JP3395679B2 - 圧電体の分極処理方法 - Google Patents

圧電体の分極処理方法

Info

Publication number
JP3395679B2
JP3395679B2 JP35702898A JP35702898A JP3395679B2 JP 3395679 B2 JP3395679 B2 JP 3395679B2 JP 35702898 A JP35702898 A JP 35702898A JP 35702898 A JP35702898 A JP 35702898A JP 3395679 B2 JP3395679 B2 JP 3395679B2
Authority
JP
Japan
Prior art keywords
polarization
degree
temperature
rotation
polarization degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35702898A
Other languages
English (en)
Other versions
JP2000183422A (ja
Inventor
宏 友廣
直樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35702898A priority Critical patent/JP3395679B2/ja
Priority to US09/455,514 priority patent/US6403012B1/en
Priority to MYPI9905394 priority patent/MY122442A/en
Priority to CNB991247477A priority patent/CN1180491C/zh
Priority to DE1999160566 priority patent/DE19960566A1/de
Publication of JP2000183422A publication Critical patent/JP2000183422A/ja
Application granted granted Critical
Publication of JP3395679B2 publication Critical patent/JP3395679B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はセラミックフィルタ
やセラミック発振子などに使用される圧電体の分極処理
方法に関するものである。
【0002】
【従来の技術】従来、PZT系に代表される粒状組織の
圧電セラミックスの分極方法は、焼成体に銀電極をスパ
ッタし、室温〜150℃程度の温度で2〜5kV/mm
程度の直流電圧を数秒〜数十分印加することで、所望の
分極度を得ている。しかしながら、従来の分極方法で
は、分極処理後の後工程での熱衝撃(半田付けなど)に
よって、特性劣化が進んでしまうという欠点があった。
その理由は、以下のようなものであると考えられる。
【0003】分極処理とは、自発分極を一定方向に揃え
ることであるが、この自発分極の動きは、大局的にみて
180度回転と90度回転の2種類がある。90度回転
による自発分極の残留分は、温度をかけることで元の状
態に戻るという性質があり、180度回転による自発分
極の残留分は、キュリー温度以下で分極状態を維持する
という性質がある。つまり、180度回転による自発分
極は90度回転による自発分極に比べ、熱衝撃に対して
安定である。
【0004】図1は自発分極の向きの変化を示す。図1
の(A)は分極前の自発分極の向きを示し、それぞれが
個別の方向を向いている。これに分極処理を行なうこと
で、図1の(B)に示すように全てが同一方向を向くこ
とになる。その後の熱衝撃によって、図1の(C)に示
すように90度回転による自発分極のみが元の状態に戻
ってしまう。
【0005】このような性質を利用して、圧電体の自発
分極の90度回転をエージング処理によって除去し、1
80度回転のみとする分極処理方法が提案されている
(特開平7−172914号公報)。この場合のエージ
ング処理方法としては、例えば200〜250℃での熱
エージングを行なう方法、−40℃から130℃への変
化と130℃から−40℃への変化をほぼ50サイクル
繰り返す方法、50MPaの圧縮応力をほぼ100回繰
り返す方法などがある。
【0006】
【発明が解決しようとする課題】しかしながら、従来の
第2,第3の方法では、圧電体に過大な負荷がかかるた
め、クラックや割れなどの不具合が発生しやすく、歩留
りが悪化するという問題がある。一方、第1の方法の場
合には、歩留りは良好であるが、単純に200〜250
℃での熱エージングを行なうだけでは、目標とする分極
度の圧電体を得ることが難しい。すなわち、従来では予
め適当な電圧,時間,温度によって分極を行なった後、
90度回転を完全に除去するまでエージング処理を行な
うので、分極が終了した段階で180度回転による自発
分極がどの程度存在するかによって、最終的な分極度が
