き上がらせる方向の力が作用する。また、後輪10rに駆動トルクが付与されると、後輪10rの接地点に車両の進行方向に関して前向きの力Fr1が作用し、この力Fr1によって後輪サスペンション20rを介して車体Bを上向きに付勢する上下力Fzr1(後輪サスペンション20rに働く鉛直上向きの分力)が後輪10rの接地点に発生する。従って、後輪10rを駆動することにより車体Bを浮き上がらせる方向の力が作用する。逆に、後輪10rに制動トルクが付与されると、後輪10rの接地点に車両の進行方向に関して後ろ向きの力Fr2が作用し、この力Fr2によって後輪サスペンション20rを介して車体Bを下向きに付勢する上下力Fzr2(後輪サスペンション20rに働く鉛直下向きの分力)が後輪10rの接地点に発生する。従って、後輪10rを制動することにより車体Bを沈ませる方向の力が作用する。このようにサスペンション20によって、車輪10の駆動力および制動力が車体Bの上下方向の力に変換される。
従って、車輪10の駆動力あるいは制動力を制御することにより、車体Bに上下方向の力を付与することができ、車両の運動状態の制御を行うことができる。以下、駆動力と制動力とを特別に区別する必要がある場合を除いて、両者を駆動力と呼ぶ。制動力は、負の駆動力として取り扱えばよい。また、駆動力と制動力とに関する大きさを論じる場合は、その絶対値を表すものとする。
ECU50は、操作状態検出装置40により検出されたアクセル操作量やブレーキ操作量に基づいてドライバー要求制駆動力(以下、ドライバー要求駆動力Fと呼ぶ)を演算するとともに、運動状態検出装置45により検出された車両運動状態に基づいて4輪毎に独立した運動制御用制駆動力(以下、制御用駆動力Fcxと呼ぶ)を演算する。そして、ドライバー要求駆動力Fを4輪に配分したドライバー要求配分駆動力Fdxと、制御用駆動力Fcxとの合計値を、各車輪10の目標制駆動力(以下、目標駆動力Fxと呼ぶ)に設定する。ECU50は、モータドライバ35を制御して、各モータ30で目標駆動力Fxに対応する出力トルクを発生させる。
車体Bに働く上下力の大きさは、前輪10f側については駆動力Ff(Ff1またはFf2)にtan(θf)を乗算した値となり、後輪10r側については駆動力Fr(Fr1またはFr2)にtan(θr)を乗算した値となる。このtan(θf)、tan(θr)が、駆動力を車体Bの上下方向の力に変換する変換率を表している。前輪10fの駆動力の制御範囲と後輪10rの駆動力の制御範囲とは同一であるが、前輪サスペンション20fにおける瞬間回転角θfが後輪サスペンション20rにおける瞬間回転角θrに比べて小さいため、前輪10fの駆動力の制御によって発生させることのできる上下力の範囲は、後輪10rの駆動力の制御によって発生させることのできる上下力の範囲よりも狭くなる。このため、上下力を発生させて車両の運動制御を行う場合には、前輪10fの駆動力が最初に制御範囲(上限)を超えてしまいやすい。つまり、後輪10rの駆動力に余力が残っている状態で、前輪10fの駆動力が制御範囲(上限)を超えてしまうことがある。
例えば、図5に示すように、右旋回時にモータ30を駆動して車両のヨー運動を行う場合を考える。ヨー運動を行う場合、旋回外側輪に対しては前進方向の制御用駆動力Fcxが付与され、旋回内側輪に対しては旋回外側輪における制御用駆動力Fcxと大きさが同じで方向が反対の制御用駆動力Fcxが付与される。このとき、車体Bに発生する上下力が左右で異なるため、図4に示すようにロールモーメントMxf、Mxrが働く。前輪10fの駆動力Ff1によって発生する前輪側ロールモーメントMxfは、後輪10rの駆動力Fr1で発生する後輪側ロールモーメントMxrとは方向が反対となる。この場合、前輪10fと後輪10rとで同じ大きさの駆動力を発生させると、後輪10rの駆動力Fr1で発生する上下力(上向き)の大きさが、前輪10fの駆動力Ff1で発生する上下力(下向き)の大きさよりも大きくなる。このため、前輪側ロールモーメントMxfに対して後輪側ロールモーメントMxrが大きくなる。従って、前輪側ロールモーメントMxfと後輪側ロールモーメントMxrとを釣り合わせる必要があり、図4に示すように、前輪10fの駆動力Ff1を後輪10rの駆動力Fr1に比べて大きくする必要が生じる。つまり、前輪10fの駆動力Ff1によって発生する上下力Fzf1と、後輪10rの駆動力Fr1によって発生する上下力Fzr1とを同じ大きさにするために、前輪10fの駆動力Ff1を後輪10rの駆動力Fr1に比べて大きくする必要が生じる。
各車輪10のモータ30の目標駆動力Fxは、ドライバー要求配分駆動力Fdxと、車両運動制御を行うための制御用駆動力Fcxとの合計として設定される。ドライバー要求配分駆動力Fdxは、従来においては、ドライバーの操作量に応じて設定されるドライバー要求駆動力Fを4輪均等に配分した値(F/4)に設定される。このため、例えば、車両のヨー運動時に、上述のように前輪側ロールモーメントMxfと後輪側ロールモーメントMxrとを釣り合わせる(等しくする)ようにロール制御を行った場合には、図5に示すように、前輪10fの制御用駆動力Fcxが後輪の制御用駆動力Fcxより大きくなる。この結果、旋回外側前輪である前輪10flの目標駆動力Fxが最初にモータ30の制御範囲(上限)を超えてしまう。
