JP2008138243A - METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE - Google Patents

METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE Download PDF

Info

Publication number
JP2008138243A
JP2008138243A JP2006324080A JP2006324080A JP2008138243A JP 2008138243 A JP2008138243 A JP 2008138243A JP 2006324080 A JP2006324080 A JP 2006324080A JP 2006324080 A JP2006324080 A JP 2006324080A JP 2008138243 A JP2008138243 A JP 2008138243A
Authority
JP
Japan
Prior art keywords
salt
reducing agent
composite nanoparticles
particles
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006324080A
Other languages
Japanese (ja)
Inventor
Toshiji Teranishi
利治 寺西
Naoki Nakamura
直樹 中村
Tetsuya Shoji
哲也 庄司
Noritsugu Sakuma
紀次 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
University of Tsukuba NUC
Original Assignee
Toyota Motor Corp
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, University of Tsukuba NUC filed Critical Toyota Motor Corp
Priority to JP2006324080A priority Critical patent/JP2008138243A/en
Publication of JP2008138243A publication Critical patent/JP2008138243A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing Fe/Pd composite nanoparticles. <P>SOLUTION: The method for producing the Fe/Pd composite nanoparticles includes the steps of: dissolving a salt of Fe and a salt of Pd in a solvent containing a detergent; adding a reducing agent; and heating the mixture to reduce Fe ions composing the salt of Fe and Pd ions composing the salt of Pd. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高密度磁気記録媒体、永久磁石等として使用することのできるFe/Pd複合ナノ粒子の製造方法に関する。   The present invention relates to a method for producing Fe / Pd composite nanoparticles that can be used as high-density magnetic recording media, permanent magnets, and the like.

磁気記録媒体用材料には、安定した記録保持のために高い保磁力が要求される。このような高い保磁力を有する金属磁性材料として、Fe/Pt複合金属磁性粒子が知られている。   A magnetic recording medium material is required to have a high coercive force for stable recording and holding. As a metal magnetic material having such a high coercive force, Fe / Pt composite metal magnetic particles are known.

このFe/Pt複合金属磁性粒子は、テトラエチレングリコールに鉄アセチルアセトナートと白金アセチルアセトナートを添加し、窒素ガスを吹き込んで高温下で反応させた後、凝集したFe/Pt粒子を含む懸濁液に、分散剤としてオレイン酸とオレイルアミンを加え、さらにシクロヘキサン、オレイン酸及びオレイルアミンの混合液を加え、振とうすることによって単分散したFe/Pt複合ナノ粒子として得られることが開示されている(例えば、特許文献1参照)。   This Fe / Pt composite metal magnetic particle is a suspension containing Fe / Pt particles aggregated after iron acetylacetonate and platinum acetylacetonate are added to tetraethylene glycol and reacted under high temperature by blowing nitrogen gas. It is disclosed that mono-dispersed Fe / Pt composite nanoparticles can be obtained by adding oleic acid and oleylamine as a dispersant to the liquid, and further adding a mixed liquid of cyclohexane, oleic acid and oleylamine and shaking. For example, see Patent Document 1).

特開2005−48250号公報JP 2005-48250 A

一方、近年、新たな材料としてFe/Pd複合ナノ粒子が提案されているが、その合成技術は確立されていない。上記のFe/Pt複合ナノ粒子の合成法に準じて、鉄アセチルアセトナートとパラジウムアセチルアセトナートを用い、還元することによって合成することが考えられるが、FeはPdと複合する速度に比べ、反応系中に存在している酸素と結合する速度が速いため、γ−Fe23又はFe34が生成するため、満足な結果が得られないという問題がある。 On the other hand, in recent years, Fe / Pd composite nanoparticles have been proposed as a new material, but the synthesis technique has not been established. According to the method for synthesizing the Fe / Pt composite nanoparticles described above, iron acetylacetonate and palladium acetylacetonate can be used for synthesis by reduction, but Fe is more reactive than the rate of complexing with Pd. Since the bonding speed with oxygen existing in the system is high, γ-Fe 2 O 3 or Fe 3 O 4 is produced, so that there is a problem that satisfactory results cannot be obtained.

本発明は、このような問題を解消し、Fe/Pd複合ナノ粒子を得ることが可能な製造方法を提供することを目的とする。   An object of the present invention is to provide a production method capable of solving such problems and obtaining Fe / Pd composite nanoparticles.

上記問題点を解決するために本発明によれば、Feの塩とPdの塩を界面活性剤を含む溶媒中に溶解させ、還元剤を加え、加熱してFeの塩を構成するFeイオン及びPdの塩を構成するPdイオンを還元することを含む、Fe/Pd複合ナノ粒子の製造方法が提供される。   In order to solve the above problems, according to the present invention, an Fe salt and a Pd salt are dissolved in a solvent containing a surfactant, a reducing agent is added, and heated to form Fe ions constituting the Fe salt; There is provided a method for producing Fe / Pd composite nanoparticles, comprising reducing Pd ions constituting a salt of Pd.

本発明によれば、1回の反応によってFe粒子とPd粒子を同時に還元析出させ、ナノオーダーで複合させることができ、Fe/Pd複合ナノ粒子を容易に製造することができる。   According to the present invention, Fe particles and Pd particles can be simultaneously reduced and precipitated by a single reaction and combined in nano order, and Fe / Pd composite nanoparticles can be easily produced.

以下、本発明のFe/Pd複合ナノ粒子の製造方法を詳細に説明する。本発明のFe/Pd複合ナノ粒子の製造方法においては、まずFeの塩とPdの塩を溶媒中に溶解させる。この塩としては、有機配位子を有する金属錯体であることが好ましく、例えばアセチルアセトナート塩、酢酸塩、塩化物等が挙げられる。具体的には、鉄(II)アセチルアセトナート、鉄(III)アセチルアセトナート、パラジウム(II)アセチルアセトナート等を用いることができる。Feの塩とPdの塩の比は、好ましくはモル比でFeの塩:Pdの塩=7:3とする。   Hereinafter, the method for producing Fe / Pd composite nanoparticles of the present invention will be described in detail. In the method for producing Fe / Pd composite nanoparticles of the present invention, first, an Fe salt and a Pd salt are dissolved in a solvent. This salt is preferably a metal complex having an organic ligand, and examples thereof include acetylacetonate salts, acetate salts, and chlorides. Specifically, iron (II) acetylacetonate, iron (III) acetylacetonate, palladium (II) acetylacetonate, and the like can be used. The ratio of the Fe salt to the Pd salt is preferably a molar ratio of Fe salt: Pd salt = 7: 3.

溶媒は、Fe粒子及びPd粒子の析出反応において加熱するため、沸点の高い、かつ安定であるものが好ましく、例えばオクチルエーテル、オクタデセン、スクアレン、テトラエチレングリコール、トリフェニルメタン等を用いることができる。   Since the solvent is heated in the precipitation reaction of Fe particles and Pd particles, a solvent having a high boiling point and being stable is preferable. For example, octyl ether, octadecene, squalene, tetraethylene glycol, triphenylmethane and the like can be used.

界面活性剤としては、オレイルアミン、オレイン酸、テトラエチレングリコール、ドデシルベンゼンスルホン酸ナトリウム、フェニルホスホン酸、ミリスチル酸、ドデカンチオール、ドデシルアミン等を用いることができる。この界面活性剤の添加量は金属塩の20倍モルとすることが好ましい。界面活性剤としてオレイルアミン又はオレイン酸を用いる場合、これらは溶媒としても機能するため、上記オクチルエーテル等の他の溶媒を用いなくてもよい。   As the surfactant, oleylamine, oleic acid, tetraethylene glycol, sodium dodecylbenzenesulfonate, phenylphosphonic acid, myristic acid, dodecanethiol, dodecylamine and the like can be used. The amount of the surfactant added is preferably 20 times the molar amount of the metal salt. When oleylamine or oleic acid is used as the surfactant, these also function as a solvent, and therefore it is not necessary to use another solvent such as the octyl ether.

Feの塩とPtの塩を溶媒に加え、必要に応じて加熱してこれらの塩を溶媒に溶解させた後、還元剤を加える。塩を溶解させる温度は、用いる塩及び溶媒によって異なるが、通常は110℃程度である。還元剤としては、ポリオール(多価アルコール)、ジフェニルシラン、無水ヒドラジンを用いることが好ましい。ポリオールとしては、特に限定されないが、例えば1,2−オクタンジオール、1,2−ドデカンジオール、1,2−テトラデカンジオール、1,2−ヘキサデカンジオール等を用いることができ、還元を行う反応温度より高い沸点を有するものが好ましい。この還元剤の添加量は、金属塩の1.5倍モルとすることが好ましい。また、還元を行う際の温度は、Feの塩を構成するFeイオンをFeに、Pdの塩を構成するPdイオンをPdに還元できる温度であり、通常は345℃程度である。   An Fe salt and a Pt salt are added to a solvent, and if necessary, these salts are dissolved in the solvent by heating, and then a reducing agent is added. The temperature at which the salt is dissolved varies depending on the salt and solvent used, but is usually about 110 ° C. As the reducing agent, it is preferable to use polyol (polyhydric alcohol), diphenylsilane, and anhydrous hydrazine. The polyol is not particularly limited, and for example, 1,2-octanediol, 1,2-dodecanediol, 1,2-tetradecanediol, 1,2-hexadecanediol, and the like can be used. Those having a high boiling point are preferred. The amount of the reducing agent added is preferably 1.5 times the molar amount of the metal salt. The temperature at which the reduction is performed is a temperature at which Fe ions constituting the Fe salt can be reduced to Fe and Pd ions constituting the Pd salt can be reduced to Pd, and is usually about 345 ° C.

また、還元剤としては、Feよりもイオン化傾向の大きな金属のバルク体を用いることもできる。このような金属としては、K、Ca、Na、Mg、Zn等を用いることができ、特にZnを用いることが好ましい。この還元剤は還元力が高いため、得られるPd粒子の形状、大きさを制御することができる。   Further, as the reducing agent, a metal bulk body having a larger ionization tendency than Fe can be used. As such a metal, K, Ca, Na, Mg, Zn and the like can be used, and it is particularly preferable to use Zn. Since this reducing agent has a high reducing power, the shape and size of the obtained Pd particles can be controlled.

還元を行う反応温度は、通常300℃以上、好ましくは345℃以上である。また反応時間は、反応温度や用いる材料等によって異なるが、通常は数分〜数時間である。   The reaction temperature for carrying out the reduction is usually 300 ° C. or higher, preferably 345 ° C. or higher. Moreover, although reaction time changes with reaction temperature, the material to be used, etc., it is usually several minutes-several hours.

以上のようにして溶媒中でFe粒子とPd粒子を同時に析出させ、複合させることにより、Fe/Pd複合ナノ粒子を得ることができる。還元剤としてポリオール等を用いた場合に得られるFe/Pd複合ナノ粒子の構造を模式的に図1に示す。このFe/Pd複合粒子はFeナノ粒子1とPdナノ粒子2が相分離して複合している。この粒子の大きさは通常5〜15nmである。一方、還元剤としてFeよりもイオン化傾向の大きな金属を用いた場合、得られるFe/Pd複合ナノ粒子はFeとPdが相分離しておらず、合金化している。   Fe / Pd composite nanoparticles can be obtained by simultaneously depositing and combining Fe particles and Pd particles in a solvent as described above. FIG. 1 schematically shows the structure of Fe / Pd composite nanoparticles obtained when polyol or the like is used as the reducing agent. In this Fe / Pd composite particle, Fe nanoparticles 1 and Pd nanoparticles 2 are phase-separated and composited. The size of the particles is usually 5 to 15 nm. On the other hand, when a metal having a higher ionization tendency than Fe is used as the reducing agent, the Fe / Pd composite nanoparticles obtained are alloyed because Fe and Pd are not phase-separated.

例1
冷却管及び温度計を取り付けた100mLの三口フラスコに、鉄アセチルアセトナート(Fe(acac)3)及びパラジウムアセチルアセトナート(Pd(acac)2)を合計1.0mmol測りとり、還元剤(1,2-ヘキサデカンジオール1.5mmol、ジフェニルシラン1.5mmol、又は無水ヒドラジン0.75mmol)、オレイン酸5.0mmol、オレイルアミン5.0mmolを加えた。反応容器内に攪拌子を入れ、マグネチックスターラーを用いて攪拌を行い、マントルヒーターで加熱した。溶液中の不純物や溶存酸素を取り除くため、反応容器内を減圧状態に30分間保持した。その後、反応溶液を室温まで冷却し、貧溶媒であるエタノールを加え、遠心分離することによって反応物を沈殿させ、余分な有機物を取り除く生成処理を行った。沈殿物をヘキサン10mL中に再分散させ、オレイン酸とオレイルアミンを10mLずつ加え、窒素封入して保存した。
Example 1
In a 100 mL three-necked flask equipped with a condenser and a thermometer, 1.0 mmol of iron acetylacetonate (Fe (acac) 3 ) and palladium acetylacetonate (Pd (acac) 2 ) were measured in total, and the reducing agent (1,2 -1.5 mmol of hexadecanediol, 1.5 mmol of diphenylsilane, or 0.75 mmol of hydrazine anhydride, 5.0 mmol of oleic acid, and 5.0 mmol of oleylamine were added. A stirrer was placed in the reaction vessel, stirred using a magnetic stirrer, and heated with a mantle heater. In order to remove impurities and dissolved oxygen in the solution, the inside of the reaction vessel was kept under reduced pressure for 30 minutes. Thereafter, the reaction solution was cooled to room temperature, ethanol as a poor solvent was added, and the reaction product was precipitated by centrifuging to remove excess organic matter. The precipitate was redispersed in 10 mL of hexane, 10 mL of oleic acid and oleylamine were added, and the mixture was stored under nitrogen.

この溶液中に分散している粒子のTEM像を図2に示す。Fe原子とPd原子からなる相分離した複合ナノ粒子が生成していることが確認された   FIG. 2 shows a TEM image of particles dispersed in this solution. It was confirmed that phase-separated composite nanoparticles composed of Fe atoms and Pd atoms were formed.

例2
冷却管及び温度計を取り付けた100mLの三口フラスコに、鉄アセチルアセトナート(Fe(acac)3)及びパラジウムアセチルアセトナート(Pd(acac)2)を合計1.0mmol測りとり、亜鉛粉末、オレイン酸10.0mmol、オレイルアミン10.0mmolを加えた。反応容器内に攪拌子を入れ、マグネチックスターラーを用いて攪拌を行い、マントルヒーターで加熱した。反応容器内を減圧状態に30分間保持し、次いで反応容器内をチッソ雰囲気にした後、溶液を攪拌しながら345℃まで昇温させ、30分間保持した。反応溶液を室温まで冷却し、貧溶媒であるエタノールを加え、遠心分離することによって反応物の沈殿を得た。沈殿物をヘキサン10mL中に再分散させ、ヘキサン分散液を遠心分離し、亜鉛粉末を取り除いた。エタノールを加えて再び遠心分離を行い、得られた沈殿物をヘキサン10mL中に再分散させ、オレイン酸とオレイルアミンを10mLずつ加え、窒素封入して保存した。以下の表に、用いたFe(acac)3とPd(acac)2のモル比及び亜鉛粉末のモル数を示す。
Example 2
In a 100 mL three-necked flask equipped with a condenser and a thermometer, 1.0 mmol of iron acetylacetonate (Fe (acac) 3 ) and palladium acetylacetonate (Pd (acac) 2 ) were measured in total, zinc powder, oleic acid 10.0 mmol, oleylamine 10.0 mmol was added. A stirrer was placed in the reaction vessel, stirred using a magnetic stirrer, and heated with a mantle heater. The inside of the reaction vessel was kept under reduced pressure for 30 minutes, and then the inside of the reaction vessel was made a nitrogen atmosphere, and then the temperature of the solution was raised to 345 ° C. while stirring and kept for 30 minutes. The reaction solution was cooled to room temperature, ethanol as a poor solvent was added, and centrifugation was performed to obtain a precipitate of the reaction product. The precipitate was redispersed in 10 mL of hexane, the hexane dispersion was centrifuged, and the zinc powder was removed. Ethanol was added and the mixture was centrifuged again. The resulting precipitate was redispersed in 10 mL of hexane, 10 mL each of oleic acid and oleylamine was added, and the mixture was sealed with nitrogen and stored. The following table shows the molar ratio of Fe (acac) 3 and Pd (acac) 2 used and the number of moles of zinc powder.

図3に、Fe(acac)3:Pd(acac)2=5:5で固定し、亜鉛粉末の量を変えて得られた粒子のTEM像を示すが、四角い粒子が主生成物として得られたことがわかる。ここで、加える還元剤の量を変化させると、還元剤の量が5.0mmolのとき、四角く形状の揃った粒子が多く生成し、加える還元剤の量の増加に伴い、得られる粒子の粒径は小さく、形状は丸くなる傾向があることが確認された。 FIG. 3 shows a TEM image of the particles obtained by fixing with Fe (acac) 3 : Pd (acac) 2 = 5: 5 and changing the amount of zinc powder. Square particles are obtained as the main product. I understand that. Here, when the amount of the reducing agent to be added is changed, when the amount of the reducing agent is 5.0 mmol, a large number of square-shaped particles are formed. It was confirmed that the shape is small and the shape tends to be round.

図4に、Fe(acac)3とPd(acac)2の比を変えて得られた粒子のTEM像を示す。Feの比が大きいほど四角い粒子が多く生成し、逆に小さいと粒子が丸みを帯びることがわかる。すなわち、Feの仕込み比が大きいほど、四角い粒子が生成することが示唆された。 FIG. 4 shows a TEM image of particles obtained by changing the ratio of Fe (acac) 3 and Pd (acac) 2 . It can be seen that the larger the Fe ratio, the more square particles are generated, and the smaller the particle, the more round the particles. In other words, it was suggested that square particles were generated as the feed ratio of Fe was increased.

本発明の方法により得られるFe/Pd複合ナノ粒子の模式図である。It is a schematic diagram of the Fe / Pd composite nanoparticles obtained by the method of the present invention. 実施例において得られたFe/Pd複合ナノ粒子のTEM写真である。2 is a TEM photograph of Fe / Pd composite nanoparticles obtained in an example. 実施例において得られたFe/Pd複合ナノ粒子のTEM写真である。2 is a TEM photograph of Fe / Pd composite nanoparticles obtained in an example. 実施例において得られたFe/Pd複合ナノ粒子のTEM写真である。2 is a TEM photograph of Fe / Pd composite nanoparticles obtained in an example.

Claims (5)

Fe/Pd複合ナノ粒子の製造方法であって、Feの塩とPdの塩を界面活性剤を含む溶媒中に溶解させ、還元剤を加え、加熱してFeの塩を構成するFeイオン及びPdの塩を構成するPdイオンを還元することを含む方法。   A method for producing Fe / Pd composite nanoparticles, wherein Fe salt and Pd salt are dissolved in a solvent containing a surfactant, a reducing agent is added, and heated to form Fe salt and Pd A method comprising reducing Pd ions constituting the salt. 前記還元剤が、ポリオール、ジフェニルシラン又は無水ヒドラジンである、請求項1記載の方法。   The method of claim 1, wherein the reducing agent is polyol, diphenylsilane, or anhydrous hydrazine. 前記還元剤が、Feよりもイオン化傾向の大きな金属である、請求項1記載の方法。   The method according to claim 1, wherein the reducing agent is a metal having a higher ionization tendency than Fe. Feの塩が鉄アセチルアセトナートであり、Pdの塩がパラジウムアセチルアセトナートである、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the Fe salt is iron acetylacetonate and the Pd salt is palladium acetylacetonate. 前記界面活性剤が、オレイン酸、オレイルアミン、又はこれらの混合物である、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the surfactant is oleic acid, oleylamine, or a mixture thereof.
JP2006324080A 2006-11-30 2006-11-30 METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE Pending JP2008138243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324080A JP2008138243A (en) 2006-11-30 2006-11-30 METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324080A JP2008138243A (en) 2006-11-30 2006-11-30 METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE

Publications (1)

Publication Number Publication Date
JP2008138243A true JP2008138243A (en) 2008-06-19

Family

ID=39600019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324080A Pending JP2008138243A (en) 2006-11-30 2006-11-30 METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE

Country Status (1)

Country Link
JP (1) JP2008138243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130221288A1 (en) * 2012-02-24 2013-08-29 Xerox Corporation Processes for producing palladium nanoparticle inks
JP2015113519A (en) * 2013-12-13 2015-06-22 株式会社キャタラー Fluid dispersion of metal composite particle and production method thereof
CN108145174A (en) * 2017-12-25 2018-06-12 武汉大学 A kind of preparation method of novel magnetic metal composite material
CN113664215A (en) * 2021-08-20 2021-11-19 浙江工业大学 Bi-Pd bimetal nanocrystal and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062509A1 (en) * 2001-02-08 2002-08-15 Hitachi Maxell, Ltd. Metal alloy fine particles and method for production thereof
JP2003113401A (en) * 2001-10-09 2003-04-18 Fuji Photo Film Co Ltd Hard magnetic nanoparticle and magnetic storage media
JP2003166040A (en) * 2001-02-08 2003-06-13 Hitachi Maxell Ltd Fine particles of metal alloy and manufacturing method therefor
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2005536634A (en) * 2001-06-29 2005-12-02 ナノスピン ソリューションズ Metal nanocrystals and their synthesis
JP2005330526A (en) * 2004-05-19 2005-12-02 Sony Corp Method for producing nanoparticle group

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062509A1 (en) * 2001-02-08 2002-08-15 Hitachi Maxell, Ltd. Metal alloy fine particles and method for production thereof
JP2003166040A (en) * 2001-02-08 2003-06-13 Hitachi Maxell Ltd Fine particles of metal alloy and manufacturing method therefor
JP2005536634A (en) * 2001-06-29 2005-12-02 ナノスピン ソリューションズ Metal nanocrystals and their synthesis
JP2003113401A (en) * 2001-10-09 2003-04-18 Fuji Photo Film Co Ltd Hard magnetic nanoparticle and magnetic storage media
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2005330526A (en) * 2004-05-19 2005-12-02 Sony Corp Method for producing nanoparticle group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130221288A1 (en) * 2012-02-24 2013-08-29 Xerox Corporation Processes for producing palladium nanoparticle inks
JP2013174011A (en) * 2012-02-24 2013-09-05 Xerox Corp Process for producing palladium nanoparticle ink
US8940197B2 (en) * 2012-02-24 2015-01-27 Xerox Corporation Processes for producing palladium nanoparticle inks
DE102013201920B4 (en) 2012-02-24 2018-12-20 Xerox Corp. Process for the preparation of palladium nanoparticle inks
JP2015113519A (en) * 2013-12-13 2015-06-22 株式会社キャタラー Fluid dispersion of metal composite particle and production method thereof
CN108145174A (en) * 2017-12-25 2018-06-12 武汉大学 A kind of preparation method of novel magnetic metal composite material
CN108145174B (en) * 2017-12-25 2020-02-14 武汉大学 Preparation method of magnetic metal composite material
CN113664215A (en) * 2021-08-20 2021-11-19 浙江工业大学 Bi-Pd bimetal nanocrystal and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008117855A (en) Manufacturing method of nano-composite magnet
US20120046482A1 (en) Method for synthesizing gold nanoparticles
Kumar et al. Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation
Fereshteh et al. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds
JP2009120940A (en) Method of manufacturing metal nanoparticle
Saravanan et al. Synthesis and Characterisation of Nanomaterials.
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
JP2008138243A (en) METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE
JP4232817B2 (en) Method for producing FePt-Fe nanocomposite metal magnetic particles
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
JP2003297617A (en) Method of manufacturing nano-sized ferromagnetic alloy particles
JP2006342399A (en) Ultra-fine iron particle and production method therefor
JP2009097038A (en) PRODUCTION METHOD OF FePt NANOPARTICLE
JP3693618B2 (en) Metal magnetic particles and method for producing the same
JP4363440B2 (en) Manufacturing method of nanocomposite magnet
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JP2010103512A (en) METHOD FOR PRODUCING FePd/Fe NANOCOMPOSITE MAGNET
CN105081342B (en) Prepare soft-hard magnetic FeCo/SiO with Magnetic guidance form2The method of/MnBi nano particles
JP2010189721A (en) Core/shell type pd/fe2o3nanoparticle, method for producing the same, and fepd/fe nanoparticle obtained by using the same
JP2020013887A (en) Manufacturing method of alloy particles and alloy particles
JP5912888B2 (en) Method for producing alloy particles
JP4861802B2 (en) Method for producing Fe / Pd composite nanoparticles
JP2014129207A (en) Method for producing metal oxide powder, and metal oxide powder
JP3896443B2 (en) Method for producing alloy fine particles for magnetic recording medium
JP2010138468A (en) Method for manufacturing cobalt nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228