JP2014154386A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2014154386A
JP2014154386A JP2013023514A JP2013023514A JP2014154386A JP 2014154386 A JP2014154386 A JP 2014154386A JP 2013023514 A JP2013023514 A JP 2013023514A JP 2013023514 A JP2013023514 A JP 2013023514A JP 2014154386 A JP2014154386 A JP 2014154386A
Authority
JP
Japan
Prior art keywords
fuel
hydrogen
fuel cell
gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013023514A
Other languages
English (en)
Inventor
Sadatsugu Nagata
定嗣 永田
Mamoru Yoshioka
衛 吉岡
Shigehito Suzuki
重仁 鈴木
Nobutaka Tejima
信貴 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2013023514A priority Critical patent/JP2014154386A/ja
Publication of JP2014154386A publication Critical patent/JP2014154386A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池から排出される水素オフガスと共にエゼクタへ流れる水分を低減させてエゼクタにおける流路の凍結閉塞を抑制すること。
【解決手段】燃料電池システムは、水素ガスとエアの供給を受けて発電する燃料電池1と、燃料電池1に水素ガスを供給する水素供給流路2と、燃料電池1からの水素オフガスを水素供給流路2へ循環させる第1水素循環流路3と、水素供給流路2と第1水素循環流路3との間に設けられたエゼクタ4と、第1水素循環流路2と並列に配置され、水素オフガスを燃料電池1へ循環させる第2水素循環流路5と、第2水素循環流路5に設けられる水素ポンプ6とを備える。燃料電池1から第1水素循環流路3へ流れる水素オフガスに含まれる水分を、燃料電池1から第2水素循環流路5へ流れる水素オフガスに含まれる水分よりも少なくする流路構造を第1水素循環流路3と第2水素循環流路5の配置により構成する。
【選択図】 図1

Description

この発明は、電気自動車等の電源として使用される燃料電池システムに関する。
従来、この種の技術として、例えば、下記の特許文献1に記載される燃料電池システムが知られている。このシステムは、電気自動車の電源として使用される燃料電池に水素ガスを燃料として供給する水素供給流路と、燃料電池から排出される水素オフガスを水素供給流路へ循環させる第1水素循環流路と、水素供給流路と第1水素循環流路との間に設けられたエゼクタと、第1水素循環流路と並列に配置され燃料電池から排出される水素オフガスを水素供給流路へ循環させる第2水素循環流路と、第2水素循環流路に設けられる水素ポンプとを備える。この構成によれば、燃料電池に要求される発電量が少ないときは、水素供給流路及びエゼクタを介して燃料電池に水素ガスを供給すると共に、燃料電池から排出される水素オフガスを、水素ポンプを駆動させることで第2水素循環流路及び水素ポンプを介して水素供給流路へ循環させるようになっている。一方、燃料電池に要求される発電量が多いときは、燃料電池に供給される水素ガスの流量を増やすと共に、水素ポンプを停止し、燃料電池から排出される水素オフガスを、エゼクタで発生する負圧によって吸引させることで第1水素循環流路及びエゼクタを介して水素供給流路へ循環させるようになっている。
特許第3588776号公報