ばらついていた。
【0007】そこで、本発明の目的は、目標とする分極
度へ高精度に到達でき、熱的および経時的に安定な圧電
体の分極処理方法を提供することにある。
【0008】
【課題を解決するための手段】本発明者らは、種々の条
件で分極およびエージングを行なった結果、分極度Δf
に占める180度回転の分極度Δf180 と90度回転の
分極度Δf90の比率は温度のみによって支配され、分極
電圧や分極時間に左右されないことを発見した。そのた
め、温度が決まれば、180度回転と90度回転の分極
度の比率を一義的に知ることができる。
【0009】この明細書で、分極度とは残留分極度のこ
とを指し、残留分極度とは、分極終了後の常温での分極
度である。なお、分極度は、周知のように圧電体の共振
周波数frと***振周波数faとの周波数差Δfによっ
て知ることができる。
【0010】図2は本発明者らが実験的に求めた分極温
度と分極度Δfに占める180度回転,90度回転との
関係を示す。ただし、上記分極度は、各分極温度で最大
限の分極度が得られる分極(以下、全分極と呼ぶ)を行
なった後の分極度である。ここでは、圧電体としてPb
(ZrTi)O3 にSr,Crを添加したPZTセラミ
ックスを用いた。
【0011】図2において、分極温度T1〜T6を例え
ば26℃,50℃,100℃,150℃,200℃,2
50℃とした場合、分極温度と同一温度でエージングを
行なった後では、180度回転による分極度Δf180
温度に関係なく一定しているが、90度回転による分極
度Δf90は温度の上昇に伴って減少し、温度T6ですべ
てが180度回転のみで占められた。180度回転と9
0度回転との比率は、分極温度がT1〜T6へと変化す
るに伴い、例えば77:23,78:22,81:1
9,85:15,90:10,100:0のように変化
した。また、180度回転量と90度回転量との比率
は、分極電圧や分極時間(全分極か半分極か)によって
全く影響されず、温度にのみ左右される。分極は大気中
でも絶縁油中で行なってもよい。よって、図3のような
関係が得られる。ここで、半分極とは全分極にまで至ら
ない分極を言い、時間,電圧をコントロールしながら行
なう分極である。
【0012】分極度に占める180度回転量と90度回
転量の比率を求めるには、まず、圧電体の(002)格
子面をXRD(X線回析法)で測定し、180度回転の
みの分極度が得られる分極温度を求める。図4は分極温
度と(002)結晶格子面のX線強度の関係を示す。な
お、X線強度は、分極後、圧電体を常温に戻して測定し
た時の強度である。(002)格子面とは、C軸が分極
方向に向いている面である。図4から明らかなように、
分極温度が上昇するにつれて(002)格子面が減少し
ており、90度回転の戻りが多く起きていることがわか
る。また、温度T6で(002)格子面が未分極時と同
じ状態になっていることから、90度回転が全て戻りき
ったことがわかる。つまり、この温度T6が、180度
回転のみの分極度が得られる分極温度である。次に、以
下のようにして、180度回転量と90度回転量の比率
を求める。まず温度T6より低い複数の適当な温度で分
極し、ついで温度T6でエージングを行なう。このと
き、温度T6のエージングで減少したΔfが90度回転
分であり、残ったΔfが180度回転分である。この結
果より、分極度Δfに占める180度回転量と90度回
転量の比率として、図3を得ることができる。
【0013】上記の知見を基にして、本発明者らは請求
項1〜4に示されるような分極処理方法を発明した。す
なわち、請求項1,2に記載の方法は、圧電材料などに
よって決まる180度回転の最大分極度Δf180maxを求
め、目標値である残留分極度Δfと最大分極度Δf
180maxとを比較した結果、Δf≦Δf180maxである場合
の分極方法である。つまり、すべてが180度回転のみ
で占められる分極度Δfを得ることが可能な場合の分極
方法である。ここで、「すべてが180度回転のみで占
められる分極度」とは、若干の90度回転量を含む程度
の分極度ならば、それについても含むものとする。
【0014】請求項1では、まず、すべてが180度回
転のみで占められる分極度Δfを得るための温度TA
求める。この温度TA は、予め実験的に求めることがで
きる。一般に、高温になるほど180度回転の分極度の
比率が高くなる。次に、温度T A で、時間,電圧をコン
トロールして、180度回転の分極度Δf180 が目標分
極度Δfと同じになるように半分極する。半分極の終了
段階では、180度回転量のほかに90度回転量も含ま
れるが、分極時と同一温度TA でエージングを行なうこ
とで、分極時の90度回転がすべて戻り、すべてが18
0度回転のみで占められる分極度が得られる。この方法
では、残留分極度の中に180度回転のみが存在し、9
0度回転が全て除去されるので、熱的および経時的に安
定な圧電体が得られる。しかも、180度回転による分
極度Δf180 が半分極の段階で決定されるので、分極度
Δf(=Δf180 )が目標値と正確に一致した圧電体を
