JP2009215583A - Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME - Google Patents

Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2009215583A
JP2009215583A JP2008058346A JP2008058346A JP2009215583A JP 2009215583 A JP2009215583 A JP 2009215583A JP 2008058346 A JP2008058346 A JP 2008058346A JP 2008058346 A JP2008058346 A JP 2008058346A JP 2009215583 A JP2009215583 A JP 2009215583A
Authority
JP
Japan
Prior art keywords
smco
based alloy
salt
metal element
alloy nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008058346A
Other languages
Japanese (ja)
Inventor
Mamoru Sato
守 佐藤
Naoki Toshima
直樹 戸嶋
Shiho Tokonami
志保 床波
Atsuko Kinjo
睦子 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
TDK Corp
Original Assignee
Tokyo University of Science
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, TDK Corp filed Critical Tokyo University of Science
Priority to JP2008058346A priority Critical patent/JP2009215583A/en
Priority to US12/397,786 priority patent/US20090257907A1/en
Publication of JP2009215583A publication Critical patent/JP2009215583A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To provide Sm-Co-based alloy nanoparticles having a sufficiently small particle diameter, and further having sufficiently excellent magnet properties. <P>SOLUTION: The Sm-Co-based alloy nanoparticles essentially consist of an Sm-Co-based alloy containing Sm and Co as constitutional elements, and the content of a metal element different from Sm and Co to the Sm-Co-based alloy is 0.05 to 20 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、SmCo系合金ナノ粒子及びその製造方法に関する。   The present invention relates to SmCo-based alloy nanoparticles and a method for producing the same.

磁気記録媒体や磁石などの分野において種々の磁性材料が用いられている。磁性材料の一つであるSmCo系合金は、極めて高い保磁力及び一軸性の結晶磁気異方性を有し、ナノ粒子化しても高い磁気特性を示すことが知られている。このため、SmCo系合金は高密度記録を実現する磁気記録媒体をはじめとする様々な磁性材料に利用可能な魅力的な材料の一つである。   Various magnetic materials are used in fields such as magnetic recording media and magnets. It is known that an SmCo-based alloy, which is one of magnetic materials, has extremely high coercive force and uniaxial crystal magnetic anisotropy, and exhibits high magnetic properties even when it is made into nanoparticles. Therefore, SmCo-based alloys are one of attractive materials that can be used for various magnetic materials including magnetic recording media that realize high-density recording.

SmCo系合金粒子の合成方法については、物理学的手法であるスパッタでSmCo合金粒子を合成できることが知られている(例えば、非特許文献1参照)。また、別の方法として、クラスタ・ガンで気相凝縮させて、SmCo系合金粒子を製造する方法も提案されている(例えば、非特許文献2参照)。 The synthesis method of SmCo-based alloy particles, can be synthesized SmCo 5 alloy particles by sputtering a physical method are known (e.g., see Non-Patent Document 1). As another method, a method of producing SmCo-based alloy particles by vapor-phase condensation with a cluster gun has been proposed (see, for example, Non-Patent Document 2).

一方、化学的手法を用いたSmCo系合金粒子の合成方法として、ポリオール還元法を用いて合成すること(例えば、特許文献1参照)、及びマイクロウエーブを用いたポリオール還元法を用いて合成すること(例えば、特許文献2参照)が提案されている。
特開2006−245313号公報 特開2007−128991号公報 D.Weller,et al,IEEE Trans.Magn,36,p.10−15(2000) S.Stoyanov et al,「High anisotropy Sm−Co nanoparticles:Preparation by cluster gun technique and their magnetic properties」,JOURNAL OF APPLIED PHYSICS,vol93,number10(2003),p.7592
On the other hand, as a method for synthesizing SmCo-based alloy particles using a chemical method, synthesis using a polyol reduction method (for example, see Patent Document 1) and synthesis using a polyol reduction method using a microwave. (See, for example, Patent Document 2).
JP 2006-245313 A JP 2007-128991 A D. Weller, et al, IEEE Trans. Magn, 36, p. 10-15 (2000) S. Stoyanov et al, "High anisotropy Sm-Co nanoparticulates: Preparation by cluster technique and their magnetic technologies, JORNAL OF AP 93. 7592

しかしながら、本発明者らの検討によれば、非特許文献1及び2のような物理学的手法による合成方法により得られるSmCo系粒子は、磁気特性が十分に高くないことがわかった。また、上記合成方法は、熱処理工程が必要であり、SmCo系粒子の収率も低いことから、工業的な量産化に不適であることがわかった。   However, according to the study by the present inventors, it has been found that the SmCo-based particles obtained by the synthesis method using physical methods such as Non-Patent Documents 1 and 2 do not have sufficiently high magnetic properties. In addition, the above synthesis method requires a heat treatment step, and the yield of SmCo-based particles is low. Therefore, it was found that the synthesis method is unsuitable for industrial mass production.

一方、特許文献1のSmCo系合金粒子は、常温における保磁力(Hc)が500Oeと低い。また、特許文献2のSmCo系合金ナノ粒子は、極低温で磁気特性が観察されているに過ぎない。このように特許文献1及び2のSmCo系合金粒子の磁気特性が低いのは、サマリウム塩が還元し難い物質であるため、生成後のSmCo系合金粒子が未反応のサマリウム塩等を多く含んでいることに起因していると考えられる。   On the other hand, the SmCo-based alloy particles of Patent Document 1 have a low coercivity (Hc) at a normal temperature of 500 Oe. In addition, the magnetic properties of the SmCo-based alloy nanoparticles of Patent Document 2 are only observed at extremely low temperatures. As described above, the magnetic properties of the SmCo-based alloy particles of Patent Documents 1 and 2 are low because the samarium salt is a substance that is difficult to reduce. Therefore, the SmCo-based alloy particles after generation contain a large amount of unreacted samarium salt and the like. This is thought to be due to the fact that

したがって、磁気特性が十分に優れ、且つ十分に小さい粒径を有するSmCo系粒子が求められている。また、そのようなSmCo系合金ナノ粒子を容易に量産できる製造方法が求められている。   Accordingly, there is a need for SmCo-based particles that have sufficiently good magnetic properties and a sufficiently small particle size. There is also a need for a production method that can easily mass-produce such SmCo-based alloy nanoparticles.

本発明は上記事情に鑑みてなされたものであり、十分に小さい粒径を有するとともに磁気特性に十分優れるSmCo系合金ナノ粒子を提供すること、及びそのようなSmCo系合金ナノ粒子を高収率で量産可能な製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an SmCo-based alloy nanoparticle having a sufficiently small particle size and sufficiently excellent magnetic properties, and a high yield of such an SmCo-based alloy nanoparticle. It aims at providing the manufacturing method which can be mass-produced by.

上記目的を達成するため、本発明では、構成元素としてSm及びCoを有するSmCo系合金を主成分として含有し、SmCo系合金に対するSm及びCoとは異なる金属元素の含有量が0.05〜20質量%であるSmCo系合金ナノ粒子を提供する。   In order to achieve the above object, in the present invention, an SmCo-based alloy having Sm and Co as constituent elements is contained as a main component, and the content of a metal element different from Sm and Co in the SmCo-based alloy is 0.05-20. Provided is SmCo-based alloy nanoparticles of mass%.