ところが、特許文献1に記載の燃料電池システムでは、燃料電池から排出される水素オフガスを第1水素循環流路と第2水素循環流路へ振り分けるための構成が、単に燃料電池につながる1つの共通流路が第1水素循環流路と第2水素循環流路に分岐しているだけであった。このため、燃料電池の内部で発生する水分が水素オフガスと共に第1水素循環流路を介してエゼクタへ流れるおそれがあった。この結果、エゼクタに流れた水分が低温の水素ガスによりエゼクタが冷やされることで凍結してその流路を閉塞させ、エゼクタの機能を損ねるおそれがあった。
この発明は、上記事情に鑑みてなされたものであって、その目的は、燃料電池から排出される燃料オフガスと共にエゼクタへ流れる水分を低減させてエゼクタにおける流路の凍結閉塞を抑制することを可能とした燃料電池システムを提供することにある。
上記目的を達成するために、請求項1に記載の発明は、燃料ガスと酸化剤ガスの供給を受けて発電を行う燃料電池と、燃料電池に燃料ガスを供給するための燃料供給流路と、燃料電池から排出される燃料オフガスを燃料供給流路へ循環させるための第1燃料循環流路と、燃料供給流路と第1燃料循環流路との間に設けられたエゼクタと、エゼクタを迂回するように第1燃料循環流路と並列に配置され、燃料電池から排出される燃料オフガスを燃料電池へ循環させるための第2燃料循環流路と、第2燃料循環流路に設けられて燃料オフガスを圧送するための燃料ポンプとを備えた燃料電池システムにおいて、燃料電池から排出されて第1燃料循環流路へ流れる燃料オフガスに含まれる水分を、燃料電池から排出されて第2燃料循環流路へ流れる燃料オフガスに含まれる水分よりも少なくするための流路構造を第1燃料循環流路と第2燃料循環流路の配置により構成したことを趣旨とする。
上記発明の構成によれば、燃料電池では、燃料ガスと酸化剤ガスの供給を受けて発電が行われる。このとき、燃料電池の内部で水分が生じ、水分を含む燃料オフガスが燃料電池から排出される。燃料電池から第1燃料循環流路へ流れた燃料オフガスは、燃料供給流路を流れる燃料ガスによりエゼクタで負圧が発生することでエゼクタに吸引されて燃料供給流路を介して燃料電池へ循環される。また、燃料電池から第2燃料循環流路へ流れた燃料オフガスは、燃料ポンプにより圧送されることで燃料電池へ循環される。ここで、第1燃料循環流路と第2燃料循環流路の配置により構成された流路構造が設けられることから、燃料電池から排出されて第1燃料循環流路へ流れる燃料オフガスに含まれる水分が、燃料電池から排出されて第2燃料循環流路へ流れる燃料オフガスに含まれる水分よりも少なくなる。従って、第1燃料循環流路を介してエゼクタへ流れる燃料オフガスに含まれる水分が相対的に少なくなる。
上記目的を達成するために、請求項2に記載の発明は、請求項1に記載の発明において、流路構造は、第1燃料循環流路の入口と第2燃料循環流路の入口を燃料電池に個別に接続すると共に、第1燃料循環流路の入口を第2燃料循環流路の入口よりも天地方向における天側に配置したことを趣旨とする。
上記発明の構成によれば、請求項1に記載の発明の作用に加え、燃料電池の中では、水分が自重により燃料電池の地側へ下がり、燃料オフガスと共に、地側に配置された第2燃料循環流路の入口から同流路へ流れることになり、水分の少ない燃料オフガスが天側に配置された第1燃料循環流路の入口から同流路へ流れることになる。
上記目的を達成するために、請求項3に記載の発明は、請求項1に記載の発明において、流路構造は、第1燃料循環流路と第2燃料循環流路を燃料電池に接続される共通流路から分岐させて設け、共通流路の分岐部から第1燃料循環流路を天地方向における天側へ向けて一旦伸ばすと共に、第2燃料循環流路を天地方向における地側へ向けて一旦伸ばしたことを趣旨とする。
上記発明の構成によれば、請求項1に記載の発明の作用に加え、燃料電池から共通流路へ排出された燃料オフガスの中の水分は、分岐部より地側へ向けて一旦伸ばされた第2燃料循環流路へ自重により下がることになり、第1燃料循環流路を介してエゼクタへ流れる燃料オフガスに含まれる水分が相対的に少なくなる。
上記目的を達成するために、請求項4に記載の発明は、請求項3に記載の発明において、エゼクタより上流の燃料供給流路の一部が、分岐部とエゼクタとの間の第1燃料循環流路に熱交換可能に隣接したことを趣旨とする。
