JP2009097038A - PRODUCTION METHOD OF FePt NANOPARTICLE - Google Patents

PRODUCTION METHOD OF FePt NANOPARTICLE Download PDF

Info

Publication number
JP2009097038A
JP2009097038A JP2007269760A JP2007269760A JP2009097038A JP 2009097038 A JP2009097038 A JP 2009097038A JP 2007269760 A JP2007269760 A JP 2007269760A JP 2007269760 A JP2007269760 A JP 2007269760A JP 2009097038 A JP2009097038 A JP 2009097038A
Authority
JP
Japan
Prior art keywords
nanoparticles
fept
compound
fept nanoparticles
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007269760A
Other languages
Japanese (ja)
Inventor
Tetsuya Aisaka
哲彌 逢坂
Atsushi Sugiyama
敦史 杉山
Izumi Kawakita
泉 川北
Takuya Nakanishi
卓也 中西
Hironori Iida
広範 飯田
Kunihiko Kojima
邦彦 小島
Kentaro Tada
健太郎 多田
Satoshi Obara
智 小原
Jin Iwaki
仁 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Toyo Gosei Co Ltd
Original Assignee
Waseda University
Toyo Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Toyo Gosei Co Ltd filed Critical Waseda University
Priority to JP2007269760A priority Critical patent/JP2009097038A/en
Publication of JP2009097038A publication Critical patent/JP2009097038A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of FePt nanoparticles, capable of yielding the FePt nanoparticles which have narrow particle size distribution and are uniformly dispersed (i. e. the particles are individually dispersed and can be well dispersed particularly in liquid). <P>SOLUTION: The FePt nanoparticles are obtained by producing the nanoparticles containing Fe and Pt through thermal decomposition and/or reduction reaction of a solvent solution or suspension which is prepared using an ionic liquid as a solvent and contains a Fe compound, a Pt compound and a reducing agent. The FePt nanoparticles thus obtained have narrow particle size distribution and are uniformly dispersed. A FePt alloy shows high resistance to poisoning by carbon monoxide (CO) and is thus expected to be applied to fuel cells. The FePt nanoparticles are thermochemically stable and have high crystal magnetic anisotropic energy and thus have magnetic medical applications such as high-density perpendicular magnetic recording media, magnetic separation, DDS (drug delivery system) and hyperthermia etc. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、FePtナノ粒子の製造方法に関する。   The present invention relates to a method for producing FePt nanoparticles.

fct−FePtナノ粒子は高い結晶磁気異方性エネルギーをもつことから、高密度垂直磁気記録媒体のほか、磁気分離、ハイパーサーミアなど磁気医療分野への応用が期待されている。FePtナノ粒子は、通常、合成時fcc構造をとっており、磁気異方性を示すfct構造に規則化させるためには焼成処理が必要となっている。Sunらによってfcc−FePtナノ粒子を合成する方法が報告(非特許文献5)されて以来、有機溶媒を用いた合成法が多く検討されており、上述した用途におけるfct−FePtナノ粒子の実用化には、粒子径分布が狭いこと、液体中での分散性がよいことが必要とされているが、従来の合成法で得られる粒子群は、粒子径分布が広く、目的の粒子径を得るための工程(例えば、遠心分離機などの操作)が必要となっている。しかしながら、粒子径分布や均一分散の達成については報告がなく、また、イオン性液体を用いた合成例もない。   Since fct-FePt nanoparticles have high magnetocrystalline anisotropy energy, they are expected to be applied to magnetic medical fields such as magnetic separation and hyperthermia in addition to high-density perpendicular magnetic recording media. FePt nanoparticles usually have an fcc structure at the time of synthesis, and a firing treatment is required to order the fct structure exhibiting magnetic anisotropy. Since a method for synthesizing fcc-FePt nanoparticles was reported by Sun et al. (Non-Patent Document 5), many synthetic methods using organic solvents have been studied, and practical application of fct-FePt nanoparticles in the above-mentioned applications Is required to have a narrow particle size distribution and good dispersibility in a liquid, but the particle groups obtained by the conventional synthesis method have a wide particle size distribution and obtain the desired particle size. Process (for example, operation of a centrifuge, etc.) is required. However, there is no report on achievement of particle size distribution and uniform dispersion, and there is no synthesis example using an ionic liquid.

Carla W. Scheeren et al., Inorganic Chemistry, 42, 4738 (2003)Carla W. Scheeren et al., Inorganic Chemistry, 42, 4738 (2003) Yong Wang et al., Chemical Communications, 2006, 2545Yong Wang et al., Chemical Communications, 2006, 2545 Gledison S. Fonseca et al., Journal of Colloid and Interface Science 301, 193 (2006)Gledison S. Fonseca et al., Journal of Colloid and Interface Science 301, 193 (2006) Yong Wang et al., Journal of American Chemical Society, 127, 5316 (2005)Yong Wang et al., Journal of American Chemical Society, 127, 5316 (2005) S. Sun, et al., Science, 28, 1989(2000)S. Sun, et al., Science, 28, 1989 (2000) S. Sun, Adv. Mater., 18, 393(2006)S. Sun, Adv. Mater., 18, 393 (2006)

本発明は上記事情に鑑みなされたもので、粒子径分布が狭く、均一分散の(粒子が個々に分散した、特に液体中での分散性がよい)FePtナノ粒子を得ることができるFePtナノ粒子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and FePt nanoparticles that can obtain FePt nanoparticles with a narrow particle size distribution and uniform dispersion (particles are dispersed individually, particularly in liquids). It aims at providing the manufacturing method of.

本発明者は、上記目的を達成するため鋭意検討した結果、イオン性液体を溶媒とし、Fe化合物とPt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応によりFeとPtとを含むナノ粒子を生成させることにより、小径で粒子径が揃った、分散性のよいFePtナノ粒子を製造することができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the inventor of the present invention uses an ionic liquid as a solvent, and performs Fe and Pt compounds and a reducing agent from a solvent solution or suspension containing a Fe compound, a Pt compound, and a reducing agent by thermal decomposition and / or reduction reaction. It was found that by generating nanoparticles containing Pt and Pt, it is possible to produce FePt nanoparticles having a small particle diameter and a uniform particle diameter, and having good dispersibility, and the present invention has been made.