得ることができる。
【0015】請求項2では、請求項1と同様に、すべて
が180度回転のみで占められる分極度Δfを得るため
の温度TA を求めるが、この温度TA では目標値である
Δfに到達することが困難である場合に、これより分極
コントロールのしやすい低い温度TP で、時間,電圧を
コントロールして、180度回転の分極度Δf180 が目
標分極度Δfと同じになるように半分極する。半分極の
終了段階では分極度Δfの中に90度回転の分極度Δf
90が存在しているが、次に温度TA でエージングするこ
とによって、90度回転をすべて元の状態に戻す。な
お、エージングによって、180度回転の分極度Δf
180 は全く変化しない。以上の操作によって、請求項1
と同様に残留分極度の中に180度回転のみが存在し、
熱的および経時的に安定な圧電体を得ることができる。
【0016】請求項3に記載の方法は、圧電材料などに
よって決まる180度回転のみの最大分極度Δf180max
を求め、目標値である残留分極度Δfと最大分極度Δf
180maxとを比較した結果、Δf>Δf180maxである場合
の分極方法である。つまり、どのように処理しても、す
べてが180度回転のみで占められる分極度Δfを得る
ことが不可能な場合に、180度回転量の比率が最も高
くなるような分極度が得られる分極方法のことである。
ここで、「180度回転量の比率が最も高くなるような
分極度」とは、180度回転量の最も高い比率に比べ、
若干の180度回転量の比率が少なくなる程度の分極度
ならば、それについても含むものとする。
【0017】請求項3では、まず、180度回転量の比
率が最も高くなる分極度Δfを得るための温度TA を求
める。次に、温度TA で全分極を行い、分極時と同一温
度TAでエージングを行なうことで、180度回転量の
比率が最も高くなる分極度Δfを得ることができる。こ
の方法では、残留分極度の中に90度回転量も一部含ま
れるが、180度回転量の比率が最も高くなるので、熱
的および経時的に安定な圧電体が得られる。しかも、分
極度Δfが目標値と一致した圧電体を得ることができ
る。
【0018】
【0019】
【発明の実施の形態】次に、本発明にかかる分極処理方
法の一例を、図5を参照して説明する。図5では4つの
処理方法が示されている。S1〜S7は第1の処理方
法、S1〜S4,S8〜S10は第2の処理方法、S
1,S2,S11〜S15は第3の処理方法、S1,S
2,S11,S12,S16〜S18は第4の処理方法
である。
【0020】第1,第2の処理方法は、残留分極度Δf
を目標値に一致させ、かつ分極度Δfのすべてを180
度回転の分極度Δf180 のみで構成する方法である。こ
れに対し、第3,第4の処理方法は、どのように処理し
ても分極度Δfのすべてが180度回転のみで構成でき
ない場合に、分極度Δfを目標値に一致させ、かつ分極
度Δfの中に占める180度回転量の比率を最も高くす
る方法である。
【0021】まず第1,第2の処理方法について説明す
る。最初に、180度回転のみの最大分極度Δf180max
を求める(ステップS1)。この最大分極度Δf180max
は、分極の仕方(半分極か全分極か)や温度に関係なく
圧電体の材料によって決定される。次に、目標値である
Δfと、上記の最大分極度Δf180maxとを比較する(ス
テップS2)。目標分極度Δfは圧電体を用いた製品の
用途や種類によって自由に設定される。比較の結果、Δ
f≦Δf180maxの場合にはステップS3〜S10の処理
を実行し、Δf>Δf180maxの場合にはステップS11
〜S18の処理を実行する。Δf≦Δf180maxであると
いうことは、目標分極度Δfをすべて180度回転のみ
で構成することが可能であることを意味する。そこで、
すべて180度回転のみで構成できるΔfを得るための
温度TA を求める(ステップS3)。例えば、図2,図
3を参照すれば、温度TA =T6 である。次に、温度T
A で半分極して目標分極度Δfへコントロールできるか
否かを判定する(ステップS4)。もし、高い温度TA
でコントロール可能である場合には、温度TA で電圧,
時間をコントロールしながらΔfへ半分極し(ステップ
S5)、その後、同じ温度T A でエージングを行い(ス
テップS6)、目標とするΔfを得る(ステップS
7)。上記のようにして、目標値となる分極度Δfを有
し、かつ180度回転の比率が100%の圧電体を得る
ことができる。そのため、熱的および経時的に非常に安
定である。
【0022】ステップS4において、温度TA でΔfへ
コントロール困難であると判定された場合には、温度T
A より低い温度TP で半分極し、計算によって求めたΔ
p へコントロールする(ステップS8)。なぜなら、
低い温度の方が分極コントロールが容易であるからであ
る。Δfp は、図2を参照すれば、T1〜T5における
分極度Δfのことであり、この温度における180度回
転の分極度Δf180 が、最終目標である温度T6におけ
る180度回転の分極度Δf180 と等しい分極度のこと
である。上記のようにして半分極を行なった後の分極状