上記発明の構成によれば、請求項3に記載の発明の作用に加え、燃料供給流路の一部に熱交換可能に隣接している第1燃料循環流路の一部が、燃料供給流路を流れる低温の燃料ガスにより冷却されるので、エゼクタへ流れる燃料オフガスに含まれる水分が冷やされて燃料オフガスから分離される。
上記目的を達成するために、請求項5に記載の発明は、請求項1乃至4の何れかに記載の発明において、第2燃料循環流路の出口を燃料電池に接続したことを趣旨とする。
上記発明の構成によれば、請求項1乃至4の何れかに記載の発明の作用に加え、第2燃料循環流路を流れる燃料オフガスが、同流路の出口から燃料電池へ直接循環されることになり、その燃料オフガスに燃料電池の熱が与えられる。
上記目的を達成するために、請求項6に記載の発明は、請求項1乃至5の何れかに記載の発明において、エゼクタを燃料電池に隣接又は内蔵させたことを趣旨とする。
上記発明の構成によれば、請求項1乃至5の何れかに記載の発明の作用に加え、エゼクタが燃料電池に隣接又は内蔵されるので、エゼクタに燃料電池の熱が与えられる。
請求項1に記載の発明によれば、燃料電池から排出される燃料オフガスと共にエゼクタへ流れる水分を低減させてエゼクタにおける流路の凍結閉塞を抑制することができる。
請求項2に記載の発明によれば、燃料電池から排出される燃料オフガスと共にエゼクタへ流れる水分を低減させてエゼクタにおける流路の凍結閉塞を抑制することができる。
請求項3に記載の発明によれば、燃料電池から排出される燃料オフガスと共にエゼクタへ流れる水分を低減させてエゼクタにおける流路の凍結閉塞を抑制することができる。
請求項4に記載の発明によれば、請求項3に記載の発明の効果に加え、水素オフガスに含まれる水分を自重により分離する効果に加え、その水分を冷却によっても分離することができ、水分の分離効果を向上させることができる。
請求項5に記載の発明によれば、請求項1乃至4の何れかに記載の発明の効果に加え、第2燃料循環流路を介して燃料電池に循環された燃料オフガスが、燃料供給流路を介して供給される低温の水素ガスと合流したときのアイシングによる氷結を抑制することができる。
請求項6に記載の発明によれば、請求項1乃至5の何れかに記載の発明の効果に加え、エゼクタにおける流路の凍結閉塞をより確実に抑制することができる。
第1実施形態に係り、燃料電池システムを示す概略構成図。 第2実施形態に係り、燃料電池システムを示す概略構成図。 第3実施形態に係り、燃料電池システムを示す概略構成図。 第4実施形態に係り、燃料電池システムを示す概略構成図。 同実施形態に係り、図4の鎖線円の部分を示す拡大断面図。 第5実施形態に係り、燃料電池システムを示す概略構成図。 同実施形態に係り、図6の鎖線円の部分を示す拡大断面図。
<第1実施形態>
以下、本発明における燃料電池システムを具体化した第1実施形態につき図面を参照して詳細に説明する。
図1に、この実施形態における燃料電池システムを概略構成図により示す。この燃料電池システムは、電動自動車に搭載され、その駆動用モータ(図示略)に電力を供給するために使用される。燃料電池システムは、燃料電池(FC)1を備える。燃料電池1は、燃料ガス(水素ガス)と酸化剤ガス(エア)の供給を受けて発電を行うようになっている。燃料電池1で発電した電力は、インバータ(図示略)を介して駆動用モータに供給されるようになっている。この駆動用モータは、別途の指令に基づいて制御されるようになっている。
燃料電池1のアノード側には、燃料電池1に水素ガスを供給するための本発明の燃料供給流路としての水素供給流路2と、燃料電池1から排出される燃料オフガス(水素オフガス)を水素供給流路2へ循環させるための本発明の第1燃料循環流路としての第1水素循環流路3と、水素供給流路2と第1水素循環流路3との間に設けられたエゼクタ4と、エゼクタ4を迂回するように第1水素循環流路3と並列に配置され、燃料電池1から排出される水素オフガスを燃料電池1へ循環させるための本発明の第2燃料循環流路としての第2水素循環流路5と、第2水素循環流路5に設けられて水素オフガスを圧送するための本発明の燃料ポンプとしての水素ポンプ6とが設けられる。水素供給流路2には、水素タンク7から水素ガスが流れるようになっている。
エゼクタ4より上流の水素供給流路2には、インジェクタ8が設けられる。このインジェクタ8は、電磁弁により構成され、エゼクタ4へ供給される水素ガスの圧力を調節するようになっている。このインジェクタ8は、デューティ制御によって水素ガスの噴射圧力が調節される。
