JP4861802B2 - Method for producing Fe / Pd composite nanoparticles - Google Patents

Method for producing Fe / Pd composite nanoparticles Download PDF

Info

Publication number
JP4861802B2
JP4861802B2 JP2006323876A JP2006323876A JP4861802B2 JP 4861802 B2 JP4861802 B2 JP 4861802B2 JP 2006323876 A JP2006323876 A JP 2006323876A JP 2006323876 A JP2006323876 A JP 2006323876A JP 4861802 B2 JP4861802 B2 JP 4861802B2
Authority
JP
Japan
Prior art keywords
nanoparticles
salt
composite nanoparticles
composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006323876A
Other languages
Japanese (ja)
Other versions
JP2008138238A (en
Inventor
利治 寺西
直樹 中村
哲也 庄司
紀次 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006323876A priority Critical patent/JP4861802B2/en
Publication of JP2008138238A publication Critical patent/JP2008138238A/en
Application granted granted Critical
Publication of JP4861802B2 publication Critical patent/JP4861802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高密度磁気記録媒体、永久磁石等として使用することのできるFe/Pd複合ナノ粒子の製造方法に関する。   The present invention relates to a method for producing Fe / Pd composite nanoparticles that can be used as high-density magnetic recording media, permanent magnets, and the like.

磁気記録媒体用材料には、安定した記録保持のために高い保磁力が要求される。このような高い保磁力を有する金属磁性材料として、Fe/Pt複合金属磁性粒子が知られている。   A magnetic recording medium material is required to have a high coercive force for stable recording and holding. As a metal magnetic material having such a high coercive force, Fe / Pt composite metal magnetic particles are known.

このFe/Pt複合金属磁性粒子は、テトラエチレングリコールに鉄アセチルアセトナートと白金アセチルアセトナートを添加し、窒素ガスを吹き込んで高温下で反応させた後、凝集したFe/Pt粒子を含む懸濁液に、分散剤としてオレイン酸とオレイルアミンを加え、さらにシクロヘキサン、オレイン酸及びオレイルアミンの混合液を加え、振とうすることによって単分散したFe/Pt複合ナノ粒子として得られることが開示されている(例えば、特許文献1参照)。   This Fe / Pt composite metal magnetic particle is a suspension containing Fe / Pt particles aggregated after iron acetylacetonate and platinum acetylacetonate are added to tetraethylene glycol and reacted under high temperature by blowing nitrogen gas. It is disclosed that mono-dispersed Fe / Pt composite nanoparticles can be obtained by adding oleic acid and oleylamine as a dispersant to the liquid, and further adding a mixed liquid of cyclohexane, oleic acid and oleylamine and shaking. For example, see Patent Document 1).

特開2005−48250号公報JP 2005-48250 A

一方、近年、新たな材料としてFe/Pd複合ナノ粒子が提案されているが、その合成技術は確立されていない。上記のFe/Pt複合ナノ粒子の合成法に準じて、鉄アセチルアセトナートとパラジウムアセチルアセトナートを用い、還元することによって合成することが考えられるが、FeはPdと複合する速度に比べ、反応系中に存在している酸素と結合する速度が速いため、γ−Fe23又はFe34が生成するため、満足な結果が得られないという問題がある。 On the other hand, in recent years, Fe / Pd composite nanoparticles have been proposed as a new material, but the synthesis technique has not been established. According to the method for synthesizing the Fe / Pt composite nanoparticles described above, iron acetylacetonate and palladium acetylacetonate can be used for synthesis by reduction, but Fe is more reactive than the rate of complexing with Pd. Since the bonding speed with oxygen existing in the system is high, γ-Fe 2 O 3 or Fe 3 O 4 is produced, so that there is a problem that satisfactory results cannot be obtained.

本発明は、このような問題を解消し、Fe/Pd複合ナノ粒子を得ることが可能な製造方法を提供することを目的とする。   An object of the present invention is to provide a production method capable of solving such problems and obtaining Fe / Pd composite nanoparticles.