このようなSmCo系合金ナノ粒子は、粒径が十分に小さいうえに、磁気特性に十分に優れているため、磁性材料として好適に用いることができる。このように、本発明のSmCo系合金ナノ粒子が磁気特性に十分に優れている理由は、未反応成分が十分に低減され、主成分としてSmCo系合金を含有しているためである。また、本発明のSmCo系合金ナノ粒子は、Sm及びCoとは異なる金属元素の含有量を変えることによって、磁気特性や粒径を制御することができ、磁石や磁気記録媒体の設計の自由度を向上させることができる。   Such SmCo-based alloy nanoparticles have a sufficiently small particle size and are sufficiently excellent in magnetic properties, and thus can be suitably used as a magnetic material. Thus, the reason why the SmCo-based alloy nanoparticles of the present invention are sufficiently excellent in magnetic properties is that the unreacted components are sufficiently reduced and the SmCo-based alloy is contained as a main component. In addition, the SmCo-based alloy nanoparticles of the present invention can control the magnetic properties and particle size by changing the content of metal elements different from Sm and Co, and the degree of freedom in designing magnets and magnetic recording media. Can be improved.

本発明のSmCo系合金ナノ粒子は、SmCo系合金に対して上記金属元素を0.05〜10質量%含有することが好ましい。このようなSmCo系合金ナノ粒子は、一層優れた磁気特性を有する。   The SmCo-based alloy nanoparticles of the present invention preferably contain 0.05 to 10% by mass of the above metal element with respect to the SmCo-based alloy. Such SmCo-based alloy nanoparticles have more excellent magnetic properties.

本発明のSmCo系合金ナノ粒子は、金属元素が、Au,Ag,Pt,Pd,Rh,Ru,Ir,Os,Cu,Ni,Cr,Al,Mnからなる群より選ばれる少なくとも一つの元素を含有することが好ましい。金属元素として上記金属元素を含有するSmCo系合金ナノ粒子は、一層優れた磁気特性を有する。   In the SmCo-based alloy nanoparticles of the present invention, the metal element is at least one element selected from the group consisting of Au, Ag, Pt, Pd, Rh, Ru, Ir, Os, Cu, Ni, Cr, Al, and Mn. It is preferable to contain. SmCo-based alloy nanoparticles containing the above metal element as a metal element have even more excellent magnetic properties.

本発明のSmCo系合金ナノ粒子は、粒径が1〜30nmであることが好ましい。このようなSmCo系合金ナノ粒子は、例えば高密度記録を実現するための磁気記録媒体に好適に用いられる。   The SmCo-based alloy nanoparticles of the present invention preferably have a particle size of 1 to 30 nm. Such SmCo-based alloy nanoparticles are suitably used for a magnetic recording medium for realizing high-density recording, for example.

本発明のSmCo系合金ナノ粒子は、サマリウム塩、コバルト塩、及び金属元素の塩を含む有機溶媒に、強還元剤を加えて、サマリウム塩、コバルト塩、及び金属元素の塩を還元させる湿式合成により得られるものであることが好ましい。このようなSmCo系合金ナノ粒子は、量産性に優れ且つ粒度分布も比較的良好なことから、磁性材料の原料として産業上、特に有用である。   The SmCo-based alloy nanoparticles of the present invention are prepared by wet synthesis in which a strong reducing agent is added to an organic solvent containing a samarium salt, a cobalt salt, and a metal element salt to reduce the samarium salt, the cobalt salt, and the metal element salt. It is preferable that it is obtained by. Such SmCo-based alloy nanoparticles are particularly useful industrially as raw materials for magnetic materials because of their excellent mass productivity and relatively good particle size distribution.

本発明のSmCo系合金ナノ粒子は、コア部分と、該コア部分を覆うシェル部分とを有するコアシェル構造を備えており、コア部分におけるSmCo系合金に対する上記金属元素の比率が、シェル部分の当該比率よりも大きいことが好ましい。   The SmCo-based alloy nanoparticles of the present invention have a core-shell structure having a core portion and a shell portion covering the core portion, and the ratio of the metal element to the SmCo-based alloy in the core portion is the ratio of the shell portion. Is preferably larger.

本発明ではまた、サマリウム塩、コバルト塩、Sm及びCoとは異なる金属元素の塩、並びに保護剤を含む原料を、還元性を有する有機溶媒とともに混合して混合液を得る混合工程と、混合液に、強還元剤を添加して加熱することにより、サマリウム塩、コバルト塩及び金属元素の塩を還元する還元工程とを有する、構成元素としてSm及びCoを有するSmCo系合金を主成分として含有するSmCo系合金ナノ粒子の製造方法を提供する。   In the present invention, a mixing step of mixing a samarium salt, a cobalt salt, a salt of a metal element different from Sm and Co, and a raw material containing a protective agent together with a reducing organic solvent to obtain a mixed solution; And a SmCo-based alloy having Sm and Co as constituent elements, comprising a reduction step of reducing a samarium salt, a cobalt salt and a metal element salt by adding a strong reducing agent and heating. A method for producing SmCo-based alloy nanoparticles is provided.

上述のSmCo系合金ナノ粒子の製造方法では、粒径が十分に小さく且つ十分に優れた磁気特性を有するSmCo系合金ナノ粒子を高収率で製造することができる。かかる効果が得られる理由を、本発明者らは以下の通り推察する。すなわち、サマリウム塩やコバルト塩を還元させる際に、原料中に含まれるSm及びCoとは異なる金属元素の塩が速やかに還元され、当該金属元素が結晶析出の核となってSmCo系合金の結晶の析出を促進する、いわゆる触媒的な作用を奏すると考えられる。これによって、未反応物の含有量が十分に低減されたSmCo系合金ナノ粒子を円滑に合成することが可能となる。また、金属元素の触媒的な作用によって、反応時間が十分に短縮されるため、生成したSmCo系合金ナノ粒子の粒成長が抑制される。したがって、磁気特性に十分優れるとともに、粒径が十分に小さいSmCo系合金ナノ粒子を合成することができる。また、本発明の製造方法は、原料を還元させてSmCo系合金ナノ粒子を合成するという化学的手法を用いていることから、スパッタなどの物理的手法に比べて、高い収率でSmCo系合金ナノ粒子を量産することが可能である。   In the above-described method for producing SmCo-based alloy nanoparticles, SmCo-based alloy nanoparticles having a sufficiently small particle size and sufficiently excellent magnetic properties can be produced in high yield. The present inventors infer the reason why such an effect is obtained as follows. That is, when reducing a samarium salt or a cobalt salt, a salt of a metal element different from Sm and Co contained in the raw material is rapidly reduced, and the metal element serves as a nucleus for crystal precipitation to form a crystal of the SmCo-based alloy. It is considered that there is a so-called catalytic action that promotes the precipitation of. This makes it possible to smoothly synthesize SmCo-based alloy nanoparticles in which the content of unreacted materials is sufficiently reduced. Moreover, since the reaction time is sufficiently shortened by the catalytic action of the metal element, the grain growth of the generated SmCo-based alloy nanoparticles is suppressed. Therefore, it is possible to synthesize SmCo-based alloy nanoparticles having a sufficiently excellent magnetic property and a sufficiently small particle size. In addition, since the production method of the present invention uses a chemical method of synthesizing SmCo-based alloy nanoparticles by reducing the raw material, the SmCo-based alloy is produced in a higher yield than physical methods such as sputtering. It is possible to mass-produce nanoparticles.

本発明の製造方法は、還元工程の前に、混合工程で得られた混合液を撹拌加熱して脱水し、冷却する脱水工程を有することが好ましい。これによって、還元工程の前に水分が十分に除去されるため、Sm及びCoの酸化を抑制し、サマリウム塩及びコバルト塩の還元反応を一層円滑に進めることができる。また、混合液を脱水後に室温付近まで冷却した後、強還元剤を添加し、その後再び撹拌加熱することで、還元反応が一気に進行することに伴う突沸の防止及び不純物生成の低減を図ることができる。すなわち、冷却した後に強還元剤を添加することにより、未反応物の含有量が一層低減され、SmCo系合金以外の不純物の含有量が一層低減された磁気特性に優れるSmCo系合金ナノ粒子を高収率で製造することができる。   The production method of the present invention preferably has a dehydration step of dehydrating and cooling the mixed liquid obtained in the mixing step by stirring and heating before the reduction step. Accordingly, moisture is sufficiently removed before the reduction step, so that the oxidation of Sm and Co can be suppressed, and the reduction reaction of the samarium salt and the cobalt salt can proceed more smoothly. In addition, after cooling the mixed solution to near room temperature, a strong reducing agent is added, and then stirred and heated again, thereby preventing bumping and reducing impurity generation due to a rapid progress of the reduction reaction. it can. That is, by adding a strong reducing agent after cooling, the content of unreacted substances is further reduced, and the content of impurities other than SmCo alloys is further reduced. It can be produced in a yield.

また、本発明の製造方法は、金属元素が、Au,Ag,Pt,Pd,Rh,Ru,Ir,Os,Cu,Ni,Cr,Al,Mnからなる群より選ばれる少なくとも一つの元素を含有することが好ましい。このような金属元素は、サマリウム塩やコバルト塩よりも還元され易いため、結晶生成の核として速やかに還元され、一層優れた触媒的作用を奏すると考えられる。したがって、サマリウム塩及びコバルト塩の還元反応を一層促進することができる。   In the production method of the present invention, the metal element contains at least one element selected from the group consisting of Au, Ag, Pt, Pd, Rh, Ru, Ir, Os, Cu, Ni, Cr, Al, and Mn. It is preferable to do. Since such a metal element is more easily reduced than samarium salt or cobalt salt, it is considered that the metal element is rapidly reduced as a nucleus of crystal formation and exhibits a more excellent catalytic action. Therefore, the reduction reaction of samarium salt and cobalt salt can be further promoted.

また、本発明の製造方法は、強還元剤が、LiAlH、NaBH、N、B、LiBH(Cからなる群より選ばれる少なくとも一つを含有することが好ましい。これによって、未反応のサマリウム塩やコバルト塩の残存量が一層低減されたSmCo系合金ナノ粒子を得ることができる。 In the production method of the present invention, the strong reducing agent contains at least one selected from the group consisting of LiAlH 4 , NaBH 4 , N 2 H 4 , B 2 H 6 , and LiBH (C 2 H 5 ) 3. It is preferable. Thereby, SmCo-based alloy nanoparticles in which the remaining amount of unreacted samarium salt or cobalt salt is further reduced can be obtained.

本発明によれば、十分に小さい粒径を有するとともに磁気特性に十分優れるSmCo系合金ナノ粒子を提供すること、及びそのようなSmCo系合金ナノ粒子を高収率で量産可能な製造方法を提供することができる。   According to the present invention, an SmCo-based alloy nanoparticle having a sufficiently small particle size and sufficiently excellent magnetic properties is provided, and a production method capable of mass-producing such an SmCo-based alloy nanoparticle at a high yield is provided. can do.

以下、場合により図面を参照して、本発明の好適な実施形態について説明する。   In the following, preferred embodiments of the present invention will be described with reference to the drawings as the case may be.

本実施形態のSmCo系合金ナノ粒子は、1〜30nmの平均粒径を有する。このように、ナノサイズの粒径を有するSmCo系合金ナノ粒子は、磁気特性に優れるうえに粒径が十分に小さいことから、磁気記録媒体の磁性粉末として用いることにより記録密度を向上させることができる。SmCo系合金ナノ粒子の粒径は、透過型電子顕微鏡(TEM)で観察することにより測定することができる。   The SmCo-based alloy nanoparticles of this embodiment have an average particle size of 1 to 30 nm. As described above, the SmCo-based alloy nanoparticles having a nano-sized particle size are excellent in magnetic properties and have a sufficiently small particle size, so that the recording density can be improved by using as a magnetic powder of a magnetic recording medium. it can. The particle size of the SmCo-based alloy nanoparticles can be measured by observing with a transmission electron microscope (TEM).

SmCo系合金ナノ粒子の主成分であるSmCo系合金の好適な組成は、SmCoである。図1(a)は、本実施形態のSmCoを主成分として含有するSmCo系合金ナノ粒子の高分解能TEM写真であり、図1(b)は本実施形態のSmCoを主成分として含有するSmCo系合金ナノ粒子の電子線回折像である。このような組成のSmCo系合金ナノ粒子は優れた保磁力(Hc)及び磁化量を有している。SmCo系合金ナノ粒子の組成は、ICP発光分光分析などによって確認することができる。なお、SmCoは、CaCu型の結晶構造を有することから、X線回折(XRD)によっても同定することができる。 Preferred composition of which is the main component SmCo-based alloy of SmCo-based alloy nanoparticles are SmCo 5. FIG. 1A is a high-resolution TEM photograph of SmCo-based alloy nanoparticles containing SmCo 5 of this embodiment as a main component, and FIG. 1B contains SmCo 5 of this embodiment as a main component. 2 is an electron diffraction image of SmCo-based alloy nanoparticles. The SmCo-based alloy nanoparticles having such a composition have excellent coercive force (Hc) and magnetization. The composition of the SmCo-based alloy nanoparticles can be confirmed by ICP emission spectroscopic analysis or the like. Since SmCo 5 has a CaCu 5 type crystal structure, it can also be identified by X-ray diffraction (XRD).

本実施形態のSmCo系合金ナノ粒子は、SmCo系合金を主成分として含有し、Sm及びCoとは異なる金属元素(以下、「第3金属元素」という。)を、SmCo系合金全体に対して0.05〜20質量%含有する。なお、第3金属元素は、SmCo系合金ナノ粒子に金属単体として含まれていてもよく、金属化合物として含まれていてもよい。   The SmCo-based alloy nanoparticles of the present embodiment contain an SmCo-based alloy as a main component, and a metal element different from Sm and Co (hereinafter referred to as “third metal element”) with respect to the entire SmCo-based alloy. It contains 0.05 to 20% by mass. The third metal element may be included in the SmCo-based alloy nanoparticles as a single metal or may be included as a metal compound.

当該第3金属元素の含有量は、SmCo系合金全体に対して0.05〜20質量%であることが好ましく、0.05〜10質量%であることがより好ましい。第3金属元素の含有量は、ICP発光分光分析などによって確認することができる。   The content of the third metal element is preferably 0.05 to 20% by mass and more preferably 0.05 to 10% by mass with respect to the entire SmCo-based alloy. The content of the third metal element can be confirmed by ICP emission spectral analysis or the like.

SmCo系合金ナノ粒子の製造時において、第3金属元素の添加量が得られるSmCo系合金ナノ粒子に対して0.05質量%未満の場合、第3金属元素による改善効果が十分に得られず、SmCo系合金ナノ粒子の収率が低下するとともに未反応物の含有率が高くなり、磁気特性が低下する。一方、第3金属元素の含有量が20質量%より多いと、磁気特性に寄与するSmCo系合金の割合が少なくなるため、磁気特性が低下する。   When the SmCo-based alloy nanoparticles are produced, if the amount of the third metal element added is less than 0.05% by mass with respect to the obtained SmCo-based alloy nanoparticles, the improvement effect by the third metal element cannot be obtained sufficiently. In addition, the yield of SmCo-based alloy nanoparticles decreases, the unreacted content increases, and the magnetic properties decrease. On the other hand, when the content of the third metal element is more than 20% by mass, the ratio of the SmCo-based alloy that contributes to the magnetic characteristics decreases, and the magnetic characteristics deteriorate.

第3金属元素としては、Au,Ag,Pt,Pd,Rh,Ru,Ir,Osなどの貴金属元素、またはCu,Ni,Cr,Mnなどの遷移金属元素が好ましい。また、これら以外の第3金属元素として、Alを例示することができる。   As the third metal element, a noble metal element such as Au, Ag, Pt, Pd, Rh, Ru, Ir, or Os, or a transition metal element such as Cu, Ni, Cr, or Mn is preferable. Moreover, Al can be illustrated as a 3rd metal element other than these.