第1水素循環流路3には、逆止弁9が設けられる。逆止弁9は、エゼクタ4からの水素ガスの逆流を防止するようになっている。
水素ポンプ6より上流の第2水素循環流路5には、気液分離器10が設けられる。気液分離器10は、水素オフガスから水分を分離し、水素オフガスのみを水素ポンプ6へ向けて流し、水分を排出流路11を介して外部へ排出するようになっている。排出流路11には、電磁弁により構成される排気排水弁12が設けられる。
エゼクタ4と燃料電池1との間の水素供給流路2には、第1水素圧力センサ21が設けられる。第1水素圧力センサ21は、燃料電池1に供給される水素ガスの供給圧力(水素供給圧力)を検出するようになっている。
インジェクタ8とエゼクタ4との間の水素供給流路2には、第2水素圧力センサ22が設けられる。第2水素圧力センサ22は、エゼクタ4の上流側における水素ガスの圧力(エゼクタ上流水素圧力)を検出するようになっている。
一方、燃料電池1のカソード側には、燃料電池1に酸化剤ガスとしてのエアを供給するためのエア供給流路13と、燃料電池1から排出されるエアオフガスを排出するためのエア排出流路14とが設けられる。エア供給流路13には、燃料電池1に対するエアの供給量を調節するためのエアポンプ15が設けられる。エアポンプ15より下流のエア供給流路13には、エア圧力センサ23が設けられる。エア圧力センサ23は、燃料電池1へ供給されるエアの圧力を検出するようになっている。また、エア排出流路14には、電磁弁よりなる切換弁17が設けられる。
この実施形態では、燃料電池1から排出されて第1水素循環流路3へ流れる水素オフガスに含まれる水分を、燃料電池1から排出されて第2水素循環流路5へ流れる水素オフガスに含まれる水分よりも少なくするための流路構造が設けられる。この流路構造は、第1水素循環流路3と第2水素循環流路5の配置により構成される。すなわち、この実施形態で、流路構造は、第1水素循環流路3の入口3aと第2水素循環流路5の入口5aを燃料電池1に個別に接続すると共に、第1水素循環流路3の入口3aを第2水素循環流路5の入口5aよりも燃料電池1の天地方向(図1の上下方向)における天側に配置することにより構成される。第1水素循環流路3の出口3bはエゼクタ4に接続される。第2水素循環流路5の出口5bは、エゼクタ4より下流の水素供給流路2に接続される。
上記構成において、水素タンク7の水素ガスは、水素供給流路2及びエゼクタ4を介して燃料電池1へ供給されるようになっている。燃料電池1に供給された水素ガスは、同電池1にて発電に使用された後、同電池1から水素オフガスとして第1水素循環流路3又は第2水素循環流路5へ排出されるようになっている。水素オフガスには、燃料電池1の内部の生成水などの水分が含まれる。燃料電池1から第1水素循環流路3へ排出される水素オフガスは、第1水素循環流路3、逆止弁9及びエゼクタ4を介して水素供給流路2へ循環可能となっている。このとき、水素オフガスは、エゼクタ4を流れる水素ガスによってエゼクタ4に負圧が発生することで、その負圧に吸引されて水素ガスに合流し、水素供給流路2へ循環される。一方、燃料電池1から第2水素循環流路5へ排出される水素オフガスは、気液分離器10にて水分と分離された後、第2水素循環流路5及び水素ポンプ6を介して水素供給流路2へ循環可能となっている。このとき、気液分離器10にて水分と分離された水素オフガスは、水素ポンプ6を駆動させることにより、第2水素循環流路5を介して水素供給流路2へ循環される。第1水素循環流路3により水素オフガスを循環させるか、第2水素循環流路5により水素オフガスを循環させるかは、水素ポンプ6を制御することで使い分けることができる。
この燃料電池システムは、コントローラ30を更に備える。コントローラ30は、第1水素圧力センサ21、第2水素圧力センサ22及びエア圧力センサ23の検出信号をそれぞれ入力するようになっている。コントローラ30は、燃料電池1の発電に係る電圧値及び電流値をそれぞれ入力するようになっている。また、コントローラ30は、電気自動車の運転操作に係る指令値として、運転席に設けられたアクセルセンサ31からアクセルペダル32の操作量に相当するアクセル開度を入力するようになっている。コントローラ30は、中央処理装置(CPU)及びメモリを備え、燃料電池1へ供給される水素流量及びエア流量を制御するために、メモリに記憶された所定の制御プログラムに基づいてインジェクタ8、排気排水弁12、水素ポンプ6、エアポンプ15及び切換弁17等を制御するようになっている。すなわち、コントローラ30は、燃料電池1に供給される水素流量を制御するために、各水素圧力センサ21,22の検出信号等に基づいてインジェクタ8及び水素ポンプ6を制御するようになっている。また、コントローラ30は、排出流路11からの排気排水を調節するために排気排水弁12を制御するようになっている。一方、コントローラ30は、燃料電池1へ供給されるエアの流量(エア流量)を調節するために、エア圧力センサ23の検出信号等に基づいてエアポンプ15を制御するようになっている。また、コントローラ30は、エア排出流路14からのエアオフガスの排出流量を調節するために切換弁17を制御するようになっている。
以上説明したこの実施形態の燃料電池システムによれば、燃料電池1では、水素ガスとエアの供給を受けて発電が行われる。このとき、燃料電池1の内部で生成水を含む水分が発生し、その水分を含む水素オフガスが燃料電池1から排出される。燃料電池1から排出されて第1水素循環流路3へ流れた水素オフガスは、水素供給流路2を流れる水素ガスによりエゼクタ4で負圧が発生することでエゼクタ4に吸引されて水素供給流路2へ循環され、更に燃料電池1へと循環される。また、燃料電池1から排出されて第2水素循環流路5へ流れた水素オフガスは、水素ポンプ6により圧送されることで水素供給流路2へ循環され、更に燃料電池1へと循環される。
ここで、燃料電池1のアノード側には、第1水素循環流路3と第2水素循環流路5の配置により構成された水分分離のための流路構造が設けられることから、燃料電池1から排出されて第1水素循環流路3へ流れる水素オフガスに含まれる水分が、燃料電池1から排出されて第2水素循環流路5へ流れる水素オフガスに含まれる水分よりも少なくなる。すなわち、この実施形態では、第1水素循環流路3の入口3aと第2水素循環流路5の入口5aが燃料電池1に個別に接続されると共に、第1水素循環流路3の入口3aが第2水素循環流路5の入口5aよりも天地方向における天側に配置される。従って、燃料電池1の中では、水分が自重により燃料電池1の地側へ下がり、水素オフガスと共に、地側に配置された第2水素循環流路5の入口5aから同流路5へ流れることになる。そして、水分の少ない水素オフガスが上記入口5aよりも天側に配置された第1水素循環流路3の入口3aから同流路3へ流れることになる。従って、第1水素循環流路3を介してエゼクタ4へ流れる水素オフガスに含まれる水分が相対的に少なくなる。この結果、燃料電池1から排出される水素オフガスと共にエゼクタ4へ流れる水分を低減させてエゼクタ4における流路の凍結閉塞を抑制することができる。
この実施形態では、第2水素循環流路5に気液分離器10が設けられるので、同流路5介して水素供給流路2へ循環される水素オフガスに含まれる水分を低減することができる。このため、第2水素循環流路5を介して水素供給流路2に循環された水素オフガスが、同流路2を流れる低温の水素ガスと合流したときのアイシングによる水分の氷結を抑制することができる。
<第2実施形態>
次に、本発明における燃料電池システムを具体化した第2実施形態につき図面を参照して詳細に説明する。
なお、以下の説明において前記第1実施形態と同等の構成要素については同一の符号を付して説明を省略し、異なった点を中心に説明する。
図2に、この実施形態の燃料電池システムを概略構成図により示す。この実施形態では、第2水素循環流路5の配置の点で第1実施形態と構成が異なる。すなわち、図2において、第2水素循環流路5の出口5bが、水素供給流路2を介さずに燃料電池1に直接接続される。
以上説明したこの実施形態の燃料電池システムによれば、第1実施形態の作用効果に加え、次のような作用効果を有する。すなわち、第2水素循環流路5を流れる水素オフガスが、同流路5の出口5bから燃料電池1へ直接循環されることになり、その水素オフガスに燃料電池1の熱が与えられる。このため、第2水素循環流路5を介して燃料電池1に循環された水素オフガスが、水素供給流路2を介して供給される低温の水素ガスと合流したときのアイシングによる水分の氷結を抑制することができる。また、この実施形態では、第1実施形態と同様、第2水素循環流路5に気液分離器10が設けられているので、第1実施形態よりも水分の氷結抑制効果を高めることができる。
<第3実施形態>
次に、本発明における燃料電池システムを具体化した第3実施形態につき図面を参照して詳細に説明する。
図3に、この実施形態の燃料電池システムを概略構成図により示す。この実施形態では、エゼクタ4の配置の点で第2実施形態と構成が異なる。すなわち、図3において、エゼクタ4を燃料電池1に隣接して設けられる。例えば、燃料電池1を構成するハウジングの外壁にエゼクタ4を近接させて配置することができる。
以上説明したこの実施形態の燃料電池システムによれば、第2実施形態の作用効果に加え、次のような作用効果を有する。すなわち、エゼクタ4が燃料電池1に隣接して設けられるので、エゼクタ4に燃料電池1の熱が与えられる。この結果、エゼクタ4における流路の凍結閉塞をより確実に抑制することができる。
<第4実施形態>
次に、本発明における燃料電池システムを具体化した第4実施形態につき図面を参照して詳細に説明する。
図4に、この実施形態の燃料電池システムを概略構成図により示す。この実施形態では、第1水素循環流路3と第2水素循環流路5の水分分離のための流路構造の構成の点で前記各実施形態と異なる。すなわち、この実施形態では、図4に示すように、前記各実施形態において第2水素循環流路5に設けられた気液分離器10、排出通路11及び排気排水弁12が省略される。また、水分分離のための流路構造は、第1水素循環流路3と第2水素循環流路5を燃料電池1に接続される共通流路18から分岐させて設け、その共通流路18の分岐部19から第1水素循環流路3を天地方向における天側へ向けて一旦伸ばすと共に、第2水素循環流路5を天地方向における地側へ向けて一旦伸ばすことで構成される。
図5に、図4の鎖線円S1の部分を拡大断面図により示す。図5において、太線は水素オフガスの流れF1を示す。水素オフガスの流れF1は、共通流路18を流れ、分岐部19にて第1水素循環流路3又は第2水素循環流路5へ分岐して流れることがわかる。一方、図5において、太破線は水素オフガスの中の水蒸気の流れ(水分の流れ)F2を示す。水分の流れF2は、共通流路18を流れ、分岐部19にてその自重により第2水素循環流路5を下方へ流れることがわかる。
以上説明したこの実施形態の燃料電池システムによれば、第2実施形態の作用効果(気液分離器10の作用効果を除く。)に加え、次のような作用効果を有する。すなわち、燃料電池1から共通流路18へ排出された水素オフガスの中の水分は、分岐部19より地側へ向けて一旦伸ばされた第2水素循環流路5へ自重により下がることになり、第1水素循環流路3を介してエゼクタ4へ流れる水素オフガスに含まれる水分が相対的に少なくなる。この結果、燃料電池1から排出される水素オフガスと共にエゼクタ4へ流れる水分を低減させてエゼクタ4における流路の凍結閉塞を抑制することができる。
<第5実施形態>
次に、本発明における燃料電池システムを具体化した第5実施形態につき図面を参照して詳細に説明する。
図6に、この実施形態の燃料電池システムを概略構成図により示す。この実施形態では、エゼクタ4より上流の水素供給流路2の配置の点で前記第4実施形態と異なる。すなわち、この実施形態では、図6に示すように、エゼクタ4より上流の水素供給流路2の一部が、分岐部19とエゼクタ4との間の第1水素循環流路3に熱交換可能に隣接して設けられる。具体的には、水素供給流路2の一部が、分岐部19の近傍の第1水素循環流路3に対してスペーサ20を介して接触して設けられる。
図7に、図6の鎖線円S2の部分を拡大断面図により示す。図5と異なり、図7において、水素供給流路2の中の太線は水素ガスの流れF3を示す。低温の水素ガスの流れF3は、分岐部19の近傍の第1水素循環流路3に隣接して流れることがわかる。