従って、本発明は、以下のFePtナノ粒子の製造方法を提供する。
[1] FePtナノ粒子を製造する方法であって、イオン性液体を溶媒とし、Fe化合物とPt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応によりFeとPtとを含むナノ粒子を生成させることを特徴とするFePtナノ粒子の製造方法。
[2] FePtナノ粒子を製造する方法であって、
イオン性液体を溶媒とし、Pt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応により金属Pt核粒子を生成させる工程、
金属Pt核粒子を生成させた後の上記溶媒溶液又は懸濁液にFe化合物を添加して、上記金属Pt核粒子上に金属Feを析出させることによりFeとPtとを含むナノ粒子を生成させる工程、
生成した上記FeとPtとを含むナノ粒子を、熟成してPt原子とFe原子とを相互拡散させて合金化する工程
を含むことを特徴とするFePtナノ粒子の製造方法。
[3] 上記FePtナノ粒子が面心立方(fcc)構造を含み、更に、FePtナノ粒子にアニール処理を施すことにより、面心立方(fcc)構造を面心正方(fct)構造に相転移させてFePt磁性ナノ粒子とすることを特徴とする[1]又は[2]記載のFePtナノ粒子の製造方法。
Accordingly, the present invention provides the following method for producing FePt nanoparticles.
[1] A method for producing FePt nanoparticles, wherein an ionic liquid is used as a solvent, and Fe and Pt are subjected to thermal decomposition and / or reduction reaction from a solvent solution or suspension containing an Fe compound, a Pt compound, and a reducing agent. A method for producing FePt nanoparticles, comprising producing nanoparticles comprising:
[2] A method for producing FePt nanoparticles,
A step of generating metal Pt core particles by thermal decomposition and / or reduction reaction from a solvent solution or suspension containing a Pt compound and a reducing agent using an ionic liquid as a solvent,
An Fe compound is added to the solvent solution or suspension after the metal Pt core particles are generated, and metal Fe is precipitated on the metal Pt core particles to generate nanoparticles containing Fe and Pt. Process,
A method for producing FePt nanoparticles, comprising a step of aging the produced nanoparticles containing Fe and Pt to cause mutual diffusion of Pt atoms and Fe atoms to form an alloy.
[3] The FePt nanoparticles include a face-centered cubic (fcc) structure, and the FePt nanoparticles are annealed to cause the face-centered cubic (fcc) structure to undergo a phase transition to a face-centered square (fct) structure. The method for producing FePt nanoparticles according to [1] or [2], wherein the FePt magnetic nanoparticles are used.

本発明によれば、粒子径分布が狭く、均一に分散したFePtナノ粒子を提供することができる。FePt合金は、一酸化炭素(CO)による被毒耐性が高いことから、特に、燃料電池への応用が期待できる。また、本発明のFePtナノ粒子は、熱化学的に安定で高い結晶磁気異方性エネルギーを有することから、高密度垂直磁気記録媒体、磁気分離、DDS(ドラッグデリバリーシステム)、ハイパーサーミア等の磁気医療分野などに応用することができる。   According to the present invention, FePt nanoparticles having a narrow particle size distribution and uniform dispersion can be provided. Since the FePt alloy has high resistance to poisoning by carbon monoxide (CO), application to a fuel cell can be expected. Further, since the FePt nanoparticles of the present invention are thermochemically stable and have high magnetocrystalline anisotropy energy, magnetic medical treatment such as high-density perpendicular magnetic recording medium, magnetic separation, DDS (drug delivery system), hyperthermia, etc. It can be applied to fields.

以下、本発明について、更に詳しく説明する。
本発明のFePtナノ粒子の製造方法では、Fe化合物とPt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応によりFePtナノ粒子を生成させるが、この際の溶媒としてイオン性液体を用いる。
Hereinafter, the present invention will be described in more detail.
In the method for producing FePt nanoparticles of the present invention, FePt nanoparticles are generated from a solvent solution or suspension containing an Fe compound, a Pt compound and a reducing agent by thermal decomposition and / or reduction reaction. An ionic liquid is used.

Fe化合物としては、例えば鉄カルボニル、鉄アセチルアセトナート、鉄エトキシド等の鉄アルコキシドなどを用いることができる。また、Pt化合物としては、例えばPtアセチルアセトナート、Ptエトキシド(Pt(OEt)2)等のPtアルコキシドなどを用いることができる。 As the Fe compound, for example, iron alkoxide such as iron carbonyl, iron acetylacetonate, and iron ethoxide can be used. Moreover, as a Pt compound, Pt alkoxides, such as Pt acetylacetonate and Pt ethoxide (Pt (OEt) 2 ), etc. can be used, for example.

還元剤としては、1−オクタデセン等の炭素数7〜20の不飽和炭化水素(直鎖状のものが好ましく、また片末端に二重結合を有するものが好ましい)、1,2−ヘキサデカンジオール等の炭素数2〜20の飽和炭化水素ジオール(飽和炭化水素基が直鎖状のものが好ましく、また1,2−位に各々ヒドロキシル基を有するものが好ましい)などを用いることができる。   Examples of the reducing agent include unsaturated hydrocarbons having 7 to 20 carbon atoms such as 1-octadecene (preferably linear hydrocarbons and those having a double bond at one end), 1,2-hexadecanediol, etc. Or a saturated hydrocarbon diol having 2 to 20 carbon atoms (preferably having a saturated hydrocarbon group having a straight chain, and preferably having a hydroxyl group at each of the 1,2-positions).

本発明においては、Fe化合物とPt化合物と還元剤とを含む溶液又は懸濁液の溶媒(分散媒)として、イオン性液体を用いる。イオン性液体とは、100℃以下で液状の塩であり、常温で液状であることが好ましく、具体的には、下記式(1)〜(3)
(式中、R1〜R8はアルキル基、好ましくは炭素数1〜4のアルキル基、又はアルコキシアルキル基、好ましくは炭素数1〜3のアルコキシアルキル基である。)
で示されるものから選ばれるいずれかのカチオンと、BF4 -、PF6 -、CF3SO3 -、(CF3SO2N)2 -から選ばれるいずれかのアニオンとの組合せの塩が例示される。
In the present invention, an ionic liquid is used as a solvent (dispersion medium) for a solution or suspension containing an Fe compound, a Pt compound, and a reducing agent. The ionic liquid is a salt that is liquid at 100 ° C. or lower, and is preferably liquid at room temperature. Specifically, the following formulas (1) to (3) are used.
(Wherein R 1 to R 8 are alkyl groups, preferably an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group, preferably an alkoxyalkyl group having 1 to 3 carbon atoms.)
And a salt of a combination of any one of the cations selected from those shown above and any anion selected from BF 4 , PF 6 , CF 3 SO 3 and (CF 3 SO 2 N) 2 Is done.

上記R1〜R8のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、nーブチル基、i−ブチル基、t−ブチル基が挙げられる。また、上記R1〜R8のアルコキシアルキル基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基が挙げられる。 Specific examples of the alkyl group for R 1 to R 8 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a t-butyl group. In addition, examples of the alkoxyalkyl group of R 1 to R 8 include a methoxymethyl group, a methoxyethyl group, and an ethoxymethyl group.

より具体的には、式(1)で示されるカチオンとしては、R1及びR2において、一方がメチル基、他方がエチル基、n−プロピル基又はn−ブチル基であるものが好ましく、また、式(2)で示されるカチオンとしては、R3及びR4において、一方がメチル基、他方がエチル基、n−プロピル基又はn−ブチル基であるものが好ましい。 More specifically, as the cation represented by the formula (1), in R 1 and R 2 , one in which one is a methyl group and the other is an ethyl group, an n-propyl group or an n-butyl group is preferable. As the cation represented by the formula (2), in R 3 and R 4 , one in which one is a methyl group and the other is an ethyl group, an n-propyl group or an n-butyl group is preferable.

式(3)で示されるカチオンとしては、R5、R6及びR7がアルキル基(好ましくはメチル基又はエチル基)であり、R8がアルコキシアルキル基であるものが好ましい。 As the cation represented by the formula (3), those in which R 5 , R 6 and R 7 are alkyl groups (preferably methyl group or ethyl group) and R 8 is an alkoxyalkyl group are preferable.

また、本発明に用いるイオン性液体を構成するカチオンとしては、上記の他に、置換基を有していてもよいピリジニウムイオン、ホスホニウムイオン、スルホニウムイオンなどを挙げることができる。また、本発明に用いるイオン性液体を構成するアニオンとしては、上記の他に、Cl-、CF3CF2SO4 -、HSO4 -、H2PO4 -などを挙げることができる。 Moreover, as a cation which comprises the ionic liquid used for this invention, the pyridinium ion, phosphonium ion, sulfonium ion etc. which may have a substituent other than the above can be mentioned. In addition to the above, the anions constituting the ionic liquid used in the present invention include Cl , CF 3 CF 2 SO 4 , HSO 4 , H 2 PO 4 − and the like.

本発明においてイオン性液体は、後述する反応温度又は熟成温度より分解温度が高いもの(反応温度又は熟成温度より50℃以上高いものであることがより好ましい)であることが好ましく、分解温度が300℃以上、特に320℃以上、とりわけ330℃以上のものであることが好ましい。また、粘度は、Fe化合物、Pt化合物及び還元剤を溶解させる作業性や、それらの反応に適合したものであることが要求されるが、通常、常温(25℃)における粘度が500mPa・s以下のものが用いられる。   In the present invention, the ionic liquid is preferably one having a decomposition temperature higher than the reaction temperature or aging temperature described later (more preferably 50 ° C. or more higher than the reaction temperature or aging temperature), and the decomposition temperature is 300. It is preferable that the temperature is not lower than ° C, particularly not lower than 320 ° C, particularly not lower than 330 ° C. Further, the viscosity is required to be compatible with workability for dissolving the Fe compound, Pt compound and the reducing agent, and their reaction. Usually, the viscosity at room temperature (25 ° C.) is 500 mPa · s or less. Is used.

なお、溶媒に溶解させるFe化合物の濃度はFe基準で0.2〜2.0mmol/L、特に0.5〜1.0mmol/Lとすることが好ましい。また、溶媒に溶解させるPt化合物の濃度はPt基準で0.1〜1.0mmol/L、特に0.2〜0.5mmol/Lとすることが好ましい。一方、溶媒に溶解させる還元剤の濃度は0.3〜3.0mmol/L、特に0.7〜1.5mmol/Lとすることが好ましい。   The concentration of the Fe compound dissolved in the solvent is preferably 0.2 to 2.0 mmol / L, particularly 0.5 to 1.0 mmol / L on the basis of Fe. The concentration of the Pt compound dissolved in the solvent is preferably 0.1 to 1.0 mmol / L, particularly preferably 0.2 to 0.5 mmol / L, based on Pt. On the other hand, the concentration of the reducing agent dissolved in the solvent is preferably 0.3 to 3.0 mmol / L, particularly 0.7 to 1.5 mmol / L.

このFe化合物とPt化合物と還元剤とを含むイオン性液体溶液又は懸濁液を、例えば60〜320℃、特に80〜275℃にして、必要に応じて攪拌しながら加熱することにより、Fe化合物(Feイオン)及びPt化合物(Ptイオン)が熱分解、及び/又は還元剤により還元されて、FePtナノ粒子を生成させることができる。この反応時間は、通常3〜30分間、特に10〜15分間とすることが好ましい。   The ionic liquid solution or suspension containing this Fe compound, Pt compound and reducing agent is heated to, for example, 60 to 320 ° C., in particular 80 to 275 ° C. with stirring as necessary, thereby providing an Fe compound. (Fe ions) and Pt compounds (Pt ions) can be thermally decomposed and / or reduced by a reducing agent to produce FePt nanoparticles. This reaction time is usually 3 to 30 minutes, particularly preferably 10 to 15 minutes.

本発明においては、FePtナノ粒子の製造を、まず、イオン性液体を溶媒とし、Pt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応により金属Pt核粒子を生成させる工程(工程A−1)、金属Pt核粒子を生成させた後の上記溶媒溶液又は懸濁液にFe化合物を添加して、上記金属Pt核粒子上に金属Feを析出させることによりFeとPtとを含むナノ粒子を生成させる工程(工程A−2)、及び生成した上記FeとPtとを含むナノ粒子を、185〜320℃の温度で熟成してPt原子とFe原子とを相互拡散させて合金化する工程(工程A−3)の3段階で実施することができる。   In the present invention, FePt nanoparticles are produced by first generating metal Pt core particles by thermal decomposition and / or reduction reaction from a solvent solution or suspension containing a Pt compound and a reducing agent using an ionic liquid as a solvent. Step (step A-1), adding an Fe compound to the solvent solution or suspension after the formation of metal Pt core particles, and precipitating metal Fe on the metal Pt core particles A step of producing nanoparticles containing Pt (step A-2), and the produced nanoparticles containing Fe and Pt are aged at a temperature of 185 to 320 ° C. to mutually diffuse Pt atoms and Fe atoms. It can be carried out in three stages of the step of alloying (step A-3).

この場合、工程A−1においては、Pt化合物及び還元剤を溶解させた溶媒溶液又は懸濁液を、例えば60〜120℃、特に80〜100℃にして、必要に応じて攪拌しながら加熱することにより、Pt化合物(Ptイオン)が熱分解、及び/又は還元剤により還元されて、金属Pt核粒子が生成する。この反応時間は、通常3〜30分間、特に10〜15分間とすることが好ましい。なお、この工程で、金属Pt核粒子が生成するが、この段階でPt化合物(Ptイオン)の全てが金属Pt核粒子として生成する必要はなく、一部は残っていてもよい。残留したPt化合物(Ptイオン)は、工程A−2又は工程A−3において更に、金属Ptとして析出させることが可能である。また、最終的に溶媒と共に分離することも可能である。   In this case, in step A-1, the solvent solution or suspension in which the Pt compound and the reducing agent are dissolved is, for example, 60 to 120 ° C., particularly 80 to 100 ° C., and heated with stirring as necessary. As a result, the Pt compound (Pt ion) is thermally decomposed and / or reduced by a reducing agent to produce metal Pt core particles. This reaction time is usually 3 to 30 minutes, particularly preferably 10 to 15 minutes. In this step, metal Pt nucleus particles are generated, but it is not necessary that all of the Pt compounds (Pt ions) are generated as metal Pt nucleus particles at this stage, and some of them may remain. The remaining Pt compound (Pt ion) can be further deposited as metal Pt in step A-2 or step A-3. It is also possible to finally separate with a solvent.

工程A−2においては、Fe化合物を溶解させた溶媒溶液又は懸濁液を、例えば80〜140℃、特に100〜120℃で必要に応じて攪拌することにより、金属Pt核粒子上に金属Feが析出する。この反応時間は、通常3〜30分間、特に10〜15分間とすることが好ましい。なお、この工程で、金属Feが析出するが、この段階でFe化合物の全てが金属Feとして析出する必要はなく、一部は残っていてもよい。残留したFe化合物(Feイオン)は、工程A−3において更に、金属Feとして析出させることが可能である。また、最終的に溶媒と共に分離することも可能である。   In Step A-2, the solvent solution or suspension in which the Fe compound is dissolved is stirred as necessary at, for example, 80 to 140 ° C., particularly 100 to 120 ° C., so that the metal Fe on the metal Pt core particles. Precipitates. This reaction time is usually 3 to 30 minutes, particularly preferably 10 to 15 minutes. In this step, metal Fe is precipitated. At this stage, not all of the Fe compound needs to be precipitated as metal Fe, and a part of the Fe compound may remain. The remaining Fe compound (Fe ions) can be further deposited as metallic Fe in step A-3. It is also possible to finally separate with a solvent.

工程A−3においては、生成したFeとPtとを含むナノ粒子に対して、反応液中で185℃以上、好ましくは190℃以上の温度で熟成することが好ましい。熟成温度が上記範囲未満であると、反応が不十分で目的とする合金組成が得られないおそれがあり、また、十分に合金化されない場合が生じるおそれもある。一方、熟成温度の上限は、生成したナノ粒子が凝集しない温度であれば特に制限はないが、イオン性液体の分解温度以下(例えば400℃以下)であることが好ましい。この工程により、Pt原子とFe原子とが相互拡散して合金化され、PtとFeとの合金であるFePtナノ粒子を生成させることができる。この熟成の時間は、短すぎると十分な拡散がなされないため、10分以上、特に25分以上とすることが好ましい。一方、熟成時間の上限は、特に制限されるものではないが、生産性などの観点から6時間以下とすることが好ましいが、通常は1時間以下で可能である。   In step A-3, it is preferable to age the produced nanoparticles containing Fe and Pt in the reaction solution at a temperature of 185 ° C. or higher, preferably 190 ° C. or higher. If the aging temperature is less than the above range, the reaction may be insufficient and the intended alloy composition may not be obtained, and the alloy may not be sufficiently alloyed. On the other hand, the upper limit of the aging temperature is not particularly limited as long as the generated nanoparticles do not aggregate, but is preferably not higher than the decomposition temperature of the ionic liquid (for example, 400 ° C. or lower). By this step, Pt atoms and Fe atoms are interdiffused and alloyed, and FePt nanoparticles that are an alloy of Pt and Fe can be generated. If the aging time is too short, sufficient diffusion is not achieved, and it is preferable that the aging time be 10 minutes or longer, particularly 25 minutes or longer. On the other hand, the upper limit of the ripening time is not particularly limited, but is preferably 6 hours or less from the viewpoint of productivity and the like, but can usually be 1 hour or less.

なお、FePtナノ粒子の製造は、アルゴン等の不活性ガス雰囲気又は窒素ガス雰囲気下で実施することが好ましい。   The production of FePt nanoparticles is preferably carried out in an inert gas atmosphere such as argon or a nitrogen gas atmosphere.

熟成後の反応液からは、ろ過等の常法に従い、生成したFePtナノ粒子を分離することができる。また、溶媒を交換して液中で保存してもよい。   From the reaction solution after aging, the produced FePt nanoparticles can be separated according to a conventional method such as filtration. Further, the solvent may be exchanged and stored in the liquid.

このようにして得られたFePtナノ粒子が、面心正方(fct)構造を含むFePt磁性ナノ粒子(なお、面心正方(fct)構造を含み、面心立方(fcc)構造を含まないものであっても、面心立方(fcc)構造及び面心正方(fct)構造の双方を含むものであってもよい。)である場合、磁気異方性を有する強い磁性を与える面心正方(fct)構造を含むFePt磁性ナノ粒子は、そのままで(即ち、磁性を有する面心正方(fct)構造への相転移のためのアニール処理を施すことなく)磁性体材料として用いることが可能である。   The FePt nanoparticles obtained in this way are FePt magnetic nanoparticles containing a face-centered tetragonal (fct) structure (including a face-centered square (fct) structure and no face-centered cubic (fcc) structure). In the case of a face-centered cubic (fcc) structure and a face-centered tetragonal (fct) structure), a face-centered square (fct) that provides strong magnetism having magnetic anisotropy. ) FePt magnetic nanoparticles containing a structure can be used as a magnetic material as it is (that is, without annealing for phase transition to a magnetic face-centered tetragonal (fct) structure).

一方、得られたFePtナノ粒子が、面心立方(fcc)構造を含むもの(なお、面心立方(fcc)構造を含み、面心正方(fct)構造を含まないものであっても、面心立方(fcc)構造及び面心正方(fct)構造の双方を含むものであってもよい。)である場合、合金化後のFePtナノ粒子に、更に、300℃以上、好ましくは400℃以上、より好ましくは500℃以上、更に好ましくは600℃以上でアニール処理を施すことにより、面心立方(fcc)構造を面心正方(fct)構造に相転移させてFePt磁性ナノ粒子とすることが可能である。アニール温度が上記範囲未満であると、相転移(規則化)が進行しない場合や、進行しても不十分な場合が生じるおそれがある。   On the other hand, even if the obtained FePt nanoparticles include a face-centered cubic (fcc) structure (note that a face-centered cubic (fcc) structure is included and a face-centered tetragonal (fct) structure is not included) In the case of a structure including both a centered cubic (fcc) structure and a face centered tetragonal (fct) structure), the FePt nanoparticles after alloying are further at 300 ° C. or higher, preferably 400 ° C. or higher. More preferably, annealing is performed at a temperature of 500 ° C. or higher, more preferably 600 ° C. or higher, whereby the face-centered cubic (fcc) structure is phase-transformed into a face-centered square (fct) structure to form FePt magnetic nanoparticles. Is possible. If the annealing temperature is less than the above range, there may be a case where phase transition (ordering) does not proceed or even if it proceeds.

FePtナノ粒子が面心立方(fcc)構造を含むものである場合、これを強い磁性を与える面心正方(fct)構造に相転移させることが可能であり、FePtナノ粒子にアニール処理を施すことにより、FePtナノ粒子をより強い磁性を有するFePt磁性ナノ粒子とすることが可能である。なお、アニール処理温度の上限は特に限定されないが、好ましくは700℃以下、より好ましくは650℃以下である。アニール温度が上記範囲を超えると、FePtナノ粒子が凝集して粗大化するおそれがある。また、アニール処理は、アルゴン等の不活性ガス雰囲気下、窒素ガス雰囲気下、水素ガス雰囲気下、又はアルゴン等の不活性ガス若しくは窒素ガス中に、水素ガスを1〜5容量%、特に2〜3容量%含む還元雰囲気下で処理することが好ましく、処理時間は0.5〜20時間、特に2.5〜3.5時間とすることが好ましい。なお、アニール処理は常圧下でも加圧下でも可能である。   When the FePt nanoparticle includes a face-centered cubic (fcc) structure, it can be phase-transformed into a face-centered tetragonal (fct) structure that gives strong magnetism, and by annealing the FePt nanoparticle, The FePt nanoparticles can be made into FePt magnetic nanoparticles having stronger magnetism. The upper limit of the annealing temperature is not particularly limited, but is preferably 700 ° C. or lower, more preferably 650 ° C. or lower. When the annealing temperature exceeds the above range, FePt nanoparticles may aggregate and become coarse. Also, the annealing treatment is performed in an inert gas atmosphere such as argon, in a nitrogen gas atmosphere, in a hydrogen gas atmosphere, or in an inert gas or nitrogen gas such as argon in an amount of 1 to 5% by volume, particularly 2 to 2. The treatment is preferably performed in a reducing atmosphere containing 3% by volume, and the treatment time is preferably 0.5 to 20 hours, particularly preferably 2.5 to 3.5 hours. The annealing treatment can be performed under normal pressure or under pressure.

本発明におけるFePtナノ粒子及びFePt磁性ナノ粒子の平均粒子径は、通常1nm以上、特に2nm以上であることが好ましい。平均粒子径が上記範囲未満では、必要とする磁気特性が得られないおそれがある。一方、平均粒子径の上限は、FePt磁性ナノ粒子の用途により適宜選定されるが、通常30nm以下であり、特に10nm以下であることが好ましい。平均粒子径が上記範囲を超えると、ナノ粒子、即ち、微小サイズであることが求められる用途に適合しなくなるおそれがある。また、本発明によれば、粒子径分布(標準偏差σ)が0.8以下という粒子径分布の狭い粒子を得ることができる。なお、この粒子径は、透過型電子顕微鏡(TEM)像から算出することができる。   The average particle diameter of the FePt nanoparticles and the FePt magnetic nanoparticles in the present invention is usually 1 nm or more, and particularly preferably 2 nm or more. If the average particle size is less than the above range, the required magnetic properties may not be obtained. On the other hand, the upper limit of the average particle diameter is appropriately selected depending on the use of the FePt magnetic nanoparticles, but is usually 30 nm or less, and particularly preferably 10 nm or less. When the average particle diameter exceeds the above range, there is a possibility that the nanoparticle, that is, a use that requires a minute size may not be adapted. Further, according to the present invention, particles having a narrow particle size distribution with a particle size distribution (standard deviation σ) of 0.8 or less can be obtained. This particle diameter can be calculated from a transmission electron microscope (TEM) image.

