JP2010138468A - Method for manufacturing cobalt nanoparticle - Google Patents

Method for manufacturing cobalt nanoparticle Download PDF

Info

Publication number
JP2010138468A
JP2010138468A JP2008318132A JP2008318132A JP2010138468A JP 2010138468 A JP2010138468 A JP 2010138468A JP 2008318132 A JP2008318132 A JP 2008318132A JP 2008318132 A JP2008318132 A JP 2008318132A JP 2010138468 A JP2010138468 A JP 2010138468A
Authority
JP
Japan
Prior art keywords
cobalt
nanoparticles
precursor
serving
cobalt nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008318132A
Other languages
Japanese (ja)
Inventor
Satoshi Nagao
諭 長尾
Toshiji Teranishi
利治 寺西
Masayuki Kanehara
正幸 金原
Ryota Sato
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008318132A priority Critical patent/JP2010138468A/en
Publication of JP2010138468A publication Critical patent/JP2010138468A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture cobalt nanoparticles having small particle size and higher monodispersity compared to that of conventional cobalt nanoparticles. <P>SOLUTION: A method for manufacturing the cobalt nanoparticles comprises reacting cobalt benzoate serving as a cobalt precursor, oleic acid and trioctylphosphine serving as protecting ligands and super hydride serving as a reducing agent in a dioctyl ether solvent in an inert atmosphere at a temperature of ≥200°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノサイズの粒径を有し、単分散であるコバルトナノ粒子の製造方法に関する。   The present invention relates to a method for producing monodispersed cobalt nanoparticles having a nano-sized particle size.

従来、磁性金属などからなるナノメータ(nm)サイズの金属粒子が知られている。その製造方法として液相合成法がある。液相合成法とは、金属塩、有機金属化合物などを液中に溶解させ、還元又は分解等により、金属微粒子を析出させる方法である。公知の液相合成法として、共沈法、アルコール還元法、有機金属化合物の熱分解法、逆ミセル法、超音波法、エレクトライド還元法などがある。各手法により合成された金属微粒子の形状及び粒径の均一性、収量、取り扱いの難易を考慮すると、金属微粒子は、アルコール還元法又は有機金属化合物の熱分解により得る方法が適している。   Conventionally, metal particles of nanometer (nm) size made of magnetic metal or the like are known. As a manufacturing method thereof, there is a liquid phase synthesis method. The liquid phase synthesis method is a method in which a metal salt, an organometallic compound, or the like is dissolved in a liquid and metal fine particles are precipitated by reduction or decomposition. Known liquid phase synthesis methods include a coprecipitation method, an alcohol reduction method, a thermal decomposition method of an organometallic compound, a reverse micelle method, an ultrasonic method, and an electride reduction method. Considering the uniformity of the shape and particle size of the metal fine particles synthesized by each method, the yield, and the difficulty of handling, the metal fine particles are suitably obtained by alcohol reduction or thermal decomposition of an organometallic compound.

下記特許文献1には、エーテル溶媒中で塩化コバルトをCo前駆体として、オレイン酸とトリオクチルホスフィン(TOP)を保護配位子として、スーバーヒドリドを還元剤として用いて、不活性雰囲気下、200℃で反応させることにより、2〜6nmのCoナノ粒子を生成することが開示されている。   In Patent Document 1 below, cobalt chloride is used as a Co precursor in an ether solvent, oleic acid and trioctylphosphine (TOP) are used as protective ligands, and superhydride is used as a reducing agent under an inert atmosphere. It is disclosed to produce 2-6 nm Co nanoparticles by reacting at 0 ° C.

しかし、特許文献1で得られるCoナノ粒子は、単分散性に欠けるという問題があった。
又、下記非特許文献1に開示された既存の手法では、粒径が大きく、多分散な粒子が生成してしまうという問題があった。
However, the Co nanoparticles obtained in Patent Document 1 have a problem of lacking monodispersity.
In addition, the existing method disclosed in the following Non-Patent Document 1 has a problem that the particle size is large and polydispersed particles are generated.

特開2000−54012号公報JP 2000-54012 A J.Applied Physics,85,4325(1999)J. et al. Applied Physics, 85, 4325 (1999)

本発明は、粒径が小さく、且つより単分散なコバルトナノ粒子を製造することを目的とする。   The object of the present invention is to produce cobalt nanoparticles having a smaller particle size and more monodisperse.

本発明者は、特定の、コバルト前駆体を用いることで、上記課題が解決されることを見出し、本発明に到達した。
即ち、本発明は、コバルトナノ粒子の製造方法の発明であり、ジオクチルエーテル溶媒中で、コバルト前駆体である安息香酸コバルトと、保護配位子であるオレイン酸及びトリオクチルホスフィンと、還元剤であるスーパーヒドリドとを、不活性雰囲気下、200℃以上で反応させることを特徴とする。
The present inventor has found that the above problem can be solved by using a specific cobalt precursor, and has reached the present invention.
That is, the present invention is an invention of a method for producing cobalt nanoparticles, and in a dioctyl ether solvent, cobalt benzoate as a cobalt precursor, oleic acid and trioctylphosphine as protective ligands, and a reducing agent. It is characterized by reacting with a certain superhydride at 200 ° C. or higher in an inert atmosphere.

本発明により、粒径が小さく、且つ従来のコバルトナノ粒子より単分散であるコバルトナノ粒子を製造することができる。   According to the present invention, cobalt nanoparticles having a small particle size and monodispersed from conventional cobalt nanoparticles can be produced.

以下、実施例および比較例によって本発明をさらに詳細に説明する。
[実施例]
図1に示す、コバルトナノ粒子の製造スキームに従って、コバルトナノ粒子を製造した。ここで、コバルト前駆体として安息香酸コバルトを用い、保護配位子としてオレイン酸(OAc)及びトリオクチルホスフィン(TOP)を用い、還元剤であるスーパーヒドリドとしてLiBEtHを用いた。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Example]
Cobalt nanoparticles were produced according to the cobalt nanoparticle production scheme shown in FIG. Here, cobalt benzoate was used as a cobalt precursor, oleic acid (OAc) and trioctylphosphine (TOP) were used as protective ligands, and LiBEt 3 H was used as a superhydride as a reducing agent.

図2に、得られたコバルトナノ粒子の電子顕微鏡写真を示す。3〜5nmの単分散コバルトナノ粒子が生成していることが確認された。   FIG. 2 shows an electron micrograph of the obtained cobalt nanoparticles. It was confirmed that 3 to 5 nm monodispersed cobalt nanoparticles were generated.

[比較例1]
コバルト前駆体として酢酸コバルトを用いたほかは、実施例と同様にして、コバルトナノ粒子を製造した。
[Comparative Example 1]
Cobalt nanoparticles were produced in the same manner as in the Examples except that cobalt acetate was used as the cobalt precursor.

図3に、得られたコバルトナノ粒子の電子顕微鏡写真を示す。4〜7nmの粒子径が異なるコバルトナノ粒子が生成していることが確認された。   FIG. 3 shows an electron micrograph of the obtained cobalt nanoparticles. It was confirmed that cobalt nanoparticles having different particle diameters of 4 to 7 nm were generated.

[比較例2]
コバルト前駆体として塩化コバルトを用いたほかは、実施例と同様にして、コバルトナノ粒子を製造した。
[Comparative Example 2]
Cobalt nanoparticles were produced in the same manner as in the Examples except that cobalt chloride was used as the cobalt precursor.

図4に、得られたコバルトナノ粒子の電子顕微鏡写真を示す。実施例と比較して粒子が2〜20nmと大きく、多分散のコバルトナノ粒子が生成していることが確認された。   FIG. 4 shows an electron micrograph of the obtained cobalt nanoparticles. It was confirmed that polydispersed cobalt nanoparticles were generated with particles as large as 2 to 20 nm as compared with Examples.

上記のようなカルボキシル基を含むCo前駆体ではカルボキシル基は中心Coとキレート配位を形成しており、塩化コバルトと比較して、Co−配位子間の結合力は小さい。そのため、熱分解が容易に起こり、核形成と核成長を適切に制御できると考えられる。   In the Co precursor containing a carboxyl group as described above, the carboxyl group forms a chelate coordination with the central Co, and the binding force between the Co-ligand is smaller than that of cobalt chloride. Therefore, it is considered that thermal decomposition occurs easily, and nucleation and growth can be appropriately controlled.

コバルト前駆体として安息香酸コバルトを用いることにより、粒径が小さく、且つ従来のコバルトナノ粒子より単分散であるコバルトナノ粒子を製造することができる。   By using cobalt benzoate as a cobalt precursor, cobalt nanoparticles having a small particle size and monodispersed than conventional cobalt nanoparticles can be produced.

コバルトナノ粒子の製造スキームを示す。A production scheme of cobalt nanoparticles is shown. コバルト前駆体として安息香酸コバルトを用いて得られたコバルトナノ粒子の電子顕微鏡写真を示す。The electron micrograph of the cobalt nanoparticle obtained using cobalt benzoate as a cobalt precursor is shown. コバルト前駆体として酢酸コバルトを用いて得られたコバルトナノ粒子の電子顕微鏡写真を示す。The electron micrograph of the cobalt nanoparticle obtained using cobalt acetate as a cobalt precursor is shown. コバルト前駆体として塩化コバルトを用いて得られたコバルトナノ粒子の電子顕微鏡写真を示す。The electron micrograph of the cobalt nanoparticle obtained using cobalt chloride as a cobalt precursor is shown.

Claims (1)

ジオクチルエーテル溶媒中で、コバルト前駆体である安息香酸コバルトと、保護配位子であるオレイン酸及びトリオクチルホスフィンと、還元剤であるスーパーヒドリドとを、不活性雰囲気下、200℃以上で反応させることを特徴とするコバルトナノ粒子の製造方法。   In a dioctyl ether solvent, cobalt benzoate, which is a cobalt precursor, oleic acid and trioctylphosphine, which are protective ligands, and superhydride, which is a reducing agent, are reacted at 200 ° C. or higher in an inert atmosphere. The manufacturing method of the cobalt nanoparticle characterized by the above-mentioned.
JP2008318132A 2008-12-15 2008-12-15 Method for manufacturing cobalt nanoparticle Pending JP2010138468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318132A JP2010138468A (en) 2008-12-15 2008-12-15 Method for manufacturing cobalt nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318132A JP2010138468A (en) 2008-12-15 2008-12-15 Method for manufacturing cobalt nanoparticle

Publications (1)

Publication Number Publication Date
JP2010138468A true JP2010138468A (en) 2010-06-24

Family

ID=42348838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318132A Pending JP2010138468A (en) 2008-12-15 2008-12-15 Method for manufacturing cobalt nanoparticle

Country Status (1)

Country Link
JP (1) JP2010138468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077691A (en) * 2016-05-30 2016-11-09 湖州师范学院 A kind of metallic cobalt microsphere
CN106077692A (en) * 2016-05-30 2016-11-09 湖州师范学院 A kind of preparation method of metallic cobalt microsphere
CN114905049A (en) * 2022-05-11 2022-08-16 江南大学 Chiral cobalt super particle and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077691A (en) * 2016-05-30 2016-11-09 湖州师范学院 A kind of metallic cobalt microsphere
CN106077692A (en) * 2016-05-30 2016-11-09 湖州师范学院 A kind of preparation method of metallic cobalt microsphere
CN114905049A (en) * 2022-05-11 2022-08-16 江南大学 Chiral cobalt super particle and preparation method thereof
CN114905049B (en) * 2022-05-11 2023-06-02 江南大学 Chiral cobalt super-particle and preparation method thereof

Similar Documents

Publication Publication Date Title
Fiévet et al. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions
Seo et al. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation
Lignier et al. Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals
Wang et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route
Li et al. Synthesis of hexagonal and triangular Fe 3 O 4 nanosheets via seed-mediated solvothermal growth
KR100869026B1 (en) Spherical assembly particle composition of cuprous oxide and preparation method thereof
Fereshteh et al. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds
CN103537293B (en) For the preparation of Catalysts and its preparation method and the application of chiral selectivity and the selective SWCN of electric conductivity
JP5558826B2 (en) Method for producing iron or iron oxide nanopowder particles
Ma et al. Novel synthesis and characterization of bismuth nano/microcrystals with sodium hypophosphite as reductant
Wang et al. Tailored synthesis of various Au nanoarchitectures with branched shapes
JP2005336530A (en) Flock of nanoparticles of magnetic metal, and manufacturing method therefor
Wang et al. Solution synthesis of triangular and hexagonal nickel nanosheets with the aid of tungsten hexacarbonyl
JP5448673B2 (en) Method for producing composite oxide nanoparticles
Logutenko et al. Characterization and growth mechanism of nickel nanowires resulting from reduction of nickel formate in polyol medium
US20220241857A1 (en) Synthetic method for preparing small palladium nanocubes
Sadeghi et al. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals
JP2010138468A (en) Method for manufacturing cobalt nanoparticle
JP2013524021A (en) Mass production method of silver nanoparticles having uniform size
JP2009097038A (en) PRODUCTION METHOD OF FePt NANOPARTICLE
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
Chen et al. Template-free synthesis and characterization of dendritic cobalt microstructures by hydrazine reduction route
JP2008188573A (en) Fine particle manufacturing method
Murugesan et al. An Overview on synthesis of metal oxide nanoparticles