以上説明したこの実施形態の燃料電池システムによれば、第4実施形態の作用効果に加え、次のような作用効果を有する。すなわち、水素供給流路2の一部に熱交換可能に隣接した第1水素循環流路3の一部が、水素供給流路2を流れる低温の水素ガスにより冷却されるので、エゼクタ4へ流れる水素オフガスに含まれる水分が冷やされて水素オフガスから分離される。このため、水素オフガスに含まれる水分を自重により分離する効果に加え、その水分を冷却によっても分離することができ、水分の分離効果を向上させることができる。
なお、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することができる。
(1)前記第3実施形態では、エゼクタ4を燃料電池1に隣接して設けたが、エゼクタを燃料電池に内蔵して設けることもできる。例えば、燃料電池1を構成するハウジングの内部にエゼクタ4を配置することができる。この場合もエゼクタに燃料電池の熱が有効に与えることができる。
(2)前記第4及び第5の実施形態では、第1乃至第3の実施形態に設けられた気液分離器10、排出流路11及び排気排水弁を第2水素循環流路5に設けることもできる。この場合、第2水素循環流路5を流れる水素オフガスに含まれる水分を低減できる。
この発明は、電気自動車等の電源として利用することができる。
1 燃料電池
2 水素供給流路(燃料供給流路)
3 第1水素循環流路(第1燃料循環流路)
3a 入口
3b 出口
4 エゼクタ
5 第2水素循環流路(第2燃料循環流路)
5a 入口
5b 出口
6 水素ポンプ(燃料ポンプ)
18 共通流路
19 分岐部

Claims (6)

  1. 燃料ガスと酸化剤ガスの供給を受けて発電を行う燃料電池と、
    前記燃料電池に燃料ガスを供給するための燃料供給流路と、
    前記燃料電池から排出される燃料オフガスを前記燃料供給流路へ循環させるための第1燃料循環流路と、
    前記燃料供給流路と前記第1燃料循環流路との間に設けられたエゼクタと、
    前記エゼクタを迂回するように前記第1燃料循環流路と並列に配置され、前記燃料電池から排出される燃料オフガスを前記燃料電池へ循環させるための第2燃料循環流路と、
    前記第2燃料循環流路に設けられて前記燃料オフガスを圧送するための燃料ポンプと
    を備えた燃料電池システムにおいて、
    前記燃料電池から排出されて前記第1燃料循環流路へ流れる燃料オフガスに含まれる水分を、前記燃料電池から排出されて前記第2燃料循環流路へ流れる燃料オフガスに含まれる水分よりも少なくするための流路構造を前記第1燃料循環流路と前記第2燃料循環流路の配置により構成したことを特徴とする燃料電池システム。
  2. 前記流路構造は、前記第1燃料循環流路の入口と前記第2燃料循環流路の入口を前記燃料電池に個別に接続すると共に、前記第1燃料循環流路の入口を前記第2燃料循環流路の入口よりも天地方向における天側に配置したことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記流路構造は、前記第1燃料循環流路と前記第2燃料循環流路を前記燃料電池に接続される共通流路から分岐させて設け、前記共通流路の分岐部から前記第1燃料循環流路を天地方向における天側へ向けて一旦伸ばすと共に、前記第2燃料循環流路を天地方向における地側へ向けて一旦伸ばしたことを特徴とする請求項1に記載の燃料電池システム。
  4. 前記エゼクタより上流の前記燃料供給流路の一部が、前記分岐部と前記エゼクタとの間の前記第1燃料循環流路に熱交換可能に隣接したことを特徴とする請求項3に記載の燃料電池システム。
  5. 前記第2燃料循環流路の出口を前記燃料電池に接続したことを特徴とする請求項1乃至4の何れかに記載の燃料電池システム。
  6. 前記エゼクタを前記燃料電池に隣接又は内蔵させたことを特徴とする請求項1乃至5の何れかに記載の燃料電池システム。
JP2013023514A 2013-02-08 2013-02-08 燃料電池システム Pending JP2014154386A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013023514A JP2014154386A (ja) 2013-02-08 2013-02-08 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023514A JP2014154386A (ja) 2013-02-08 2013-02-08 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2014154386A true JP2014154386A (ja) 2014-08-25