本実施形態のSmCo系合金ナノ粒子は、主成分として第3金属元素を有するコア部分と、該コア部分の周囲を覆うように設けられる、主成分としてSmCo系合金を有するシェル部分とからなるコアシェル構造を有していてもよい。   The SmCo-based alloy nanoparticles of the present embodiment include a core shell including a core portion having a third metal element as a main component and a shell portion having an SmCo-based alloy as a main component provided so as to cover the periphery of the core portion. You may have a structure.

図2は、本発明におけるSmCo系合金ナノ粒子の微細構造の一例を示す電界放射型透過電子顕微鏡(FE−TEM、日本電子株式会社製、商品名:JEM−2010F)の写真である。図2に示す通り、1つのSmCo系合金ナノ粒子にはコントラストの異なる領域が存在している。また、このSmCo系合金ナノ粒子は多結晶体であり、コア部分(中心部分)とシェル部分(外殻部分)との干渉縞は互いに異なっている。このように、図2に示すSmCo系合金ナノ粒子は、組成が互いに異なるコア部分とシェル部分とからなるコアシェル構造を有している。   FIG. 2 is a photograph of a field emission transmission electron microscope (FE-TEM, manufactured by JEOL Ltd., trade name: JEM-2010F) showing an example of the microstructure of the SmCo-based alloy nanoparticles in the present invention. As shown in FIG. 2, one SmCo-based alloy nanoparticle has regions having different contrasts. The SmCo-based alloy nanoparticles are polycrystalline, and interference fringes between the core portion (center portion) and the shell portion (outer shell portion) are different from each other. As described above, the SmCo-based alloy nanoparticles shown in FIG. 2 have a core-shell structure including a core portion and a shell portion having different compositions.

図3は、図2に示すSmCo系合金ナノ粒子の走査型透過電子顕微鏡(STEM)の写真である。元素分析をエネルギー分散型X線分析(EDS、NORAN社製、商品名:NORAN−UTW)により行ったところ、図3に示す通り、SmCo系合金ナノ粒子のコア部分(図3の領域1)には、第3金属元素(Au)が主成分として存在しており、シェル部分(図3の領域2)には、SmCo系合金が主成分として存在していることを確認した。   FIG. 3 is a scanning transmission electron microscope (STEM) photograph of the SmCo-based alloy nanoparticles shown in FIG. When elemental analysis was performed by energy dispersive X-ray analysis (EDS, manufactured by NORAN, trade name: NORAN-UTW), as shown in FIG. 3, the core portion of SmCo-based alloy nanoparticles (region 1 in FIG. 3) Confirmed that the third metal element (Au) was present as the main component, and that the SmCo-based alloy was present as the main component in the shell portion (region 2 in FIG. 3).

次に、本実施形態のSmCo系合金ナノ粒子の製造方法について以下に説明する。本実施形態のSmCo系合金ナノ粒子の製造方法は、サマリウム塩、コバルト塩、第3金属元素の塩を、それぞれ還元性を有する有機溶媒に溶解させて溶液を作成する準備工程と、サマリウム塩を含む溶液、コバルト塩を含む溶液及び第3金属元素の塩を含む溶液を混合して混合液を得る混合工程と、混合工程で得られた混合液に保護剤を添加する添加工程と、保護剤を添加した混合液を加熱して脱水する脱水工程と、脱水後の混合液に強還元剤を添加してサマリウム塩、コバルト塩及び第3金属元素の塩を還元することにより第3金属元素を含有するSmCo系合金ナノ粒子を得る還元工程とを有する。以下、各工程の詳細について説明する。   Next, a method for producing the SmCo-based alloy nanoparticles of this embodiment will be described below. The method for producing SmCo-based alloy nanoparticles according to the present embodiment includes a samarium salt, a cobalt salt, and a third metal element salt dissolved in a reducing organic solvent to prepare a solution, and a samarium salt A mixing step of mixing a solution containing, a solution containing a cobalt salt, and a solution containing a salt of a third metal element to obtain a mixed solution, an adding step of adding a protective agent to the mixed solution obtained in the mixing step, and a protective agent A dehydration step of heating and dehydrating the mixed solution, and adding a strong reducing agent to the dehydrated mixed solution to reduce the samarium salt, cobalt salt, and third metal element salt, thereby reducing the third metal element. And a reduction step for obtaining SmCo-based alloy nanoparticles contained therein. Details of each step will be described below.

(準備工程)
本実施形態に用いられるSm(サマリウム)塩としては、サマリウムアセチルアセトナート水和物([CHCOCH=C(O−)CHSm・xHO)、Co(コバルト)塩としては、コバルトアセチルアセトナート([CHCOCH=C(O−)CHCo)を例示できる。これらの塩は、有機溶媒に溶解し易く、且つ比較的還元され易いため、粒径が小さく純度の高いSmCo系合金ナノ粒子を得る観点から、好ましく用いることができる。
(Preparation process)
Examples of the Sm (samarium) salt used in the present embodiment include samarium acetylacetonate hydrate ([CH 3 COCH═C (O—) CH 3 ] 3 Sm · xH 2 O) and Co (cobalt) salt. And cobalt acetylacetonate ([CH 3 COCH═C (O—) CH 3 ] 3 Co). Since these salts are easily dissolved in an organic solvent and relatively easily reduced, they can be preferably used from the viewpoint of obtaining SmCo-based alloy nanoparticles having a small particle size and high purity.

第3金属元素の塩としては、アセチルアセトナート塩を例示することができる。アセチルアセトナート塩は有機溶媒に溶解しやすいことから好適に用いることができる。   As the salt of the third metal element, an acetylacetonate salt can be exemplified. An acetylacetonate salt can be suitably used because it is easily dissolved in an organic solvent.

サマリウム塩、コバルト塩、第3金属元素の塩を溶解させる有機溶媒は、高沸点のものを好ましく用いることができる。具体的には、1,2−ヘキサデカンジオールを例示することができる。この1,2−ヘキサデカンジオールは、還元作用を有する。   As the organic solvent for dissolving the samarium salt, the cobalt salt, and the salt of the third metal element, those having a high boiling point can be preferably used. Specifically, 1,2-hexadecanediol can be exemplified. This 1,2-hexadecanediol has a reducing action.

準備工程では、1,2−ヘキサデカンジオールにサマリウム塩、コバルト塩、第3金属元素の塩を溶解させることによって、サマリウム塩を含む溶液、コバルト塩を含む溶液、及び第3金属元素の塩を含む溶液を得ることができる。なお、Sm,Co,第3金属元素の酸化を防止するために、準備工程は、窒素またはアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。   In the preparation step, a solution containing a samarium salt, a solution containing a cobalt salt, and a salt of a third metal element are included by dissolving a samarium salt, a cobalt salt, and a salt of a third metal element in 1,2-hexadecanediol. A solution can be obtained. In order to prevent oxidation of Sm, Co, and the third metal element, it is preferable that the preparatory process is performed in an inert gas atmosphere such as nitrogen or argon.

(混合工程)
混合工程では、上述の通り調製した各溶液を混合する。混合する順番に特に制限はなく、3つの溶液を同時に混合してもよいし、2つの溶液を混合した後に、残りの溶液を混合して混合液を得てもよい。
(Mixing process)
In the mixing step, the solutions prepared as described above are mixed. There is no restriction | limiting in particular in the order of mixing, Three solutions may be mixed simultaneously, and after mixing two solutions, the remaining solution may be mixed and a liquid mixture may be obtained.

第3金属元素の塩の溶液を混合する量としては、サマリウム塩及びコバルト塩にそれぞれ含まれるサマリウム元素及びコバルト元素の合計1molに対し、第3金属元素に換算して0.01〜0.5molとすることが好ましい。   The amount of the salt solution of the third metal element to be mixed is 0.01 to 0.5 mol in terms of the third metal element with respect to a total of 1 mol of samarium element and cobalt element contained in the samarium salt and cobalt salt, respectively. It is preferable that

混合工程は、Sm,Co,第3金属元素の酸化を防止するために、窒素またはアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。   The mixing step is preferably performed in an inert gas atmosphere such as nitrogen or argon in order to prevent oxidation of Sm, Co, and the third metal element.

(添加工程)
混合工程で得られた混合液に保護剤を添加する工程である。保護剤は、生成するSmCo系合金ナノ粒子を保護する機能を有するものであり、オレイン酸、オレイルアミン、ポリビニルピロリドン、ポリビニルアルコール等を好適に用いることができる。この保護剤は、例えばエーテル類などの有機溶媒に溶解させて用いてもよい。
(Addition process)
In this step, a protective agent is added to the liquid mixture obtained in the mixing step. The protective agent has a function of protecting the produced SmCo-based alloy nanoparticles, and oleic acid, oleylamine, polyvinyl pyrrolidone, polyvinyl alcohol, and the like can be suitably used. This protective agent may be used by dissolving in an organic solvent such as ethers.

保護剤の添加量は、使用するサマリウム塩及びコバルト塩にそれぞれ含まれるサマリウム元素及びコバルト元素の合計1molに対し、0.1〜20molとすることが好ましい。   The addition amount of the protective agent is preferably 0.1 to 20 mol with respect to 1 mol in total of the samarium element and cobalt element contained in the samarium salt and cobalt salt to be used, respectively.

(脱水工程)
脱水工程は、不活性ガスフロー下または不活性ガス置換後の減圧下で混合液を撹拌加熱して脱水する工程である。混合液に含まれる水分を十分に低減することによって、還元されたSmやCo等が酸化されるのを十分に抑制することができる。したがって、一層高い収率でSmCo系合金ナノ粒子を得ることが可能となる。
(Dehydration process)
The dehydration step is a step of dehydrating the mixed liquid by stirring and heating under an inert gas flow or under reduced pressure after the inert gas replacement. By sufficiently reducing the moisture contained in the mixed solution, it is possible to sufficiently suppress the reduction of the reduced Sm, Co and the like. Therefore, it is possible to obtain SmCo-based alloy nanoparticles with a higher yield.

混合液の加熱は、110〜220℃で1〜24時間行なうことが好ましい。その後、混合液を室温まで冷却することが好ましく、10〜30℃に冷却することがより好ましい。これによって、次に説明する還元工程における強還元剤による還元反応を確実に行うことができ、純度の高いSmCo系合金ナノ粒子を得ることができる。一方、ここで冷却せずに、温度が高い状態(例えば50℃以上)で強還元剤の添加を行うと、強還元剤による還元反応が一気に進んでしまうため、例えばコバルト単体(Co金属)などのSmCo系合金以外の不純物が生成し、SmCo系合金の含有量が減少する傾向がある。   The mixture is preferably heated at 110 to 220 ° C. for 1 to 24 hours. Then, it is preferable to cool a liquid mixture to room temperature, and it is more preferable to cool to 10-30 degreeC. As a result, a reduction reaction with a strong reducing agent in the reduction step described below can be performed reliably, and high-purity SmCo-based alloy nanoparticles can be obtained. On the other hand, if a strong reducing agent is added at a high temperature (for example, 50 ° C. or higher) without cooling, the reduction reaction by the strong reducing agent proceeds at a stretch. For example, cobalt alone (Co metal) or the like Impurities other than the SmCo-based alloy are generated, and the content of the SmCo-based alloy tends to decrease.

(還元工程)
還元工程は、脱水工程後の混合液に強還元剤を添加した後、撹拌加熱することで、Sm塩、Co塩及び第3金属元素の塩を十分に還元して、第3金属元素を含有するSmCo系合金ナノ粒子を製造する工程である。
(Reduction process)
In the reduction step, a strong reducing agent is added to the mixed solution after the dehydration step, followed by stirring and heating, thereby sufficiently reducing the Sm salt, the Co salt, and the salt of the third metal element to contain the third metal element. This is a process for producing SmCo-based alloy nanoparticles.

強還元剤としては、LiAlH、NaBH、N、B、LiBH(Cからなる群より選ばれる少なくとも一つを用いることができる。なお、これらの強還元剤は、アルコールなどの有機溶媒に溶解させて混合液に添加することが好ましい。 As the strong reducing agent, at least one selected from the group consisting of LiAlH 4 , NaBH 4 , N 2 H 4 , B 2 H 6 , and LiBH (C 2 H 5 ) 3 can be used. These strong reducing agents are preferably dissolved in an organic solvent such as alcohol and added to the mixed solution.

強還元剤を添加した後、油浴やマントルヒータを用いて、混合液を150〜320℃、好ましくは250〜280℃に保ち、1〜3時間加熱還流させて、強還元剤と還元作用を有する有機溶媒とによる還元反応を行うことにより、反応液を得ることができる。この還元反応によって、Sm塩、Co塩及び第3金属元素の塩が還元される。得られた反応液から、溶媒を除去することによって、第3金属元素を含有するSmCo系合金ナノ粒子が得られる。   After adding the strong reducing agent, the mixture is kept at 150 to 320 ° C., preferably 250 to 280 ° C. using an oil bath or a mantle heater, and heated to reflux for 1 to 3 hours to reduce the strong reducing agent and reducing action. A reaction solution can be obtained by performing a reduction reaction with an organic solvent. By this reduction reaction, the Sm salt, the Co salt, and the salt of the third metal element are reduced. By removing the solvent from the obtained reaction solution, SmCo-based alloy nanoparticles containing the third metal element can be obtained.

なお、上述の還元反応において、Sm塩及びCo塩よりも第3金属元素の塩が還元されやすい性質を有する場合、Sm塩及びCo塩よりも先に還元される傾向がある。このため、第3金属元素が核となり、その核を起点として、SmCo系合金が析出すると考えられる。このような、第3金属元素の存在によって、Sm塩及びCo塩が一層円滑に還元されて、不純物の含有量が十分に低減された第3金属元素を含有するSmCo系合金ナノ粒子を得ることができる。   In the above reduction reaction, when the salt of the third metal element is more easily reduced than the Sm salt and the Co salt, there is a tendency to reduce the salt earlier than the Sm salt and the Co salt. For this reason, it is considered that the third metal element becomes a nucleus, and the SmCo-based alloy is precipitated from the nucleus. By the presence of the third metal element, the Sm salt and the Co salt are more smoothly reduced, and the SmCo-based alloy nanoparticles containing the third metal element in which the impurity content is sufficiently reduced are obtained. Can do.

上述の第3金属元素を含有するSmCo系合金ナノ粒子は、十分に小さい粒径と優れた磁気特性とを併せ持つことから、磁性材料として好適に用いることができる。なお、SmCo系合金ナノ粒子の粒径は、保護剤の添加量や第3金属元素の含有量を本発明の範囲内で変化させたり、還元工程における加熱還流の温度・時間を変えたりすることによって調整することができる。   The SmCo-based alloy nanoparticles containing the third metal element described above can be suitably used as a magnetic material because they have both a sufficiently small particle size and excellent magnetic properties. In addition, the particle size of the SmCo-based alloy nanoparticles may change the amount of the protective agent added or the content of the third metal element within the scope of the present invention, or change the temperature and time of heating and reflux in the reduction process. Can be adjusted by.

本実施形態に係る製造方法によれば、第3金属を含有するSmCo系合金ナノ粒子を高い収率で合成することができる。なお、本実施形態の製造方法によって得られるナノ粒子は、第3元素を含有しないSmCo系合金を主成分とするナノ粒子や、第3金属元素のナノ粒子を含んでいてもよい。   According to the manufacturing method according to the present embodiment, SmCo-based alloy nanoparticles containing a third metal can be synthesized with high yield. Note that the nanoparticles obtained by the production method of the present embodiment may include nanoparticles mainly composed of an SmCo-based alloy that does not contain a third element, or nanoparticles of a third metal element.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(実施例1〜8)
[SmCo系合金ナノ粒子の合成]
サマリウムアセチルアセトナート水和物([CHCOCH=C(O−)CHSm・xHO)0.33mmolと、表1に示す第3金属の塩0.02〜0.5mmolとを1,2−ヘキサデカンジオール(CH(CH13CH(OH)CHOH)2mlに窒素雰囲気下で溶解させて第1の溶液を作製した。
(Examples 1-8)
[Synthesis of SmCo-based alloy nanoparticles]
Samarium acetylacetonate hydrate ([CH 3 COCH═C (O—) CH 3 ] 3 Sm · xH 2 O) 0.33 mmol, third metal salt 0.02 to 0.5 mmol shown in Table 1, Was dissolved in 2 ml of 1,2-hexadecanediol (CH 3 (CH 2 ) 13 CH (OH) CH 2 OH) under a nitrogen atmosphere to prepare a first solution.

上記溶液とは別に、コバルトアセチルアセトナート([CHCOCH=C(O−)CHCo)1.67mmolを、1,2ヘキサデカンジオール2mlに窒素雰囲気下で溶解させ、第2の溶液を作製した。 Separately from the above solution, 1.67 mmol of cobalt acetylacetonate ([CH 3 COCH═C (O—) CH 3 ] 3 Co) was dissolved in 2 ml of 1,2 hexadecandiol under a nitrogen atmosphere to obtain a second solution. Was made.

オクチルエーテル([CH(CHO)40mlに、オレイン酸(CH(CHCH=CH(CHCOOH)3.0mmolと、オレイルアミン(CH(CHCH=CH(CHNH)3.0mmolとを不活性気体(例えば、窒素、アルゴン)雰囲気下で溶解させ、第3の溶液を作製した。 To 40 ml of octyl ether ([CH 3 (CH 2 ) 7 ] 2 O), 3.0 mmol of oleic acid (CH 3 (CH 2 ) 7 CH═CH (CH 2 ) 7 COOH) and oleylamine (CH 3 (CH 2) ) 7 CH═CH (CH 2 ) 8 NH 2 ) (3.0 mmol) was dissolved in an inert gas (eg, nitrogen, argon) atmosphere to prepare a third solution.

次に、第1の溶液、第2の溶液及び第3の溶液を、メカニカルスターラーを使用して窒素雰囲気下で約12時間混合し、混合液を得た。   Next, the first solution, the second solution, and the third solution were mixed for about 12 hours under a nitrogen atmosphere using a mechanical stirrer to obtain a mixed solution.

混合液中に含まれる水を除去するため、窒素気流下で、混合液の入った3口フラスコを油浴中で200℃に加熱して約1時間維持し、その後、室温(約20℃)まで冷却した。そして、冷却した混合液に、強還元剤であるナトリウムボロン水素化物(NaBH)6mmolを溶解させた無水エタノールを添加した。 In order to remove water contained in the mixed solution, a three-necked flask containing the mixed solution was heated to 200 ° C. in an oil bath and maintained for about 1 hour under a nitrogen stream, and then room temperature (about 20 ° C.). Until cooled. Then, absolute ethanol in which 6 mmol of sodium boron hydride (NaBH 4 ) as a strong reducing agent was dissolved was added to the cooled mixture.

その後、油浴の温度を上げて反応溶液を250〜280℃に保ち、1〜3時間加熱還流させた。室温まで冷却後、ウルトラフィルターを用いて濾過して脱水エタノール等で溶液変換と粒子の洗浄を行った。その後、エバポレータを用いて粒子に付着している溶媒を留去し、40℃で真空乾燥を10時間以上行って、実施例1〜8の粒子を得た。   Thereafter, the temperature of the oil bath was raised, the reaction solution was kept at 250 to 280 ° C., and heated to reflux for 1 to 3 hours. After cooling to room temperature, the solution was filtered using an ultrafilter and subjected to solution conversion and particle washing with dehydrated ethanol or the like. Then, the solvent adhering to particle | grains was distilled off using the evaporator, and it vacuum-dried at 40 degreeC for 10 hours or more, and obtained the particle | grains of Examples 1-8.

[粒子の評価]
得られた実施例1〜8の粒子の高分解能TEM(日本電子株式会社製、商品名:JEM−3010)観察(3,000,000倍)を行った。そして、電子顕微鏡画像からランダムに100個の粒子を抽出し、平均粒径を算出した。その結果、合成した粒子の平均粒径は表1に示すとおりであった。
[Evaluation of particles]
The particles of Examples 1 to 8 thus obtained were observed (3,000,000 times) by high-resolution TEM (manufactured by JEOL Ltd., trade name: JEM-3010). Then, 100 particles were randomly extracted from the electron microscope image, and the average particle size was calculated. As a result, the average particle diameter of the synthesized particles was as shown in Table 1.

得られた粒子のX線回折(XRD)測定及びICP発光分光分析を行った。図4は、合成した粒子のXRD測定結果であり、上段のチャートは実施例2で得られた粒子のXRDチャートである。XRDの測定結果から、合成した実施例2の粒子は、酸化物などの不純物の量が十分に低減されたSmCoを主成分とする粒子(SmCo粒子)であることが確認できた。また、高分解能TEMを用いた電子線回折像の解析結果においても、合成された粒子はSmCoであることが確認された。 The obtained particles were subjected to X-ray diffraction (XRD) measurement and ICP emission spectroscopic analysis. FIG. 4 shows the XRD measurement results of the synthesized particles, and the upper chart is the XRD chart of the particles obtained in Example 2. From the measurement results of XRD, the particles synthesized in Example 2, it was confirmed that the particles composed mainly of SmCo 5 in which the amount of impurities such as oxides is sufficiently reduced (SmCo 5 particles). Also in the analysis result of the electron beam diffraction image with high resolution TEM, it was confirmed synthesized particles are SmCo 5.

実施例1及び実施例3〜8の粒子も、酸化物などの不純物の量が十分に低減されたSmCo粒子であることがXRD及び高分解能TEMで確認できた。また、ICP発光分光分析により求められた実施例1〜8の粒子における第3金属元素の含有量は、表1に示すとおりであった。 It was confirmed by XRD and high-resolution TEM that the particles of Example 1 and Examples 3 to 8 were SmCo 5 particles in which the amount of impurities such as oxides was sufficiently reduced. Further, the content of the third metal element in the particles of Examples 1 to 8 obtained by ICP emission spectroscopic analysis was as shown in Table 1.

実施例1〜8におけるSmCo粒子の収率は、表1に示すとおりであった。なお、当該収率は、Sm及びCoの使用量から算出されるSmCoの理論生成質量に対する、ICP発行分光分析によって測定されたSm元素及びCo元素の合計質量の比率である。 The yield of SmCo 5 particles in Examples 1 to 8 was as shown in Table 1. The yield is the ratio of the total mass of Sm element and Co element measured by ICP emission spectroscopic analysis to the theoretically generated mass of SmCo 5 calculated from the amounts of Sm and Co used.

以上の評価結果から、第3金属元素を含有するSmCoナノ粒子が高収率で得られることが確認された。 From the above evaluation results, it was confirmed that SmCo 5 nanoparticles containing the third metal element were obtained in high yield.

[磁気特性の評価]
実施例1〜8のSmCoナノ粒子の保磁力(Hc)を、VSM(振動試料型磁力計)(東英工業株式会社製、商品名:VSM−5)を用いて、印加磁場20kOe、25℃の条件で測定した。保磁力の測定結果は表1に示すとおりであった。図5は、実施例2のSmCoナノ粒子の磁気特性を示すグラフである。実施例1及び実施例3〜8のSmCoナノ粒子も、実施例2のSmCoナノ粒子と同様に十分優れた磁気特性を示した。
[Evaluation of magnetic properties]
The coercive force (Hc) of the SmCo 5 nanoparticles of Examples 1 to 8 was measured using an applied magnetic field of 20 kOe, 25 using a VSM (vibrating sample magnetometer) (trade name: VSM-5, manufactured by Toei Kogyo Co., Ltd.). It measured on the conditions of (degreeC). The measurement results of the coercive force were as shown in Table 1. FIG. 5 is a graph showing the magnetic properties of the SmCo 5 nanoparticles of Example 2. The SmCo 5 nanoparticles of Example 1 and Examples 3 to 8 also exhibited sufficiently excellent magnetic properties as the SmCo 5 nanoparticles of Example 2.

(実施例9)
強還元剤として、ナトリウムボロン水素化物の代わりに、水素化アルミニウムリチウム(LiAlH)を用いたこと以外は、実施例2と同様にして合成を行い、粒子を得た。実施例2と同様にして粒子の評価及び磁気特性の評価を行ったところ、磁気特性に優れ、第3金属元素としてCuを含有するSmCoナノ粒子が高収率で得られたことが分かった。SmCoナノ粒子の粒径、第3金属元素の含有量、収率及び保磁力(Hc)の測定結果は、表1に示すとおりであった。
Example 9
Synthesis was performed in the same manner as in Example 2 except that lithium aluminum hydride (LiAlH 4 ) was used instead of sodium boron hydride as a strong reducing agent, thereby obtaining particles. Particle evaluation and magnetic property evaluation were performed in the same manner as in Example 2. As a result, it was found that SmCo 5 nanoparticles having excellent magnetic properties and containing Cu as the third metal element were obtained in high yield. . The measurement results of the particle size of SmCo 5 nanoparticles, the content of the third metal element, the yield and the coercive force (Hc) were as shown in Table 1.

(比較例1)
第3金属の塩(パラジウムアセチルアセトナート)及びナトリウムボロン水素化物を用いなかったこと以外は実施例1と同様にして、SmCoナノ粒子の合成を行った。実施例1と同様にして粒子の評価及び磁気特性の評価を行った。図4の下段のチャートは比較例1で得られた粒子のXRDチャートである。この分析結果より、粒子にはSmCo系合金以外の化合物(Sm酸化物及びCo酸化物など)が大量に含まれており、SmCo系合金を主成分とする粒子ではないことが確認された。得られた粒子の粒径、収率及び保磁力(Hc)は、表1に示すとおりであった。
(Comparative Example 1)
SmCo 5 nanoparticles were synthesized in the same manner as in Example 1 except that the third metal salt (palladium acetylacetonate) and sodium boron hydride were not used. In the same manner as in Example 1, evaluation of particles and evaluation of magnetic properties were performed. The lower chart of FIG. 4 is an XRD chart of the particles obtained in Comparative Example 1. From this analysis result, it was confirmed that the particles contained a large amount of compounds (Sm oxide, Co oxide, etc.) other than the SmCo-based alloy, and were not particles mainly composed of the SmCo-based alloy. The particle diameter, yield, and coercive force (Hc) of the obtained particles were as shown in Table 1.

(比較例2)
ナトリウムボロン水素化物を用いなかったこと以外は実施例1と同様にして合成を行い、粒子を得た。実施例1と同様にして粒子の評価及び磁気特性の評価を行った。図4の中段のチャートは比較例2で得られた粒子のXRD分析結果である。この分析結果より、粒子にはSmCo系合金以外の化合物(Sm酸化物及びCo酸化物など)が含まれており、SmCo系合金を主成分とする粒子ではないことが確認された。得られた粒子の粒径、粒子の第3金属元素の含有量、収率及び保磁力(Hc)は、表1に示すとおりであった。
(Comparative Example 2)
Synthesis was performed in the same manner as in Example 1 except that sodium boron hydride was not used to obtain particles. In the same manner as in Example 1, evaluation of particles and evaluation of magnetic properties were performed. The middle chart of FIG. 4 shows the results of XRD analysis of the particles obtained in Comparative Example 2. From this analysis result, it was confirmed that the particles contain compounds other than the SmCo-based alloy (such as Sm oxide and Co oxide) and are not particles mainly composed of the SmCo-based alloy. Table 1 shows the particle diameter of the obtained particles, the content of the third metal element in the particles, the yield, and the coercive force (Hc).

(比較例3)
第3金属元素の塩(パラジウムアセチルアセトナート)を用いなかったこと以外は実施例1と同様にして合成を行い、粒子を得た。粒子の粒径、収率及び保磁力(Hc)は、表1に示すとおりであった。比較例3の粒子の保磁力(Hc)は、実施例1〜9の第3金属元素を含有するSmCoナノ粒子に比べて低くなっていた。
(Comparative Example 3)
Synthesis was performed in the same manner as in Example 1 except that the salt of the third metal element (palladium acetylacetonate) was not used to obtain particles. The particle size, yield and coercive force (Hc) of the particles were as shown in Table 1. The coercive force (Hc) of the particles of Comparative Example 3 was lower than that of the SmCo 5 nanoparticles containing the third metal element of Examples 1-9.

本実施形態のSmCoを主成分として含有するSmCo系合金ナノ粒子の高分解能TEM写真及び電子線回折像である。Is a high resolution TEM photograph and an electron beam diffraction image of SmCo-based alloy nanoparticles containing SmCo 5 of the present embodiment as the main component. 本発明におけるSmCo系合金ナノ粒子の微細構造の一例を示す電界放射型透過電子顕微鏡(FE−TEM)の写真である。It is a photograph of a field emission transmission electron microscope (FE-TEM) showing an example of a fine structure of SmCo-based alloy nanoparticles in the present invention. 図2に示すSmCo系合金ナノ粒子の走査型透過電子顕微鏡(STEM)の写真である。It is a photograph of the scanning transmission electron microscope (STEM) of the SmCo-based alloy nanoparticles shown in FIG. 合成した粒子のXRD測定結果を示すXRDチャートである。It is an XRD chart which shows the XRD measurement result of the synthetic | combination particle | grain. 実施例2のSmCoナノ粒子の磁気特性を示すグラフである。4 is a graph showing the magnetic properties of SmCo 5 nanoparticles of Example 2.

Claims (10)

