WO2016147529A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2016147529A1
WO2016147529A1 PCT/JP2016/000464 JP2016000464W WO2016147529A1 WO 2016147529 A1 WO2016147529 A1 WO 2016147529A1 JP 2016000464 W JP2016000464 W JP 2016000464W WO 2016147529 A1 WO2016147529 A1 WO 2016147529A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
region
semiconductor device
trench
electrode
Prior art date
Application number
PCT/JP2016/000464
Other languages
English (en)
French (fr)
Inventor
勇一 小野澤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201680002462.4A priority Critical patent/CN107078061B/zh
Priority to JP2017506043A priority patent/JP6304445B2/ja
Publication of WO2016147529A1 publication Critical patent/WO2016147529A1/ja
Priority to US15/437,472 priority patent/US10403554B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a technique effective when applied to the manufacture of a semiconductor device having a trench gate structure.
  • an insulated gate bipolar transistor (IGBT) having a trench gate structure is known as a switching element used in an inverter unit and a converter unit of a power conversion device.
  • the IGBT having the trench gate structure brings about a significant increase in charge / discharge time and generation loss, particularly when the gate-collector capacity is large, when shifting to an on operation and an off operation. This generated loss is generated as the sum of the steady loss determined by the ON voltage and the switching loss during the ON operation and the OFF operation. For this reason, it is important to reduce the gate-collector capacitance that is the cause of this switching loss.
  • a method for reducing the capacitance between the gate and the collector for example, there is a method using a dummy trench structure as described in Patent Document 1.
  • a dummy trench structure an electrode provided in a predetermined trench (dummy trench) of a plurality of trenches and an emitter electrode are electrically connected.
  • the absolute value of the gate capacitance can be reduced, and the capacitance between the gate and the collector can be reduced particularly in an IGBT having a floating layer.
  • the dummy trench structure described in Patent Document 1 electrically connects the electrode inside the dummy trench and the emitter electrode. For this reason, it is difficult to screen for defects such as abnormal shape of the dummy trenches and deterioration of the quality of the insulating film between the dummy trenches and the electrodes by applying a voltage.
  • An object of the present invention is to provide a semiconductor device manufacturing method capable of performing appropriate screening in a manufacturing process of a semiconductor device having a trench gate structure.
  • a method for manufacturing a semiconductor device includes a step of forming first and second trenches on an upper surface of a flat substrate portion, and a step of forming each of the first and second trenches.
  • a step of forming an insulating film therein; a step of forming a conductive film on the upper surface of the base portion so as to embed each of the first and second trenches via the insulating film; and a lower surface of the conductive film and the base portion A step of inspecting the insulating characteristics of the insulating film by applying a voltage between the first and second electrodes, and after inspecting the insulating characteristics, the conductive film on the upper surface is selectively removed to form a gate electrode inside the first trench. And forming a separation electrode separated from the gate electrode inside the second trench.
  • the present invention it is possible to provide a semiconductor device manufacturing method capable of performing appropriate screening in a manufacturing process of a semiconductor device having a trench gate structure.
  • FIG. 1 is a chip layout diagram of a semiconductor device according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of main parts of a semiconductor device according to a first embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure ((a) is a top view, (b) is sectional drawing) which shows schematic structure of the semiconductor substrate used for the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. It is the principal part top view which expanded a part of Fig.3 (a).
  • FIG. 3 is a plan view of relevant parts for explaining the method of manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1 is a view ((a) is a plan view and (b) is a cross-sectional view) for explaining a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view ((a) is a plan view and (b) is a cross-sectional view) for explaining a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 1 is a view ((a) is a plan view and (b) is a cross-sectional view) for explaining a method for manufacturing a semiconductor device according to a first embodiment of the present invention. It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. It is a principal part top view which expands and shows a part of FIG. It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention.
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view
  • FIGS. 8A and 8B are views for explaining a method for manufacturing a semiconductor device according to a third embodiment of the present invention (FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view). It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 3rd Embodiment of this invention.
  • FIGS. 8A and 8B are views for explaining a method for manufacturing a semiconductor device according to a third embodiment of the present invention (FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view).
  • FIGS. 5A is a plan view
  • FIG. 5B is a cross-sectional view
  • FIG. 8A and 8B are views for explaining a method for manufacturing a semiconductor device according to a third embodiment of the present invention (FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view). It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 3rd Embodiment of this invention. It is principal part sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on the 3rd Embodiment of this invention.
  • the “first main electrode region” means a region to be either an emitter region or a collector region in the IGBT.
  • FET field effect transistor
  • SIT static induction transistor
  • I thyristor electrostatic induction thyristor
  • GTO gate turn-off thyristor
  • the second main electrode region means a region which is either the emitter region or the collector region which is not the first main electrode region in the IGBT.
  • FET and SIT it means a region that is either the source region or the drain region that is not the first main electrode region.
  • SI thyristor and GTO it means a region that is either the anode region or the cathode region that is not the first main electrode region.
  • the second main electrode region means a collector region. If the first main electrode region is a source region, the second main electrode region means a drain region. If the first main electrode region is an anode region, the second main electrode region means a cathode region.
  • the emitter region is referred to as a “first main electrode region” and the collector region is referred to as a “second main electrode region”.
  • the first conductivity type is n-type and the second conductivity type is p-type
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • it means that electrons or holes are majority carriers in the layers and regions with n or p, respectively.
  • + and ⁇ attached to n and p by superscript means that the semiconductor region has a relatively high or low impurity concentration as compared with a semiconductor region not marked with + or ⁇ .
  • the semiconductor device according to the first embodiment of the present invention is an IGBT mainly composed of a semiconductor chip 20 whose plane is rectangular.
  • the planar shape is an example and is not limited to a square shape.
  • the semiconductor chip 20 includes an element formation region 21a provided at the center and a breakdown voltage region 21b provided at the periphery so as to surround the element formation region 21a.
  • the element formation region 21a includes a first main electrode 12 as an emitter electrode electrically connected to the separation electrode 6b shown in FIG. 2 and the like, and a control electrode electrically connected to the gate electrode 6a shown in FIG. 13 are arranged.
  • the first main electrode 12 and the control electrode 13 are used as external terminals (bonding pads), and connected to a connecting means such as a bonding wire that mediates electrical continuity with the outside.
  • the first conductivity type (n ⁇ -type) drift layer 2 is constituted by a semiconductor substrate 2 SUB made of , for example, single crystal silicon.
  • the element forming region 21a is configured with the semiconductor device of the first embodiment as a switching element having a trench gate structure.
  • the breakdown voltage region 21b is not limited to the structure shown in FIG. 1, but, for example, three second conductivity type (p-type) field limiting rings (FLR) regions 19 form the element formation region 21a. It is provided in a three-stage arrangement so as to surround it.
  • FLR field limiting rings
  • the semiconductor device of the first embodiment includes an n ⁇ -type drift layer 2 constituted by a part of a semiconductor substrate 2 SUB .
  • a second conductivity type (p-type) base region 7 is provided on the drift layer 2.
  • a plurality of first trenches 3 a and a plurality of second trenches 3 b are provided so as to penetrate the base region 7 from the upper surface of the base region 7 and reach the drift layer 2 on the lower surface side.
  • two first trenches 3 a and three second trenches 3 b that are alternately arranged as a partial configuration are illustrated.
  • the semiconductor device according to the first embodiment is provided along the first insulating film 4a provided along the inner walls of the plurality of first trenches 3a and along the inner walls of the plurality of second trenches 3b. Second insulating film 4b.
  • the semiconductor device includes the gate electrode 6a provided inside each of the plurality of first trenches 3a via the first insulating film 4a and the inside of each of the plurality of second trenches 3b. And the separation electrode 6b provided via the second insulating film 4b.
  • the isolation electrode 6b is electrically and structurally isolated from the gate electrode 6a.
  • the first conductive type (n + type) first main electrode region as an emitter region provided on the base region 7 so as to be in contact with the first main electrode 12 8 is provided.
  • the first main electrode region 8 is provided on both sides facing each other in the width direction of the first trench 3a.
  • the first main electrode region 8 is provided corresponding to the first trench 3a, and is not provided on both sides of the second trench 3b.
  • a second main electrode region 16 of the second conductivity type (p + type) is provided as a collector region.
  • the semiconductor device includes a second main electrode 17 as a collector electrode provided in contact with the second main electrode region 16, and a first conductivity type (under the drift layer 2).
  • an interlayer insulating film 10, a first main electrode 12, and a protective film 14 are provided in order from the bottom on the gate electrode 6a and the separation electrode 6b.
  • the control electrode 13 shown in FIG. 1 is provided in an upper layer than the gate electrode 6a, the separation electrode 6b, and the interlayer insulating film 10 so as to be at the same level as the first main electrode 12. It has been.
  • the protective film 14 is provided with a first main electrode bonding opening for exposing a part of the first main electrode 12 and a control electrode bonding opening for exposing a part of the control electrode 13. Yes.
  • the first main electrode 12 is electrically and so as to form a low ohmic contact resistance with each of the base region 7, the first main electrode region 8, and the separation electrode 6b through the contact hole 11 penetrating the interlayer insulating film 10. Connected metallurgically.
  • the second main electrode 17 is also electrically and metallurgically connected so as to form a low ohmic contact resistance with the second main electrode region 16.
  • the gate electrode 6a is electrically connected to the control electrode 13 shown in FIG.
  • the gate electrode 6 a is covered with an interlayer insulating film 10, and is electrically insulated from the first main electrode region 8 by the interlayer insulating film 10.
  • the separation electrode 6b is electrically connected to the first main electrode region 8 in order to reduce the gate-collector capacitance that is the cause of the switching loss of the semiconductor device, and the first main electrode 12 to the first main electrode.
  • a first reference potential is supplied together with the region 8.
  • the separation electrode 6b is electrically insulated and separated from the gate electrode 6a and the control electrode 13 shown in FIG. That is, the separation electrode 6b is a dummy electrode to which the same potential as that of the first main electrode region 8 is applied through the first main electrode 12, but does not contribute to channel formation unlike the gate electrode 6a.
  • the second trench 3b is a dummy trench in which the separation electrode 6b is provided.
  • the first insulating film 4a and the second insulating film 4b are formed of, for example, a silicon dioxide (SiO 2 ) film by a thermal oxidation method.
  • a silicon oxide film or a silicon nitride film formed by a chemical vapor deposition (CVD) method or the like in addition to a thermal oxidation method, or a plurality of combinations thereof A laminated film can be used.
  • CVD chemical vapor deposition
  • a polycrystalline silicon film (doped silicon film) to which an impurity is added can be used as a conductive film having a low specific resistance.
  • the gate electrode 6a and the separation electrode 6b are not limited to a doped polysilicon film (DOPOS film).
  • DOPOS film doped polysilicon film
  • refractory metals such as tungsten (W), molybdenum (Mo), titanium (Ti), and cobalt (Co), or WSi 2 , MoSi 2 , TiSi 2 , and CoSi 2 that are silicides thereof. May be used for the gate electrode 6a and the separation electrode 6b.
  • a polycide film that is a composite film of a DOPOS film and a silicide film may be used for the gate electrode 6a and the separation electrode 6b.
  • the interlayer insulating film 10 for example, a SiO 2 film by a CVD method can be used.
  • the interlayer insulating film 10 may be a silicon nitride film (Si 3 N 4 film), a borosilicate glass film (BSG film), a phosphosilicate glass film (PSG film), a borophosphosilicate glass film (BPSG film), or the like.
  • An aluminum alloy film such as can be used.
  • the second main electrode 17 is formed of, for example, a gold (Au) film.
  • the protective film 14 for example, a BSG, PSG, BPSG film, etc. can be employed in addition to a polyimide insulating resin.
  • a channel is formed under the control of the voltage applied to the gate electrode 6a.
  • the “base region 7” means a region where a channel is formed in the IGBT, but in a switching element other than the IGBT, it means a channel formation region where a channel is formed on the surface equivalent to the base region of the IGBT.
  • the first insulating film 4 a provided inside the first trench 3 a functions as a gate film for electrostatically controlling the surface potential of the channel in the base region 7 immediately below the first main electrode region 8.
  • the second insulating film 4b provided inside the second trench 3b does not function as a gate film.
  • the second insulating film 4b is also reliable against the TDDB (Time Dependent Dielectric Breakdown) phenomenon in which dielectric breakdown occurs over time as in the first insulating film 4a. It is necessary to ensure sex.
  • the reliability with respect to TDDB can be enhanced by screening defects such as abnormal shape of the trench and deterioration of the quality of the insulating film between the trench and the electrode by applying a voltage.
  • the voltage accumulated between the first main electrode 12 and the gate electrode 6a is set to be equal to or lower than the threshold value, so that the charge accumulated in the gate electrode 6a passes through the gate resistance. Discharged to the gate drive circuit. At that time, the channel that has been inverted to the n-type returns to the p-type, and the supply of electrons is not performed due to the disappearance of the channel, so that the semiconductor device is turned off.
  • FIG. 3, 8, and 9 are views showing the entire semiconductor substrate in a wafer state before being cut into a plurality of chips.
  • FIG. 7, FIG. 10, and FIG. 13 to FIG. 20 are cross-sectional views of the main part showing the cross-sectional structure in the chip formation region partitioned by the semiconductor substrate in the wafer state.
  • FIG. 11 is a cross-sectional view showing a state in which the semiconductor substrate is disposed on a conductive stage.
  • an n ⁇ type semiconductor substrate 2 SUB made of, for example, a single crystal silicon wafer is prepared as a base portion.
  • the semiconductor substrate 2 SUB has an upper surface 2x and a lower surface 2y located on opposite sides, and has a circular planar shape.