態を図6のAで示す。この状態では、分極度Δfの中に
幾分かの90度回転の分極度Δf90が存在している。温
度TP で半分極した後、温度TA でエージングを行なう
(ステップS9)。これによって、分極度Δfに占める
90度回転がすべて元の状態に戻され、180度回転の
みとなる。この状態を図6のBで示す。なお、エージン
グによって180度回転の分極度Δf180 は全く変化し
ない。以上のようにして、目標値となる分極度Δfを有
し、かつすべてが180度回転のみで構成された分極度
Δfを得る(ステップS10)。
【0023】次に、第3,第4の処理方法について説明
する。ステップS2における目標値Δfと最大分極度Δ
180maxとの比較によって、Δf>Δf180maxであると
判定された場合には、どのように処理しても、目標分極
度Δfをすべて180度回転のみで構成できないことを
意味する。そこで、180度回転の比率が最も高いΔf
を得るための温度TA を求める(ステップS11)。例
えば、図2を参照して、温度TA =T5 とする。次に、
温度TA で全分極できるか否かを判定する(ステップS
12)。すなわち、全分極状態で温度コントロールがで
きるか否かや、圧電体の保持治具などの制約により温度
A に維持できるか否かなどが判定される。もし、温度
A で全分極できると判定された場合には、温度TA
全分極する(ステップS13)。全分極であるから、半
分極とは異なり、所定の電圧を所定時間だけ印加し、最
大限の分極度Δfを得る。その後、温度TA でエージン
グし(ステップS14)、目標とする分極度Δfを得る
(ステップS15)。このように処理すれば、180度
回転の比率が最も高く、かつ全体の分極度Δfが目標値
と一致した圧電体を得ることができる。
【0024】もし、温度TA で全分極できないと判定さ
れた場合には、温度TA より低い温度TP で全分極する
(ステップS16)。図2を参照すれば、TA =T5
あると仮定すれば、TP はT1〜T4のいずれかであ
る。この場合には、電圧や時間はコントロールする必要
がなく、最大限の分極度Δfを得るように分極すればよ
い。その後、温度TA でエージングして、90度回転の
一部を元の状態に戻す(ステップS17)。つまり、温
度TA における180度回転の比率と同一の比率になる
ように分極度を調整し、目標とする分極度Δfを得る
(ステップS18)。以上の処理によって、180度回
転の比率ができるだけ高く、かつ残留分極度Δfが目標
値と一致した圧電体を得ることができる。
【0025】図7は半分極と全分極における分極度の違
いを示す。図から明らかなように、分極温度TP が同じ
でも全分極では半分極に比べて分極度Δfが高く、分極
度Δfは最大値Δfmax となる。但し、180度回転と
90度回転との比率(a:b)は、半分極および全分極
で変化がない。
【0026】
【発明の効果】以上の説明で明らかなように、請求項1
に記載の発明によれば、すべて180度回転のみの分極
度を得るための温度TA で半分極した後、同じ温度でエ
ージングを行なったので、180度回転の比率が100
%で、熱的および経時的に安定し、かつ分極度が目標値
と正確に一致した圧電体を得ることができる。
【0027】また、請求項2に記載の発明によれば、請
求項1と同様に、すべて180度回転のみの分極度を得
るための温度TA を求め、この温度より低い温度TP
半分極した後、90度回転がすべて戻る温度TA でエー
ジングを行なったので、180度回転の比率が100%
で、熱的および経時的に安定し、かつ分極度が目標値と
正確に一致した圧電体を得ることができるとともに、請
求項1に比べて低温で半分極するので、処理方法の汎用
BR>性を高くすることができる。
【0028】また、請求項3に記載の発明によれば、ど
のように処理してもすべてが180度回転のみで占めら
れる分極度を得られない場合に、180度回転量の比率
が最も高くなる分極度を得るための温度TA を求め、こ
の温度TA で全分極した後、同じ温度TA でエージング
を行なうようにしたので、180度回転量の比率が最も
高く、熱的および経時的に安定し、かつ分極度が目標値
と正確に一致した圧電体を得ることができる。
【0029】
【図面の簡単な説明】
【図1】圧電体の自発分極の向きの分極処理による変化
を示す図である。
【図2】分極温度と180度回転および90度回転にお
ける分極度との関係を示す図である。
【図3】分極温度と分極度に占める180度,90度回
転の比率との関係を示す図である。
【図4】分極温度と(002)結晶格子面のX線強度と
の関係を示す図である。
【図5】本発明にかかる分極処理方法を示すフロー図で
ある。
【図6】分極後とエージング後との分極度の変化を示す
図である。
【図7】半分極と全分極における分極度の違いを示す図
である。
【符号の説明】
Δf 残留分極度 Δf180 180度回転による分極度 Δf90 90度回転による分極度
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 41/22

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】圧電体の分極処理方法であって、 180度回転の最大分極度Δf180maxを求める工程と、 目標値となる残留分極度Δfと上記最大分極度Δf
    180maxとを比較する工程と、Δf≦Δf180maxの場合
    に、すべてが180度回転で占められる分極度Δfを得
    るための温度TA を求める工程と、 温度TA で半分極する工程と、 温度TA でエージングを行なう工程と、を含む圧電体の
    分極処理方法。
  2. 【請求項2】圧電体の分極処理方法であって、 180度回転の最大分極度Δf180maxを求める工程と、 目標値となる残留分極度Δfと上記最大分極度Δf
    180maxとを比較する工程と、Δf≦Δf180maxの場合
    に、すべてが180度回転で占められる分極度Δfを得
    るための温度TA を求める工程と、 温度TA より低い温度TP で半分極する工程と、 温度TA でエージングを行なう工程と、を含む圧電体の
    分極処理方法。
  3. 【請求項3】圧電体の分極処理方法であって、 180度回転の最大分極度Δf180maxを求める工程と、 目標値となる残留分極度Δfと上記最大分極度Δf
    180maxとを比較する工程と、Δf>Δf180maxの場合
    に、180度回転量の比率が最も高い分極度Δfを得る
    ための温度TA を求める工程と、 温度TA で全分極する工程と、 温度TA でエージングを行なう工程と、を含む圧電体の
    分極処理方法。
JP35702898A 1998-12-16 1998-12-16 圧電体の分極処理方法 Expired - Fee Related JP3395679B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35702898A JP3395679B2 (ja) 1998-12-16 1998-12-16 圧電体の分極処理方法
US09/455,514 US6403012B1 (en) 1998-12-16 1999-12-07 Method of polarization-treating piezoelectric material
MYPI9905394 MY122442A (en) 1998-12-16 1999-12-10 Method of polarization-treating piezoelectric material
CNB991247477A CN1180491C (zh) 1998-12-16 1999-12-15 极化处理压电材料的方法
DE1999160566 DE19960566A1 (de) 1998-12-16 1999-12-15 Verfahren zur Polarisationsbehandlung eines piezoelektrischen Materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35702898A JP3395679B2 (ja) 1998-12-16 1998-12-16 圧電体の分極処理方法