Family

ID=51576053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023514A Pending JP2014154386A (ja) 2013-02-08 2013-02-08 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2014154386A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143489A (ja) * 2015-01-30 2016-08-08 日産自動車株式会社 圧送装置および燃料電池システム
CN111224130A (zh) * 2018-11-27 2020-06-02 广州汽车集团股份有限公司 一种燃料电池及其空气供给***
CN114452724A (zh) * 2022-04-11 2022-05-10 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143489A (ja) * 2015-01-30 2016-08-08 日産自動車株式会社 圧送装置および燃料電池システム
CN111224130A (zh) * 2018-11-27 2020-06-02 广州汽车集团股份有限公司 一种燃料电池及其空气供给***
CN114452724A (zh) * 2022-04-11 2022-05-10 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池***
WO2023197525A1 (zh) * 2022-04-11 2023-10-19 中山大洋电机股份有限公司 一种汽水分离器及其燃料电池***

Similar Documents

Publication Publication Date Title
JP5957664B2 (ja) 燃料電池システム及びその運転方法
JP7054640B2 (ja) 燃料電池システム及びその制御方法
JP2016096018A (ja) 燃料電池システムおよび該システム内の流体の排出方法
EP2597716A1 (en) Fuel cell system and operating method thereof
US7943260B2 (en) System and method for recirculating unused fuel in fuel cell application
JPWO2012070367A1 (ja) 燃料電池システム
JP2019069729A (ja) 燃料電池車両および燃料電池車両の制御方法
JP2014154386A (ja) 燃料電池システム
JP2014107062A (ja) 燃料電池システム
JP6382893B2 (ja) 燃料電池システムの制御方法
JP2006032134A (ja) 燃料電池システム内の水を貯留する貯水装置、燃料電池システム
JP2021103670A (ja) 燃料電池システム
JP2017182944A (ja) 燃料電池システムの制御方法
JP6822296B2 (ja) 燃料電池システム
US20180166714A1 (en) Fuel cell system
JP2014007060A (ja) 燃料電池システム
JP4771292B2 (ja) 燃料電池システム
JP2009170295A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2011014252A (ja) 燃料電池システム
JP2009224179A (ja) 燃料電池システム
JP6972920B2 (ja) 燃料電池システム
JP2020024785A (ja) 燃料電池システム
JP5737158B2 (ja) 燃料電池システム
JP5875444B2 (ja) 燃料電池システム
JP2019091594A (ja) 燃料電池システム