そこで、本実施形態においては、前後輪の駆動力の配分の均等化を行うことで、各輪の目標駆動力Fxがモータ30の制御範囲の上限に達しにくくする。
図2は、こうした課題を解決するモータ駆動制御ルーチンを表す。ECU50は、モータ駆動制御ルーチンを所定の短い周期にて繰り返し実施する。本ルーチンが起動すると、ECU50は、まず、ステップS11において、ドライバー操作状態と車両運動状態とを検出する。この場合、ECU50は、操作状態検出装置40のセンサ値から得られるアクセル操作量、ブレーキ操作量、操舵操作量を取得するとともに、運動状態検出装置45により検出されるセンサ値から得られる車速、および、車体の運動状態(ヨー運動、ロール運動、ピッチ運動、ヒーブ運動)の程度を表す運動状態量を取得する。
続いて、ECU50は、ステップS12において、アクセル操作量やブレーキ操作量に基づいてドライバー要求駆動力Fを演算する。ドライバー要求駆動力Fは、ドライバーの要求している車両全体で発生させるべき車両前後方向の駆動力、つまり、走行用の駆動力である。ECU50は、アクセル操作量およびブレーキ操作量からドライバー要求駆動力Fを導くマップ等の関係付けデータを記憶しており、この関係付けデータを使ってドライバー要求駆動力Fを演算する。
続いて、ECU50は、ステップS13において、ドライバー要求駆動力Fの前後輪の配分比を切り替えるための切替条件が成立しているか否かについて判断する。ドライバー要求駆動力Fは、4輪に配分され、右車輪10fr,10rrと左車輪10fl,10rlについては、常に均等に配分(1:1)されるが、前輪10fと後輪10rとの配分については、切替条件の成立の有無によって切り替えられる。
この実施形態においては、切替条件は、ヨー運動制御を含んだ車両運動制御を行う必要がある場合に成立し、ヨー運動制御を行う必要がない場合には成立しない。例えば、操舵角および車速に基づいて設定される理想ヨーレートとヨーレートセンサにより検出される実ヨーレートとの偏差が許容値を超えている場合に切替条件が成立し、前記偏差が許容値を超えていない場合には切替条件が成立しない。従って、操舵操作が検出されている場合、あるいは、操舵操作が行われていない(操舵ハンドルの中立保持)にも関わらず外乱によってヨー運動が検出されている場合等において切替条件が成立する。
ECU50は、切替条件が成立していない場合には(S13:No)、ステップS14において、ドライバー要求駆動力Fの前後輪の配分比を均等に設定する。つまり、4つの車輪10に対してドライバー要求駆動力Fを均等に配分する。一方、切替条件が成立している場合には(S13:Yes)、ステップS15において、前後輪の駆動力配分係数αを計算する。ここで、駆動力配分係数αは、ドライバー要求駆動力Fを前輪10fに配分する比を表している。従って、後輪10rに配分する比は、(1−α)にて表されるものである。このステップS15において計算される駆動力配分係数αは、ドライバー要求駆動力Fの配分が前輪10fに比べて後輪10rのほうが多くなるように設定される。
以下、前後輪の駆動力配分係数αの計算について説明する。この実施形態においては、車輪10の駆動力によってサスペンション20を介して車体Bに発生させることのできる上下方向の余力が、前輪10f側と後輪10r側とで同等となるようにドライバー要求駆動力Fの前後輪への配分比を設定する。
1.上下力
前輪10fの駆動力をFf、後輪10rの駆動力をFrとすると、前輪10fの駆動力Ffで発生する上下力Fzfと、後輪10rの駆動力Frで発生する上下力Fzrは、次式のように表すことができる。
Fzf=Ff×tanθf=Ff・Θf (Θf=tanθfと定義する)
Fzr=Fr×tanθr=Fr・Θr (Θr=tanθrと定義する)
2.配分された後の前後輪の駆動力
ドライバー要求駆動力Fを2×Fdとし、前輪10fの駆動力配分比をα(0≦α≦1)とした駆動力配分係数αを設定すると、後輪10rの駆動力配分比は(1−α)となる。前輪10fの駆動力Ff、後輪10rの駆動力Frは、駆動力配分係数αを使って、次式のように表すことができる。
Ff=α×2×Fd=2α・Fd
Fr=(1−α)×2×Fd=2(1−α)・Fd
α=0の場合には、後輪10rにドライバー要求駆動力Fが100%配分され、α=1の場合には前輪10fにドライバー要求駆動力Fが100%配分される。
3.配分された後の上下力
ドライバー要求駆動力Fが前後輪に配分された後の、前輪10fの駆動力Ffで発生する上下力Fzfと、後輪10rの駆動力Frで発生する上下力Fzrとは、次式のように表すことができる。
Fzf=Ff×Θf=2α・Fd・Θf
Fzr=Fr×Θr=2(1−α)・Fd・Θr
4.最大上下力
前輪10fおよび後輪10rでそれぞれ発生できる最大駆動力をFmaxとすると、前輪10fの駆動力Ffで発生させることができる最大上下力Fzfmaxと、後輪10rの駆動力Frで発生させることができる最大上下力Fzrmaxとは、次式のように表すことができる。
Fzfmax=Fmax・Θf
Fzrmax=Fmax・Θr
5.上下力の余力
前輪10fの駆動力Ffで発生させることができる上下力の余力をFzfc(前輪側上下力余力Fzfcと呼ぶ)とし、後輪10rの駆動力Frで発生させることができる上下力の余力をFzrc(後輪側上下力余力Fzrcと呼ぶ)とすると、前輪側上下力余力Fzfcと後輪側上下力余力Fzrcとは、次式のように表すことができる。