上記問題点を解決するために本発明によれば、粒径1〜100nmのPdナノ粒子を、界面活性剤、Feの塩、及び還元剤と混合し、この混合物を加熱してFeの塩を構成するFeイオンを還元してPdナノ粒子上で析出させることを含む、Pd相をコアとし、Fe相をシェルとするFe/Pd複合ナノ粒子の製造方法が提供される。   In order to solve the above problems, according to the present invention, Pd nanoparticles having a particle size of 1 to 100 nm are mixed with a surfactant, a salt of Fe, and a reducing agent, and the mixture is heated to obtain a salt of Fe. There is provided a method for producing Fe / Pd composite nanoparticles having a Pd phase as a core and an Fe phase as a shell, which comprises reducing constituent Fe ions and precipitating them on Pd nanoparticles.

2番目の発明によれば、粒径1〜100nmのPdナノ粒子を、界面活性剤、Feの塩、及び還元剤と混合し、この混合物を加熱してFeの塩を構成するFeイオンを還元してPdナノ粒子上で析出させてFe/Pd複合ナノ粒子を形成し、次いでこのナノ粒子を水素雰囲気下で熱処理することを含む、磁性ナノ粒子の製造方法が提供される。   According to the second invention, Pd nanoparticles having a particle size of 1 to 100 nm are mixed with a surfactant, Fe salt, and a reducing agent, and this mixture is heated to reduce Fe ions constituting the Fe salt. There is provided a method for producing magnetic nanoparticles comprising depositing on Pd nanoparticles to form Fe / Pd composite nanoparticles and then heat treating the nanoparticles under a hydrogen atmosphere.

本発明によれば、Pdナノ粒子を核とし、このPdナノ粒子の表面上にFeを析出させ、Feのシェルを形成することにより、ナノスケールオーダーで複合したFe/Pd複合ナノ粒子を得ることができる。またこのFe/Pd複合ナノ粒子を水素雰囲気下で熱処理することにより、L10FePdコアFeシェル型複合ナノ粒子を得ることができる。 According to the present invention, Fe / Pd composite nanoparticles composited on the nanoscale order are obtained by using Pd nanoparticles as a nucleus and depositing Fe on the surface of the Pd nanoparticles to form a shell of Fe. Can do. Further, by heat-treating the Fe / Pd composite nanoparticles in a hydrogen atmosphere, L1 0 FePd core Fe shell composite nanoparticles can be obtained.

以下、本発明のFe/Pd複合ナノ粒子の製造方法を詳細に説明する。本発明のFe/Pd複合ナノ粒子の製造方法においては、まずPdナノ粒子を、界面活性剤、Feの塩、及び還元剤と混合する。混合順序は問題ではないが、Pdナノ粒子の分散性を高めるため、界面活性剤を含む溶媒中にPdナノ粒子を加え、次いでFeの塩、及び還元剤を加えることが好ましい。   Hereinafter, the method for producing Fe / Pd composite nanoparticles of the present invention will be described in detail. In the method for producing Fe / Pd composite nanoparticles of the present invention, first, Pd nanoparticles are mixed with a surfactant, a salt of Fe, and a reducing agent. The order of mixing is not a problem, but in order to increase the dispersibility of Pd nanoparticles, it is preferable to add Pd nanoparticles in a solvent containing a surfactant, and then add a salt of Fe and a reducing agent.

Pdナノ粒子は、粒径が1〜100nm、好ましくは1〜10nmである粒子である。このPdナノ粒子は常法によって形成することができ、例えばPdの塩を溶媒中で還元することによってPd粒子を析出させることによって形成する。   Pd nanoparticles are particles having a particle size of 1 to 100 nm, preferably 1 to 10 nm. The Pd nanoparticles can be formed by a conventional method. For example, the Pd nanoparticles are formed by precipitating Pd particles by reducing a salt of Pd in a solvent.

界面活性剤としては、オレイルアミン、オレイン酸、テトラエチレングリコール、ドデシルベンゼンスルホン酸ナトリウム、フェニルホスホン酸、ミリスチル酸、ドデカンチオール、ドデシルアミン等を用いることができる。この界面活性剤の添加量はFeの塩の30倍モルとすることが好ましい。   As the surfactant, oleylamine, oleic acid, tetraethylene glycol, sodium dodecylbenzenesulfonate, phenylphosphonic acid, myristic acid, dodecanethiol, dodecylamine and the like can be used. The addition amount of this surfactant is preferably 30 moles of the Fe salt.

界面活性剤としてオレイルアミン又はオレイン酸を用いる場合、これらは溶媒としても機能するが、必要に応じて溶媒を添加してもよい。この溶媒としては、Fe粒子の析出反応において加熱するため、沸点の高い、かつ安定であるものが好ましく、例えば1−オクタノール、オクチルエーテル、オクタデセン、スクアレン、テトラエチレングリコール、トリフェニルメタン等を用いることができる。   When oleylamine or oleic acid is used as the surfactant, these also function as a solvent, but a solvent may be added as necessary. As this solvent, since it heats in the precipitation reaction of Fe particle | grains, what has a high boiling point and is stable is preferable, for example, 1-octanol, octyl ether, octadecene, squalene, tetraethylene glycol, triphenylmethane etc. are used. Can do.

Feの塩としては、有機配位子を有する金属錯体であることが好ましく、例えばアセチルアセトナート塩、酢酸塩、塩化物等が挙げられる。具体的には、鉄(II)アセチルアセトナート、鉄(III)アセチルアセトナート等を用いることができる。このFeの塩の添加量はPdの3倍モル程度とすることが好ましい。   The Fe salt is preferably a metal complex having an organic ligand, and examples thereof include acetylacetonate salts, acetate salts, and chlorides. Specifically, iron (II) acetylacetonate, iron (III) acetylacetonate, or the like can be used. The amount of Fe salt added is preferably about 3 times the molar amount of Pd.

還元剤としては、一価アルコール、ポリオール(多価アルコール)、又はジフェニルシランを用いることが好ましい。一価アルコールとしては、特に限定されないが、例えば1−オクタノール、1−デカノール、1−ドデカノール等を用いることができ、還元を行う反応温度より高い沸点を有するものが好ましい。ポリオールとしては、特に限定されないが、例えば1,2−オクタンジオール、1,2−ドデカンジオール、1,2−テトラデカンジオール、1,2−ヘキサデカンジオール等を用いることができ、還元を行う反応温度より高い沸点を有するものが好ましい。この還元剤の添加量は、Feの塩の10倍モル以上とすることが好ましい。   As the reducing agent, it is preferable to use monohydric alcohol, polyol (polyhydric alcohol), or diphenylsilane. Although it does not specifically limit as monohydric alcohol, For example, 1-octanol, 1-decanol, 1-dodecanol etc. can be used, and what has a boiling point higher than the reaction temperature which performs a reduction | restoration is preferable. The polyol is not particularly limited, and for example, 1,2-octanediol, 1,2-dodecanediol, 1,2-tetradecanediol, 1,2-hexadecanediol, and the like can be used. Those having a high boiling point are preferred. The amount of the reducing agent added is preferably 10 moles or more of the Fe salt.

還元を行う反応温度は、通常150℃以上、好ましくは180℃以上である。また反応時間は、反応温度や用いる材料等によって異なるが、通常は数分〜数時間である。   The reaction temperature for carrying out the reduction is usually 150 ° C. or higher, preferably 180 ° C. or higher. Moreover, although reaction time changes with reaction temperature, the material to be used, etc., it is usually several minutes-several hours.

以上のようにしてPdナノ粒子が分散して存在する溶媒中でFe粒子を析出させることにより、Pd粒子をコアとし、FeをシェルとしたFe/Pd複合ナノ粒子を得ることができる。この粒子の大きさは通常1〜20nmである。   By precipitating Fe particles in a solvent in which Pd nanoparticles are dispersed as described above, Fe / Pd composite nanoparticles having Pd particles as a core and Fe as a shell can be obtained. The size of the particles is usually 1 to 20 nm.

こうして得られたFe/Pd複合ナノ粒子表面には、一部Fe34が存在することがあり、この場合、熱処理することにより、Fe34が還元されながらPdと混ざり、FePd(部分的に規則化が進行したL10FePd)を形成するため、磁気特性を高めることができる。熱処理条件としては4%H2/Ar下500℃で3時間とすることが好ましい。 Fe 3 O 4 may be partially present on the surface of the Fe / Pd composite nanoparticles thus obtained. In this case, Fe 3 O 4 is mixed with Pd while being reduced by heat treatment, and FePd (partial Therefore, the magnetic properties can be improved because the ordered L1 0 FePd) is formed. The heat treatment condition is preferably 3 hours at 500 ° C. under 4% H 2 / Ar.

パラジウムアセチルアセトナート(Pd(acac)2)0.17mmol、TOP1.1mmol及びオレイルアミン1.1mmolを混合し、250℃までゆっくり昇温させ、250℃にて30分間保持し、精製することによって粒径5nmのPdナノ粒子を得た。 Mixing 0.17 mmol of palladium acetylacetonate (Pd (acac) 2 ), 1.1 mmol of TOP and 1.1 mmol of oleylamine, slowly raising the temperature to 250 ° C., holding at 250 ° C. for 30 minutes, and purifying to a particle size of 5 nm Pd nanoparticles were obtained.

このPdナノ粒子0.085mmolを三口フラスコに入れ、オクタノール10mL、鉄アセチルアセトナート(Fe(acac)3)0.22mmol、オレイルアミン3.4mmol及びオレイン酸3.4mmolを加えた。反応容器内に攪拌子を入れ、マグネチックスターラーを用いて攪拌を行い、マントルヒーターで加熱した。溶液中の不純物や溶存酸素を取り除くため、反応容器内を減圧状態に、溶液を攪拌しながら110℃まで加熱し、1時間保持した。その後、反応容器内を窒素置換し、昇温速度2℃/分で180℃まで上温させ、180℃で1時間保持し反応させた。次いで、貧溶媒であるエタノールを10mL加え、遠心分離することによって反応物を沈殿させ、余分な有機物を取り除く精製処理を行った。 0.085 mmol of this Pd nanoparticle was placed in a three-necked flask, and 10 mL of octanol, 0.22 mmol of iron acetylacetonate (Fe (acac) 3 ), 3.4 mmol of oleylamine and 3.4 mmol of oleic acid were added. A stirrer was placed in the reaction vessel, stirred using a magnetic stirrer, and heated with a mantle heater. In order to remove impurities and dissolved oxygen in the solution, the reaction vessel was heated to 110 ° C. with stirring under a reduced pressure, and held for 1 hour. Thereafter, the inside of the reaction vessel was replaced with nitrogen, the temperature was raised to 180 ° C. at a rate of temperature rise of 2 ° C./min, and the reaction was carried out by maintaining at 180 ° C. for 1 hour. Subsequently, 10 mL of ethanol, which is a poor solvent, was added, and the reaction product was precipitated by centrifuging to perform a purification treatment to remove excess organic matter.

この溶液中に分散しているFe/Pd複合ナノ粒子を合成石英基板上及びTEMグリッド上に滴下し、イメージ炉内にて4%H2/Arフロー下(流量400mL/分)、500℃(昇温速度10℃/分)で1時間及び3時間処理した。 The Fe / Pd composite nanoparticles dispersed in this solution are dropped on a synthetic quartz substrate and a TEM grid, and are placed in an image furnace under a 4% H 2 / Ar flow (flow rate 400 mL / min) at 500 ° C. ( The temperature was increased at a heating rate of 10 ° C./min for 1 hour and 3 hours.

この粒子の熱処理前後のTEM像を図1に示す。酸化鉄相及び鉄相は融合しているが、コア部のPd(もしくはFePd)ナノ粒子部分の融合は確認されていない。また、この粒子の熱処理前後のXRDパターンを図2に示す。図2より、熱処理によりFe34が還元されながらPdと混ざり、FePd(部分的に規則化が進行したL10FePd)を形成していることが確認された。これらのことから、Pdナノ粒子の粒径が顕著に変わることなく、FePd(部分的L10FePd)が形成され、その周囲をα−Feが覆った構造をとっていることが予想される。加えて、反応時間を長くすることにより、規則化の促進を行うことが可能であると予想される。 A TEM image of the particles before and after heat treatment is shown in FIG. Although the iron oxide phase and the iron phase are fused, the fusion of the Pd (or FePd) nanoparticle part in the core part has not been confirmed. Moreover, the XRD pattern before and behind heat processing of this particle | grain is shown in FIG. From FIG. 2, it was confirmed that Fe 3 O 4 was mixed with Pd while being reduced by heat treatment to form FePd (L1 0 FePd partially ordered). From these facts, it is expected that FePd (partial L1 0 FePd) is formed without significantly changing the particle diameter of the Pd nanoparticles, and that the periphery thereof is covered with α-Fe. In addition, it is expected that regularization can be promoted by increasing the reaction time.

Fe/Pd複合ナノ粒子の熱処理前後のTEM写真である。It is a TEM photograph before and behind heat processing of Fe / Pd composite nanoparticle. Fe/Pd複合ナノ粒子の熱処理前後のXRDパターンを示すグラフである。It is a graph which shows the XRD pattern before and behind heat processing of a Fe / Pd composite nanoparticle.

Claims (1)

粒径1〜100nmのPdナノ粒子を、界面活性剤、Feの塩、及び還元剤と混合し、この混合物を加熱してFeの塩を構成するFeイオンを還元してPdナノ粒子上で析出させてFe/Pd複合ナノ粒子を形成し、次いでこのナノ粒子を水素雰囲気下で熱処理することを含む、磁性ナノ粒子の製造方法。   Pd nanoparticles having a particle size of 1 to 100 nm are mixed with a surfactant, an Fe salt, and a reducing agent, and the mixture is heated to reduce Fe ions constituting the Fe salt and precipitate on the Pd nanoparticles. Forming a Fe / Pd composite nanoparticle and then heat-treating the nanoparticle in a hydrogen atmosphere.
JP2006323876A 2006-11-30 2006-11-30 Method for producing Fe / Pd composite nanoparticles Expired - Fee Related JP4861802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323876A JP4861802B2 (en) 2006-11-30 2006-11-30 Method for producing Fe / Pd composite nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323876A JP4861802B2 (en) 2006-11-30 2006-11-30 Method for producing Fe / Pd composite nanoparticles

Publications (2)

Publication Number Publication Date
JP2008138238A JP2008138238A (en) 2008-06-19
JP4861802B2 true JP4861802B2 (en) 2012-01-25

Family

ID=39600014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323876A Expired - Fee Related JP4861802B2 (en) 2006-11-30 2006-11-30 Method for producing Fe / Pd composite nanoparticles

Country Status (1)

Country Link
JP (1) JP4861802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283262B2 (en) * 2008-10-30 2013-09-04 トヨタ自動車株式会社 Method for producing Fe / FePd nanocomposite magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695099B2 (en) * 1992-06-29 1997-12-24 株式会社日本アルミ Metal coating method for inorganic fine powder surface
JP3912391B2 (en) * 2004-05-26 2007-05-09 ソニー株式会社 Metallic magnetic nanoparticles and production method thereof

Also Published As

Publication number Publication date
JP2008138238A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP2008117855A (en) Manufacturing method of nano-composite magnet
JP3989868B2 (en) Synthesis of magnetite nanoparticles and method for forming iron-based nanomaterials
William Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts
JP3693647B2 (en) Metal alloy fine particles and method for producing the same
US11264155B2 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
US20030121364A1 (en) Metal salt reduction to form alloy nanoparticles
NZ555125A (en) Process for large-scale production of monodisperse nanoparticles of metals, metal alloys and metal oxides
Fereshteh et al. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds
JP6337963B2 (en) Magnetic material carrying magnetic alloy particles and method for producing the magnetic material
JP5186222B2 (en) Method for generating and aligning chemically mediated dispersions of magnetic nanoparticles in polymers
JP4232817B2 (en) Method for producing FePt-Fe nanocomposite metal magnetic particles
WO2006070572A1 (en) Ordered alloy phase nanoparticle, process for producing the same, superdense magnetic recording medium and process for producing the same
JP2010261085A (en) Method for producing graphite-coated metal nanoparticle, and method for thin-filming graphite-coated metal nanoparticle
JP2003166040A (en) Fine particles of metal alloy and manufacturing method therefor
JP2009097038A (en) PRODUCTION METHOD OF FePt NANOPARTICLE
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
JP4861802B2 (en) Method for producing Fe / Pd composite nanoparticles
JP2006342399A (en) Ultra-fine iron particle and production method therefor
WO2004108330A1 (en) Magnetic nanoparticles
Zhang et al. Controlled synthesis of monodisperse magnetic nanoparticles in solution phase
JP2008138243A (en) METHOD FOR PRODUCING Fe/Pd COMPOSITE NANOPARTICLE
JP4363440B2 (en) Manufacturing method of nanocomposite magnet
CN105081342B (en) Prepare soft-hard magnetic FeCo/SiO with Magnetic guidance form2The method of/MnBi nano particles
JP2010189721A (en) Core/shell type pd/fe2o3nanoparticle, method for producing the same, and fepd/fe nanoparticle obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees