JP2013183143A - 半導体装置を製造する方法、及び、半導体装置 - Google Patents

半導体装置を製造する方法、及び、半導体装置 Download PDF

Info

Publication number
JP2013183143A
JP2013183143A JP2012048176A JP2012048176A JP2013183143A JP 2013183143 A JP2013183143 A JP 2013183143A JP 2012048176 A JP2012048176 A JP 2012048176A JP 2012048176 A JP2012048176 A JP 2012048176A JP 2013183143 A JP2013183143 A JP 2013183143A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor substrate
insulating film
region
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012048176A
Other languages
English (en)
Inventor
Hiroaki Tanaka
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012048176A priority Critical patent/JP2013183143A/ja
Publication of JP2013183143A publication Critical patent/JP2013183143A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 製造工程のより早い段階でトレンチ内の絶縁膜の絶縁性の検査を行うことが可能な半導体装置の製造方法を提供する。
【解決手段】 半導体基板のトレンチ内に絶縁膜と第1電極が形成されており、半導体基板上に、第1電極から分離されている第2電極が形成されており、半導体基板内に絶縁膜に接するp型半導体領域と、p型半導体領域と第2電極の間の半導体基板の上面に露出しているn型半導体領域が形成されており、半導体基板上にp型半導体領域に接する第3電極が形成されている半導体装置を製造する方法。この方法は、トレンチ形成工程と、絶縁膜形成工程と、絶縁膜形成後のトレンチ内に第1電極を形成する工程と、第2電極形成工程と、第1電極と第2電極の間に電圧を印加して、第1電極と第2電極の間に流れる電流を検出する工程と、電流検出工程よりも後に第3電極を形成する工程を有する。
【選択図】図8

Description

本明細書が開示する技術は、半導体装置に関する。
特許文献1には、トレンチと、トレンチの内面を覆っている絶縁膜と、トレンチ内に形成されている電極(以下、トレンチ電極という)とを有する半導体装置が開示されている。トレンチ電極は、絶縁膜によって半導体基板から絶縁されている。この種の半導体装置は、出荷前に、種々の特性検査を受ける。特性検査の一つとして、トレンチ電極が半導体基板から絶縁されているか否か(すなわち、絶縁膜の絶縁性)の検査が行われる。
特開2010−135677号公報
上記の半導体装置は、半導体装置の全ての構造が完成した状態で絶縁膜の絶縁性の検査を受ける。このため、絶縁膜の絶縁性に問題がある製品に対しても、絶縁性の検査の前に他の検査が行われたり、各検査を受けるための移し変えが行われており、無駄が多かった。したがって、本明細書では、製造工程のより早い段階でトレンチ内の絶縁膜の絶縁性の検査を行うことが可能な半導体装置の製造方法を提供する。
本明細書が開示する製造方法により製造される半導体装置は、半導体基板を有している。半導体基板の上面には、トレンチが形成されている。トレンチの内面には、絶縁膜が形成されている。トレンチ内には、絶縁膜によって半導体基板から絶縁されている第1電極が形成されている。半導体基板上には、第1電極から分離されている第2電極が形成されている。半導体基板内には、絶縁膜に接するとともに半導体基板の上面に露出しているp型半導体領域と、p型半導体領域と第2電極の間の半導体基板の上面に少なくとも部分的に露出しているn型半導体領域が形成されている。半導体基板上には、p型半導体領域に接しており、第2電極から分離されている第3電極が形成されている。この半導体装置を製造する方法は、半導体基板の上面にトレンチを形成するトレンチ形成工程と、トレンチ内に絶縁膜を形成する絶縁膜形成工程と、絶縁膜形成後のトレンチ内に第1電極を形成する第1電極形成工程と、第2電極を形成する第2電極形成工程と、第1電極と第2電極の間に電圧を印加して、第1電極と第2電極の間に流れる電流を検出する電流検出工程と、電流検出工程の後に、第3電極を形成する第3電極形成工程を有する。
なお、絶縁膜形成工程は、トレンチ形成工程後であればいつ行ってもよい。第1電極形成工程は、絶縁膜形成工程後であればいつ行ってもよい。第2電極形成工程は、いつ行ってもよく、第1電極形成工程と同時に行ってもよい。
この製造方法では、第3電極を形成する前(すなわち、半導体装置が完成する前)に、トレンチ内の第1電極と、半導体基板上の第2電極との間に電圧を印加して、これらの間に流れる電流を検出する。トレンチ内の絶縁膜が好適に形成されていれば、第1電極と第2電極の間に流れる電流はゼロに近い値となる。したがって、この電流を検出することで、絶縁膜の絶縁性を検査することができる。絶縁膜の絶縁性の検査が半導体装置の完成前に実施されるので、絶縁膜の絶縁性に問題がある製品に対して追加の工程(例えば、他の検査工程等)が実施されることを防止することができる。
また、本明細書は、新たは半導体基板を提供する。この半導体装置は、半導体基板を有している。半導体基板内には、半導体基板の上面に露出しているp型半導体領域が形成されている。半導体基板の上面には、半導体基板の端面に沿って伸びる電極が形成されている。半導体基板内には、p型半導体領域と前記電極の間の半導体基板の上面に少なくとも部分的に露出しているn型半導体領域が形成されている。前記電極は、ポリシリコンにより構成されており、前記電極の上面全体が外部に露出している。
このような構成によれば、電極(すなわち、ポリシリコン)のゲッタリング能力によって、電極の下部の半導体基板に外来の不純物が拡散することを抑制することができる。ポリシリコンの熱膨張係数は半導体基板と近いため、熱膨張係数の差による応力の発生を抑制することができる。また、第2電極がパシベーション膜等に覆われていると、第2電極とパシベーション膜との間でも応力が発生する。しかしながら、上記の構成では、第2電極の上面全体が半導体装置の表面に露出しているので、そのような応力も抑制される。したがって、この構成によれば、より信頼性が高い半導体装置が提供される。
半導体装置10の縦断面図(図2のI−I線における断面図)。 半導体装置10の上面図。 変形例の半導体装置の縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。 半導体装置10の製造工程における半導体ウエハの縦断面図。
最初に、以下に説明する実施例の特徴を列記する。なお、ここに列記する特徴は、何れも独立して有効なものである。
(特徴1)実施例の方法は、トレンチ形成工程において半導体基板の上面に複数のトレンチを形成し、絶縁膜形成工程において各トレンチ内に絶縁膜を形成し、第1電極形成工程において各トレンチ内に第1電極を形成するとともに、半導体基板の上面に各第1電極を接続する導体層を形成し、電流検出工程では、導体層によって互いに接続された各第1電極と第2電極の間に電圧を印加し、電流検出工程後であって第3電極形成工程前に、各第1電極を接続する導体層を除去する。
特徴1の構成によれば、複数のトレンチ内の絶縁膜を一度に検査することができる。
(特徴2)実施例の方法は、電流検出工程よりも後に、複数のトレンチのうちの一部のトレンチ内の第1電極が接続され、その他のトレンチ内の第1電極が接続されないゲートパッドを形成する工程をさらに有する。
特徴2の構成によれば、最終的にゲートパッドに接続される第1電極に接する絶縁膜と、最終的にゲートパッドに接続されない第1電極に接する絶縁膜とを、1度に検査することができる。
(特徴3)実施例の方法は、トレンチ内から半導体基板上まで繋がっている導体層によって第1電極と第2電極を形成し、その後、導体層を部分的に除去することで第1電極と第2電極とを分離させる。
特徴3の構成によれば、第1電極と第2電極をより簡単に形成することができる。
(特徴4)実施例の方法では、第2電極がポリシリコンにより形成され、第2電極の上面全体が半導体装置の表面に露出する。
このような構成によれば、より信頼性が高い半導体装置を製造することができる。
図1、2に示す半導体装置10は、半導体基板12と、半導体基板12の上面及び下面に形成されている電極、絶縁層等によって構成されている。なお、以下では、半導体基板12の厚み方向をZ方向といい、Z方向に対して直交する一方向をX方向といい、X方向及びZ方向に対して直交する方向をY方向という。また、図2では、半導体基板12上の電極をハッチングにより示している。半導体基板12は、半導体素子が形成されているアクティブ領域20と、その周りの外周領域50を有している。アクティブ領域20は、半導体基板12を上から平面視したときにおける半導体基板12の略中央の領域(後述するディープp型領域52よりも内側の領域(図2参照))である。外周領域50は、アクティブ領域20と半導体基板12の端面(外周面)12aとの間の領域である。したがって、半導体基板12を上方から平面視した場合には、アクティブ領域20は外周領域50に囲まれている。
図1に示すように、アクティブ領域20内の半導体基板12の上面には複数のトレンチが形成されている。各トレンチの内面は、絶縁膜40に覆われている。トレンチ内には、電極42が形成されている。複数の電極42のうちの一部の電極42の上部には、層間絶縁膜44が形成されている。複数の電極42のうちの残りの電極42の上部には、層間絶縁膜44が形成されていない。以下では、上部に層間絶縁膜44が形成されている電極42をゲート電極42aといい、そのゲート電極42aに接している絶縁膜40を絶縁膜40aという。また、上部に層間絶縁膜44が形成されていない電極42をダミー電極42bといい、そのダミー電極42bに接している絶縁膜40を絶縁膜40bという。アクティブ領域20内の半導体基板12の上面にはエミッタ電極22が形成されている。エミッタ電極22は、層間絶縁膜44によってゲート電極42aから絶縁されている。また、エミッタ電極22は、ダミー電極42bと繋がっている。ゲート電極42aは、絶縁膜40aによって半導体基板12から絶縁されている。ダミー電極42bは、絶縁膜40bによって絶縁されることによって、直接的には半導体基板12と導通していない。しかしながら、ダミー電極42bは、エミッタ電極22を介して半導体基板12と導通している。図2に示すように、半導体基板12の上面の一部には、ゲートパッド80が形成されている。ゲートパッド80は、図示しない配線によって、各ゲート電極42aに接続されている。ゲートパッド80は、ダミー電極42bには接続されていない。すなわち、ゲート電極42aは、ダミー電極42bから絶縁されている。
外周領域50内の半導体基板12上には、外周電極70が形成されている。外周電極70は、半導体基板12の端面12aに沿って伸びている。外周電極70は、ポリシリコンによって構成されている。外周電極70の上面は、半導体装置10の表面に露出している(すなわち、パシベーション膜等に覆われていない。)。
半導体基板12の下面全体には、コレクタ電極34が形成されている。
アクティブ領域20内には、n型のエミッタ領域24、p型のボディ領域26、n型のドリフト領域28、n型のバッファ領域30、及び、p型のコレクタ領域32が形成されている。エミッタ領域24は、半導体基板12の上面に露出するとともに、絶縁膜40aに接する範囲に形成されている。エミッタ領域24は、エミッタ電極22に対してオーミック接続されている。ボディ領域26は、エミッタ領域24の側方及びエミッタ領域24の下側に形成されている。ボディ領域26は、エミッタ領域24の下側で絶縁膜40aに接している。また、ボディ領域26は、絶縁膜40bに接している。半導体基板12の上面近傍のボディ領域26は、p型不純物濃度が高い。したがって、ボディ領域26は、エミッタ電極22に対してオーミック接続されている。ドリフト領域28は、ボディ領域26の下側に形成されている。ドリフト領域28は、ボディ領域26によってエミッタ領域24から分離されている。ドリフト領域28は、トレンチの下端部の絶縁膜40a、40bと接している。バッファ領域30は、ドリフト領域28よりも高いn型不純物濃度を有する。バッファ領域30は、ドリフト領域28の下側に形成されている。コレクタ領域32は、バッファ領域30の下側に形成されている。コレクタ領域32は、p型不純物濃度が高く、コレクタ電極34に対してオーミック接続されている。上述した各電極及び各半導体領域によって、アクティブ領域20内にIGBTが形成されている。
外周領域50内には、3つのディープp型領域52、54、56が形成されている。これらのディープp型領域52、54、56は、一般に、FLRと呼ばれる。各ディープp型領域52、54、56は、半導体基板12の上面からボディ領域26よりも深い位置まで広がっている。最も内周側のディープp型領域52は、ボディ領域26と繋がっている。ドリフト領域28は、アクティブ領域20から外周領域50(すなわち、ディープp型領域52、54、56の下側とディープp型領域56よりも外周側)まで広がっている。ドリフト領域28は、ディープp型領域52とディープp型領域54の間、及び、ディープp型領域54とディープp型領域56の間にも形成されている。これによって、各ディープp型領域52、54、56が互いに分離されている。図2に示すように、各ディープp型領域52、54、56は、アクティブ領域20の周囲を一巡するように伸びている(すなわち、ディープp型領域52の内側がアクティブ領域20である。)。半導体基板12の上面に露出すると共に端面12aに露出する範囲には、外周部n型領域64が形成されている。外周部n型領域64のn型不純物濃度は、ドリフト領域28よりも高い。外周部n型領域64は、外周電極70の下側に形成されており、外周電極70に対してオーミック接続されている。また、外周電極70とディープp型領域56の間の半導体基板12の上面には、ドリフト領域28が露出している。また、外周領域50内においても、ドリフト領域28の下側にバッファ領域30が形成されており、バッファ領域30の下側にコレクタ領域32が形成されている。
エミッタ電極22と外周電極70の間の半導体基板12の上面には、SiOからなる層間絶縁膜60と、SiNからなるパシベーション膜62が形成されている。層間絶縁膜60は、エミッタ電極22と外周電極70の間の半導体基板12の上面全体を覆っている。パシベーション膜62は、層間絶縁膜60の上面全体を覆っている。
次に、半導体装置10(すなわち、IGBT)の動作について説明する。半導体装置10の使用時には、エミッタ電極22とコレクタ電極34の間に順電圧が印加される。ゲート電極42aに所定電圧が印加されると、絶縁膜40aに接する範囲のボディ領域26にチャネルが形成される。なお、ダミー電極42bはエミッタ電極22の電位と同電位であるので、チャネルの形成に寄与しない。ゲート電極42aによってチャネルが形成されることによって、IGBTがオンし、コレクタ電極34からエミッタ電極22に向かって電流が流れる。ゲート電極42aへの所定電圧の印加を停止すると、チャネルが消失する。これによって、IGBTがオフし、コレクタ電極34からエミッタ電極22に向かう電流が停止する。IGBTがオフしている際には、ドリフト領域28に高い電圧が印加される。このとき、ダミー電極42bによって、ゲート電極42a近傍のドリフト領域28内に局所的に電界が集中することが抑制される。すなわち、ダミー電極42bは、IGBTがオフしているときに、ドリフト領域28内の電界分布を調節するために形成されている。また、外周電極70の電位は、コレクタ電極34と略等しくなる。したがって、IGBTがオフしているときには、外周電極70とゲート電極42aの間に高い電圧が印加される。半導体装置10では、半導体基板12の上面に臨む範囲のうちの、アクティブ領域20と外周電極70の間に、FLR(ディープp型領域52、54、56)が形成されている。このFLRによって、外周領域50の耐圧が確保される。なお、FLRに代えて、図3に示すように、リサーフ構造を構成するp型の低濃度層58が形成されていてもよい。外周領域50に低濃度層58が形成されていても、外周領域50の耐圧を確保することができる。すなわち、アクティブ領域の上面に露出する範囲にp型領域(例えば、ボディ領域26)が形成されている場合には、そのp型領域と外周電極との間の半導体基板の上面に少なくとも部分的にn型半導体領域を露出させておくことで、外周領域の耐圧をある程度確保することができる。
なお、半導体装置の使用中に、半導体装置が昇温して膨張することがある。この場合に、半導体基板の熱膨張率と、半導体基板の上面に形成されている電極との熱膨張率の差によって、半導体基板と電極との間に高い応力が発生する場合がある。特に、電極がAl等の金属によって構成されている場合には、高い応力が生じる。一般に、この様な応力は、半導体基板の外周部に形成されている外周電極の角部(例えば、図2の角部A1)において最も大きくなる。また、半導体基板への外来電荷の拡散を抑制するために、外周電極の上面にパシベーション膜(例えば、SiN膜)が形成される場合がある。このように外周電極上にパシベーション膜が形成されていると、パシベーション膜と外周電極との間の熱膨張の差によっても応力が生じる。上述したような応力が、角部の外周電極に繰り返し加わると、角部の外周電極にクラックが生じることがある。
しかしながら、本実施例の半導体装置10では、外周電極70がポリシリコンにより構成されている。ポリシリコンの熱膨張率は、半導体基板12(すなわち、シリコン)の熱膨張率にかなり近い。このため、半導体装置10では、外周電極70と半導体基板12との間の熱膨張率の差による外周電極70への応力が低減される。また、半導体装置10では、外周電極70の上面全体が半導体装置10の外表面に露出している。すなわち、外周電極70上にパシベーション膜が形成されていない。したがって、そのようなパシベーション膜から外周電極70に応力が加わることもない。このため、半導体装置10では、外周電極70にクラックが生じ難い。また、ポリシリコンは、ゲッタリング能力を有する。このため、ポリシリコンからなる外周電極70の表面に外来電荷が付着すると、外周電極70内で外来電荷がトラップされ、半導体基板12中に外来電荷が拡散しない。すなわち、外周電極70の上面がパシベーション膜に覆われていなくても、半導体基板12中への外来電荷の拡散を防止することができる。
次に、半導体装置10の製造方法について説明する。まず、ドリフト領域28と同じn型不純物濃度を有する半導体ウエハに対して、図4に示すように、エミッタ領域24、ボディ領域26、ディープp型領域52、54、56、外周部n型領域64、及び、トレンチを形成する。次に、半導体ウエハに対して熱酸化処理を施すことによって、図5に示すように、半導体ウエハの表面に絶縁膜40を形成する。エミッタ領域24に隣接するトレンチ内の絶縁膜40が上述した絶縁膜40aであり、エミッタ領域24に隣接しないトレンチ内の絶縁膜40が上述した絶縁膜40bである。次に、図6に示すように、外周部n型領域64の上部の絶縁膜40をエッチングによって除去する。次に、図7に示すように、CVD等によって半導体ウエハ上にp型のポリシリコン層82を成長させる。このとき、各トレンチ内にもポリシリコン層82が形成される。エミッタ領域24に隣接するトレンチ内のポリシリコン層82がゲート電極42aであり、エミッタ領域24に隣接しないトレンチ内のポリシリコン層82がダミー電極42bである。また、外周部n型領域64上のポリシリコン層82が外周電極70である。すなわち、この段階では、外周電極70と、全てのゲート電極42aと、全てのダミー電極42bとが互いに繋がったポリシリコン層82が形成される。このように、単一のポリシリコン層82によって外周電極70と、ゲート電極42aと、ダミー電極42bが形成されるので、これらの各電極中のp型不純物濃度は略等しい。次に、図8に示すように、外周電極70と最も外周側のゲート電極42aとの間のポリシリコン層82をエッチングによって除去する。これによって、外周電極70を、ゲート電極42a及びダミー電極42bから分離させる。この段階では、まだ、全てのゲート電極42aと全てのダミー電極42bが互いに繋がっている。以下では、ゲート電極42aとダミー電極42bとを構成しているポリシリコン層を、ポリシリコン層82aという。次に、図8に示すように、ポリシリコン層82aと外周電極70との間に、所定の電圧V1を印加する。そして、ポリシリコン層82aと外周電極70との間に流れる電流を検出する。このとき、基準値以上の電流が検出される場合には、各トレンチ内の絶縁膜40a、40bのいずれかが形成不良であり、十分な絶縁性が確保できていない。したがって、電流を検出することで、絶縁膜40a、40bが適切に形成できているか否かを検査することができる。この方法によれば、ゲート電極42aに接する絶縁膜40aとダミー電極42bに接する絶縁膜40bとを同時に検査することができる。検査が終了したら、ポリシリコン層82aのうちの不要な部分(半導体ウエハの上面よりも上側の部分)を除去して、各ゲート電極42aと各ダミー電極42bを互いに分離させる。次に、半導体ウエハの表面に露出している絶縁膜40を除去する。次に、図9に示すように、ゲート電極42a上、及び、外周電極70とボディ領域26の間の半導体ウエハ上に層間絶縁膜44、60を形成する。次に、層間絶縁膜60上にパシベーション膜62を形成する。次に、金属(Al等)を蒸着することで、エミッタ電極22を形成する。また、各ゲート電極42aがゲートパッド80と繋がるように、ゲートパッド80と配線を形成する。これによって、半導体装置10の上面側の構造が完成する。その後、半導体装置10の下面側の構造(バッファ領域30、コレクタ領域32、及び、コレクタ電極34)を形成する。最後に、半導体ウエハをダイシングすることで、図1に示す半導体装置10が完成する。
以上に説明したように、この製造方法では、製造工程の早い段階で、絶縁膜40a、40bの絶縁不良を検査することができる。したがって、絶縁不良を有する半導体装置10に対して、追加の工程(検査等)が実施されることが防止される。このため、製造工程の無駄を削除することができる。また、この製造方法では、各ゲート電極42a及びダミー電極42bが互いに繋がっている状態で、ポリシリコン層82aと外周電極70の間の絶縁性を検査する。したがって、全ての絶縁膜40a、40bの絶縁性を一度に検査することができる。この方法によれば、より効率的に半導体装置を製造することができる。
なお、上述した絶縁膜40a、40bの絶縁性の検査は、ゲート電極42aとダミー電極42bとを分離(絶縁)した後に行うことも可能である。しかしながら、ゲート電極42aとダミー電極42bとを分離(絶縁)した後においては、ゲート電極42aに接する絶縁膜40aとダミー電極42bに接する絶縁膜40bとを別々に検査する必要がある。また、この場合に、ゲート電極42aに接する絶縁膜40aはゲートパッド80を用いて検査が可能だが、ダミー電極42bに接する絶縁膜40bを検査するためにはダミー電極42bに接続されているパッド(検査用のパッド)を別個に設ける必要がある。このように検査用のパッドを用いると、半導体基板上の有効領域(半導体素子として機能する領域)が減少してしまう。これに対し、実施例の製造方法によれば、このような問題を生じさせることなく、絶縁性の検査を行うことができる。
また、半導体ウエハのダイシングライン等の半導体装置10とならない領域に電極パッドを形成し、その電極と各ゲート電極及び各ダミー電極の間に電圧を印加することで、各絶縁膜の絶縁性の検査を行うことも考えられる。しかしながら、ダイシングライン等の半導体装置10とならない領域では、アライメントパターン等の種々の構造が形成されており、それらの影響で半導体ウエハが汚染されている場合が多い。したがって、汚染の影響により検出される電流値にばらつきが生じ、検査の精度が低下する。これに対し、実施例の方法では、外周電極70を用いて検査を行うので、このような問題が生じない。
なお、上述した実施例の製造方法では、ポリシリコン(すなわち、ポリシリコン層82aと外周電極70)に対して電圧を印加するため、検査装置とポリシリコンとの間の接触抵抗が高くなることが懸念される。しかしながら、実施例の方法では、ポリシリコン層82a及び外周電極70が広い表面積を有しているので、検査装置とポリシリコンとの接触面積を広く確保することで十分に低い接触抵抗を得ることができる。
また、上述した実施例では、アクティブ領域20にIGBTが形成されている半導体装置について説明した。しかしながら、本明細書に開示の技術を、アクティブ領域にMOSFETやダイオードが形成されている半導体装置に適用してもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10:半導体装置
12:半導体基板
20:アクティブ領域
22:エミッタ電極
24:エミッタ領域
26:ボディ領域
28:ドリフト領域
30:バッファ領域
32:コレクタ領域
34:コレクタ電極
40:絶縁膜
42a:ゲート電極
42b:ダミー電極
44:層間絶縁膜
50:外周領域
52〜56:p型領域
60:層間絶縁膜
62:パシベーション膜
64:外周部n型領域
70:外周電極
80:ゲートパッド
82:ポリシリコン層

Claims (6)

  1. 半導体基板を有しており、
    半導体基板の上面にトレンチが形成されており、
    トレンチの内面に絶縁膜が形成されており、
    トレンチ内に、絶縁膜によって半導体基板から絶縁されている第1電極が形成されており、
    半導体基板上に、第1電極から分離されている第2電極が形成されており、
    半導体基板内に、絶縁膜に接するとともに半導体基板の上面に露出しているp型半導体領域と、p型半導体領域と第2電極の間の半導体基板の上面に少なくとも部分的に露出しているn型半導体領域が形成されており、
    半導体基板上に、p型半導体領域に接しており、第2電極から分離されている第3電極が形成されている、
    半導体装置を製造する方法であって、
    半導体基板の上面にトレンチを形成するトレンチ形成工程と、
    トレンチ内に絶縁膜を形成する絶縁膜形成工程と、
    絶縁膜形成後のトレンチ内に第1電極を形成する第1電極形成工程と、
    第2電極を形成する第2電極形成工程と、
    第1電極と第2電極の間に電圧を印加して、第1電極と第2電極の間に流れる電流を検出する電流検出工程と、
    電流検出工程よりも後に、第3電極を形成する第3電極形成工程、
    を有する方法。
  2. トレンチ形成工程において半導体基板の上面に複数のトレンチを形成し、
    絶縁膜形成工程において各トレンチ内に絶縁膜を形成し、
    第1電極形成工程において各トレンチ内に第1電極を形成するとともに、半導体基板の上面に各第1電極を接続する導体層を形成し、
    電流検出工程では、導体層によって互いに接続された各第1電極と第2電極の間に電圧を印加し、
    電流検出工程よりも後であって第3電極形成工程よりも前に、各第1電極を接続する導体層を除去することを特徴とする請求項1の方法。
  3. 電流検出工程よりも後に、前記複数のトレンチのうちの一部のトレンチ内の第1電極が接続され、その他のトレンチ内の第1電極が接続されないゲートパッドを形成する工程をさらに有することを特徴とする請求項2の方法。
  4. トレンチ内から半導体基板上まで繋がっている導体層によって第1電極と第2電極を形成し、その後、導体層を部分的に除去することで第1電極と第2電極とを分離させる請求項1〜3のいずれか一項の方法。
  5. 第2電極がポリシリコンにより形成され、
    第2電極の上面全体が半導体装置の表面に露出することを特徴とする請求項1〜4のいずれか一項の方法。
  6. 半導体基板を有しており、
    半導体基板内に、半導体基板の上面に露出しているp型半導体領域が形成されており、
    半導体基板の上面に、半導体基板の端面に沿って伸びる電極が形成されており、
    半導体基板内に、p型半導体領域と前記電極の間の半導体基板の上面に少なくとも部分的に露出しているn型半導体領域が形成されており、
    前記電極がポリシリコンにより構成されており、前記電極の上面全体が外部に露出している、
    半導体装置。
JP2012048176A 2012-03-05 2012-03-05 半導体装置を製造する方法、及び、半導体装置 Pending JP2013183143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048176A JP2013183143A (ja) 2012-03-05 2012-03-05 半導体装置を製造する方法、及び、半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048176A JP2013183143A (ja) 2012-03-05 2012-03-05 半導体装置を製造する方法、及び、半導体装置

Publications (1)

Publication Number Publication Date
JP2013183143A true JP2013183143A (ja) 2013-09-12

Family

ID=49273562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048176A Pending JP2013183143A (ja) 2012-03-05 2012-03-05 半導体装置を製造する方法、及び、半導体装置

Country Status (1)

Country Link
JP (1) JP2013183143A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996704A (zh) * 2014-05-13 2014-08-20 无锡新洁能股份有限公司 一种具有精确检测功能的igbt及其制造方法
JP2015207736A (ja) * 2014-04-23 2015-11-19 富士電機株式会社 半導体装置の製造方法、半導体装置の評価方法および半導体装置
WO2016147529A1 (ja) * 2015-03-16 2016-09-22 富士電機株式会社 半導体装置の製造方法
US9847409B2 (en) 2014-07-16 2017-12-19 Denso Corporation Semiconductor device and manufacturing method for the same
WO2018092787A1 (ja) * 2016-11-17 2018-05-24 富士電機株式会社 半導体装置
JP2018164112A (ja) * 2018-07-17 2018-10-18 富士電機株式会社 半導体装置の製造方法および半導体装置の評価方法
JP2020065084A (ja) * 2018-07-17 2020-04-23 富士電機株式会社 半導体装置の製造方法
JP2020119922A (ja) * 2019-01-18 2020-08-06 トヨタ自動車株式会社 半導体装置
JP2020129622A (ja) * 2019-02-08 2020-08-27 富士電機株式会社 半導体装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204483A (ja) * 1992-07-23 1994-07-22 Siliconix Inc 高電圧トランジスタ構造及びその形成方法
JPH0992698A (ja) * 1995-09-26 1997-04-04 Hitachi Ltd スクリーニング方法および半導体装置
JPH09129695A (ja) * 1995-10-30 1997-05-16 Mitsubishi Electric Corp 誘電体膜評価用テスト構造
JP2000252450A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 半導体集積回路装置及びその製造方法
JP2007250827A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 評価方法および半導体装置の製造方法
JP2008060105A (ja) * 2006-08-29 2008-03-13 Shindengen Electric Mfg Co Ltd 半導体装置および該半導体装置の製造方法
JP2009224734A (ja) * 2008-03-19 2009-10-01 Fuji Electric Device Technology Co Ltd トレンチゲート構造を有するmos型半導体装置およびその製造方法
JP2010050211A (ja) * 2008-08-20 2010-03-04 Denso Corp 半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204483A (ja) * 1992-07-23 1994-07-22 Siliconix Inc 高電圧トランジスタ構造及びその形成方法
JPH0992698A (ja) * 1995-09-26 1997-04-04 Hitachi Ltd スクリーニング方法および半導体装置
JPH09129695A (ja) * 1995-10-30 1997-05-16 Mitsubishi Electric Corp 誘電体膜評価用テスト構造
JP2000252450A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 半導体集積回路装置及びその製造方法
JP2007250827A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 評価方法および半導体装置の製造方法
JP2008060105A (ja) * 2006-08-29 2008-03-13 Shindengen Electric Mfg Co Ltd 半導体装置および該半導体装置の製造方法
JP2009224734A (ja) * 2008-03-19 2009-10-01 Fuji Electric Device Technology Co Ltd トレンチゲート構造を有するmos型半導体装置およびその製造方法
JP2010050211A (ja) * 2008-08-20 2010-03-04 Denso Corp 半導体装置の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207736A (ja) * 2014-04-23 2015-11-19 富士電機株式会社 半導体装置の製造方法、半導体装置の評価方法および半導体装置
CN103996704A (zh) * 2014-05-13 2014-08-20 无锡新洁能股份有限公司 一种具有精确检测功能的igbt及其制造方法
CN103996704B (zh) * 2014-05-13 2017-01-11 无锡新洁能股份有限公司 一种具有精确检测功能的igbt及其制造方法
US9847409B2 (en) 2014-07-16 2017-12-19 Denso Corporation Semiconductor device and manufacturing method for the same
US10403554B2 (en) 2015-03-16 2019-09-03 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device
JPWO2016147529A1 (ja) * 2015-03-16 2017-06-22 富士電機株式会社 半導体装置の製造方法
CN107078061A (zh) * 2015-03-16 2017-08-18 富士电机株式会社 半导体装置的制造方法
US20170162458A1 (en) * 2015-03-16 2017-06-08 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device
WO2016147529A1 (ja) * 2015-03-16 2016-09-22 富士電機株式会社 半導体装置の製造方法
WO2018092787A1 (ja) * 2016-11-17 2018-05-24 富士電機株式会社 半導体装置
CN109155332A (zh) * 2016-11-17 2019-01-04 富士电机株式会社 半导体装置
JPWO2018092787A1 (ja) * 2016-11-17 2019-03-07 富士電機株式会社 半導体装置
US10847641B2 (en) 2016-11-17 2020-11-24 Fuji Electric Co., Ltd. Semiconductor device having semiconductor regions of different conductivity types provided at a predetermined interval along a first direction
JP2018164112A (ja) * 2018-07-17 2018-10-18 富士電機株式会社 半導体装置の製造方法および半導体装置の評価方法
JP2020065084A (ja) * 2018-07-17 2020-04-23 富士電機株式会社 半導体装置の製造方法
JP2020119922A (ja) * 2019-01-18 2020-08-06 トヨタ自動車株式会社 半導体装置
JP2020129622A (ja) * 2019-02-08 2020-08-27 富士電機株式会社 半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP2013183143A (ja) 半導体装置を製造する方法、及び、半導体装置
US9379181B2 (en) Semiconductor device
JP6665457B2 (ja) 半導体装置
US10978367B2 (en) Semiconductor device and method for manufacturing the same
CN107078061B (zh) 半导体装置的制造方法
JP2010219258A (ja) 半導体装置
JP6079456B2 (ja) 半導体装置の検査方法
JP2010021532A (ja) メサ型半導体装置及びその製造方法
US9793344B2 (en) Semiconductor device and method of manufacturing the same
JP2009224734A (ja) トレンチゲート構造を有するmos型半導体装置およびその製造方法
JP2013074113A (ja) 半導体装置および半導体装置の製造方法
WO2015132847A1 (ja) Igbt,パワーモジュール,パワーモジュールの製造方法,および電力変換装置
JP5618662B2 (ja) 半導体素子の特性測定方法および半導体装置の製造方法
JP2019125743A (ja) 半導体装置の製造方法
JP7304827B2 (ja) 半導体装置およびクラック検出方法
JP6183075B2 (ja) 半導体装置
JP7163603B2 (ja) 半導体装置の製造方法
JP2013134998A (ja) 半導体装置およびその製造方法
JP7047734B2 (ja) トレンチゲート型半導体装置の製造方法
JP2012004428A (ja) パワー半導体素子
WO2022054327A1 (ja) 半導体装置
JP2004296469A (ja) ホール素子
JP7109581B2 (ja) 半導体装置および半導体装置の製造方法
JP5266899B2 (ja) 絶縁ゲート型バイポーラトランジスタの検査方法
JP2021125659A (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707