構成元素としてSm及びCoを有するSmCo系合金を主成分として含有し、
前記SmCo系合金に対するSm及びCoとは異なる金属元素の含有量が0.05〜20質量%であるSmCo系合金ナノ粒子。
Containing an SmCo-based alloy having Sm and Co as constituent elements as a main component;
SmCo-based alloy nanoparticles in which the content of a metal element different from Sm and Co in the SmCo-based alloy is 0.05 to 20% by mass.
前記SmCo系合金に対する前記金属元素の前記含有量が0.05〜10質量%である請求項1記載のSmCo系合金ナノ粒子。   The SmCo-based alloy nanoparticles according to claim 1, wherein the content of the metal element with respect to the SmCo-based alloy is 0.05 to 10% by mass. 前記金属元素が、Au,Ag,Pt,Pd,Rh,Ru,Ir,Os,Cu,Ni,Cr,Al,Mnからなる群より選ばれる少なくとも一つの元素を含有する請求項1又は2記載のSmCo系合金ナノ粒子。   3. The metal element according to claim 1, wherein the metal element contains at least one element selected from the group consisting of Au, Ag, Pt, Pd, Rh, Ru, Ir, Os, Cu, Ni, Cr, Al, and Mn. SmCo-based alloy nanoparticles. 粒径が1〜30nmである請求項1〜3のいずれか一項に記載のSmCo系合金ナノ粒子。   The SmCo-based alloy nanoparticles according to any one of claims 1 to 3, wherein the particle size is 1 to 30 nm. サマリウム塩、コバルト塩、及び前記金属元素の塩を含む有機溶媒に、強還元剤を加えて、前記サマリウム塩、前記コバルト塩、及び前記金属元素の塩を還元させる湿式合成により得られる請求項1〜4のいずれか一項に記載のSmCo系合金ナノ粒子。   2. A wet synthesis in which a samarium salt, a cobalt salt, and a salt of the metal element are added to an organic solvent to reduce the samarium salt, the cobalt salt, and the metal element salt. SmCo-based alloy nanoparticles according to any one of -4. コア部分と、該コア部分を覆うシェル部分とを有するコアシェル構造を備えており、
前記コア部分における前記SmCo系合金に対する前記金属元素の比率が、前記シェル部分の当該比率よりも大きい請求項1〜5のいずれか一項に記載のSmCo系合金ナノ粒子。
A core shell structure having a core portion and a shell portion covering the core portion;
The SmCo-based alloy nanoparticles according to any one of claims 1 to 5, wherein a ratio of the metal element to the SmCo-based alloy in the core part is larger than the ratio of the shell part.
サマリウム塩、コバルト塩、Sm及びCoとは異なる金属元素の塩、並びに保護剤を含む原料を、還元性を有する有機溶媒とともに混合して混合液を得る混合工程と、
前記混合液に、強還元剤を添加して加熱することにより、前記サマリウム塩、前記コバルト塩及び前記金属元素の塩を還元する還元工程と、を有する、
構成元素としてSm及びCoを有するSmCo系合金を主成分として含有するSmCo系合金ナノ粒子の製造方法。
A mixing step of mixing a samarium salt, a cobalt salt, a salt of a metal element different from Sm and Co, and a raw material containing a protective agent together with a reducing organic solvent to obtain a mixed solution;
A reduction step of reducing the samarium salt, the cobalt salt, and the salt of the metal element by adding a strong reducing agent to the mixed solution and heating.
A method for producing SmCo-based alloy nanoparticles containing, as a main component, an SmCo-based alloy having Sm and Co as constituent elements.
前記還元工程の前に、前記混合工程で得られた前記混合液を撹拌加熱して均一に溶解するとともに脱水し、冷却する脱水工程を有する、請求項7記載のSmCo系合金ナノ粒子の製造方法。   The method for producing SmCo-based alloy nanoparticles according to claim 7, further comprising a dehydration step in which the mixed solution obtained in the mixing step is stirred and heated to uniformly dissolve and dehydrate and cool before the reduction step. . 前記金属元素が、Au,Ag,Pt,Pd,Rh,Ru,Ir,Os,Cu,Ni,Cr,Al,Mnからなる群より選ばれる少なくとも一つの元素を含有する請求項7又は8記載のSmCo系合金ナノ粒子の製造方法。   The metal element contains at least one element selected from the group consisting of Au, Ag, Pt, Pd, Rh, Ru, Ir, Os, Cu, Ni, Cr, Al, and Mn. A method for producing SmCo-based alloy nanoparticles. 前記強還元剤が、LiAlH、NaBH、N、B、LiBH(Cからなる群より選ばれる少なくとも一つを含有する請求項7〜9のいずれか一項に記載のSmCo系合金ナノ粒子の製造方法。 Wherein the strong reducing agent, any of which LiAlH 4, NaBH 4, N 2 H 4, B 2 H 6, LiBH (C 2 H 5) according to claim 7-9, containing at least one selected from the group consisting of 3 The method for producing SmCo-based alloy nanoparticles according to one item.
JP2008058346A 2008-03-07 2008-03-07 Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME Withdrawn JP2009215583A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008058346A JP2009215583A (en) 2008-03-07 2008-03-07 Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
US12/397,786 US20090257907A1 (en) 2008-03-07 2009-03-04 SmCo-BASED ALLOY NANOPARTICLES AND PROCESS FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058346A JP2009215583A (en) 2008-03-07 2008-03-07 Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2009215583A true JP2009215583A (en) 2009-09-24

Family

ID=41164156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058346A Withdrawn JP2009215583A (en) 2008-03-07 2008-03-07 Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME

Country Status (2)

Country Link
US (1) US20090257907A1 (en)
JP (1) JP2009215583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366832A (en) * 2011-06-30 2012-03-07 燕山大学 Preparation method of anisotropic samarium-cobalt/cobalt nano-composite magnet
JP2017120868A (en) * 2015-04-20 2017-07-06 株式会社セルモエンターティメントジャパン Magnetic material, and eye glasses, lens and accessory for eye glasses, each arranged by use of the magnetic material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211205B1 (en) * 2009-07-28 2012-07-03 Ut Dots, Inc. Method of controlled synthesis of nanoparticles
US20120019341A1 (en) * 2010-07-21 2012-01-26 Alexandr Gabay Composite permanent magnets made from nanoflakes and powders
CN102416483B (en) * 2011-11-28 2013-02-13 中国科学院宁波材料技术与工程研究所 Method for preparing double-phase composite samarium cobalt-iron powder
CN108335900B (en) * 2018-03-21 2020-08-25 重庆科技学院 Preparation of SmCo7Method for manufacturing/Co composite permanent magnet and magnet thereof
CN109817405B (en) * 2019-03-29 2020-08-04 南京工程学院 Preparation method of nano magnetic particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366832A (en) * 2011-06-30 2012-03-07 燕山大学 Preparation method of anisotropic samarium-cobalt/cobalt nano-composite magnet
CN102366832B (en) * 2011-06-30 2013-07-03 燕山大学 Preparation method of anisotropic samarium-cobalt/cobalt nano-composite magnet
JP2017120868A (en) * 2015-04-20 2017-07-06 株式会社セルモエンターティメントジャパン Magnetic material, and eye glasses, lens and accessory for eye glasses, each arranged by use of the magnetic material

Also Published As

Publication number Publication date
US20090257907A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
Gandha et al. High energy product developed from cobalt nanowires
TWI673732B (en) R-Fe-B based sintered magnet and manufacturing method thereof
US7029514B1 (en) Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
JP2008117855A (en) Manufacturing method of nano-composite magnet
Matsushita et al. Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations
Gabay et al. Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry
JP2005273011A (en) Iron based nanosize particle and production method therefor
JPWO2016162990A1 (en) Rare earth permanent magnet and manufacturing method thereof
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
JP4938285B2 (en) Method for producing core / shell composite nanoparticles
CN108705078B (en) Metal alloy-metal oxide double-magnetic shell-core structure nanocrystal and preparation method and application thereof
Gandha et al. Effect of ${\rm RuCl} _ {3} $ on Morphology and Magnetic Properties of CoNi Nanowires
Zhang et al. Structural, morphological, and magnetic study of nanocrystalline cobalt–nickel–copper particles
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
JP2014231624A (en) METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET
JP7263696B2 (en) Alloys for rare earth magnets
CN110935873A (en) Polycrystalline rare earth transition metal alloy powder and method for producing same
JP2010103512A (en) METHOD FOR PRODUCING FePd/Fe NANOCOMPOSITE MAGNET
CN109671547A (en) R-T-B based sintered magnet and its manufacturing method
TWI375969B (en)
JP2010189721A (en) Core/shell type pd/fe2o3nanoparticle, method for producing the same, and fepd/fe nanoparticle obtained by using the same
JP2020013887A (en) Manufacturing method of alloy particles and alloy particles
WO2018123988A1 (en) Rare earth-transition metal system ferromagnetic alloy
JP2008138243A (en) METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510