  • FIG. 3 to 20 illustrate the case where the first conductive type (n ⁇ type) semiconductor substrate 2 SUB is used as the “base portion”.
  • an n-type epitaxial growth layer is formed as a buffer layer on the second conductivity type (p + ) type semiconductor substrate, and then the first conductivity type epitaxial growth at a lower concentration than the buffer layer.
  • Embedded epitaxial growth may be performed so as to realize a three-layer structure in which layers are formed, and this epitaxial growth layer may be employed as the base portion.
  • the semiconductor substrate 2 SUB is divided into a plurality of semiconductor chips after the manufacturing process of the semiconductor device according to the first embodiment is performed.
  • a portion divided as a semiconductor chip is defined as a chip formation region 21, and a cutting portion for dividing the semiconductor chip into a plurality of semiconductor chips is defined as a scribe region (dicing region) 22. Therefore, as shown in FIG. 3, the semiconductor substrate 2 SUB is not physically formed, but has a plurality of chip formation regions 21 partitioned in a matrix by the scribe regions 22.
  • each of the plurality of chip formation regions 21 is not physically formed, but like the semiconductor chip 1 in FIG. 1, an element in which a semiconductor device is formed It has a formation region 21a and a breakdown voltage region 21b in which the FLR region 19 is formed.
  • the three FLR regions 19 are implanted with, for example, boron ions ( 11 B + ) or boron difluoride ions ( 49 BF 2 + ) as p-type impurity ions, and then activate the implanted impurity ions. It is formed by applying heat treatment.
  • the three FLRs 19 are formed in each of the plurality of chip formation regions 21 shown in FIG.
  • a plurality of first trenches 3 a and a plurality of second trenches 3 b are dug in the surface layer portion of the upper surface 2 x of the semiconductor substrate 2 SUB .
  • Each of the plurality of first trenches 3a and the plurality of second trenches 3b is formed in a striped parallel pattern having a width of about 1 ⁇ m and a depth of about 5 ⁇ m to 10 ⁇ m, for example.
  • Each of the plurality of first trenches 3a and the plurality of second trenches 3b is formed by selectively etching the upper surface 2x of the semiconductor substrate 2SUB by dry etching such as RIE using a photolithography technique.
  • Each of the plurality of first trenches 3a and the plurality of second trenches 3b is not limited to the arrangement shown in FIG. 6, but is arranged alternately at a predetermined interval in one direction, for example.
  • Each of the plurality of first trenches 3a and the plurality of second trenches 3b is formed inside the element formation region 21a defined by the planar pattern of FIG. 4 in each of the plurality of chip formation regions 21 shown in FIG.
  • the second trench 3b is used as a dummy trench for the first trench 3a.
  • the insulating film 4 made of a SiO 2 film is formed in each of the plurality of first trenches 3a and the plurality of second trenches 3b by, for example, thermal oxidation treatment.
  • the insulating film 4 is also formed on the upper surface 2x of the semiconductor substrate 2 SUB between adjacent trenches, and extends inside the upper surface 2x of the semiconductor substrate 2 SUB , the first trench 3a, and the second trench 3b. Formed continuously. Further, the insulating film 4 is formed in each of the plurality of chip formation regions 21 shown in FIG.
  • a low conductive film 5 is formed so that the inside of each of the plurality of first trenches 3 a and the plurality of second trenches 3 b is filled in the upper surface 2 x of the semiconductor substrate 2 SUB.
  • a doped polysilicon film having a specific resistance is formed by a CVD method.
  • the conductive film 5 is formed with a film thickness of about 1 ⁇ m for a trench width of 1 ⁇ m, for example.
  • the conductive film 5 is formed over a plurality of chip formation regions 21 and scribe regions 22 as shown in FIG. Further, the conductive film 5 is also formed on the lower surface 2y and the side surface of the semiconductor substrate 2 SUB, the whole of the semiconductor substrate 2 SUB is covered by the conductive film 5.
  • the insulating film 4 and the conductive film 5 located inside the first trench 3a correspond to the subsequent first insulating film 4a and the gate electrode 6a, respectively.
  • the insulating film 4 and the conductive film 5 located inside the second trench 3b correspond to the second insulating film 4b and the separation electrode 6b, respectively.
  • a conductive film 5 covering the semiconductor substrate 2 SUB over the side surface from an outer peripheral end portion of the upper surface 2x of the semiconductor substrate 2 SUB is selectively removed by etching.
  • a conductive film 5 covering the entire semiconductor substrate 2 SUB, a first conductive film 5a of the upper surface 2x side of the semiconductor substrate 2 SUB, and a second conductive film 5b on the lower surface 2y of the semiconductor substrate 2 SUB To divide.
  • a voltage is applied between the first conductive film 5a and the lower surface 2y of the semiconductor substrate 2 SUB to inspect the insulating characteristics of the insulating film 4.
  • the semiconductor substrate 2 SUB is disposed on the stage 26 so that the second conductive film 5b on the lower surface 2y of the semiconductor substrate 2 SUB is in contact with the conductive stage 26.
  • the negative electrode side of the power supply 27 and the stage 26 are electrically connected, and the tip of the probe needle 28 electrically connected to the positive electrode side of the power supply 27 is pressed against the first conductive film 5a.
  • the gate shock test is an accelerated test for evaluating the TDDB phenomenon in which dielectric breakdown occurs in the insulating film 4 over time.
  • a voltage of about 5 MV / cm for example, higher than a normal voltage of about 2 MV / cm applied between the gate and the collector is applied between the first conductive film 5a and the lower surface 2y of the semiconductor substrate 2 SUB. Apply between.
  • an electric field is applied to the entire insulating film 4 between the semiconductor substrate 2 SUB and the first conductive film 5a including the inside of the first trench 3a and the inside of the second trench 3b. Therefore, stress can be applied to the entire insulating film 4. Then, when the leakage current between the first conductive film 5a and the semiconductor substrate 2 SUB is equal to or higher than the reference value, it can be determined that the film quality of the insulating film 4 has deteriorated, so the insulating characteristics of the insulating film 4 are inspected. be able to.
  • the second trench 3b is used as a dummy trench
  • the first conductive film 5a (later separation electrode 6b) inside the second trench 3b is used as a dummy electrode.
  • the insulating film 4 (later first insulating film) between the first trench 3a and the first conductive film 5a (later gate electrode 6a). 4a) and the film quality deterioration of each of the insulating films 4 (rear second insulating film 4b) between the second trench 3b and the second conductive film 5b (rear separation electrode 6b) can be screened by voltage application. .
  • the second conductive film 5b which serves as an electrode of the voltage applied to the negative side of the power source 27 is provided on the entire lower surface 2y of the semiconductor substrate 2 SUB. Therefore, as compared with the case where the electrode of the voltage applied to the negative side of the power supply 27 to the upper surface 2x of the semiconductor substrate 2 SUB, the semiconductor substrate 2 SUB and the first including the inside of the inner and second trenches 3b of the first trench 3a Concentration of the electric field applied to the insulating film 4 between the conductive film 5a can be suppressed. As a result, the stress can be uniformly applied to the entire insulating film 4.
  • the semiconductor device according to the first embodiment is an IGBT
  • a voltage is applied between the first main electrode region 8 and the base region 7 on the upper surface side of the semiconductor substrate 2 SUB and the second main electrode region 16 on the lower surface side. Since a current flows in the thickness direction of the semiconductor substrate 2 SUB by applying, stress corresponding to the actual operation can be applied to the insulating film 4.
  • the tip of the probe needle 28 when the tip of the probe needle 28 is pressure-contacted, a concave pressure-contact mark is attached to the first conductive film 5a due to the pressure-contact of the tip of the probe needle 28.
  • foreign matter may adhere to the first conductive film 5a.
  • the pressure contact traces and foreign matter of the probe needle 28 remain after etching the first conductive film 5a to form the gate electrode 6a in the first trench 3a and the separation electrode 6b in the second trench 3b. It becomes a factor to generate. Accordingly, it is preferable to perform the gate shock test by bringing the tip of the probe needle 28 into contact with the portion removed by the subsequent etching of the first conductive film 5a.
  • the tip of the probe needle 28 it is preferable to press the tip of the probe needle 28 to the corner portion 23 of the chip formation region 21 or the first conductive film 5 a in the scribe region 22.
  • the FLR region 19 has an arc-shaped planar pattern at the corner 23 of the chip forming region 21, and outside the arc-shaped planar pattern portion of the FLR region 19, Since it is wider than that, the tip of the probe needle 28 can be easily brought into contact with the first conductive film 5a without damaging the FLR region 19.
  • the first conductive film 5a is etched back under etching conditions having selectivity with respect to the insulating film 4, so that the insulating film 4 on the upper surface 2x of the semiconductor substrate 2 SUB functions as an etching stopper. Etching of the upper surface 2x of the semiconductor substrate 2 SUB can be prevented.
  • the insulating film 4 on the upper surface 2x of the semiconductor substrate 2 SUB is selectively removed by wet etching or the like to expose the upper surface 2x of the semiconductor substrate 2 SUB .
  • the removal of the insulating film 4 is performed in each of the plurality of chip formation regions 21 shown in FIG. 3 and also in the scribe region 22.
  • the insulating film 4 is divided into a first insulating film 4a located inside the first trench 3a and a second insulating film 4b located inside the second trench 3b.
  • the first insulating film 4a located inside the first trench 3a functions as a gate film.
  • the second insulating film 4b located inside the second trench 3b used as a dummy trench does not function as a gate film, but the second insulating film 4b has been subjected to a gate shock test together with the first insulating film 4a, and the TDDB Reliability for the phenomenon is ensured.
  • the p-type base region 7 is formed in the surface layer portion of the upper surface 2x of the semiconductor substrate 2 SUB .
  • the base region 7 is formed by implanting, for example, boron ions or boron difluoride ions as impurity ions exhibiting p-type, and then performing a heat treatment for activating the implanted impurity ions.
  • the base region 7 is formed shallower than the tips of the first trench 3a and the second trench 3b.
  • the base region 7 is formed with a depth of about 1 to 8 ⁇ m with respect to a depth of 5 to 10 ⁇ m of each of the first trench 3a and the second trench 3b.
  • the base region 7 is formed in each of the plurality of chip formation regions 21 shown in FIG.
  • the base region 7 is formed after the gate electrode 6a is formed inside the first trench 3a and the separation electrode 6b is formed inside the second trench 3b.
  • the base region 7 may be formed in the surface portion of the upper surface 2x of the semiconductor substrate 2 SUB before forming the first trenches 3a and second trenches 3b in the surface layer portion of the top surface 2x of the semiconductor substrate 2 SUB.
  • each of the first trench 3 a and the second trench 3 b is formed in the surface layer portion of the upper surface 2 x of the semiconductor substrate 2 SUB so as to penetrate the base region 7.
  • a mask for selective ion implantation is formed by a photolithography process.
  • Arsenic ions ( 75 As + ), for example, are implanted as n-type impurity ions through the mask window. Thereafter, a heat treatment for activating the implanted impurity ions is performed. Thereby, as shown in FIG. 16, the first main electrode region 8 as the emitter region is selectively formed on the base region 7.
  • the first main electrode region 8 is formed on both sides facing each other in the width direction of the first trench 3a, and is not formed on both sides of the second trench 3b.
  • the first main electrode region 8 is formed shallower than the base region 7.
  • the first main electrode region 8 is formed in each of the plurality of chip formation regions 21 shown in FIG.
  • an interlayer insulating film 10 made of a SiO 2 film is formed on the entire upper surface of the semiconductor substrate 2 SUB including the gate electrode 6a and the separation electrode 6b by, for example, the CVD method. Then, using a photolithography technique, a dry etching technique, etc., as shown in FIG. 17, a contact hole that penetrates the interlayer insulating film 10 so as to reach the upper surface 2x of the semiconductor substrate 2 SUB from the upper surface of the interlayer insulating film 10. 11 is opened.
  • the interlayer insulating film 10 is divided for each chip formation region 21 shown in FIG. 3, and the contact hole 11 is formed in each of the plurality of chip formation regions 21 shown in FIG.
  • a metal film is formed by sputtering or the like over the entire upper surface 2x of the semiconductor substrate 2 SUB so as to fill the inside of the contact hole 11 and cover the interlayer insulating film 10.
  • the metal film is made of, for example, an Al film or an Al alloy film such as Al—Si, Al—Cu, Al—Cu—Si.
  • an etching mask is formed by photolithography, and this metal film is patterned by selective etching.
  • the first main electrode 12 as the emitter electrode is formed on the upper surface 2x of the semiconductor substrate 2 SUB , and the control electrode 13 shown in FIG. 1 is formed although not shown in detail. To do.
  • the first main electrode 12 is electrically and metallurgically connected to the base region 7, the first main electrode region 8, and the separation electrode 6b so as to have a low ohmic contact resistance.
  • the control electrode 13 is electrically connected to each of the gate electrodes 6a.
  • the first main electrode 12 and the control electrode 13 are formed in each of the plurality of chip formation regions 21 shown in FIG.
  • a protective film 14 made of, for example, polyimide insulating resin is formed on the entire upper surface 2 x of the semiconductor substrate 2 SUB so as to cover the first main electrode 12 and the control electrode 13. Form. Thereafter, the protective film 14 is patterned by etching, and a first main electrode bonding opening exposing a part of the first main electrode 12 and a control electrode bonding exposing a part of the control electrode 13 in the protective film 14. An opening is formed.
  • the protective film 14 is divided for each chip formation region 21 shown in FIG.
  • the first main electrode bonding opening, the control electrode bonding opening, and the like are formed in each of the plurality of chip formation regions 21 shown in FIG.
  • the thickness of the semiconductor substrate 2 SUB is ground with the lower surface 2y of the semiconductor substrate 2 SUB example back grinding or CMP.
  • the second conductive film 5b on the lower surface 2y of the semiconductor substrate 2 SUB is removed.
  • the n + -type buffer layer 15 and the p + -type second main electrode region 16 are formed on the surface layer portion of the lower surface 2 y of the semiconductor substrate 2 SUB .
  • the buffer layer 15 and the second main electrode region 16 implant n-type impurity ions and p-type impurity ions into the lower surface 2y of the semiconductor substrate 2 SUB , and then implant the implanted impurity ions. It is formed by applying heat treatment for activation. For example, phosphorus ions are implanted as impurity ions exhibiting n-type, and boron ions are implanted as impurity ions exhibiting p-type.
  • Buffer layer 15, in the depth direction from the lower surface 2y of the semiconductor substrate 2 SUB is formed at a position deeper than the second main electrode region 16, the remainder of the semiconductor substrate 2 SUB is drift layer 2.
  • the buffer layer 15 and the second main electrode region 16 are formed in common over each of the plurality of chip formation regions 21 shown in FIG.
  • the second main electrode 17 that is electrically and metallurgically connected to the second main electrode region 16 so as to form a low ohmic contact resistance is formed on the entire lower surface 2y of the semiconductor substrate 2 SUB. To do. Thereby, the wafer process of the semiconductor device according to the first embodiment is almost completed. Thereafter, the scribe region 22 of the semiconductor substrate 2 SUB is cut with a dicing blade to divide the plurality of chip formation regions 21. Thereby, as shown in FIG. 1, the semiconductor chip 20 including the chip formation region 21 is completed.
  • 3a and the first conductive film 5a between the insulating film 4 (later first insulating film 4a) and the second trench 3b and the second conductive film 5b (later separation electrode 6b).
  • Each film quality deterioration of the insulating film 4 in the meantime can be screened by voltage application. Therefore, appropriate screening can be performed in the manufacturing process of the semiconductor device having the trench gate structure having the separation electrode 6b as the dummy electrode that does not contribute to the formation of the channel and the gate electrode 6a.
  • the second conductive film 5b functioning as an electrode for the applied voltage on the negative side of the power supply 27 is provided on the entire lower surface 2y of the semiconductor substrate 2 SUB. ing. Therefore, as compared with the case where the electrode of the voltage applied to the negative side of the power supply 27 to the upper surface 2x of the semiconductor substrate 2 SUB, and the semiconductor substrate 2 SUB including the inside of the inside of the first trench 3a and the second trench 3b first Concentration of the electric field applied to the insulating film 4 between the first conductive film 5a can be suppressed, and stress can be uniformly applied to the entire insulating film 4.
  • an independent pad electrically connected to the dummy electrode inside the dummy trench is provided, and the independent pad and the emitter electrode are interposed between the independent pad and the emitter electrode.
  • a probe needle is applied to the first conductive film 5a.
  • An empty space at the corner 23 of the chip formation region 21 or a scribe region 22 is set as a position where 28 is brought into contact.
  • FIGS. 1-10 A method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described with reference to FIGS.
  • the manufacturing method of the semiconductor device according to the second embodiment is almost the same as the manufacturing method of the semiconductor device according to the first embodiment described above except for the etching process of the conductive film 5 and the inspection process of the insulating characteristics of the insulating film 4. is there. For this reason, in the manufacturing method of the semiconductor device according to the second embodiment, the description will be made specifically for the first etching process of the conductive film 5, and detailed description of the other processes will be omitted.
  • FIG. 21 is a diagram illustrating the entire semiconductor substrate in a wafer state before being cut into a plurality of chips.
  • FIG. 22 is a principal part sectional view showing a sectional structure in a chip formation region provided on a semiconductor substrate in a wafer state.
  • FIG. 23 is a fragmentary cross-sectional view showing a state where the semiconductor substrate is disposed on a conductive stage.
  • an n ⁇ type semiconductor substrate 2 SUB made of a single crystal silicon wafer is prepared as a semiconductor substrate. Thereafter, the same processes as those of the first embodiment described above are performed, and three FLR regions 19 as shown in FIG. 5 and a plurality of first trenches 3a and a plurality of second trenches 3b as shown in FIG. Then, as shown in FIGS. 7 and 8, the insulating film 4 and the conductive film 5 are formed.
  • a conductive film 5 covering the side surface of the conductive film 5 and the semiconductor substrate 2 SUB covers the non-chip forming region 21 in the upper surface 2x side of the semiconductor substrate 2 SUB is selectively removed by etching.
  • a conductive film 5 covering the entire semiconductor substrate 2 SUB, a first conductive film 5a of the upper surface 2x side of the semiconductor substrate 2 SUB, the lower surface 2y of the semiconductor substrate 2 SUB The first conductive film 5a is divided into a plurality of chip formation regions 21 while being divided into the second conductive film 5b.
  • a voltage is applied between the first conductive film 5a and the lower surface 2y of the semiconductor substrate 2 SUB to inspect the insulating characteristics of the insulating film 4.
  • the semiconductor substrate 2 SUB is arranged on the stage 26 so that the second conductive film 5b on the lower surface 2y of the semiconductor substrate 2 SUB faces the conductive stage 26.
  • the negative electrode side of the power supply 27 and the stage 26 are electrically connected, and the tip of the probe needle 28 electrically connected to the positive electrode side of the power supply 27 is pressed against the first conductive film 5a.
  • the leakage current of the insulating film 4 is measured.
  • the first conductive film 5a on the upper surface side of the semiconductor substrate 2 SUB is divided for each chip formation region 21, the pressure contact with the first conductive film 5a at the tip of the probe needle 28 is the chip formation. This is performed for each area 21.
  • Each of the film quality deteriorations of each can be screened for each chip formation region 21 by applying a voltage.
  • the second conductive film 5b which serves as an electrode for applying a voltage on the negative electrode side of the power source 27 is provided on the entire lower surface 2y of the semiconductor substrate 2 SUB. Therefore, as in the first embodiment, the concentration of the electric field applied to the insulating film 4 between the semiconductor substrate 2 SUB and the first conductive film 5a including the inside of the first trench 3a and the inside of the second trench 3b. Therefore, stress can be uniformly applied to the entire insulating film 4 for each chip formation region 21.
  • the probe needle 28 is formed on the first conductive film 5 a in the corner 23 of the chip formation region 21. It is preferable to press-contact the tip. Also in the second embodiment, the tip of the probe needle 28 can be easily brought into contact with the first conductive film 5a without damaging the FLR region 19, as in the first embodiment.
  • the shape abnormality of each of the first trench 3a and the second trench 3b, the first trench, regardless of the dummy trench and the dummy electrode Screening each of the chip forming regions 21 for deterioration in film quality of the insulating film 4 between 3a and the first conductive film 5a and the insulating film 4 between the second trench 3b and the second conductive film 5b by voltage application. Can do. Therefore, appropriate screening can be performed for each chip formation region 21 in the manufacturing process of the semiconductor device having the trench gate structure having the separation electrode 6b as the dummy electrode that does not contribute to the formation of the channel and the gate electrode 6a.
  • the second conductive film 5b functioning as an electrode for the applied voltage on the negative side of the power supply 27 is provided on the entire lower surface 2y of the semiconductor substrate 2 SUB. ing. Therefore, as compared with the case where the electrode of the voltage applied to the negative side of the power supply 27 to the upper surface 2x of the semiconductor substrate 2 SUB, and the semiconductor substrate 2 SUB including the inside of the inside of the first trench 3a and the second trench 3b first Concentration of the electric field applied to the insulating film 4 between the first conductive film 5a can be suppressed for each chip forming region 21, and stress is uniformly applied to the entire insulating film 4 for each chip forming region 21. Can do.
  • the independent pad and the independent pad and the dummy electrode in the dummy trench are electrically connected. Since appropriate screening can be performed without adding a runner to be connected, it is possible to suppress a decrease in element formation region and an additional assembly process.
  • FIG. 26 A method for manufacturing a semiconductor device according to the third embodiment of the present invention will be described with reference to FIGS.
  • a semiconductor substrate 2A SUB shown in FIG. 26 is used.
  • This semiconductor substrate 2A SUB has substantially the same configuration as the semiconductor substrate 2 SUB according to the first embodiment described above, but is different from the semiconductor substrate 2A SUB in that it has a monitor unit 25 although it is not physically formed. Yes.
  • the monitor unit 25 is disposed in a region other than the chip formation region 21 and the scribe region 22, and similarly to the chip formation region 21 shown in FIG. 4, an element formation region 21a and a FLR region 19 in which a semiconductor device is formed are formed. A withstand voltage region 21b. The monitor unit 25 is subjected to the same manufacturing process as the chip formation region 21.
  • FIG. 26 is a principal part sectional view showing a sectional structure in a chip formation region provided on a semiconductor substrate in a wafer state.
  • 30 and 31 are cross-sectional views of the main part showing a state in which the semiconductor substrate is disposed on a conductive stage.
  • an n ⁇ type semiconductor substrate 2A SUB made of, for example, a single crystal silicon wafer is prepared as a base portion. Thereafter, the same steps as those of the first embodiment are performed, and the three FLR regions 19 as in FIG. 5 and the plurality of first trenches 3a, the plurality of second trenches 3b, the insulation as shown in FIG. The film 4 and the conductive film 5 are formed in each chip formation region 21 of the semiconductor substrate 2A SUB .
  • the FLR region 19, the plurality of first trenches 3a, the plurality of second trenches 3b, the insulating film 4 and the conductive film 5 are similarly formed in the monitor unit 25 of the semiconductor substrate 2A SUB .
  • the conductive film 5 is formed so as to cover the entire semiconductor substrate 2A SUB .
  • a conductive film 5 covering the side surface of the conductive film 5 and the semiconductor substrate 2A SUB covering the non-chip forming region 21 in the upper surface 2x side of the semiconductor substrate 2A SUB is selectively removed by etching.
  • the first conductive film 5a is divided for each of the plurality of chip formation regions 21 and the monitor unit 25.
  • the semiconductor substrate 2A SUB is disposed on the stage 26 so that the second conductive film 5b on the lower surface 2y of the semiconductor substrate 2A SUB faces the conductive stage 26. Then, the negative electrode side of the power supply 27 and the stage 26 are electrically connected, and the tip of the probe needle 28 electrically connected to the positive electrode side of the power supply 27 is pressed against the first conductive film 5 a of the monitor unit 25. Then, a high voltage that breaks the insulating property of the insulating film 4 is applied between the first conductive film 5a of the monitor unit 25 and the lower surface 2y of the semiconductor substrate 2A SUB . In this step, it is possible to confirm whether or not the lower surface 2y of the semiconductor substrate 2A SUB and the stage 26 are electrically connected by measuring a breakdown voltage at which the insulating film 4 breaks down.
  • the chip The insulation characteristic of the insulating film 4 can be inspected by applying a voltage between the first conductive film 5a in the formation region 21 and the lower surface 2y of the semiconductor substrate 2A SUB . Therefore, it is possible to eliminate an inspection failure such that the insulation characteristic is inspected without applying stress to the insulating film 4 due to a contact failure between the lower surface 2y of the semiconductor substrate 2A SUB and the stage 26. As a result, the reliability of screening by voltage application can be improved.
  • the monitor unit 25 is arranged in an area other than the chip formation area 21 and the scribe area 22 has been described, but the monitor section 25 may be arranged in the scribe area 22.
  • the present invention has been specifically described above based on the first to third embodiments. However, the present invention is not limited to the first to third embodiments and does not depart from the gist thereof. Of course, various changes can be made in the range.
  • the manufacturing method of the semiconductor device having the trench gate structure has been described by taking the IGBT manufacturing method as an example.
  • the present invention is not limited to this, and can be applied to a method of manufacturing a semiconductor device having a power MOSFET having a trench gate structure.
  • Examples of the method for manufacturing the single crystal silicon wafer constituting the semiconductor substrates 2 SUB and 2A SUB in the first to third embodiments described above include the float zone method (FZ method), the Czochralski method (CZ method). And a magnetic field application type Czochralski method (MCZ method). Even when a single crystal silicon wafer by any of these methods is used, the semiconductor device manufacturing method according to the first to third embodiments described above can be applied.
  • the semiconductor device manufacturing methods according to the first to third embodiments described above may be applied to the semiconductor substrates 2 SUB and 2A SUB made of a single crystal silicon wafer by the MCZ method.
  • a single crystal silicon wafer by the MCZ method When a single crystal silicon wafer by the MCZ method is used, problems such as abnormal shape of the dummy trench and deterioration of the film quality of the insulating film between the dummy trench and the electrode may occur more easily than the wafer by the FZ method. That is, the single crystal silicon wafer by the MCZ method has a higher concentration of impurities such as carbon and oxygen contained in the wafer manufacture than the single crystal silicon wafer by the FZ method. For this reason, crystal defects due to these impurities are also likely to occur.
  • Such impurities and crystal defects cause problems such as abnormal shape of the dummy trench and deterioration of the quality of the insulating film between the dummy trench and the electrode. Therefore, by applying the semiconductor device manufacturing method according to the first to third embodiments described above to the semiconductor substrates 2 SUB and 2A SUB made of a single crystal silicon wafer by the MCZ method, the above-described defect screening effect can be obtained. It becomes more prominent.
  • the method of manufacturing a semiconductor device according to the present invention can perform appropriate screening in the manufacturing process of a semiconductor device having a trench gate structure having an electrode as a dummy electrode that does not contribute to the formation of a channel. This is useful for a method of manufacturing a semiconductor device having a gate structure.
  • SYMBOLS 2 ... 1st conductivity type drift layer 2SUB , 2A SUB ... 1st conductivity type semiconductor substrate 3a ... 1st trench, 3b ... 2nd trench 4a ... 1st insulating film, 4b ... 2nd insulating film 5 ... Conductive film , 5a ... first conductive film, 5b ... second conductive film 6a ... gate electrode, 6b ... isolation electrode 7 ... second conductivity type base region 8 ... first main electrode region (emitter region) DESCRIPTION OF SYMBOLS 10 ... Interlayer insulation film 11 ... Contact hole 12 ... 1st main electrode (emitter electrode) DESCRIPTION OF SYMBOLS 13 ... Control electrode 14 ...
  • Protective film 15 ... 1st conductivity type buffer layer 16 ... 2nd conductivity type 2nd main electrode area

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 トレンチゲート構造を有する半導体装置の製造プロセスにおいて適切なスクリーニングを実施することが可能な半導体装置の製造方法を提供する。半導体装置の製造方法は、平板状の基体部の上面に第1及び第2トレンチ(3a,3b)を形成する工程と、第1及び第2トレンチ(3a,3b)の各々の内部に絶縁膜(4)を形成する工程と、絶縁膜(4)を介して第1及び第2トレンチ(3a,3b)の各々の内部を埋め込むように基体部の上面上に導電膜(5a)を形成する工程と、導電膜(5a)と基体部の下面との間に電圧を印加して絶縁膜(4)の絶縁特性を検査する工程と、絶縁特性を検査した後、上面上の導電膜(5a)を選択的に除去して、第1トレンチ(3a)の内部にゲート電極を形成し、第2トレンチ(3b)の内部にゲート電極と分離された分離電極を形成する工程とを備える。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関し、特に、トレンチゲート構造を有する半導体装置の製造に適用して有効な技術に関するものである。
 電力変換装置のインバータ部やコンバータ部などに使用されるスイッチング素子として、例えばトレンチゲート構造の絶縁ゲート型バイポーラトランジスタ(IGBT)が知られている。このトレンチゲート構造のIGBTは、オン動作及びオフ動作に移行する際、特にゲート-コレクタ間の容量が大きい場合、著しい充放電時間と発生損失の増大をもたらす。この発生損失は、オン電圧で決まる定常損失と、オン動作時及びオフ動作時のスイッチング損失との和として発生する。このため、このスイッチング損失の原因であるゲート-コレクタ間の容量を低減することが重要である。
 ゲート-コレクタ間の容量を低減する方法として、例えば特許文献1に記載されているようなダミートレンチ構造を用いる方法がある。このダミートレンチ構造では、複数のトレンチのうちの所定のトレンチ(ダミートレンチ)の内部に設けられた電極とエミッタ電極とを電気的に接続する。これにより、ゲート容量の絶対値を減ずるとともに、特にフローティング層を有するIGBTではゲート-コレクタ間の容量を小さくすることができる。
 しかしながら、特許文献1に記載のダミートレンチ構造は、ダミートレンチ内部の電極とエミッタ電極とを電気的に接続している。このため、ダミートレンチの形状異常や、ダミートレンチと電極との間の絶縁膜の膜質劣化といった不具合を電圧印加によりスクリーニングすることが困難である。
特開2007-74006公報
 本発明の目的は、トレンチゲート構造を有する半導体装置の製造プロセスにおいて適切なスクリーニングを実施することが可能な半導体装置の製造方法を提供することにある。
 上記目的を達成するため、本発明の一態様に係る半導体装置の製造方法は、平板状の基体部の上面に第1及び第2トレンチを形成する工程と、第1及び第2トレンチの各々の内部に絶縁膜を形成する工程と、絶縁膜を介して第1及び第2トレンチの各々の内部を埋め込むように基体部の上面上に導電膜を形成する工程と、導電膜と基体部の下面との間に電圧を印加して絶縁膜の絶縁特性を検査する工程と、絶縁特性を検査した後、上面上の導電膜を選択的に除去して、第1トレンチの内部にゲート電極を形成し、第2トレンチの内部にゲート電極と分離された分離電極を形成する工程と、を備える。
 本発明によれば、トレンチゲート構造を有する半導体装置の製造プロセスにおいて適切なスクリーニングを実施することが可能な半導体装置の製造方法を提供することができる。
本発明の第1の実施形態に係る半導体装置のチップレイアウト図である。 本発明の第1の実施形態に係る半導体装置の要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法に用いられる半導体基板の概略構成を示す図((a)は平面図,(b)は断面図)である。 図3(a)の一部を拡大した要部平面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部平面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 図9の一部を拡大して示す要部平面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第1の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第2の実施形態に係る半導体装置の製造方法を説明するための要部平面図である。 本発明の第2の実施形態に係る半導体装置の製造方法において、変形例を説明するための要部平面図である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための図((a)は平面図,(b)は断面図)である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。 本発明の第3の実施形態に係る半導体装置の製造方法を説明するための要部断面図である。
 以下、本発明の第1乃至第3の実施形態に係る半導体装置の製造方法について、図面を参照して詳細に説明する。
 本明細書において、「第1主電極領域」とは、IGBTにおいてエミッタ領域又はコレクタ領域のいずれか一方となる領域を意味する。電界効果トランジスタ(FET)や静電誘導トランジスタ(SIT)においてはソース領域又はドレイン領域のいずれか一方となる領域を意味する。静電誘導サイリスタ(SIサイリスタ)やゲートターンオフサイリスタ(GTO)においてはアノード領域又はカソード領域のいずれか一方となる領域を意味する。
 「第2主電極領域」とは、IGBTにおいては上記第1主電極領域とはならないエミッタ領域又はコレクタ領域のいずれか一方となる領域を意味する。FET、SITにおいては上記第1主電極領域とはならないソース領域又はドレイン領域のいずれか一方となる領域を意味する。SIサイリスタやGTOにおいては上記第1主電極領域とはならないアノード領域又はカソード領域のいずれか一方となる領域を意味する。
 即ち、第1主電極領域がエミッタ領域であれば、第2主電極領域はコレクタ領域を意味する。第1主電極領域がソース領域であれば、第2主電極領域はドレイン領域を意味する。第1主電極領域がアノード領域であれば、第2主電極領域はカソード領域を意味する。以下の第1乃至第3の実施形態では、トレンチゲート構造のIGBTに着目して説明するので、エミッタ領域を「第1主電極領域」、コレクタ領域を「第2主電極領域」と呼ぶ。
 以下の第1乃至第3の実施形態の説明では、第1導電型がn型、第2導電型がp型の場合について例示的に説明するが、導電型を逆の関係に選択して、第1導電型をp型、第2導電型をn型としても構わない。また、本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに上付き文字で付す+および-は、+および-の付記されていない半導体領域に比してそれぞれ相対的に不純物濃度が高いまたは低い半導体領域であることを意味する。
 更に、以下の説明において「上面」「下面」などの「上」「下」の定義は、図示した断面図上の単なる表現上の問題である。例えば、半導体装置の方位を90°変えて観察すれば「上」「下」の呼称は、「左」「右」になり、180°変えて観察すれば「上」「下」の呼称の関係は逆になることは勿論である。
 なお、以下の第1乃至第3の実施形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、第1乃至第3の実施形態で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する第1乃至第3の実施形態の記載に限定されるものではない。
 (第1の実施形態)
 <第1の実施形態に係る半導体装置の構造>
 本発明の第1の実施形態に係る半導体装置は、図1に示す平面図から分かるように、平面が方形状の半導体チップ20を主体に構成されたIGBTである。なお、平面形状は例示であり、方形状に限定されるものではない。
 半導体チップ20は、中央部に設けられた素子形成領域21aと、この素子形成領域21aを囲むようにして周辺部に設けられた耐圧領域21bとを備えている。素子形成領域21aには、図2などに示す分離電極6bに電気的に接続されたエミッタ電極としての第1主電極12と、図2などに示すゲート電極6aに電気的に接続された制御電極13とが配置されている。
 第1主電極12及び制御電極13は、外部端子(ボンディングパッド)として使用され、外部との電気的な導通の仲介を行うボンディングワイヤなどの接続手段が接続される。半導体チップ20は、図2に示すように、第1導電型(n型)のドリフト層2が例えば単結晶シリコンからなる半導体基板2SUBで構成されている。
 図1に回路図記号(シンボルマーク)で示すように、素子形成領域21aには、トレンチゲート構造のスイッチング素子としての第1の実施形態の半導体装置が構成されている。そして、耐圧領域21bには、図1に示す構造に限定されるものではないが、例えば3本の第2導電型(p型)のフィールドリミッティングリング(FLR)領域19が素子形成領域21aを囲むようにして三段配列で設けられている。
 第1の実施形態の半導体装置は、図2に示すように、半導体基板2SUBの一部で構成されたn型のドリフト層2を備えている。ドリフト層2の上には、第2導電型(p型)のベース領域7が設けられている。ベース領域7の上面からベース領域7を貫いて下面側のドリフト層2に到達するように、複数の第1トレンチ3a及び複数の第2トレンチ3bが設けられている。図2に示すトポロジーに限定されるものではないが、説明の便宜上、一部の構成として交互に配列された2つの第1トレンチ3a及び3つの第2トレンチ3bを例示的に示している。
 また、第1の実施形態に係る半導体装置は、複数の第1トレンチ3aのそれぞれの内壁に沿って設けられた第1絶縁膜4aと、複数の第2トレンチ3bのそれぞれの内壁に沿って設けられた第2絶縁膜4bとを備えている。
 また、第1の実施形態に係る半導体装置は、複数の第1トレンチ3aのそれぞれの内部に第1絶縁膜4aを介して設けられたゲート電極6aと、複数の第2トレンチ3bのそれぞれの内部に第2絶縁膜4bを介して設けられた分離電極6bとを備えている。分離電極6bは、ゲート電極6aと電気的及び構造的に絶縁分離されている。
 また、第1の実施形態に係る半導体装置は、ベース領域7の上部に第1主電極12に接するように設けられたエミッタ領域としての第1導電型(n型)の第1主電極領域8を備えている。第1主電極領域8は、第1トレンチ3aの幅方向において互いに対向する両脇にそれぞれ設けられている。第1主電極領域8は第1トレンチ3aに対応して設けられており、第2トレンチ3bの両脇には設けられていない。ドリフト層2の下には、コレクタ領域としての第2導電型(p型)の第2主電極領域16が設けられている。
 また、第1の実施形態に係る半導体装置は、第2主電極領域16と接して設けられたコレクタ電極としての第2主電極17と、ドリフト層2の下に設けられた第1導電型(n型)のバッファ層15とを備えている。
 図2に示すように、ゲート電極6a,分離電極6bの上には、層間絶縁膜10と、第1主電極12と、保護膜14が下から順に設けられている。図2では図示を省略しているが、図1に示す制御電極13は、第1主電極12と同一レベルとなるように、ゲート電極6a,分離電極6b,層間絶縁膜10よりも上層に設けられている。保護膜14には、図示していないが、第1主電極12の一部を露出する第1主電極用ボンディング開口や制御電極13の一部を露出する制御電極用ボンディング開口などが設けられている。
 第1主電極12は、層間絶縁膜10を貫通するコンタクト孔11を介して、ベース領域7、第1主電極領域8及び分離電極6bの各々と低いオーミック接触抵抗をなすように電気的にかつ金属学的に接続されている。第2主電極17も、第2主電極領域16と低いオーミック接触抵抗をなすように電気的にかつ金属学的に接続されている。
 ゲート電極6aは、詳細に図示していないが図1に示す制御電極13と電気的に接続されている。ゲート電極6aは、層間絶縁膜10で覆われており、この層間絶縁膜10によって第1主電極領域8と電気的に絶縁分離されている。
 分離電極6bは、半導体装置のスイッチング損失の原因であるゲート-コレクタ間の容量を低減するために第1主電極領域8と電気的に接続されており、第1主電極12から第1主電極領域8とともに第1基準電位が供給される。また、分離電極6bは、ゲート電極6a及び図1に示す制御電極13に対しては電気的に絶縁分離されている。すなわち、分離電極6bは、第1主電極12を通して第1主電極領域8と同様の電位が印加されるが、ゲート電極6aとは異なってチャネルの形成に寄与しないダミー電極である。そして、第2トレンチ3bは、内部に分離電極6bが設けられたダミートレンチである。
 第1絶縁膜4a及び第2絶縁膜4bは、例えば熱酸化法による二酸化シリコン(SiO)膜で形成されている。第1絶縁膜4a及び第2絶縁膜4bとしては、熱酸化法の他に化学的気相堆積(CVD)法などにより形成される酸化シリコン膜や窒化シリコン膜、或いはこれらのうちの複数の組み合わせである積層膜を用いることができる。第1絶縁膜4a及び第2絶縁膜4bとしては、高耐圧が要求されるパワーデバイス(電力用半導体装置)においては緻密性に有利な熱酸化法によるSiO膜を用いることが好ましい。
 ゲート電極6a及び分離電極6bには、例えば不純物が添加された多結晶シリコン膜(ドープドシリコン膜)が低比抵抗な導電膜として採用可能である。ゲート電極6a及び分離電極6bはドープドポリシリコン膜(DOPOS膜)に限定されるものではない。例えば、DOPOSの他に、タングステン(W)、モリブデン(Mo)、チタン(Ti)、コバルト(Co)などの高融点金属、或いはこれらのシリサイドであるWSi,MoSi,TiSi,CoSiなどをゲート電極6a及び分離電極6bに用いてもよい。更にDOPOS膜とシリサイド膜との複合膜であるポリサイド膜などをゲート電極6a及び分離電極6bに採用してもよい。
 層間絶縁膜10としては、例えばCVD法によるSiO膜を用いることが可能である。層間絶縁膜10としては、シリコン窒化膜(Si膜)、ホウケイ酸ガラス膜(BSG膜)、リンケイ酸ガラス膜(PSG膜)又はホウリンケイ酸ガラス膜(BPSG膜)などでも構わない。第1主電極12及び制御電極13には、例えばアルミニウム(Al)膜、又はアルミニウム・シリコン(Al-Si),アルミニウム・銅(Al-Cu),アルミニウム・銅・シリコン(Al-Cu-Si)などのアルミニウム合金膜を用いることができる。第2主電極17は例えば金(Au)膜で形成されている。保護膜14は、例えばポリイミド系の絶縁性樹脂の他にBSG,PSG,BPSG膜などが採用可能である。
 第1主電極領域8の直下のベース領域7には、ゲート電極6aに印加される電圧に制御されてチャネルが形成される。「ベース領域7」はIGBTにおいてはチャネルが形成される領域を意味するが、IGBT以外のスイッチング素子においてはIGBTのベース領域に等価な表面にチャネルが形成されるチャネル形成領域を意味する。
 第1トレンチ3aの内部に設けられた第1絶縁膜4aは、第1主電極領域8の直下のベース領域7にチャネルの表面電位を静電的に制御するゲート膜として機能する。一方、第2トレンチ3bの内部に設けられた第2絶縁膜4bはゲート膜としては機能しない。しかしながら、第2トレンチ3bの底部でも電界が集中するので、この第2絶縁膜4bにおいても第1絶縁膜4aと同様に、時間の経過とともに絶縁破壊が起こるTDDB(Time Dependent Dielectric Breakdown)現象に対する信頼性を確保する必要がある。TDDBに対する信頼性は、トレンチの形状異常や、トレンチと電極との間の絶縁膜の膜質劣化といった不具合を電圧印加によりスクリーニングすることで高めることができる。
 <第1の実施形態に係る半導体装置の動作>
 次に、第1の実施形態に係る半導体装置の動作について、図2を参照して説明する。第1主電極12に第1基準電位(例えば0V)を印加し、第2主電極17に第1基準電位よりも高い第2基準電位(例えば600V)を印加した状態でゲート電極6aの電圧が閾値以下の電圧では半導体装置はオフ状態である。
 この状態で図示しないゲート駆動回路よりゲート抵抗を介して閾値より高い電圧をゲート電極6aに印加すると、p型のベース領域7で第1絶縁膜4aを介してゲート電極6aと対向している部分がn型に反転してチャネルが形成される。これにより、電子が第1主電極12からn型の第1主電極領域(エミッタ領域)8、p型のベース領域7のチャネルを通り、n-型のドリフト層2に注入されることでオン状態となる。このオン状態において、第1主電極12と第2主電極17との間の電圧降下が半導体装置のオン電圧である。
 半導体装置をオン状態からオフ状態にするには、第1主電極12とゲート電極6aとの間の電圧を閾値以下にすることによって、ゲート電極6aに蓄積されていた電荷はゲート抵抗を介してゲート駆動回路へ放電される。その際、n型に反転していたチャネルがp型に戻り、チャネルが無くなることにより電子の供給がなされなくなり、半導体装置がオフ状態になる。
 <第1の実施形態に係る半導体装置の製造方法>
 次に、第1の実施形態に係る半導体装置の製造方法について、IGBTの製造方法を例に図3乃至図20を用いて説明する。以下の説明では、第1トレンチ3a及び第2トレンチ3bを形成した後、p型のベース領域7及びn型の第1主電極領域8を形成する場合について説明するが、このような手順に限定されるものではない。
 なお、図3、図8、図9は、複数のチップに切り出す前のウエハ状態での半導体基板全体を示す図である。また、図6、図7、図10、図13乃至図20は、ウエハ状態の半導体基板に区画されたチップ形成領域での断面構造を示す要部断面図である。また、図11は半導体基板を導電性のステージ上に配置した状態を示す断面図である。
 (a)まず、図3に示すように、例えば単結晶シリコンウエハからなるn型の半導体基板2SUBを基体部として準備する。この半導体基板2SUBは、互いに反対側に位置する上面2x及び下面2yを有し、平面形状が円形状で構成されている。
 なお、図3乃至図20では「基体部」として、第1導電型(n型)の半導体基板2SUBを用いる場合を例示している。この半導体基板2SUBの代わりに、第2導電型(p)型の半導体基板上にn型のエピタキシャル成長層をバッファ層として形成した後、このバッファ層よりも低濃度の第1導電型のエピタキシャル成長層を形成した3層構造を実現するように埋め込みエピタキシャル成長をして、このエピタキシャル成長層を基体部として採用してもよい。
 半導体基板2SUBは、第1の実施形態に係る半導体装置の製造プロセスが施された後、複数の半導体チップに分割される。本明細書及び添付図面では半導体チップとして分割される部分をチップ形成領域21と定義し、複数の半導体チップに分割するための切削部分をスクライブ領域(ダイシング領域)22と定義する。したがって、半導体基板2SUBは、図3に示すように、物理的に形成されているものではないが、スクライブ領域22によって行列状に区画された複数のチップ形成領域21を有している。また、複数のチップ形成領域21の各々は、図4に示すように、これも物理的に形成されているものではないが、図1の半導体チップ1と同様に、半導体装置が形成される素子形成領域21aとFLR領域19が形成される耐圧領域21bとを有している。
 (b)次に、半導体基板2SUBの上面2xにおいて、図5に示すように、チップ形成領域21の耐圧領域21bに、素子形成領域21aを取り囲むように環状に延伸する3本のFLR領域19を形成する。この3本のFLR領域19は、p型を呈する不純物イオンとして例えばボロンイオン(11)又は二フッ化ボロンイオン(49BF )を注入し、その後、注入された不純物イオンを活性化させる熱処理を施すことによって形成される。この3本のFLR19は、図3に示す複数のチップ形成領域21の各々に形成される。
 (c)次に、図6に示すように、半導体基板2SUBの上面2xの表層部に、複数の第1トレンチ3a及び複数の第2トレンチ3bを掘る。複数の第1トレンチ3a及び複数の第2トレンチ3bの各々は、例えば幅1μm、深さ5μm~10μm程度のストライプ状の平行パターンで形成する。複数の第1トレンチ3a及び複数の第2トレンチ3bの各々は、フォトリソグラフィ技術を用いて半導体基板2SUBの上面2xを例えばRIEなどのドライエッチングで選択的にエッチングすることにより形成される。複数の第1トレンチ3a及び複数の第2トレンチ3bの各々は、図6に示す配列に限定されないが、例えば一方向に所定の間隔をおいて交互に配列される。複数の第1トレンチ3a及び複数の第2トレンチ3bの各々は、図3に示す複数のチップ形成領域21の各々において図4の平面パターンで定義される素子形成領域21aの内部に形成される。第2トレンチ3bは第1トレンチ3aのダミートレンチとして使用される。
 (d)次に、半導体基板2SUBの上面2xにおいて、複数の第1トレンチ3a及び複数の第2トレンチ3bの各々の内部に例えば熱酸化処理によりSiO膜からなる絶縁膜4を形成する。この工程において、絶縁膜4は、隣り合うトレンチの間の半導体基板2SUBの上面2xにも形成され、半導体基板2SUBの上面2x、第1トレンチ3a及び第2トレンチ3bの各々の内部に亘って連続的に形成される。また、絶縁膜4は、図3に示す複数のチップ形成領域21の各々に形成されると共に、スクライブ領域22にも形成される。
 (e)次に、図7に示すように、半導体基板2SUBの上面2xに複数の第1トレンチ3a及び複数の第2トレンチ3bの各々の内部を埋め尽くすように、導電膜5として例えば低比抵抗のドープドポリシリコン膜をCVD法で形成する。導電膜5は、例えば1μmのトレンチ幅に対して1μm程度の膜厚で形成する。この工程において、導電膜5は、図8に示すように、複数のチップ形成領域21及びスクライブ領域22に亘って形成される。また、導電膜5は半導体基板2SUBの下面2y及び側面にも形成され、半導体基板2SUBの全体が導電膜5によって覆われる。
 ここで、第1トレンチ3aの内部に位置する絶縁膜4及び導電膜5は、図13を参照すれば、後の第1絶縁膜4a、ゲート電極6aのそれぞれに対応する。また、第2トレンチ3bの内部に位置する絶縁膜4及び導電膜5は、図13を参照すれば、後の第2絶縁膜4b、分離電極6bのそれぞれに対応する。
 (f)次に、図9に示すように、半導体基板2SUBの上面2xの外周端部から側面に亘って半導体基板2SUBを覆っている導電膜5をエッチングにより選択的に除去する。これにより、半導体基板2SUBの全体を覆っている導電膜5を、半導体基板2SUBの上面2x側の第1導電膜5aと、半導体基板2SUBの下面2y側の第2導電膜5bとに分割する。
 (g)次に、図10に示すように、第1導電膜5aと半導体基板2SUBの下面2yとの間に電圧を印加して絶縁膜4の絶縁特性を検査する。具体的には、図11に示すように、導電性のステージ26に半導体基板2SUBの下面2yの第2導電膜5bが接するようにステージ26上に半導体基板2SUBを配置する。そして、電源27の負極側とステージ26とを電気的に接続し、電源27の正極側に電気的に接続されたプローブ針28の先端を第1導電膜5aに圧接する。そして、第1導電膜5aと半導体基板2SUBの下面2yとの間に、通常の動作よりも高い電圧を電源27から印加してゲートショック試験を実施した後、第1導電膜5aと半導体基板2SUBの下面2yとの間に流れる電流を計測する。
 ゲートショック試験は、時間の経過とともに絶縁膜4に絶縁破壊が起こるTDDB現象を評価するための加速試験である。ゲートショック試験は、ゲート-コレクタ間に印加される通常の例えば約2MV/cm程度の電圧よりも高い例えば約5MV/cm程度の電圧を第1導電膜5aと半導体基板2SUBの下面2yとの間に印加して行う。
 この工程において、図10に示すように、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4の全体に電界が印加されるので、絶縁膜4の全体にストレスを付加することができる。そして、第1導電膜5aと半導体基板2SUBとの間の漏れ電流が基準値以上の場合には絶縁膜4の膜質劣化が生じていると判定できるので、絶縁膜4の絶縁特性を検査することができる。
 したがって、第1の実施形態では第2トレンチ3bがダミートレンチ、第2トレンチ3bの内部の第1導電膜5a(後の分離電極6b)がダミー電極として使用されるが、ダミートレンチやダミー電極に関係なく、第1トレンチ3a及び第2トレンチ3bの各々の形状異常や、第1トレンチ3aと第1導電膜5a(後のゲート電極6a)との間の絶縁膜4(後の第1絶縁膜4a)及び第2トレンチ3bと第2導電膜5b(後の分離電極6b)との間の絶縁膜4(後の第2絶縁膜4b)のそれぞれの膜質劣化を電圧印加によりスクリーニングすることができる。
 また、この工程において、電源27の負極側の印加電圧の電極として機能する第2導電膜5bが半導体基板2SUBの下面2yの全体に設けられている。したがって、電源27の負極側の印加電圧の電極を半導体基板2SUBの上面2xに設ける場合と比較して、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4に印加される電界の集中を抑制することができる。この結果、絶縁膜4の全体に均一にストレスを付加することができる。
 また、第1の実施形態に係る半導体装置がIGBTの場合は半導体基板2SUBの上面側の第1主電極領域8及びベース領域7と、下面側の第2主電極領域16との間に電圧を印加することにより半導体基板2SUBの厚さ方向に電流が流れるので、実動作に順じたストレスを絶縁膜4に付加することができる。
 なお、プローブ針28の先端を圧接する際、第1導電膜5aにプローブ針28の先端の圧接による凹状の圧接跡が付く。また、第1導電膜5aに異物が付着したりすることがある。このプローブ針28の圧接跡や異物は、この後に第1導電膜5aをエッチングして第1トレンチ3aの内部にゲート電極6a及び第2トレンチ3bの内部に分離電極6bを形成する際にエッチ残りを発生させる要因となる。したがって、この後の第1導電膜5aのエッチングによって除去される部分にプローブ針28の先端を接触させてゲートショック試験を実施することが好ましい。
 具体的には、図12において、チップ形成領域21の角部23やスクライブ領域22における第1導電膜5aにプローブ針28の先端を圧接することが好ましい。また、FLR領域19はチップ形成領域21の角部23において円弧形状の平面パターンになっており、FLR領域19の円弧形状平面パターン部分の外側では、FLR領域19のストライプ状平面パターン部分の外側と比較して広くなっているので、FLR領域19に損傷を与えることなく、プローブ針28の先端を第1導電膜5aに容易に接触させることができる。
 (h)次に、第1導電膜5aをRIEなどのドライエッチングでエッチバックすることによって、図13に示すように、半導体基板2SUBの上面2x上の第1導電膜5aを選択的に除去する。これにより、複数の第1トレンチ3aの各々の内部に第1導電膜5aからなるゲート電極6aを埋め込むと共に、複数の第2トレンチ3bの各々の内部に第1導電膜5aからなり、かつゲート電極6aと電気的にかつ構造的に分離された分離電極6bを埋め込む。この第1導電膜5aの選択的な除去は、図3に示す複数のチップ形成領域21の各々において行われると共に、スクライブ領域22においても行われる。
 この平坦化の工程において、絶縁膜4に対して選択性を有するエッチング条件で第1導電膜5aをエッチバックすることで、半導体基板2SUBの上面2x上の絶縁膜4はエッチングストッパとして機能し、半導体基板2SUBの上面2xのエッチングを防止することができる。
 (i)次に、図14に示すように、半導体基板2SUBの上面2x上の絶縁膜4をウエットエッチングなどにより選択的に除去して半導体基板2SUBの上面2xを露出させる。この絶縁膜4の除去は、図3に示す複数のチップ形成領域21の各々において行われると共に、スクライブ領域22においても行われる。
 この工程において、絶縁膜4は、図14に示すように、第1トレンチ3aの内部に位置する第1絶縁膜4aと、第2トレンチ3bの内部に位置する第2絶縁膜4bとに分割される。第1トレンチ3aの内部に位置する第1絶縁膜4aはゲート膜として機能する。ダミートレンチとして使用される第2トレンチ3bの内部に位置する第2絶縁膜4bはゲート膜として機能しないが、第2絶縁膜4bは第1絶縁膜4aと共にゲートショック試験が施されており、TDDB現象に対する信頼性が確保されている。
 (j)次に、図15に示すように、半導体基板2SUBの上面2xの表層部にp型のベース領域7を形成する。このベース領域7は、p型を呈する不純物イオンとして例えばボロンイオン又は二フッ化ボロンイオンを注入し、その後、注入された不純物イオンを活性化させる熱処理を施すことによって形成される。このベース領域7は、第1トレンチ3a及び第2トレンチ3bの各々の先端よりも浅く形成する。例えば、ベース領域7は、第1トレンチ3a及び第2トレンチ3bの各々の深さ5~10μmに対して、1~8μm程度の深さで形成する。このベース領域7は、図3に示す複数のチップ形成領域21の各々に形成される。
 なお、この第1の実施形態では、第1トレンチ3aの内部にゲート電極6a、第2トレンチ3bの内部に分離電極6bをそれぞれ形成した後にベース領域7を形成している。なお、ベース領域7は半導体基板2SUBの上面2xの表層部に第1トレンチ3a及び第2トレンチ3bを形成する前に半導体基板2SUBの上面2xの表層部に形成してもよい。この場合、第1トレンチ3a及び第2トレンチ3bの各々は、ベース領域7を突き抜けるようにして半導体基板2SUBの上面2xの表層部に形成される。
 (k)次に、フォトリソグラフィ工程によって選択的イオン注入のマスクを形成する。このマスクの窓部を介してn型を呈する不純物イオンとして例えばヒ素イオン(75As)を注入する。その後、注入された不純物イオンを活性化させる熱処理を施す。これにより、図16に示すように、ベース領域7の上部にエミッタ領域としての第1主電極領域8が選択的に形成される。
 第1主電極領域8は、第1トレンチ3aの幅方向において互いに対向する両脇にそれぞれ形成され、第2トレンチ3bの両脇には形成されない。この第1主電極領域8は、ベース領域7よりも浅く形成する。この第1主電極領域8は、図3に示す複数のチップ形成領域21の各々に形成される。
 (l)次に、ゲート電極6a上及び分離電極6b上を含む半導体基板2SUBの上面上の全面に、例えばCVD法でSiO膜からなる層間絶縁膜10を形成する。そして、フォトリソグラフィ技術及びドライエッチング技術などを用いて、図17に示すように、層間絶縁膜10の上部表面から半導体基板2SUBの上面2xに到達するように層間絶縁膜10を貫通するコンタクト孔11を開孔する。層間絶縁膜10は、図3に示すチップ形成領域21毎に分割され、コンタクト孔11は図3に示す複数のチップ形成領域21の各々に形成される。
 (m)次に、コンタクト孔11の内部を埋め尽くし、かつ層間絶縁膜10を覆うように半導体基板2SUBの上面2x上の全面にスパッタリング法などにより金属膜を形成する。金属膜は、例えばAl膜、又はAl-Si,Al-Cu,Al-Cu-SiなどのAl合金膜からなる。その後、フォトリソグラフィ技術によりエッチング用マスクを形成し、この金属膜を選択的なエッチングによりパターンニングする。これにより、図18に示すように、半導体基板2SUBの上面2x上にエミッタ電極としての第1主電極12を形成すると共に、詳細に図示していないが、図1に示す制御電極13を形成する。
 第1主電極12は、ベース領域7、第1主電極領域8及び分離電極6bと低いオーミック接触抵抗をなすように電気的にかつ金属学的に接続される。制御電極13は、ゲート電極6aの各々と電気的に接続される。第1主電極12及び制御電極13は、図3に示す複数のチップ形成領域21の各々に形成される。
 (n)次に、図18に示すように、第1主電極12及び制御電極13を覆うようにして半導体基板2SUBの上面2x上の全面に例えばポリイミド系の絶縁性樹脂からなる保護膜14を形成する。その後、保護膜14をエッチングによりパターンニングして保護膜14に、第1主電極12の一部を露出する第1主電極用ボンディング開口、及び制御電極13の一部を露出する制御電極用ボンディング開口などを形成する。保護膜14は、図3に示すチップ形成領域21毎に分割される。第1主電極用ボンディング開口及び制御電極用ボンディング開口などは、図3に示す複数のチップ形成領域21の各々に形成される。
 (o)次に、半導体基板2SUBの下面2yを例えばバックグラインド法やCMP法で研削して半導体基板2SUBの厚さを薄くする。この工程において、図19に示すように、半導体基板2SUBの下面2yの第2導電膜5bは除去される。
 (p)次に、図20に示すように、半導体基板2SUBの下面2yの表層部にn型のバッファ層15及びp型の第2主電極領域16を形成する。バッファ層15及び第2主電極領域16は、半導体基板2SUBの下面2yに、n型を呈する不純物イオンを注入すると共に、p型を呈する不純物イオンを注入し、その後、注入された不純物イオンを活性化させる熱処理を施すことによって形成される。n型を呈する不純物イオンとして例えばリンイオンを注入し、p型を呈する不純物イオンとして例えばボロンイオンを注入する。
 バッファ層15は、半導体基板2SUBの下面2yから深さ方向に第2主電極領域16よりも深い位置に形成され、残余の半導体基板2SUBがドリフト層2となる。バッファ層15及び第2主電極領域16は、半導体基板2SUBの下面2yにおいて、詳細に図示していないが、図3に示す複数のチップ形成領域21の各々に亘って共通に形成される。
 (q)次に、半導体基板2SUBの下面2yの全面に、第2主電極領域16と低いオーミック接触抵抗をなすように電気的にかつ金属学的に接続される第2主電極17を形成する。これにより、第1の実施形態に係る半導体装置のウエハプロセスがほぼ完了する。そして、この後、半導体基板2SUBのスクライブ領域22をダイシングブレードで切削して複数のチップ形成領域21を分割する。これにより、図1に示すように、チップ形成領域21からなる半導体チップ20が完成する。
 以上のように、本発明の第1の実施形態に係る半導体装置の製造方法では、ダミートレンチやダミー電極に関係なく、第1トレンチ3a及び第2トレンチ3bの各々の形状異常や、第1トレンチ3aと第1導電膜5a(後のゲート電極6a)との間の絶縁膜4(後の第1絶縁膜4a)及び第2トレンチ3bと第2導電膜5b(後の分離電極6b)との間の絶縁膜4(後の第2絶縁膜4b)のそれぞれの膜質劣化を電圧印加によりスクリーニングすることができる。したがって、チャネルの形成に寄与しないダミー電極としての分離電極6b、及びゲート電極6aを有するトレンチゲート構造の半導体装置の製造プロセスにおいて適切なスクリーニングを実施することができる。
 また、本発明の第1の実施形態に係る半導体装置の製造方法では、電源27の負極側の印加電圧の電極として機能する第2導電膜5bが半導体基板2SUBの下面2yの全体に設けられている。このため、電源27の負極側の印加電圧の電極を半導体基板2SUBの上面2xに設ける場合と比較して、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4に印加される電界の集中を抑制することができ、絶縁膜4の全体に均一にストレスを付加することができる。
 また、ダミートレンチの内部の絶縁膜の膜質劣化を電圧印加によりスクリーニングする方法として、ダミートレンチの内部のダミー電極に電気的に接続された独立パッドを設け、この独立パッドとエミッタ電極との間に電圧印加を行った後、組み立て工程においてワイヤなどで独立パッドとエミッタ電極とを電気的に接続する方法がある。しかしながら、この場合、ダミートレンチの内部のダミー電極と独立パッドとを電気的に接続するランナーや独立パッドを追加する必要がある。このため、同じチップサイズで比較した場合、素子形成領域の面積が小さくなるのと、組立工程の工数が増加する。
 これに対し、第1の実施形態に係る半導体装置の製造方法では、独立パッドや、この独立パッドとダミートレンチ内のダミー電極とを電気的に接続するランナーを付加することなく、適切なスクリーニングを実施することができる。したがって、素子形成領域21aの減少や組立工程の追加を抑制することができる。
 また、本発明の第1の実施形態に係る半導体装置の製造方法では、第1導電膜5aと半導体基板2SUBの下面2yとの間に電圧を印加する際、第1導電膜5aにプローブ針28を接触させる位置としてチップ形成領域21の角部23の空きスペースやスクライブ領域22を設定する。これにより、この後の第1導電膜5aをエッチングしてゲート電極6a及び分離電極6bを形成する際にエッチ残りが生じた場合でも、歩留りの低下を防止することができる。
 (第2の実施形態)
 本発明の第2の実施形態に係る半導体装置の製造方法について、図21乃至図24を用いて説明する。第2の実施形態に係る半導体装置の製造方法では、導電膜5のエッチング工程及び絶縁膜4の絶縁特性の検査工程以外は上述した第1の実施形態に係る半導体装置の製造方法とほぼ同一である。このため、第2の実施形態に係る半導体装置の製造方法では、導電膜5の1回目のエッチング工程に特化して説明し、その他の工程については詳細な説明を省略する。
 なお、図21は複数のチップに切出す前のウエハ状態での半導体基板全体を示す図である。また、図22は、ウエハ状態の半導体基板に設けられたチップ形成領域での断面構造を示す要部断面図である。また、図23は半導体基板を導電性のステージ上に配置した状態を示す要部断面図である。
 (a2)まず、単結晶シリコンウエハからなるn型の半導体基板2SUBを半導体基体として準備する。その後、上述した第1の実施形態と同様の工程を施して、図5に示すように3本のFLR領域19と、図6に示すように複数の第1トレンチ3a及び複数の第2トレンチ3bと、図7及び図8に示すように絶縁膜4及び導電膜5とを形成する。
 (b2)次に、半導体基板2SUBの上面2x側でチップ形成領域21以外を覆っている導電膜5及び半導体基板2SUBの側面を覆っている導電膜5をエッチングにより選択的に除去する。これにより、図21に示すように、半導体基板2SUBの全体を覆っている導電膜5を、半導体基板2SUBの上面2x側の第1導電膜5aと、半導体基板2SUBの下面2y側の第2導電膜5bとに分割するとともに、第1導電膜5aにおいては複数のチップ形成領域21毎に分割する。
 (c2)次に、図22に示すように、第1導電膜5aと半導体基板2SUBの下面2yとの間に電圧を印加して絶縁膜4の絶縁特性を検査する。具体的には、図23に示すように、導電性のステージ26に半導体基板2SUBの下面2yの第2導電膜5bが向かい合うようにステージ26上に半導体基板2SUBを配置する。そして、電源27の負極側とステージ26とを電気的に接続し、電源27の正極側に電気的に接続されたプローブ針28の先端を第1導電膜5aに圧接する。
 そして、第1導電膜5aと半導体基板2SUBの下面2yとの間に、通常の動作よりも高い電圧を上述した第1の実施形態と同様の条件で印加してゲートショック試験を実施した後、絶縁膜4の漏れ電流を計測する。第2の実施形態では、半導体基板2SUBの上面側の第1導電膜5aがチップ形成領域21毎に分割されているので、プローブ針28の先端の第1導電膜5aへの圧接はチップ形成領域21毎に実施する。
 この工程において、図22及び図23に示すように、チップ形成領域21毎に、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4の全体に電界が印加される。このため、チップ形成領域21毎に絶縁膜4の全体にストレスを付加することができる。そして、第1導電膜5aと半導体基板2SUBとの間の漏れ電流が基準値以上の場合には絶縁膜4の膜質劣化が生じていると判定できるので、チップ形成領域21毎に絶縁膜4の絶縁特性を検査することができる。
 したがって、第2の実施形態ではダミートレンチやダミー電極に関係なく、第1トレンチ3a及び第2トレンチ3bの各々の形状異常や、第1トレンチ3aと第1導電膜5a(後のゲート電極6a)との間の絶縁膜4(後の第1絶縁膜4a)及び第2トレンチ3bと第2導電膜5b(後の分離電極6b)との間の絶縁膜4(後の第2絶縁膜4b)のそれぞれの膜質劣化を電圧印加によりチップ形成領域21毎にスクリーニングすることができる。
 また、この工程において、電源27の負極側の印加電圧の電極として機能する第2導電膜5bが半導体基板2SUBの下面2yの全体に設けられている。したがって、第1の実施形態と同様に、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4に印加される電界の集中を抑制することができ、チップ形成領域21毎に絶縁膜4の全体に均一にストレスを付加することができる。
 なお、第2の実施形態では、図24に示すように、スクライブ領域22に第1導電膜5aが設けられていないので、チップ形成領域21の角部23における第1導電膜5aにプローブ針28の先端を圧接することが好ましい。第2の実施形態においても、上述の第1の実施形態と同様に、FLR領域19に損傷を与えることなく、プローブ針28の先端を第1導電膜5aに容易に接触させることができる。
 次に、上述した第1の実施形態と同様の工程を施して、ゲート電極6a、分離電極6b、第1絶縁膜4a、第2絶縁膜4b、p型のベース領域7、n型第1主電極領域8、層間絶縁膜10、コンタクト孔11、第1主電極12、制御電極13、保護膜14、第1主電極用ボンディング開口、制御電極用ボンディング開口、n型のバッファ層15、p型の第2主電極領域16、第2主電極17などを形成するとともに、半導体基板下面研削工程を施すことにより、本発明の第2の実施形態に係る半導体装置のウエハプロセスがほぼ完了する。
 以上説明したように、第2の実施形態に係る半導体装置の製造方法によれば、ダミートレンチやダミー電極に関係なく、第1トレンチ3a及び第2トレンチ3bの各々の形状異常や、第1トレンチ3aと第1導電膜5aとの間の絶縁膜4及び第2トレンチ3bと第2導電膜5bとの間の絶縁膜4のそれぞれの膜質劣化を電圧印加によりチップ形成領域21毎にスクリーニングすることができる。したがって、チャネルの形成に寄与しないダミー電極としての分離電極6b、及びゲート電極6aを有するトレンチゲート構造の半導体装置の製造プロセスにおいて適切なスクリーニングをチップ形成領域21毎に実施することができる。
 また、本発明の第2の実施形態に係る半導体装置の製造方法では、電源27の負極側の印加電圧の電極として機能する第2導電膜5bが半導体基板2SUBの下面2yの全体に設けられている。このため、電源27の負極側の印加電圧の電極を半導体基板2SUBの上面2xに設ける場合と比較して、第1トレンチ3aの内部及び第2トレンチ3bの内部を含む半導体基板2SUBと第1導電膜5aとの間の絶縁膜4に印加される電界の集中をチップ形成領域21毎に抑制することができ、チップ形成領域21毎に絶縁膜4の全体に均一にストレスを付加することができる。
 また、本発明の第2の実施形態に係る半導体装置の製造方法においても、上述した第1の実施形態と同様に、独立パッドや、この独立パッドとダミートレンチ内のダミー電極とを電気的に接続するランナーを付加することなく、適切なスクリーニングを実施することができるので、素子形成領域の減少や組立工程の追加を抑制することができる。
 また、本発明の第2の実施形態に係る半導体装置の製造方法においても、第1導電膜5aと半導体基板2SUBの下面2yとの間に電圧を印加する際、第1導電膜5aにプローブ針28を接触させる位置としてチップ形成領域21の角部23の空きスペースを設定する。これにより、この後の第1導電膜5aをエッチングしてゲート電極6a及び分離電極6bを形成する際にエッチ残りが生じても、第1の実施形態と同様に歩留りの低下を防止することができる。
 なお、導電膜5をエッチングにより選択的に除去して複数のチップ形成領域21に対応する複数の第1導電膜5aに分割する際、図25に示すように、各々がスクライブ領域22に食み出るパッド部24を有する複数の第1導電膜5aに分割してもよい。この場合においても、第2の実施形態と同様に、この後の第1導電膜5aをエッチングしてゲート電極6a及び分離電極6bを形成する際にエッチ残りが生じた場合でも、歩留りの低下を防止することができる。
 (第3の実施形態)
 本発明の第3の実施形態に係る半導体装置の製造方法について、図26乃至図31を用いて説明する。第3の実施形態に係る半導体装置の製造方法では、図26に示す半導体基板2ASUBを用いる。この半導体基板2ASUBは、上述した第1の実施形態に係る半導体基板2SUBとほぼ同様の構成になっており、物理的に形成されているものではないがモニタ部25を有する点が異なっている。
 このモニタ部25は、チップ形成領域21及びスクライブ領域22以外の領域に配置され、図4に示すチップ形成領域21と同様に、半導体装置が形成される素子形成領域21aとFLR領域19が形成される耐圧領域21bとを有している。このモニタ部25は、チップ形成領域21と同様の製造プロセスが施される。
 なお、図26、図28及び図29は複数のチップに切出す前のウエハ状態での半導体基板全体を示す図である。また、図27は、ウエハ状態の半導体基板に設けられたチップ形成領域での断面構造を示す要部断面図である。また、図30及び図31は半導体基板を導電性のステージ上に配置した状態を示す要部断面図である。
 (a3)まず、図26に示すように、例えば単結晶シリコンウエハからなるn型の半導体基板2ASUBを基体部として準備する。その後、第1の実施形態と同様の工程を施して、図5と同様に3本のFLR領域19と、図27に示すように、複数の第1トレンチ3a、複数の第2トレンチ3b、絶縁膜4及び導電膜5とを半導体基板2ASUBの各チップ形成領域21に形成する。これらのFLR領域19、複数の第1トレンチ3a、複数の第2トレンチ3b、絶縁膜4及び導電膜5は半導体基板2ASUBのモニタ部25にも同様に形成される。導電膜5は、図28に示すように、半導体基板2ASUBの全体を覆うようにして形成される。
 (b3)次に、半導体基板2ASUBの上面2x側でチップ形成領域21以外を覆っている導電膜5及び半導体基板2ASUBの側面を覆っている導電膜5をエッチングにより選択的に除去する。これにより、半導体基板2ASUBの全体を覆っている導電膜5を、図29に示すように、半導体基板2ASUBの上面2x側の第1導電膜5aと、半導体基板2ASUBの下面2y側の第2導電膜5bとに分割するとともに、第1導電膜5aにおいては複数のチップ形成領域21及びモニタ部25毎に分割する。
 (c3)次に、図30に示すように、導電性のステージ26に半導体基板2ASUBの下面2yの第2導電膜5bが向かい合うようにステージ26上に半導体基板2ASUBを配置する。そして、電源27の負極側とステージ26とを電気的に接続し、電源27の正極側に電気的に接続されたプローブ針28の先端をモニタ部25の第1導電膜5aに圧接する。そして、モニタ部25の第1導電膜5aと半導体基板2ASUBの下面2yとの間に、絶縁膜4の絶縁性を破壊する高電圧を印加する。この工程において、絶縁膜4が絶縁破壊する破壊電圧を測定することにより、半導体基板2ASUBの下面2yとステージ26とが電気的に接続されているか否かを確認することができる。
 (d3)次に、上述した第2実施形態と同様に、図31に示すように、チップ形成領域21の第1導電膜5aと半導体基板2ASUBの下面2yとの間に電圧を印加して絶縁膜4の絶縁特性を検査する。この後、上述した第1の実施形態と同様の工程を施すことにより、本発明の第3の実施形態に係る半導体装置のウエハプロセスがほぼ完了する。
 以上説明したように、本発明の第3の実施形態に係る半導体装置の製造方法では、半導体基板2ASUBの下面2yとステージ26とが電気的に接続されているか否かを確認した後、チップ形成領域21の第1導電膜5aと半導体基板2ASUBの下面2yとの間に電圧を印加して絶縁膜4の絶縁特性を検査することができる。したがって、半導体基板2ASUBの下面2yとステージ26との接触不良で絶縁膜4にストレスが付加されずに絶縁特性が検査されてしまうといった検査不良を排除することができる。この結果、電圧印加によるスクリーニングの信頼性を高めることができる。
 なお、上述の第3の実施形態では、チップ形成領域21及びスクライブ領域22以外の領域にモニタ部25を配置した場合について説明したが、モニタ部25はスクライブ領域22に配置してもよい。
 以上、本発明を上述の第1乃至第3の実施形態に基づき具体的に説明したが、本発明は上述の第1乃至第3の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
 例えば、上述の第1乃至第3の実施形態では、トレンチゲート構造を有する半導体装置の製造方法についてIGBTの製造方法を例に説明した。しかしながら、本発明は、これに限定されるものではなく、トレンチゲート構造の電力用MOSFETを有する半導体装置の製造方法に適用することができる。
 また、上述の第1乃至第3の実施形態における半導体基板2SUB,2ASUBを構成する単結晶シリコンウエハの製造方法の例としては、フロートゾーン法(FZ法)、チョクラルスキー法(CZ法)及び磁場印加型チョクラルスキー法(MCZ法)が挙げられる。これらのいずれの方法による単結晶シリコンウエハを用いた場合でも、上述の第1乃至第3の実施形態に係る半導体装置の製造方法を適用することができる。
 ここで、上述の第1乃至第3の実施形態に係る半導体装置の製造方法を、MCZ法による単結晶シリコンウエハからなる半導体基板2SUB,2ASUBに適用してもよい。MCZ法による単結晶シリコンウエハを用いた場合、FZ法によるウエハと比べて、ダミートレンチの形状異常や、ダミートレンチと電極との間の絶縁膜の膜質劣化といった不具合が生じやすいことがある。即ち、MCZ法による単結晶シリコンウエハは、FZ法による単結晶シリコンウエハと比べて、ウエハ製造時に含まれる炭素や酸素といった不純物の含有濃度が高い。そのため、これらの不純物に起因した結晶欠陥も発生しやすい。このような不純物や結晶欠陥が、ダミートレンチの形状異常や、ダミートレンチと電極との間の絶縁膜の膜質劣化といった不具合原因となる。そこで、上述の第1乃至第3の実施形態に係る半導体装置の製造方法を、MCZ法による単結晶シリコンウエハからなる半導体基板2SUB,2ASUBに適用することにより、上記不具合をスクリーニングする効果がより顕著となる。
 以上のように、本発明に係る半導体装置の製造方法は、チャネルの形成に寄与しないダミー電極としての電極を有するトレンチゲート構造の半導体装置の製造プロセスにおいて適切なスクリーニングを実施することができ、トレンチゲート構造を有する半導体装置の製造方法に有用である。
 2…第1導電型のドリフト層
 2SUB,2ASUB…第1導電型の半導体基板
 3a…第1トレンチ,3b…第2トレンチ
 4a…第1絶縁膜,4b…第2絶縁膜
 5…導電膜,5a…第1導電膜,5b…第2導電膜
 6a…ゲート電極,6b…分離電極
 7…第2導電型のベース領域
 8…第1主電極領域(エミッタ領域)
 10…層間絶縁膜
 11…コンタクト孔
 12…第1主電極(エミッタ電極)
 13…制御電極
 14…保護膜
 15…第1導電型のバッファ層
 16…第2導電型の第2主電極領域(コレクタ領域)
 17…第2主電極(コレクタ電極)
 20…半導体チップ
 21a…チップ形成領域,21b…耐圧領域
 22…スクライブ領域
 23…角部
 24…パッド部
 25…モニタ部
 26…ステージ
 27…電源
 28…プローブ針

Claims (9)

  1.  平板状の基体部の上面に第1及び第2トレンチを形成する工程と、
     前記第1及び第2トレンチの各々の内部に絶縁膜を形成する工程と、
     前記絶縁膜を介して前記第1及び第2トレンチの各々の内部を埋め込むように前記基体部の上面上に導電膜を形成する工程と、
     前記導電膜と、前記基体部の下面との間に電圧を印加して前記絶縁膜の絶縁特性を検査する工程と、
     前記絶縁特性を検査した後、前記上面上の前記導電膜を選択的に除去して、前記第1トレンチの内部にゲート電極を形成し、前記第2トレンチの内部に前記ゲート電極と分離された分離電極を形成する工程と、
     を備えることを特徴とする半導体装置の製造方法。
  2.  前記基体部は、スクライブ領域で区画された複数のチップ形成領域を有し、
     前記第1及び第2トレンチは、前記複数のチップ形成領域の各々に形成され、
     前記導電膜は、前記複数のチップ形成領域に亘って一体に形成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記導電膜は、前記上面から前記下面に亘って形成され、
     前記絶縁特性を検査する工程の前に、前記導電膜を前記上面側と、前記下面側とに分割する工程を更に備えることを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  前記導電膜と前記下面との間の電圧印加は、前記チップ形成領域の角部又は前記スクライブ領域における前記導電膜にプローブ針を圧接して行うことを特徴とする請求項3に記載の半導体装置の製造方法。
  5.  前記基体部は、スクライブ領域で区画された複数のチップ形成領域を有し、
     前記第1トレンチ、前記第2トレンチ及び前記絶縁膜は、前記複数のチップ形成領域の各々に形成され、
     前記絶縁特性を検査する工程の前に、前記上面上の前記導電膜を前記チップ形成領域毎に分割する工程を更に備えることを特徴とする請求項1に記載の半導体装置の製造方法。
  6.  前記導電膜と前記下面との間の電圧印加は、前記チップ形成領域の角部における前記導電膜にプローブ針を圧接して行うことを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記チップ形成領域毎に分割された前記導電膜は、前記チップ形成領域から前記スクライブ領域に食み出るパッド部を有し、
     前記導電膜と前記下面との間の電圧印加は、前記パッド部にプローブ針を圧接して行うことを特徴とする請求項5に記載の半導体装置の製造方法。
  8.  前記基体部は、モニタ部と、スクライブ領域で区画された複数のチップ形成領域とを有し、
     前記第1トレンチ、前記第2トレンチ及び前記絶縁膜は、前記モニタ部及び前記複数のチップ形成領域の各々に形成され、
     前記絶縁特性を検査する工程の前に、前記上面上の前記導電膜を前記モニタ部及び前記チップ形成領域毎に分割する工程と、
     ステージに前記下面が向かい合うように前記ステージ上に前記基体部を配置する工程と、
     前記モニタ部の前記導電膜と前記下面との間に、前記絶縁膜の絶縁性を破壊する高電圧を印加する工程と、
     更に備えることを特徴とする請求項1に記載の半導体装置の製造方法。
  9.  前記基体部は、磁場印加型チョクラルスキー法で形成された半導体基板であることを特徴とする請求項1に記載の半導体装置の製造方法。
PCT/JP2016/000464 2015-03-16 2016-01-29 半導体装置の製造方法 WO2016147529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680002462.4A CN107078061B (zh) 2015-03-16 2016-01-29 半导体装置的制造方法
JP2017506043A JP6304445B2 (ja) 2015-03-16 2016-01-29 半導体装置の製造方法
US15/437,472 US10403554B2 (en) 2015-03-16 2017-02-21 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-052594 2015-03-16
JP2015052594 2015-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/437,472 Continuation US10403554B2 (en) 2015-03-16 2017-02-21 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016147529A1 true WO2016147529A1 (ja) 2016-09-22

Family

ID=56919999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000464 WO2016147529A1 (ja) 2015-03-16 2016-01-29 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US10403554B2 (ja)
JP (1) JP6304445B2 (ja)
CN (1) CN107078061B (ja)
WO (1) WO2016147529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196754A1 (ja) * 2019-03-28 2020-10-01 株式会社デンソー 半導体装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078061B (zh) * 2015-03-16 2020-07-10 富士电机株式会社 半导体装置的制造方法
US10256331B2 (en) * 2017-03-03 2019-04-09 Pakal Technologies, Inc. Insulated gate turn-off device having low capacitance and low saturation current
DE102017128633A1 (de) * 2017-12-01 2019-06-06 Infineon Technologies Ag Siliziumcarbid-halbleiterbauelement mit grabengatestrukturen und abschirmgebieten
CN111180405A (zh) * 2018-11-12 2020-05-19 珠海格力电器股份有限公司 一种元胞结构及其制备方法、功率半导体器件及电子设备
JP7272004B2 (ja) 2019-02-25 2023-05-12 富士電機株式会社 絶縁ゲート型半導体装置及びその製造方法
JP7351086B2 (ja) * 2019-03-05 2023-09-27 富士電機株式会社 絶縁ゲート型半導体装置及びその製造方法
CN110943132A (zh) * 2019-12-17 2020-03-31 华羿微电子股份有限公司 低电容的沟槽型vdmos器件及其制备方法
US11119137B2 (en) * 2020-01-08 2021-09-14 Texas Instruments Incorporated Electrical test structure and method for monitoring deep trench impedance to substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252450A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 半導体集積回路装置及びその製造方法
JP2012151323A (ja) * 2011-01-20 2012-08-09 Toshiba Corp 半導体装置およびその製造方法
JP2013171851A (ja) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd トレンチゲート型mos半導体装置のトレンチ平均深さおよびスイッチング特性の評価方法および半導体チップの選別方法
JP2013183143A (ja) * 2012-03-05 2013-09-12 Toyota Motor Corp 半導体装置を製造する方法、及び、半導体装置
JP2016025124A (ja) * 2014-07-16 2016-02-08 株式会社デンソー 半導体装置およびその製造方法

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851363A (en) * 1986-07-11 1989-07-25 General Motors Corporation Fabrication of polysilicon fets on alkaline earth alumino-silicate glasses
JPH0637317A (ja) * 1990-04-11 1994-02-10 General Motors Corp <Gm> 薄膜トランジスタおよびその製造方法
DE69125886T2 (de) * 1990-05-29 1997-11-20 Semiconductor Energy Lab Dünnfilmtransistoren
US5946561A (en) * 1991-03-18 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5448083A (en) * 1991-08-08 1995-09-05 Kabushiki Kaisha Toshiba Insulated-gate semiconductor device
EP1209751A3 (en) * 1991-08-08 2002-07-31 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
JPH05198579A (ja) * 1992-01-23 1993-08-06 Sony Corp 半導体ウェハ及びその製造方法
US5424244A (en) * 1992-03-26 1995-06-13 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
CN100442532C (zh) * 1992-07-06 2008-12-10 株式会社半导体能源研究所 有源矩阵显示器件
JPH06296023A (ja) * 1993-02-10 1994-10-21 Semiconductor Energy Lab Co Ltd 薄膜状半導体装置およびその作製方法
US5486772A (en) * 1994-06-30 1996-01-23 Siliconix Incorporation Reliability test method for semiconductor trench devices
JPH0992698A (ja) * 1995-09-26 1997-04-04 Hitachi Ltd スクリーニング方法および半導体装置
TW309633B (ja) * 1995-12-14 1997-07-01 Handotai Energy Kenkyusho Kk
US5985740A (en) * 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
KR100223198B1 (ko) * 1996-04-11 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 높은 강복 전압을 갖는 반도체 장치 및 그 제조 방법
JPH09330968A (ja) * 1996-06-12 1997-12-22 Matsushita Electric Ind Co Ltd 絶縁膜の信頼性評価方法
KR100351532B1 (ko) * 1996-07-29 2002-09-11 스미토모 긴조쿠 고교 가부시키가이샤 실리콘 에피택셜 웨이퍼 및 그 제조 방법
US5796121A (en) * 1997-03-25 1998-08-18 International Business Machines Corporation Thin film transistors fabricated on plastic substrates
JP3875375B2 (ja) * 1997-10-06 2007-01-31 株式会社ルネサステクノロジ 半導体装置の製造方法および半導体基板
TW408351B (en) * 1997-10-17 2000-10-11 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US6251235B1 (en) * 1999-03-30 2001-06-26 Nutool, Inc. Apparatus for forming an electrical contact with a semiconductor substrate
US7288420B1 (en) * 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US6309981B1 (en) * 1999-10-01 2001-10-30 Novellus Systems, Inc. Edge bevel removal of copper from silicon wafers
US6537416B1 (en) * 1999-10-01 2003-03-25 Novellus Systems, Inc. Wafer chuck for use in edge bevel removal of copper from silicon wafers
US7780867B1 (en) * 1999-10-01 2010-08-24 Novellus Systems, Inc. Edge bevel removal of copper from silicon wafers
US6586342B1 (en) * 2000-04-25 2003-07-01 Novellus Systems, Inc. Edge bevel removal of copper from silicon wafers
JP3991300B2 (ja) * 2000-04-28 2007-10-17 株式会社Sumco 張り合わせ誘電体分離ウェーハの製造方法
JP2001345294A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 半導体装置の製造方法
US6482749B1 (en) * 2000-08-10 2002-11-19 Seh America, Inc. Method for etching a wafer edge using a potassium-based chemical oxidizer in the presence of hydrofluoric acid
JP2002313757A (ja) * 2001-04-17 2002-10-25 Hitachi Ltd 半導体集積回路装置の製造方法
JP2002329687A (ja) * 2001-05-02 2002-11-15 Speedfam Co Ltd デバイスウエハの外周研磨装置及び研磨方法
JP4090716B2 (ja) * 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP2003100819A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 耐圧検査方法及びその装置
US20060137994A1 (en) * 2001-12-21 2006-06-29 Basol Bulent M Method of wafer processing with edge seed layer removal
JP2003229480A (ja) * 2002-02-01 2003-08-15 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
US20040132295A1 (en) * 2002-11-01 2004-07-08 Basol Bulent M. Method and device to remove unwanted material from the edge region of a workpiece
JP2004335715A (ja) * 2003-05-07 2004-11-25 Toppoly Optoelectronics Corp シリコン酸化層の形成方法
DE10326273B4 (de) * 2003-06-11 2008-06-12 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Reduzierung der Scheibenkontaminierung durch Entfernen von Metallisierungsunterlagenschichten am Scheibenrand
TW200527485A (en) * 2004-01-30 2005-08-16 Semiconductor Leading Edge Tec Multilayered wiring structure, method of forming buried wiring, semiconductor device, method of manufacturing semiconductor device, semiconductor mounted device, and method of manufacturing semiconductor mounted device
US20050211379A1 (en) * 2004-03-29 2005-09-29 Hung-Wen Su Apparatus and method for removing metal from wafer edge
US20060019417A1 (en) * 2004-07-26 2006-01-26 Atsushi Shigeta Substrate processing method and substrate processing apparatus
DE102009005914B4 (de) * 2008-01-28 2014-02-13 Denso Corporation Halbleitervorrichtung mit Halbleiterelement mit isoliertem Gate und bipolarer Transistor mit isoliertem Gate
KR101549530B1 (ko) * 2008-05-23 2015-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
US8053253B2 (en) * 2008-06-06 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102741992A (zh) * 2008-08-19 2012-10-17 松下电器产业株式会社 半导体元件的耐压测定装置及耐压测定方法
US8419964B2 (en) * 2008-08-27 2013-04-16 Novellus Systems, Inc. Apparatus and method for edge bevel removal of copper from silicon wafers
JP5431777B2 (ja) * 2009-04-20 2014-03-05 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
FR2964943B1 (fr) * 2010-09-20 2012-10-05 Snecma Dispositif d'etancheite a fourreau pour la traversee de cloison par une biellette d'un systeme de commande de l'orientation des pales de soufflante d'un turbopropulseur
JP5606240B2 (ja) * 2010-09-22 2014-10-15 三菱電機株式会社 半導体装置
JP5634318B2 (ja) * 2011-04-19 2014-12-03 三菱電機株式会社 半導体装置
DE102011052365B4 (de) * 2011-08-02 2017-02-09 Heraeus Sensor Technology Gmbh Mikrostrukturierter Heißprägestempel
EP2745315A1 (en) * 2011-10-17 2014-06-25 Koninklijke Philips N.V. Through-wafer via device and method of manufacturing the same
JP6056202B2 (ja) 2012-06-01 2017-01-11 富士電機株式会社 半導体装置、半導体装置の制御方法および半導体装置の評価方法
JP5979993B2 (ja) * 2012-06-11 2016-08-31 ルネサスエレクトロニクス株式会社 狭アクティブセルie型トレンチゲートigbtの製造方法
US9064770B2 (en) * 2012-07-17 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for minimizing edge peeling in the manufacturing of BSI chips
JP5991094B2 (ja) * 2012-09-07 2016-09-14 住友電気工業株式会社 測定装置および測定方法、ならびに該測定方法を備える素子製造方法
JP6115050B2 (ja) 2012-09-10 2017-04-19 トヨタ自動車株式会社 半導体装置
US9809898B2 (en) * 2013-06-26 2017-11-07 Lam Research Corporation Electroplating and post-electrofill systems with integrated process edge imaging and metrology systems
JP2015046491A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
JP6244962B2 (ja) * 2014-02-17 2017-12-13 株式会社Sumco 半導体ウェーハの製造方法
JP6354345B2 (ja) * 2014-06-02 2018-07-11 住友電気工業株式会社 耐圧測定方法および半導体装置の製造方法
JP2016046352A (ja) * 2014-08-21 2016-04-04 株式会社東芝 半導体デバイス検査装置、半導体デバイス検査方法および半導体デバイス製造方法
JP2016054189A (ja) * 2014-09-03 2016-04-14 住友電気工業株式会社 半導体素子の耐圧測定方法および半導体素子の製造方法
CN107078061B (zh) * 2015-03-16 2020-07-10 富士电机株式会社 半导体装置的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252450A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 半導体集積回路装置及びその製造方法
JP2012151323A (ja) * 2011-01-20 2012-08-09 Toshiba Corp 半導体装置およびその製造方法
JP2013171851A (ja) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd トレンチゲート型mos半導体装置のトレンチ平均深さおよびスイッチング特性の評価方法および半導体チップの選別方法
JP2013183143A (ja) * 2012-03-05 2013-09-12 Toyota Motor Corp 半導体装置を製造する方法、及び、半導体装置
JP2016025124A (ja) * 2014-07-16 2016-02-08 株式会社デンソー 半導体装置およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196754A1 (ja) * 2019-03-28 2020-10-01 株式会社デンソー 半導体装置
JP2020167178A (ja) * 2019-03-28 2020-10-08 株式会社デンソー 半導体装置
CN113614883A (zh) * 2019-03-28 2021-11-05 株式会社电装 半导体装置
JP7188230B2 (ja) 2019-03-28 2022-12-13 株式会社デンソー 半導体装置
CN113614883B (zh) * 2019-03-28 2023-08-04 株式会社电装 半导体装置

Also Published As

Publication number Publication date
US10403554B2 (en) 2019-09-03
JP6304445B2 (ja) 2018-04-04
US20170162458A1 (en) 2017-06-08
CN107078061B (zh) 2020-07-10
CN107078061A (zh) 2017-08-18
JPWO2016147529A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6304445B2 (ja) 半導体装置の製造方法
JP6233484B2 (ja) 電力用半導体装置
JP6241572B2 (ja) 半導体装置
JP6172224B2 (ja) 電力用半導体装置
JP4492735B2 (ja) 半導体装置及び半導体装置の製造方法
US11081576B2 (en) Insulated-gate semiconductor device and method of manufacturing the same
US7521757B2 (en) Semiconductor device with back surface electrode including a stress relaxation film
JPWO2018056233A1 (ja) 半導体装置および半導体装置の製造方法
WO2018038133A1 (ja) 炭化珪素半導体装置
JP2010016103A (ja) 半導体装置
JP5601863B2 (ja) 電力半導体装置
JP7302285B2 (ja) 半導体装置
JP2023112212A (ja) 半導体装置
JP2017050331A (ja) 半導体装置および半導体装置の製造方法
JP2012004466A (ja) 半導体装置
WO2021261521A1 (ja) 半導体装置およびその製造方法
JP6894544B2 (ja) 半導体装置の製造方法
JP4945969B2 (ja) 半導体装置及び半導体装置の製造方法
JP6681948B2 (ja) 半導体装置の製造方法および半導体装置の評価方法
US20230034063A1 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US20130037824A1 (en) Power semiconductor device
WO2020095899A1 (ja) 半導体装置
JP2024034977A (ja) 半導体装置の製造方法
JP2023128002A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764363

Country of ref document: EP

Kind code of ref document: A1