また、FePtナノ粒子中のFeとPtとの比率は、Fe:Pt=50:50〜60:40(原子比)であることが好ましい。この比率は、面心正方(fct)構造のFeとPtとの比率に近似するものであり、このようなFePtナノ粒子が、特に磁気異方性が高く、強い磁性を有するFePt磁気ナノ粒子を与えるものであることから好適である。   Moreover, it is preferable that the ratio of Fe and Pt in FePt nanoparticle is Fe: Pt = 50: 50-60: 40 (atomic ratio). This ratio approximates the ratio of Fe and Pt having a face-centered tetragonal (fct) structure, and such FePt nanoparticles have high magnetic anisotropy and strong magnetic properties. It is preferable because it is given.

本発明においては、熱分解及び/又は還元反応により生成した金属Pt核粒子やFeとPtとを含むナノ粒子の反応液中での凝集を抑制するために用いられる界面活性剤などの粒子分散剤を用いることなく、Fe原料としてのFe化合物、Pt原料としてのPt化合物、還元剤、及び溶媒としてのイオン性液体のみを用いて、反応液中で生成する粒子を凝集させることなく、粒子径分布が極めて狭く、均一に分散したFePtナノ粒子を製造することができる。また、生成したFePtナノ粒子の分離においても、大粒子径及び小粒子径の粒子を分離除去する必要がなく、そのままで粒子径が揃ったものを得ることができる。更に、粒子を回収した後の反応液から溶媒を回収精製する場合も、反応副生物や洗浄溶媒を留去するなどの方法により容易である。   In the present invention, a particle dispersant such as a surfactant used for suppressing aggregation in a reaction solution of metal Pt core particles generated by thermal decomposition and / or reduction reaction or nanoparticles containing Fe and Pt. Particle size distribution without agglomerating particles generated in the reaction solution using only the Fe compound as the Fe raw material, the Pt compound as the Pt raw material, the reducing agent, and the ionic liquid as the solvent Is extremely narrow and uniformly dispersed FePt nanoparticles can be produced. Further, in the separation of the produced FePt nanoparticles, it is not necessary to separate and remove particles having a large particle size and a small particle size, and those having a uniform particle size can be obtained as they are. Further, when the solvent is recovered and purified from the reaction solution after the particles are recovered, it is easy to remove the reaction by-products and the washing solvent.

以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
Pt化合物としてPtアセチルアセトナート(Pt(acac)2)を0.25mmol、還元剤として1,2−ヘキサデカンジオールを0.75mmol、1−エチル−3−メチルイミダゾリウム−テトラフルオロボレート(EMI−BF4)20mlに溶解させて溶液を調製した。この溶液を、フラスコ中、アルゴン雰囲気下で、100℃まで加熱し、100℃になったところで、Fe化合物として鉄カルボニル(Fe(CO)5)を0.5mmol添加した。
[Example 1]
0.25 mmol of Pt acetylacetonate (Pt (acac) 2 ) as a Pt compound, 0.75 mmol of 1,2-hexadecanediol as a reducing agent, 1-ethyl-3-methylimidazolium-tetrafluoroborate (EMI-BF) 4 ) A solution was prepared by dissolving in 20 ml. This solution was heated in a flask to 100 ° C. under an argon atmosphere. When the temperature reached 100 ° C., 0.5 mmol of iron carbonyl (Fe (CO) 5 ) was added as an Fe compound.

次に、190℃まで昇温し、この温度で30分間熟成した後、室温まで冷却して、FePtナノ粒子を得た。FePtナノ粒子を含む反応液は、デカンテーションによってアセトンで置換洗浄した後、ヘキサンを加えて分散させた。   Next, the temperature was raised to 190 ° C., aged for 30 minutes at this temperature, and then cooled to room temperature to obtain FePt nanoparticles. The reaction liquid containing FePt nanoparticles was dispersed and washed with acetone by decantation, and then dispersed by adding hexane.

得られたFePtナノ粒子は、透過型電子顕微鏡(TEM)により観察し、粒子径(平均粒子径、粒子径分布(標準偏差σ))を評価した。また、制限視野電子線回折(SAED)及びX線回折(XRD)により、粒子の結晶構造を評価した。結果を表1、図1(TEM像、SAED像)、図4(A)(XRDパターン)、図5(粒子径分布)に示す。   The obtained FePt nanoparticles were observed with a transmission electron microscope (TEM), and the particle size (average particle size, particle size distribution (standard deviation σ)) was evaluated. Further, the crystal structure of the particles was evaluated by limited-field electron diffraction (SAED) and X-ray diffraction (XRD). The results are shown in Table 1, FIG. 1 (TEM image, SAED image), FIG. 4A (XRD pattern), and FIG. 5 (particle size distribution).

[実施例2]
Pt化合物としてPtアセチルアセトナート(Pt(acac)2)を0.25mmol、還元剤として1,2−ヘキサデカンジオールを0.75mmol、1−エチル−3−メチルイミダゾリウム−ビス(トリフルオロメタンスルホニル)イミド(EMI−TFSI)20mlに溶解させて溶液を調製した。この溶液を、フラスコ中、アルゴン雰囲気下で、100℃まで加熱し、100℃になったところで、Fe化合物として鉄カルボニル(Fe(CO)5)を0.5mmol添加した。
[Example 2]
0.25 mmol of Pt acetylacetonate (Pt (acac) 2 ) as a Pt compound, 0.75 mmol of 1,2-hexadecanediol as a reducing agent, 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI) A solution was prepared by dissolving in 20 ml. This solution was heated in a flask to 100 ° C. under an argon atmosphere. When the temperature reached 100 ° C., 0.5 mmol of iron carbonyl (Fe (CO) 5 ) was added as an Fe compound.

次に、190℃まで昇温し、この温度で30分間熟成した後、室温まで冷却して、FePtナノ粒子を得た。FePtナノ粒子を含む反応液は、デカンテーションによってアセトンで置換洗浄した後、ヘキサンを加えて分散させた。   Next, the temperature was raised to 190 ° C., aged for 30 minutes at this temperature, and then cooled to room temperature to obtain FePt nanoparticles. The reaction liquid containing FePt nanoparticles was dispersed and washed with acetone by decantation, and then dispersed by adding hexane.

得られたFePtナノ粒子は、透過型電子顕微鏡(TEM)により観察し、粒子径(平均粒子径、粒子径分布(標準偏差σ))を評価した。また、制限視野電子線回折(SAED)により、粒子の結晶構造を評価した。結果を表1、図2(TEM像、SAED像)、図5(粒子径分布)に示す。   The obtained FePt nanoparticles were observed with a transmission electron microscope (TEM), and the particle size (average particle size, particle size distribution (standard deviation σ)) was evaluated. Further, the crystal structure of the particles was evaluated by limited-field electron diffraction (SAED). The results are shown in Table 1, FIG. 2 (TEM image, SAED image), and FIG. 5 (particle size distribution).

[実施例3]
Pt化合物としてPtアセチルアセトナート(Pt(acac)2)を0.25mmol、還元剤として1,2−ヘキサデカンジオールを0.75mmol、1−ブチル−1−メチルピロリジニウム−トリフルオロメタンスルホネート(BMP−TF)20mlに溶解させて溶液を調製した。この溶液を、フラスコ中、アルゴン雰囲気下で、100℃まで加熱し、100℃になったところで、Fe化合物として鉄カルボニル(Fe(CO)5)を0.5mmol添加した。
[Example 3]
0.25 mmol of Pt acetylacetonate (Pt (acac) 2 ) as the Pt compound, 0.75 mmol of 1,2-hexadecanediol as the reducing agent, 1-butyl-1-methylpyrrolidinium-trifluoromethanesulfonate (BMP- (TF) A solution was prepared by dissolving in 20 ml. This solution was heated in a flask to 100 ° C. under an argon atmosphere. When the temperature reached 100 ° C., 0.5 mmol of iron carbonyl (Fe (CO) 5 ) was added as an Fe compound.

次に、190℃まで昇温し、この温度で30分間熟成した後、室温まで冷却して、FePtナノ粒子を得た。FePtナノ粒子を含む反応液は、デカンテーションによってアセトンで置換洗浄した後、ヘキサンを加えて分散させた。   Next, the temperature was raised to 190 ° C., aged for 30 minutes at this temperature, and then cooled to room temperature to obtain FePt nanoparticles. The reaction liquid containing FePt nanoparticles was dispersed and washed with acetone by decantation, and then dispersed by adding hexane.

得られたFePtナノ粒子は、透過型電子顕微鏡(TEM)により観察し、粒子径(平均粒子径、粒子径分布(標準偏差σ))を評価した。また、制限視野電子線回折(SAED)及びX線回折(XRD)により、粒子の結晶構造を評価した。結果を表1、図3(TEM像、SAED像)、図4(B)(XRDパターン)、図5(粒子径分布)に示す。   The obtained FePt nanoparticles were observed with a transmission electron microscope (TEM), and the particle size (average particle size, particle size distribution (standard deviation σ)) was evaluated. Further, the crystal structure of the particles was evaluated by limited-field electron diffraction (SAED) and X-ray diffraction (XRD). The results are shown in Table 1, FIG. 3 (TEM image, SAED image), FIG. 4B (XRD pattern), and FIG. 5 (particle size distribution).

実施例1で得られたFePtナノ粒子の、(A)透過型電子顕微鏡像、及び(B)制限視野電子線回折線像である。It is the (A) transmission electron microscope image of the FePt nanoparticle obtained in Example 1, and the (B) restricted-field electron diffraction line image. 実施例2で得られたFePtナノ粒子の、(A)透過型電子顕微鏡像、及び(B)制限視野電子線回折線像である。It is the (A) transmission electron microscope image of the FePt nanoparticle obtained in Example 2, and the (B) restricted-field electron diffraction line image. 実施例3で得られたFePtナノ粒子の、(A)透過型電子顕微鏡像、及び(B)制限視野電子線回折線像である。It is the (A) transmission electron microscope image of the FePt nanoparticle obtained in Example 3, and the (B) restricted-field electron diffraction line image. (A)実施例1及び(B)実施例3で得られたFePtナノ粒子のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the FePt nanoparticle obtained in (A) Example 1 and (B) Example 3. FIG. 実施例1〜3で得られたFePtナノ粒子の粒子径分布を示すグラフである。It is a graph which shows the particle size distribution of the FePt nanoparticle obtained in Examples 1-3.

Claims (3)

FePtナノ粒子を製造する方法であって、イオン性液体を溶媒とし、Fe化合物とPt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応によりFeとPtとを含むナノ粒子を生成させることを特徴とするFePtナノ粒子の製造方法。   A method for producing FePt nanoparticles, comprising Fe and Pt by thermal decomposition and / or reduction reaction from a solvent solution or suspension containing an Fe compound, a Pt compound and a reducing agent using an ionic liquid as a solvent. A method for producing FePt nanoparticles, comprising producing nanoparticles. FePtナノ粒子を製造する方法であって、
イオン性液体を溶媒とし、Pt化合物と還元剤とを含む溶媒溶液又は懸濁液から熱分解及び/又は還元反応により金属Pt核粒子を生成させる工程、
金属Pt核粒子を生成させた後の上記溶媒溶液又は懸濁液にFe化合物を添加して、上記金属Pt核粒子上に金属Feを析出させることによりFeとPtとを含むナノ粒子を生成させる工程、
生成した上記FeとPtとを含むナノ粒子を熟成してPt原子とFe原子とを相互拡散させて合金化する工程
を含むことを特徴とするFePtナノ粒子の製造方法。
A method for producing FePt nanoparticles, comprising:
A step of generating metal Pt core particles by thermal decomposition and / or reduction reaction from a solvent solution or suspension containing a Pt compound and a reducing agent using an ionic liquid as a solvent,
An Fe compound is added to the solvent solution or suspension after the metal Pt core particles are generated, and metal Fe is precipitated on the metal Pt core particles to generate nanoparticles containing Fe and Pt. Process,
A method for producing FePt nanoparticles, comprising a step of aging the produced nanoparticles containing Fe and Pt to cause mutual diffusion of Pt atoms and Fe atoms to form an alloy.
上記FePtナノ粒子が面心立方(fcc)構造を含み、更に、FePtナノ粒子にアニール処理を施すことにより、面心立方(fcc)構造を面心正方(fct)構造に相転移させてFePt磁性ナノ粒子とすることを特徴とする請求項1又は2記載のFePtナノ粒子の製造方法。   The FePt nanoparticles include a face-centered cubic (fcc) structure, and the FePt nanoparticles are annealed to cause the face-centered cubic (fcc) structure to phase change to a face-centered tetragonal (fct) structure. The method for producing FePt nanoparticles according to claim 1 or 2, wherein the nanoparticles are nanoparticles.
JP2007269760A 2007-10-17 2007-10-17 PRODUCTION METHOD OF FePt NANOPARTICLE Pending JP2009097038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269760A JP2009097038A (en) 2007-10-17 2007-10-17 PRODUCTION METHOD OF FePt NANOPARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269760A JP2009097038A (en) 2007-10-17 2007-10-17 PRODUCTION METHOD OF FePt NANOPARTICLE

Publications (1)

Publication Number Publication Date
JP2009097038A true JP2009097038A (en) 2009-05-07

Family

ID=40700319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269760A Pending JP2009097038A (en) 2007-10-17 2007-10-17 PRODUCTION METHOD OF FePt NANOPARTICLE

Country Status (1)

Country Link
JP (1) JP2009097038A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020996A1 (en) * 2009-08-17 2011-02-24 University Court Of The University Of St Andrews PREPARATION OF FePt AND CoPt NANOPARTICLES
CN102699346A (en) * 2012-06-14 2012-10-03 西北工业大学 Chemical method for synthesizing L10-FePt by sequentially coating nanopowder nuclear body
JP2014177368A (en) * 2013-03-14 2014-09-25 Sony Corp Functional oxide, method for manufacturing functional oxide, electrochemical device, sensor, and appliance
KR101505464B1 (en) 2013-06-04 2015-03-25 고려대학교 산학협력단 Metal nanoparticle fluids with magnetically-induced electrical switching properties
US9284484B2 (en) 2013-06-07 2016-03-15 Samsung Electronics Co., Ltd. Processes for synthesizing nanocrystals
WO2017034029A1 (en) * 2015-08-27 2017-03-02 国立大学法人大阪大学 Method for manufacturing metal nanoparticles, method for manufacturing metal nanoparticle carrier, and metal nanoparticle carrier
JP7468379B2 (en) 2021-01-27 2024-04-16 トヨタ紡織株式会社 Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102679A (en) * 2000-09-29 2002-04-09 Toyota Motor Corp Composite metal colloid and its production method
JP2006249493A (en) * 2005-03-10 2006-09-21 Kansai Tlo Kk METHOD FOR PRODUCING FePt ALLOY PARTICLE GROUP WITH PROTECTIVE AGENT
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102679A (en) * 2000-09-29 2002-04-09 Toyota Motor Corp Composite metal colloid and its production method
JP2006249493A (en) * 2005-03-10 2006-09-21 Kansai Tlo Kk METHOD FOR PRODUCING FePt ALLOY PARTICLE GROUP WITH PROTECTIVE AGENT
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012022248; Yong Wang et al.: '"Synthesis of CoPt Nanorods in Ionic Liquids"' Journal of American Chemical Society Vol.127 No.15(2005), 20050324, pp.5316-5317, American Chemical Society *
JPN6012022249; Carla W. Scheeren et al.: '"Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids: Synthesis from an' Inorganic Chemistry Vol.42 No.15(2003), 20030621, pp.4738-4742, American Chemical Society *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020996A1 (en) * 2009-08-17 2011-02-24 University Court Of The University Of St Andrews PREPARATION OF FePt AND CoPt NANOPARTICLES
CN102699346A (en) * 2012-06-14 2012-10-03 西北工业大学 Chemical method for synthesizing L10-FePt by sequentially coating nanopowder nuclear body
JP2014177368A (en) * 2013-03-14 2014-09-25 Sony Corp Functional oxide, method for manufacturing functional oxide, electrochemical device, sensor, and appliance
KR101505464B1 (en) 2013-06-04 2015-03-25 고려대학교 산학협력단 Metal nanoparticle fluids with magnetically-induced electrical switching properties
US9284484B2 (en) 2013-06-07 2016-03-15 Samsung Electronics Co., Ltd. Processes for synthesizing nanocrystals
WO2017034029A1 (en) * 2015-08-27 2017-03-02 国立大学法人大阪大学 Method for manufacturing metal nanoparticles, method for manufacturing metal nanoparticle carrier, and metal nanoparticle carrier
JPWO2017034029A1 (en) * 2015-08-27 2018-08-09 国立大学法人大阪大学 Metal nanoparticle production method, metal nanoparticle-supported carrier production method, and metal nanoparticle-supported carrier
JP7468379B2 (en) 2021-01-27 2024-04-16 トヨタ紡織株式会社 Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell

Similar Documents

Publication Publication Date Title
US7527875B2 (en) Group of metal magnetic nanoparticles and method for producing the same
JP2009097038A (en) PRODUCTION METHOD OF FePt NANOPARTICLE
JP2008117855A (en) Manufacturing method of nano-composite magnet
Wang et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route
Kumar et al. Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation
US20040074336A1 (en) Metal alloy fine particles and method for producing thereof
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
US20040231464A1 (en) Low temperature synthesis of metallic nanoparticles
JP4938285B2 (en) Method for producing core / shell composite nanoparticles
Abel et al. Enhancing the ordering and coercivity of L10 FePt nanostructures with bismuth additives for applications ranging from permanent magnets to catalysts
US9957168B2 (en) Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures
JP4232817B2 (en) Method for producing FePt-Fe nanocomposite metal magnetic particles
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JP4363440B2 (en) Manufacturing method of nanocomposite magnet
JP2010103512A (en) METHOD FOR PRODUCING FePd/Fe NANOCOMPOSITE MAGNET
KR20130132890A (en) Nanowire preparation methods, compositions, and articles
US9278392B2 (en) Synthesis of metal alloy nanoparticles via a new reagent
JP2008138243A (en) METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE
JP3896443B2 (en) Method for producing alloy fine particles for magnetic recording medium
JPWO2009051270A1 (en) Metal nanoparticles and production method thereof
JP2005175000A (en) Extraction method of hard magnetic alloy nano particle and magnetic recording material
JP5912888B2 (en) Method for producing alloy particles
JP5304376B2 (en) Method for producing composite particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121219