Fzfc=Fzfmax−Fzf=Fmax・Θf−2α・Fd・Θf
=(Fmax−2α・Fd)・Θf
Fzrc=Fzrmax−Fzr=Fmax・Θr−2(1−α)・Fd・Θr
=(Fmax−2(1−α)・Fd)・Θr
6.上下力余力の均等化
前輪側上下力余力Fzfcと後輪側上下力余力Fzrcとを等しくすれば、ドライバー要求駆動力をバランス良く配分することができ、特定の車輪だけが早く駆動限界に達してしまうことを抑制できる。その場合には、以下のように駆動力配分係数αを設定することができる。
Fzfc=Fzrc
(Fmax−2α・Fd)・Θf=(Fmax−2(1−α・Fd)・Θr
(1−2α・Fd/Fmax)=(1−2(1−α)・Fd/Fmax)・Θr/Θf
ここで、Fd/Fmax=Aとし、Θr/Θf=Dとすると、次式のように表すことができる。
(1−2α・A)=(1−2(1−α)・A)・D
Aを最大出力比と呼び(0≦A≦1)、Dを前後上下力変換比と呼ぶ(D>1)。
Aは、ドライバー要求駆動力に比例する値となる。この場合、Aは、アクセル開度を用いてもよい。
ここで、駆動力配分係数αについて解くと、次式のように表すことができる。
1−2α・A=D−2A・D+2α・A・D
2α・A(1+D)=1−D+2A・D
α=(1−D+2A・D)/2A(1+D))
7.駆動力配分係数αの考察
A=0の場合
駆動力配分係数αは次式のように表すことができる。
α=((1−D)/A+2D)/2(1+D))
前後上下力変換比Dは1より大きな値となるため、(1−D)は負の値となることから、駆動力配分係数αは、負の無限大の値となる(α=−∞)。
駆動力配分係数αの取り得る範囲は、0〜1(0≦α≦1)であるため、駆動力配分係数αはゼロとすべきである(α=0)。
A=1の場合
上記式にA=1を代入すると、駆動力配分係数αは0.5となる(α=0.5)。
ここで、α=0となるAを求める。
0=1−D+2A・D
A=(D−1)/(2D)
従って、駆動力配分係数αは、図7に示すように、Aが(D−1)/(2D)未満となる場合には、ゼロに設定され、Aが(D−1)/(2D)以上となる場合には、(1−D+2A・D)/(2A(1+D))に設定される。
従って、ECU50は、ステップS15において、ドライバー要求駆動力F(あるいはアクセル操作量)によって決まる最大出力比Aが(D−1)/(2D)未満となる場合には、駆動力配分係数αをゼロに設定し、最大出力比Aが(D−1)/(2D)以上となる場合には、駆動力配分係数αを(1−D+2A・D)/(2A(1+D))に設定する。
ECU50は、ステップS14、あるいは、ステップS15において駆動力配分係数αを設定すると、その処理をステップS16に進める。ECU50は、ステップS16において、各車輪10ごとの制御用駆動力Fcx、つまり、左前輪10flの制御用駆動力Fcfl,右前輪10frの制御用駆動力Fcfr,左後輪10rlの制御用駆動力Fcrl,右後輪10rrの制御用駆動力Fcrrを演算する。尚、制御用駆動力Fcxは、制御用駆動力Fcfl,Fcfr,Fcrl,Fcrrを総称したものである。車両運動制御は、理想ヨーレートとヨーレートセンサにより検出される実ヨーレートとの偏差が許容値を超えている場合、あるいは、ロール状態量、ピッチ状態量、ヒーブ状態量の少なくとも一つが許容値を超えている場合等において実行される。従って、車両運動制御を実行する必要がない場合には、ステップS16の処理はスキップされる。
例えば、各車輪10の制御用駆動力Fcxは、車両の重心Cgを通る前後方向軸(ロール軸)回りの車体のロール運動を抑制する目標ロールモーメントMxと、車両の重心Cgを通る左右方向軸(ピッチ軸)回りの車体のピッチ運動を抑制する目標ピッチモーメントMyと、車両の重心Cgを通る鉛直方向軸(ヨー軸)回りに車両を旋回させる目標ヨーモーメントMzと、車両の重心Cg位置における上下運動であるヒーブ運動(バウンシング)を抑制する目標ヒーブ力Fzとを用いて演算される。これらの目標値の演算については、公知の種々の演算手法を採用することができる。例えば、ECU50は、ストロークセンサ、バネ上上下加速度センサにより検出されるセンサ値により4輪位置での上下方向の位置、速度、加速度を検出してロール状態量、ピッチ状態量、ヒーブ状態量を検出し、これらの状態量と予め所定の関係を有する目標ロールモーメントMx、目標ピッチモーメントMy、目標ヒーブ力Fzを演算する。また、ECU50は、操舵角および車速に基づいて設定される理想ヨーレートとヨーレートセンサにより検出される実ヨーレートとの偏差に基づいて、その偏差が無くなるように設定される目標ヨーモーメントMzを演算する。
ECU50は、例えば、次式により制御用駆動力Fcfl,Fcfr,Fcrl,Fcrrを計算する。
Figure 0005862636
ここで、tfは、左右前輪10fのトレッド幅、trは、左右後輪10rのトレッド幅を表す。Lfは、車両の重心Cgと左右前輪10fの中心との間の前後方向水平距離、Lrは、車両の重心Cgと左右後輪10rの中心との間の前後方向水平距離を表す。
この場合、ECU50は、目標ロールモーメントMx、目標ピッチモーメントMy、目標ヨーモーメントMz、目標ヒーブ力Fzのうちの3つを選択して制御用駆動力Fcfl,Fcfr,Fcrl,Fcrrを計算する。これは、最終的に各車輪10に発生させる駆動力が、ドライバー要求駆動力Fで決められるため、つまり、制御用駆動力Fcfl,Fcfr,Fcrl,Fcrrの合計値をゼロにするという制約があるため、4つの目標値を同時に使って演算できないからである。この場合、ECU50は、ヨー運動制御が必要な場合には、目標ヨーモーメントMzと目標ロールモーメントMxとを優先的に選択し、その2つの目標値Mz,Mxと、残りの目標ピッチモーメントMy、目標ヒーブ力Fzの何れか一方の目標値とを使って演算する。
ヨー運動を制御する場合には、上述したように互いに反対方向で大きさの異なる前輪側ロールモーメントMxfと後輪側ロールモーメントMxrとが発生するため、前輪側ロールモーメントMxfと後輪側ロールモーメントMxrとが釣り合うようにするロール制御が実施される。この場合、前輪10fの駆動力を上下力に変換する変換率(tan(θf))が、後輪10rの駆動力を上下力に変換する変換率(tan(θr))よりも小さいため、ヨー運動制御と同時にロール制御を行う場合には、図8に示すように、前輪10fの制御用駆動力Fcfl,Fcfrが後輪10rの制御用駆動力Fcrl,Fcrrよりも大きくなるように演算される(絶対値の比較)。
続いて、ECU50は、ステップS17において、各車輪10ごとの最終的な目標駆動力Fx、つまり、左前輪10flの目標駆動力Ffl,右前輪10frの目標駆動力Ffr,左後輪10rlの目標駆動力Frl,右後輪10rrの目標駆動力Frrを次式により演算する。
Ffl=Fd・α+Fcfl
Ffr=Fd・α+Fcfr
Frl=Fd・(1−α)+Fcrl
Frr=Fd・(1−α)+Fcrr
尚、目標駆動力Fxは、目標駆動力Ffl,Ffr,Frl,Frrを総称したものである。
続いて、ECU50は、ステップS18において、目標駆動力Fxをモータ30を駆動するための目標モータトルクTxに変換し、目標モータトルクTxに対応する駆動指令信号をモータドライバ35に出力する。目標モータトルクTxが駆動トルクを表している場合には、モータドライバ35からモータ30に電流が流れる。目標モータトルクTxが制動トルクを表している場合には、モータ30からモータドライバ35を介してバッテリ60に電流が流れる。こうして、モータ30が力行制御あるいは回生制御されて、各車輪10に目標駆動力Fxが発生する。
ECU50は、駆動指令信号をモータドライバ35に出力するとモータ駆動制御ルーチンを一旦終了する。そして、所定の短い周期にてモータ駆動制御ルーチンを繰り返す。
このモータ駆動制御ルーチンによれば、モータ30の駆動力によりヨー運動を制御する場合には、ドライバー要求駆動力Fが前輪10fに比べて後輪10rに多く配分される。このため、前輪10f側で発生するロールモーメントと後輪10r側で発生するロールモーメントとを釣り合わせるようにロール制御を行っても、図6に示すように、旋回外側前輪である前輪10flの目標駆動力Fx(=Ffl)を抑えることができる。つまり、前輪10flのドライバー要求配分駆動力Fdx(=Fd・α)を後輪10rlのドライバー要求配分駆動力Fdx(=Fd・(1−α))に比べて小さくしているため、前輪10f側の制御用駆動力Fcxを付与する余裕を大きく確保することができ、ヨー運動制御と同時にロール制御を実施しても、前輪10flの目標駆動力Fxが出力限界に達しにくくなる。従って、ヨー運動制御時に実施されるロール制御を良好に行うことができる。
また、ヨー運動制御を行わない場合には、ドライバー要求駆動力Fの前後左右輪への配分が均等に設定される。これによりタイヤ発生力の均等化が行われるため車両安定性を向上させることができる。
また、車輪10の駆動力によって車体Bに発生させることのできる上下力の余力が、前輪10f側と後輪10r側とで同等となるようにドライバー要求駆動力Fの前後輪への配分比が設定される。このため、前後輪への駆動力の配分を一層バランス良く行うことができる。これにより、特定の車輪10の駆動力が早く限界に到達してしまうことを一層良好に抑制することができる。また、ドライバー要求駆動力Fが予め設定され設定値未満となる場合には、ドライバー要求駆動力Fが後輪10rにのみに配分される。これにより、ドライバー要求駆動力が低いときの前後輪への配分を適切に行うことができる。
以上、本実施形態にかかる車両用制駆動力制御装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
<配分切替条件の変形例>
例えば、本実施形態においては、ヨー運動制御を含んだ車両運動制御を実施することを条件として、ドライバー要求駆動力Fを、前後輪均等配分から後輪寄りの配分に切り替える(S13)。これは、ヨー運動制御の場合には、制御用駆動力の配分を前後輪で異なる値に設定できるために、特に、有効なものとなるからである。しかし、本発明は、それに限るものではなく、ヨー運動制御に限らず車両運動制御を実施することを条件として、ドライバー要求駆動力Fを、前後輪均等配分から後輪寄りの配分に切り替えるようにしてもよい。例えば、車両のロール運動量(ロールモーメント等)、上下運動量(上下力等)、ピッチ運動量(ピッチモーメント等)の少なくとも一つの運動状態量を検出し、検出した運動状態量が設定値(許容値)を超えたときに、ステップS13において、ドライバー要求駆動力Fの前後輪への配分比を切り替えるようにしてもよい。この場合であっても、前輪モータ30fが早く出力限界に到達しないようにしつつ、前輪10f側に大きな上下力を発生させることができる。
また、本実施形態においては、配分切替条件が成立したときに、ドライバー要求駆動力Fを、前後輪均等配分から後輪寄りの配分に切り替えるが、例えば、切替条件を設けずに、ドライバー要求駆動力Fの後輪10rへの配分比を、常に、前輪10fより大きな配分比に設定する構成であってもよい。
<配分比の変形例>
本実施形態においては、車輪10の駆動力によって車体Bに発生させることのできる上下力の余力が、前輪10f側と後輪10r側とで同等となるようにドライバー要求駆動力Fの前後輪への配分比が設定される(S15)。しかし、本発明は、それに限るものではなく、例えば、切替条件が成立した場合に、ステップS15において、ドライバー要求駆動力Fの後輪への配分比を、前輪より大きな一定の比に切り替えるようにしてもよい。
また、車両に発生したヨーモーメントを検出し、そのヨーモーメントに基づいて、ドライバー要求駆動力Fの前後輪への配分比を設定する構成であってもよい。例えば、ステップS11において車両のヨー運動量(ヨーモーメント等)を検出し、ステップS15において、検出したヨー運動量の大きさに応じて、ドライバー要求駆動力Fの前後輪への配分比を設定するようにしてもよい。この場合、検出したヨー運動量が大きくなるにしたがって、段階的、あるいは、連続的に、後輪10rへの配分比が大きくなるように設定するとよい。これによれば、ヨー運動量が大きくなるにしたがって、前輪10fの上下力の余力が増加して、ヨー運動に伴うロール制御を適切に行うことができる。
また、ヨー運動量に限らずに運動状態量の大きさに応じて、ドライバー要求駆動力Fの前後輪への配分比を設定するようにしてもよい。例えば、車両のロール運動量(ロールモーメント等)、上下運動量(上下力等)、ピッチ運動量(ピッチモーメント等)の少なくとも一つの運動状態量を検出し、この運動状態量の大きさに応じて、ステップS15において、ドライバー要求駆動力Fの前後輪への配分比を設定するようにしてもよい。この場合、運動状態量が大きくなるにしたがって、段階的、あるいは、連続的に、ドライバー要求駆動力Fの後輪10rへの配分比が大きくなるように設定するとよい。これによれば、運動状態量が大きくなるにしたがって、前輪10fの上下力の余力が増加して、車両運動制御を適切に行うことができる。
また、本実施形態においては、配分切替条件が成立していない場合には、ドライバー要求駆動力Fの前後左右輪への配分を均等にしているが(S14)、必ずしも均等にしなくてもよい。つまり、車両運動制御が実施される場合(S13:Yes)には、車両運動制御が実施されない場合(S13:No)に比べて、後輪10rへのドライバー要求駆動力Fの配分比が大きくなるように、ドライバー要求駆動力の前後輪への配分が切り替えられるものであればよい。勿論、ステップS15において設定されるドライバー要求駆動力Fの前後輪への配分比は、前輪10fよりも後輪10rのほうが大きくなるように設定されるものである。
<サスペンションジオメトリの変形例>
例えば、本実施形態においては、後輪サスペンション20rの変換率(tan(θr))が前輪サスペンション20fの変換率(tan(θf))よりも大きな車両に適用されているが、前輪サスペンション20fの変換率(tan(θf))が後輪サスペンション20rの変換率(tan(θr))よりも大きな車両に適用することもできる。その場合には、ドライバー要求駆動力Fの前後輪への配分を、後輪10rに比べて前輪10fのほうが大きくなるように設定すればよい。従って、上述した各種の変形例においても、ドライバー要求駆動力Fの前後輪への配分の関係を実施形態とは逆にすればよい。
1…車両、10fl,10fr,10rl,10rr…車輪、20fl,20fr,20rl,20rr…サスペンション、21fl,21fr,21rl,21rr…リンク機構、30fl,30fr,30rl,30rr…モータ、40…操作状態検出装置、45…運動状態検出装置、50…電子制御ユニット(ECU)、Cf,Cr…瞬間回転中心、θf,θr…瞬間回転角。

Claims (8)

  1. 前後左右の車輪を独立して駆動して、各車輪に駆動力と制動力との両方を表す制駆動力を発生可能なアクチュエータと、
    前記前後左右の車輪を独立して車体に連結するとともに、前記アクチュエータにより駆動される車輪の制駆動力を車体の上下方向の力に変換するサスペンションリンク機構と、
    ドライバーの操作量に基づいて設定されるドライバー要求制駆動力と、車両運動制御のために必要な運動制御用制駆動力とを含んだ4輪の目標制駆動力を演算する目標制駆動力演算手段と、
    前記目標制駆動力に従って前記アクチュエータの作動を制御するアクチュエータ制御手段と
    を備えた車両用制駆動力制御装置において、
    前記サスペンションリンク機構は、前輪側と後輪側とで、前記制駆動力を前記車体の上下方向の力に変換する変換率が異なるように構成され、
    前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定する配分設定手段と、
    前記車両運動制御が実施される場合には、前記車両運動制御が実施されない場合に比べて、前記変換率が大きい側のサスペンションリンク機構に連結される車輪への前記ドライバー要求制駆動力の配分比が大きくなるように、前記ドライバー要求制駆動力の前後輪への配分を切り替える配分切替手段とを備え、
    少なくとも前記車両運動制御が実施される場合に、前記配分設定手段が、前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定することを特徴とする車両用制駆動力制御装置。
  2. 前記車両運動制御が実施されない場合には、前記ドライバー要求制駆動力の前後左右輪への配分を均等にする非運動制御時配分設定手段を備えたことを特徴とする請求項1記載の車両用制駆動力制御装置。
  3. 前記配分切替手段は、車両のヨー運動制御が実施される場合には、前記車両のヨー運動制御が実施されない場合に比べて、前記変換率が大きい側のサスペンションリンク機構に連結される車輪への前記ドライバー要求制駆動力の配分比が大きくなるように、前記ドライバー要求制駆動力の前後輪への配分を切り替え、
    少なくとも前記車両のヨー運動制御が実施される場合に、前記配分設定手段が、前記ドライバー要求制駆動力の前後輪への配分を、前記変換率が小さい側のサスペンションリンク機構に連結される車輪よりも、前記変換率が大きい側のサスペンションリンク機構に連結される車輪のほうが大きくなるように設定すること特徴とする請求項1または2記載の車両用制駆動力制御装置。
  4. 前記目標制駆動力演算手段は、車両のヨー運動制御が実施される場合には、前記ヨー運動制御時の前輪の駆動力によって発生する前輪側ロールモーメントと後輪の駆動力によって発生する後輪側ロールモーメントとを釣り合わせるように各車輪の運動制御用制駆動力を演算することを特徴とする請求項1ないし請求項3の何れか一項記載の車両用制駆動力制御装置。
  5. 前記車輪の制駆動力によって前記サスペンションリンク機構を介して車体に発生させることのできる上下方向の力の余力が、前輪側と後輪側とで同等となるように前記ドライバー要求制駆動力の前後輪への配分比を設定する余力均一化手段を備えたことを特徴とする請求項1ないし請求項4の何れか一項記載の車両用制駆動力制御装置。
  6. 前記ドライバー要求制駆動力が予め設定された設定値未満となる場合には、前記ドライバー要求制駆動力を、前記変換率が大きい側のサスペンションリンク機構に連結される車輪にのみに配分するように前記前後輪への配分比を設定する低要求制駆動力時配分比設定手段を備えたことを特徴とする請求項5記載の車両用制駆動力制御装置。
  7. 車両の運動状態量を検出し、前記運動状態量に応じて、前記ドライバー要求制駆動力の前後輪への配分比を設定する状態量対応配分比設定手段を備えたことを特徴とする請求項1ないし請求項4の何れか一項記載の車両用制駆動力制御装置。
  8. 前記状態量対応配分比設定手段は、前記運動状態量が大きいほど、前記ドライバー要求制駆動力の後輪側の配分比が大きくなるように設定することを特徴とする請求項7記載の車両用制駆動力制御装置。
JP2013215341A 2013-10-16 2013-10-16 車両用制駆動力制御装置 Active JP5862636B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013215341A JP5862636B2 (ja) 2013-10-16 2013-10-16 車両用制駆動力制御装置
US14/514,940 US9233689B2 (en) 2013-10-16 2014-10-15 Vehicle braking/driving force control apparatus
DE201410220869 DE102014220869A1 (de) 2013-10-16 2014-10-15 Fahrzeug-Brems-/Antriebskraft-Regelungsvorrichtung
CN201410549368.3A CN104554265B (zh) 2013-10-16 2014-10-16 车辆用制动驱动力控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215341A JP5862636B2 (ja) 2013-10-16 2013-10-16 車両用制駆動力制御装置

Publications (2)

Publication Number Publication Date
JP2015080323A JP2015080323A (ja) 2015-04-23
JP5862636B2 true JP5862636B2 (ja) 2016-02-16

Family

ID=52738271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215341A Active JP5862636B2 (ja) 2013-10-16 2013-10-16 車両用制駆動力制御装置

Country Status (4)

Country Link
US (1) US9233689B2 (ja)
JP (1) JP5862636B2 (ja)
CN (1) CN104554265B (ja)
DE (1) DE102014220869A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896173B2 (ja) * 2013-12-09 2016-03-30 トヨタ自動車株式会社 車両用制駆動力制御装置
JP6542017B2 (ja) * 2015-04-14 2019-07-10 Ntn株式会社 車両姿勢制御装置
JP2017077753A (ja) * 2015-10-19 2017-04-27 トヨタ自動車株式会社 車両制御装置
DE102015121309A1 (de) * 2015-12-08 2017-06-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeug mit einem Fahrerassistenzsystem sowie Verfahren zum Betrieb eines derartigen Fahrerassistenzsystems
JP2018020599A (ja) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 車両制御装置及び車両
JP6286091B1 (ja) 2017-05-30 2018-02-28 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
JP6286092B1 (ja) * 2017-05-30 2018-02-28 株式会社ショーワ サスペンション制御装置、及びサスペンション装置。
JP6630386B2 (ja) * 2018-03-07 2020-01-15 株式会社Subaru 車両の制御装置及び車両の制御方法
JP6944130B2 (ja) * 2018-03-19 2021-10-06 トヨタ自動車株式会社 車両の姿勢制御装置
DE102018107612A1 (de) * 2018-03-29 2019-10-02 Thyssenkrupp Ag Kraftfahrzeug mit Hinterradlenkung und Torque-Vectoring auf der Hinterradachse
JP7032275B2 (ja) 2018-09-21 2022-03-08 トヨタ自動車株式会社 車両用制動制御装置
JP7224897B2 (ja) * 2018-12-21 2023-02-20 日立Astemo株式会社 車両運動状態推定装置、車両運動状態推定方法並びに車両
US11247561B2 (en) * 2019-04-10 2022-02-15 Akrus Inc. Systems and methods for controlling driving dynamics in a vehicle
DE102019206875B3 (de) * 2019-05-13 2020-07-23 Volkswagen Aktiengesellschaft Erkennen einer Bankettfahrt eines Kraftfahrzeugs
JP7350230B2 (ja) * 2019-06-04 2023-09-26 マツダ株式会社 車両姿勢制御装置
CN111216712B (zh) * 2020-02-10 2022-05-24 哈尔滨工业大学 一种通过半主动悬架阻尼力控制优化车辆转向性能的方法
JP2021183441A (ja) * 2020-05-21 2021-12-02 トヨタ自動車株式会社 車両用操作装置
US11505176B2 (en) * 2020-06-30 2022-11-22 Rivian Ip Holdings, Llc Systems and methods for controlling torque induced yaw in a vehicle
US20220314965A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Systems and methods for stabilizing a vehicle on two wheels
US20220396258A1 (en) * 2021-06-09 2022-12-15 Rivian Ip Holdings, Llc Systems and methods for performing vehicle yaw in an electric vehicle
CN116812477B (zh) * 2023-08-24 2024-01-02 湖南大学无锡智能控制研究院 轨道式转运机器人的控制方法、装置及***

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099675B2 (ja) * 1995-04-06 2000-10-16 トヨタ自動車株式会社 車両挙動制御システム
JP3899987B2 (ja) * 2002-04-11 2007-03-28 株式会社豊田中央研究所 物理量推定装置及びタイヤ状態判定装置
JP2005125986A (ja) * 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法
JP4471103B2 (ja) * 2004-10-07 2010-06-02 トヨタ自動車株式会社 車両の制駆動力制御装置
JP4650207B2 (ja) * 2005-10-25 2011-03-16 日産自動車株式会社 車両用駆動制御装置
JP4887771B2 (ja) * 2005-12-12 2012-02-29 トヨタ自動車株式会社 走行装置
EP1967432B1 (en) * 2005-12-27 2010-09-08 Honda Motor Co., Ltd. Vehicle control device
JP2008012972A (ja) 2006-07-03 2008-01-24 Toyota Motor Corp 走行装置及び車両姿勢制御装置
EP2106353B1 (en) * 2007-01-25 2014-01-08 Honda Motor Co., Ltd. Vehicle systems control for improving stability
JP5007576B2 (ja) * 2007-02-21 2012-08-22 株式会社アドヴィックス 車両挙動制御装置
JP4897584B2 (ja) * 2007-06-21 2012-03-14 本田技研工業株式会社 車両用駆動制御装置
JP4179391B1 (ja) * 2007-07-09 2008-11-12 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP5109602B2 (ja) 2007-11-09 2012-12-26 トヨタ自動車株式会社 車両の制動力および駆動力の制御装置
JP5024016B2 (ja) * 2007-12-12 2012-09-12 トヨタ自動車株式会社 車両用走行制御装置
JP4911111B2 (ja) 2008-05-08 2012-04-04 トヨタ自動車株式会社 車両の制御装置
JP4956800B2 (ja) * 2009-06-05 2012-06-20 日産自動車株式会社 車輪独立駆動式電気自動車の駆動力制御装置
US8670909B2 (en) * 2009-07-14 2014-03-11 Ford Global Technologies, Llc Automotive vehicle
JP5212663B2 (ja) * 2010-10-21 2013-06-19 トヨタ自動車株式会社 車両の制駆動力制御装置
JP5720799B2 (ja) * 2011-11-08 2015-05-20 トヨタ自動車株式会社 車両の制駆動力制御装置
JP2012191831A (ja) * 2011-12-28 2012-10-04 Pioneer Electronic Corp 効率マップ生成装置および効率マップ生成方法
JP2015058914A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 サスペンション装置

Also Published As

Publication number Publication date
US20150105978A1 (en) 2015-04-16
CN104554265B (zh) 2017-04-26
CN104554265A (zh) 2015-04-29
US9233689B2 (en) 2016-01-12
DE102014220869A1 (de) 2015-04-16
JP2015080323A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5862636B2 (ja) 車両用制駆動力制御装置
JP6252455B2 (ja) 車両の制御装置
JP5896173B2 (ja) 車両用制駆動力制御装置
JP6241616B2 (ja) 車両用制動力制御装置
US9636965B2 (en) Suspension system
US8983723B2 (en) Vehicle braking/driving force control system and vehicle braking/driving force control method
US20120185136A1 (en) Vehicle motion control system
US20150100205A1 (en) Vehicle braking/driving force control apparatus
JP5736725B2 (ja) 車両の制駆動力制御装置
JP4911111B2 (ja) 車両の制御装置
JP6481329B2 (ja) 車両のばね上振動抑制装置
US20150032333A1 (en) Vehicle behavior control apparatus
US20170106755A1 (en) Vehicle control apparatus
CN110239499A (zh) 车辆的控制装置及车辆的控制方法
JP6248919B2 (ja) 車両用制動力制御装置
JP2017034816A (ja) 電動車両
JP6299572B2 (ja) 車両の制御装置
JP6303891B2 (ja) 車両の制御装置
JP6127898B2 (ja) 車両用制駆動力制御装置
JP4797586B2 (ja) 車輌の制駆動力制御装置
JP2015216724A (ja) 制駆動力制御装置
JP4321285B2 (ja) 車輪の接地荷重推定装置
JP6330671B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151