Publications (2)

Publication Number Publication Date
JP2000183422A JP2000183422A (ja) 2000-06-30
JP3395679B2 true JP3395679B2 (ja) 2003-04-14

Family

ID=18452016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35702898A Expired - Fee Related JP3395679B2 (ja) 1998-12-16 1998-12-16 圧電体の分極処理方法

Country Status (5)

Country Link
US (1) US6403012B1 (ja)
JP (1) JP3395679B2 (ja)
CN (1) CN1180491C (ja)
DE (1) DE19960566A1 (ja)
MY (1) MY122442A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846186B2 (ja) * 2000-12-05 2006-11-15 株式会社村田製作所 分極装置および分極方法
JP3724370B2 (ja) * 2000-12-26 2005-12-07 株式会社村田製作所 圧電体の分極方法
DE602004024626D1 (de) * 2003-09-24 2010-01-28 Tdk Corp Piezoelektrische keramische Zusammenstellung und Herstellung derselben, und piezoelektrisches Element
US7748930B2 (en) * 2004-05-10 2010-07-06 Developmental Technologies, Llc Fluid and nutrient delivery system and associated methods
US7198431B2 (en) * 2004-05-10 2007-04-03 Gesser Hyman D Irrigation system and associated methods
US7712253B2 (en) * 2004-05-10 2010-05-11 Developmental Technologies, Llc Fluid and nutrient delivery system and associated methods
US8011853B2 (en) * 2007-10-31 2011-09-06 Developmental Technologies, Llc Fluid and nutrient delivery irrigation system and associated methods
JP5824892B2 (ja) * 2011-06-15 2015-12-02 セイコーエプソン株式会社 圧電センサー装置、超音波センサー、および圧電センサー装置における圧電体の分極方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172914A (ja) 1993-12-21 1995-07-11 Toyota Motor Corp 圧電体の製造方法
JP3387601B2 (ja) * 1993-12-29 2003-03-17 株式会社村田製作所 圧電部品の分極方法
US5659346A (en) * 1994-03-21 1997-08-19 Spectra, Inc. Simplified ink jet head
JP4020454B2 (ja) * 1997-03-31 2007-12-12 Tdk株式会社 圧電セラミックスの製造方法

Also Published As

Publication number Publication date
JP2000183422A (ja) 2000-06-30
MY122442A (en) 2006-04-29
US6403012B1 (en) 2002-06-11
DE19960566A1 (de) 2000-07-27
CN1259771A (zh) 2000-07-12
CN1180491C (zh) 2004-12-15

Similar Documents

Publication Publication Date Title
Koukhar et al. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures
US2708244A (en) Piezoelectric transducers using lead titanate and lead zirconate
Carl et al. On the origin of the maximum in the electromechanical activity in Pb (ZrxTi1− x) O3 ceramies near the morphotropic phase boundary
Shepard Jr et al. Characterization and aging response of the d 31 piezoelectric coefficient of lead zirconate titanate thin films
Uchida et al. Electrostriction in perovskite-type ferroelectric ceramics
JP3395679B2 (ja) 圧電体の分極処理方法
JP2002043646A (ja) 薄膜、薄膜の製造方法および電子部品
US6864621B2 (en) Piezoelectric element and method for manufacturing the same
US6579468B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method for manufacturing the piezoelectric ceramic composition
JP4508725B2 (ja) 圧電単結晶素子とその製造方法
JP2005317831A (ja) 圧電単結晶素子およびその製造方法
JP3075033B2 (ja) 圧電セラミックスの分極方法
JPH10209794A (ja) 圧電薄膜共振子
Tawfik Elastic properties and sound wave velocity of PZT transducers doped with Ta and La
JP2830556B2 (ja) 圧電体の分極方法
JPH10215008A (ja) 圧電体セラミックス薄膜デバイス
JPH06224486A (ja) 圧電セラミックスの分極方法
JPS6134279B2 (ja)
JP2005093133A (ja) 強誘電体結晶材料及びその製造方法
Ishchuk et al. Phase diagrams of the system of solid solutions Pb1− x (Li½La½) x (Zr1-y Ti y) O3 O3 in the vicinity of the FE-AFE phase boundary
JPH07172914A (ja) 圧電体の製造方法
JPS5948560B2 (ja) 圧電磁器素子の製造方法
Shrout et al. Temperature compensated composite resonator
JP2915292B2 (ja) ニオブ酸リチウム基板の製造方法
JPS63100807A (ja) 圧電セラミツク共振子の製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees