EP1846933A1 - Isolierteil und ringkerndrossel - Google Patents

Isolierteil und ringkerndrossel

Info

Publication number
EP1846933A1
EP1846933A1 EP06705950A EP06705950A EP1846933A1 EP 1846933 A1 EP1846933 A1 EP 1846933A1 EP 06705950 A EP06705950 A EP 06705950A EP 06705950 A EP06705950 A EP 06705950A EP 1846933 A1 EP1846933 A1 EP 1846933A1
Authority
EP
European Patent Office
Prior art keywords
insulating part
separating
part according
toroidal core
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06705950A
Other languages
English (en)
French (fr)
Other versions
EP1846933B1 (de
Inventor
Günter FEIST
Karl Niklas
Jürgen STABENOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1846933A1 publication Critical patent/EP1846933A1/de
Application granted granted Critical
Publication of EP1846933B1 publication Critical patent/EP1846933B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/16Toroidal transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it

Definitions

  • the invention relates to an insulating part for potential separation of a toroidal core choke with several windings. Moreover, the invention relates to a toroidal core choke with an insulating part.
  • the object of the present invention is to provide an insulating part for a toroidal core choke, which can also be used with small toroidal cores.
  • an insulating member for incorporation into the core hole of a toroidal core having a separator for forming separate winding spaces and interconnecting spacers.
  • the separating device comprises at least one separating web extending in a radial direction and connected at its first end to a first spacer, whose width W is smaller than the width b of this spacer.
  • the width b of the spacer is large against the width W of the divider.
  • the width W is the thickness of a separating web or its cross-section broad understood.
  • the divider is preferably solid and has no voids.
  • At least one of the spacers is an elastically deformable part.
  • the elastically deformable part has, in the deformed state transverse to the radial direction and to a longitudinal direction of the insulating part, a width that is large in relation to the width W of the separating web.
  • the elastically deformable part is preferably deformed under the action of a force acting in the radial direction, wherein its width measured transversely to the radial direction preferably increases. The fact that the deformable part under the action of the force usually against a support -. B.
  • the dimensional stability of the deformable part can be achieved with respect to its width transversely to the radial direction, so that it transverse to the radial direction as a spacer z. B. can serve for the spatial separation of two windings of a toroidal core choke.
  • the width of the deformable part thus determines the insulation distance of a ring core choke comprising the insulating part.
  • the width of the deformable part is z. B. at least 2 x W.
  • an insulating part is provided with a radially extending separating web of width W, which has at its first end an elastically deformable expansion part.
  • the expansion part has in the spread state, a spread b - d. H . a clear distance between Spreizendticianen - on, which is at least twice the width W.
  • b> 3W applies.
  • the width W of the divider is preferably chosen so that the divider is indeed relatively narrow, but still rigid.
  • the wall thickness w of components of the expansion part is preferably chosen in contrast so that these components are at least partially deformable, for. B. flexible and thus can be spread.
  • the measured in the radial direction length h of the expansion in the spread state is preferably low against its spread b, in a variant h ⁇ 0, 4b.
  • the radial length h of the expansion part in the spread state is preferably small compared with the length a of the separating web measured in the radial direction, in a variant h ⁇ 0, 5a, in a preferred variant h ⁇ 0, 4a.
  • the radial length h of the expansion part in the spread state is preferably small relative to the-defined by the diameter of the core hole-cross-sectional size d of the insulating part, in a variant h ⁇ 0, 2d.
  • the spreader is pressed during installation in a toroidal core at Spreizend Vietnameseen against the inner wall of the toroidal core.
  • the slippage of windings to be separated from one another beyond the expansion end points is prevented and thus a predetermined isolation distance is ensured between the expansion end points, that is to say essentially transversely to the radial direction or also in the circumferential direction of the ring core.
  • the expansion part therefore serves as a spacer between separable windings.
  • the isolation distance is determined by the clear distance L between Spreizend Vietnameseen and is substantially equal to this distance.
  • the divider can be made particularly narrow. Thus, relatively large, separate winding be guaranteed despite the observance of a large isolation distance.
  • the insulating is resilient by the expansion in the radial direction, a simple assembly when installed in a toroidal core is possible.
  • the ring cores can have relatively large deviations from one another with respect to their inner diameter, it is possible to compensate for these tolerances with the specified insulating part.
  • the divider is preferably Y-shaped in cross-section, d. H. branched to form a cross-sectionally V-shaped expansion part at its first end in two spring elements.
  • the expansion part has two elastically deformable, preferably leaf-shaped, spring elements (bending spring), which differ in cross-section from a radial direction.
  • the cross-sectional length L of a spring element which is measured transversely to the separating web main surface, is large compared to the width W of the separating web, e.g. B. L> 1, 5W, preferably L> 2W.
  • the spread angle ß can for example be between 90 ° and 180 °, preferably between 120 ° and 170 °. With a large spread angle _> 150 °, it is possible to achieve a particularly large spread width and therefore a particularly large insulation distance and the largest possible winding spaces.
  • the cross-sectional length L of a spring element is preferably large compared to the radial length h of the expansion, z. B. L> 2h.
  • the cross-sectional length L of a spring element may in one variant be more than 0, 5a, where a is the radial length of the separating web.
  • the width W of the divider becomes dependent on elastic properties of the material of the divider and on the diameter the core hole chosen so that the separation bar is indeed thin, but remains dimensionally stable when inserted into the core hole.
  • the width W of the divider is preferably between 1, 5 and 5 mm, z. B. 1 to 1, 5 mm with a core hole diameter below 15 mm, 1, 5 to 2 mm with a core hole diameter between 15 and 25 mm, 1, 5 to 2, 5 mm with a core hole diameter between 20 and 50 mm and 2, 5 to 5 mm with a core hole diameter between 50 and 100 mm.
  • the wall thickness w of a spring element - apart from its regions with bevelled edges - is preferably at least 50% of the width W of the separating web.
  • the cross-sectional length L of the respective spring element is preferably at least 3.5 mm.
  • the cross-sectional length L of a spring element can be at least 4.5 mm in one variant.
  • the spread width b of the expansion part can be greater than 8 mm in one variant and greater than 9 mm in a preferred variant.
  • a device serving as an abutment can be provided at the second end of the separating web.
  • the abutment can be formed in a variant by a further expansion part, which also serves as a spacer to ensure the predetermined insulation distance and is preferably formed as the first expansion part.
  • Such an insulating part is suitable for a toroidal core choke with two windings.
  • the abutment by a z. B. be formed dimensionally stable part, which is a widened part of the divider and serves as a spacer to ensure the predetermined isolation distance.
  • This insulating part can be used in particular in a toroidal core choke with two windings.
  • the widened part of the separating web can have the basic shape of a circular sector in cross section.
  • the side facing away from the divider edge of the widened portion of the divider can have the shape of a circular arc in cross section, whose length z. B. is at least 10 mm.
  • the widened part may also have bevelled edges and / or at least one recess for receiving a holding element.
  • the abutment may be formed in that the separating web is connected at its end facing away from the spreader end, which forms a star point, star-shaped with further preferably identically designed separating webs.
  • the further separating webs preferably also each have a spreading part at its end remote from the star point.
  • a number n _> 2 of separating webs is used for isolating the core hole into n winding spaces. It is expedient to form all expansion parts of the insulating part similar.
  • the webs are offset substantially by an angle of 360 ° / n against each other. This makes it easy and advantageous to divide the core hole in the same size changing room.
  • the insulating part can have a plurality of radially extending separating webs with two elastically deformable spring elements extending deviating from a radial direction. It is expedient to form the spring elements connected to the same separation bridge symmetrical to each other. It is advantageous to design different dividers with the spring elements similar.
  • the insulating part is preferably formed in one piece.
  • the insulating part is preferably an injection-molded part, which is in a created a thermoplastic, eg. B.
  • a thermoplastic eg. B.
  • Polycarbonate has the advantage that on the one hand it is electrically very well insulated and on the other hand it has a very good fire behavior, namely only very low flammability in accordance with the UL 94 V-O standard.
  • polycarbonate for example, the materials Lexan or Macrolon come into consideration.
  • electrically insulating materials in question which are dimensionally stable and deformable in a smaller, provided for spring elements strength in a given thickness for the divider.
  • the insulating part is characterized by a high mechanical stability, which allows to insert the insulating part as a one-piece element before winding the toroidal core in the core hole.
  • Each section of the toroidal core lying between two separating webs is wound with a winding.
  • a toroidal core choke is provided with a potential separation.
  • the insulating part Due to the cooperating with the rigid dividers spring elements, the insulating part can be very mechanically fixed in the core hole of a toroidal core, which has the advantage that the webs of the insulating part 1 can not be pushed away during Bewickeins.
  • this has an n-fold symmetry axis.
  • the insulating part is mapped on rotation about the axis of symmetry by an angle of 360 ° / n on itself.
  • Such symmetry has the advantage that the production of essential can be simplified, since the smallest possible variety of forms is to be observed.
  • Figure 1 is a plan view of an insulating part for the separation of two windings
  • FIG. 2A shows the projection of the insulating part according to FIG. 1 onto the projection plane BB ';
  • FIG. 2B shows the plan view of the main surface of the insulating part according to FIG. 1;
  • FIG. 2C shows a spring element in cross-section through the cross-sectional plane AA '
  • Figure 2D is a view of the insulating part of Figure 1 from below;
  • Figure 2E is a view of the insulating part of Figure 1 from above.
  • Figure 3 is a plan view of another insulating part for the separation of two windings
  • Figure 4 is a plan view of an insulating part for the separation of three windings
  • Figure 5 is a plan view of an insulating part for the separation of four windings;
  • FIG. 6 shows the insulating part according to FIG. 1 in a perspective view;
  • FIG. 7 shows a perspective view of a toroidal core choke with the insulating part according to FIG. 1.
  • FIG. 8 shows a cross-section of the toroidal core choke according to FIG. 7.
  • FIGS. 1, 2A to 2E and 6 show different views of an insulating part according to a first embodiment.
  • Figure 1 shows a plan view of an end face of the insulating part, d. H . on a transverse to the main surface of its divider 11 side of the insulating part.
  • the radially extending separating web 11 is branched at its upper (first) end to form leaf-shaped spring elements 111, 112 in this example.
  • the pairs arranged at the outer end of the divider spring elements 111, 112 extend in each case deviating from the radial direction.
  • the spring elements 111, 112 together form a first expansion part 102, which is suitable as a spacer for maintaining an insulation distance.
  • the spring elements 111, 112 form in the ground state - d. H . before insertion into the core hole of a toroidal core - an angle of z. B. 120 ° to 170 ° to each other and are further spread when inserted into the core hole (Fig. 7), wherein they press against the inner wall of the toroidal core 2.
  • the spring elements 111, 112 are characterized by their flexibility, which means that they by pressing the compared with the spring elements rigid web 11 can be bent in the radial direction to the side, so that the insulating part can be adapted to different core hole diameter.
  • the separating web 11 has at its lower (second) end a widened part 10, which has the basic shape of a circle segment in cross-section transverse to the main surface of the separating web.
  • the common part 10 forms a second spacer for maintaining an insulation distance.
  • the widespread part 10 has two depressions 100, which in each case are suitable for receiving a holding element 5 (FIG. 7).
  • the major surface 110 of the divider 11 is parallel to a longitudinal axis C shown in Figs. 2B, 2D and 2E which is directed along the axial direction of a toroidal core 2 shown in Fig. 7 into which the insulating member is inserted.
  • the insulating part has the advantage that it can be adapted to different core hole diameter of toroidal cores due to the preferably deformable by a radial force expansion part.
  • the insulating part has the advantage that it can be made simply and inexpensively, for example by injection molding due to its simple structure.
  • FIG. 2A shows a view of the insulating part according to FIG. 1 from the perspective of plane BB 'and FIG. 2B shows a side view of the insulating part.
  • the spring element 111 has chamfered edges 91, 92 (FIGS. 2C and 2E).
  • the maximum wall thickness w of the spring element 111 is carries at least half of the separation web width W. This applies equally to the second spring element 112.
  • Broadened portion 10 may include beveled edges 93, 94 ( Figures 2B and 2D). In principle, all edges and / or joints - z. B. the joint of the separating web 11 and the part 10 or the joint of the separating web 11 and the spring element 111 or 112 - be rounded. The provided on the insulating chamfers 91 to 94 facilitate the insertion of the insulating part in the core hole of a toroidal core.
  • the windings 31, 32 of the toroidal core choke apart from each other and so to maintain the required minimum distance (I solationsabstand) between the windings.
  • the isolation distance can z. B. 9.6 mm (air gap), which corresponds to a creepage distance of 12.7 mm measured along the inner wall of the toroidal core.
  • FIGS. 3 to 5 show further possible embodiments of an insulating part with n separating webs for potential separation between n windings.
  • the insulating part has an n-fold symmetry axis in the embodiments shown here.
  • the symmetry axis is transverse to the plane of the figures.
  • the webs 11 and 12 (and web 13 in Fig. 4, 5 and web 14 in Fig. 5) extend in the radial direction of an imaginary center of the insulating part away. Through the imaginary center of the insulating part, the n-counted symmetry axis, not shown in figures, runs.
  • the divider 11 has at both ends each one spreader 102 and 102 'on. Both spreading parts are the same.
  • the expansion part 102 comprises two spring elements 111, 112 and the expansion part 102 'two spring elements 111', 112 '.
  • the spread width b is at equal length spring elements 2L x sin (ß / 2), where L is the cross-sectional length of a spring element and ß is a spread angle.
  • the separating webs 11, 12, 13, 14 at n> 2 are connected to one another in a star shape (see FIGS. 4 and 5).
  • a separating device 1 of the insulating part is formed in FIGS. 1, 3 and 6 by the separating web 11.
  • the separating device comprises three separating webs 11, 12, 13 which are connected in a star-shaped manner at an imaginary center and in FIG. 5 four interconnected separating webs 11, 12, 13, 14.
  • the separating web 12 is branched at its outwardly pointing end into spring elements 121, 122 and the separating web 13 into spring elements 131, 132. All dividers here have the same length a.
  • the radial length h of the gebil Deten by the spring members 111, 112 Sp Dahlteils is substantially smaller than the web length a, da the spread angle ß is chosen large. For this reason, the spread width b (see Fig. 3) is particularly large.
  • An asymmetrical insulating part with n dividers is also possible.
  • An insulating part with n> 4 dividers for the formation of n separate winding spaces is also provided.
  • FIG. 7 shows an exemplary toroidal core choke with an insulating part according to the embodiment of FIG.
  • the toroidal core choke comprises a toroidal core 2 with a core hole and two windings 31, 32.
  • the core hole is divided by the insulating part 11, 111, 112, 10 into two separate winding spaces for accommodating a winding 31 and 32, respectively. Due to the fact that the divider 11 with z. B. 1, 5 to 3 mm is formed relatively narrow, comparatively large changing rooms are provided.
  • the toroidal core choke is mounted on a mounting plate 4, are provided in the openings for receiving coil ends to comply with a predetermined pitch of the toroidal core choke.
  • two retaining elements 5 are preferably provided for the vertical fixing of the toroidal core choke, wherein in Figure 7, only one retaining element 5 is visible.
  • the holding element 5 fits positively into the recess 100 of the insulating part.
  • the retaining element 5 holds the throttle in the variant presented in Figure 7 not on the insulating part, but on the toroidal core.
  • the length of the separating web 11 measured in the radial direction is preferably at least 50% of the diameter of the core hole. In one variant, the length of the separating web 11 is at least 70% of the diameter of the core hole.
  • the cross section of the toroidal core choke through the sectional plane DD " is shown in FIG.
  • the measured in the axial direction (longitudinal direction C, see Fig. 2B, 2D, 2E) height of the insulating part is preferably greater than the height of the ring core 2, so that the insulating part in this direction beyond the toroidal addition z. B. on both sides, see Figure 8.
  • This is for fixing the arrangement of the core and the insulating part in the component winding of the core advantageous.
  • a Ü- protruding insulating part is also suitable by the supernatant of the divider 11 to extend a so-called creepage and clearance, even with a tightly wound throttle a predetermined clearance and creepage distance can be ensured even in the central region of the throttle.
  • separating web 11 of the insulating part is in the axial direction on both sides j e at least 3 mm on the ring core 2 and. beyond the top of the throttle (in Figure 8 upper or lower).
  • the respective supernatant in a preferred variant is at least 4.5 mm.
  • the actual clearance and creepage distance is preferably at least as great as the predetermined clearance and creepage distance.
  • a sufficient clearance and creepage distance is therefore also possible by means of a separating web 11 of the insulating part protruding beyond the ring core ensured medium range of the throttle, wherein the distance d may be selected smaller than the predetermined clearance and creepage distance.
  • the invention is not limited to the number of elements shown in figures.
  • the formation of a spreader is not limited to leaf-shaped spring elements. Rather, all possible suitable devices are considered in order to achieve a suspension of the preferably rigid webs in the radial direction.
  • the webs can be executed both solid and as a hollow profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Die Erfindung betrifft ein Isolierteil zum Einbau in das Kernloch eines Ringkerns (2). Das Isolierteil enthält eine Trennvorrichtung (1) zur Bildung von separaten Wickelräumen und zur Verbindung von Abstandshaltern (102, 102'), wobei die Trennvorrichtung (1) mindestens einen Trennsteg (11) aufweist, an dessen Ende ein erster Abstandshalter (102) angeordnet ist, wobei die Breite W des Trennstegs kleiner ist als die Breite b des Abstandshalters (102).

Description

Beschreibung
Isolierteil und Ringkerndrossel
Die Erfindung betrifft ein Isolierteil zur Potentialtrennung einer Ringkerndrossel mit mehreren Wicklungen . Darüber hinaus betrifft die Erfindung eine Ringkerndrossel mit einem Isolierteil .
Ein in ein Ringkernloch einsetzbares Isolierteil für eine Ringkerndrossel ist z . B . aus der Druckschrift DE 10308010 Al bekannt .
Aufgabe der vorliegenden Erfindung ist es , ein Isolierteil für eine Ringkerndrossel anzugeben, das auch bei kleinen Ringkernen einsetzbar ist .
Diese Aufgabe ist durch ein Isolierteil nach Anspruch 1 gelöst . In den weiteren Patentansprüchen sind vorteilhafte Ausgestaltungen des Isolierteils sowie eine Ringkerndrossel angegeben .
Es wird ein Isolierteil zum Einbau in das Kernloch eines Ringkerns angegeben, das eine Trennvorrichtung zur Bildung von separaten Wickelräumen und zur Verbindung von Abstandshaltern aufweist . Die Trennvorrichtung umfasst mindestens einen in eine radiale Richtung verlaufenden, an seinem ersten Ende mit einem ersten Abstandshalter verbundenen Trennsteg, dessen Breite W kleiner als die Breite b dieses Abstandshalters ist .
Vorzugsweise ist im eingebauten Zustand die Breite b des Abstandshalters groß gegen die Breite W des Trennstegs .
Unter der Breite W wird gemäß einer bevorzugten Variante des I - solierteils die Stärke eines Trennstegs bzw. seine Querschnitts- breite verstanden . Der Trennsteg ist dabei vorzugsweise massiv und weist keine Hohlräume auf .
Vorzugsweise stellt mindestens einer der Abstandshalter einen elastisch verformbaren Teil dar . Der elastisch verformbare Teil hat im verformten Zustand quer zur radialen Richtung und zu einer Längsrichtung des Isolierteils eine Breite , die gegenüber der Breite W des Trennstegs groß ist . Der elastisch verformbare Teil wird vorzugsweise unter Einwirkung einer in der radialen Richtung wirkenden Kraft verformt , wobei sich seine quer zur radialen Richtung gemessene Breite vorzugsweise vergrößert . Dadurch, dass sich der verformbare Teil bei Einwirkung der Kraft in der Regel gegen eine Auflage - z . B . die Innenwand eines Ringkerns - stützt , kann die Formstabilität des verformbaren Teils bezüglich seiner Breite quer zur radialen Richtung erreicht werden, so dass er quer zur radialen Richtung als Abstandshalter z . B . zur räumlichen Trennung von zwei Wicklungen einer Ringkerndrossel dienen kann . Die Breite des verformbaren Teils bestimmt also den Isolationsabstand einer das Isolierteil umfassenden Ringkerndrossel . Die Breite des verformbaren Teils beträgt z . B . mindestens 2 x W .
In einer bevorzugten Variante wird ein Isolierteil mit einem radial verlaufenden Trennsteg der Breite W angegeben, der an seinem ersten Ende einen elastisch verformbaren Spreizteil aufweist . Der Spreizteil weist im aufgespreizten Zustand eine Spreizweite b - d . h . einen lichten Abstand zwischen Spreizendpunkten - auf , die mindestens das doppelte der Breite W beträgt . In einer vorteilhaften Variante gilt b ;> 3W .
Die Breite W des Trennstegs ist vorzugsweise so gewählt , dass der Trennsteg zwar relativ schmal , aber trotzdem starr ist . Die Wandstärke w von Komponenten des Spreizteils ist vorzugsweise demgegenüber so gewählt , dass diese Komponenten zumindest teilweise verformbar, z . B . biegsam und somit spreizbar sind .
Die in radialer Richtung gemessene Länge h des Spreizteils im aufgespreizten Zustand ist gegen seine Spreizweite b vorzugsweise gering, in einer Variante h < 0 , 4b .
Die radiale Länge h des Spreizteils im aufgespreizten Zustand ist gegen die in radialer Richtung gemessene Länge a des Trennstegs vorzugsweise gering, in einer Variante h < 0 , 5a, in einer bevorzugten Variante h < 0 , 4a .
Die radiale Länge h des Spreizteils im aufgespreizten Zustand ist gegen die - durch den Durchmesser des Kernlochs definierte - Querschnittsgröße d des Isolierteils vorzugsweise gering, in einer Variante h < 0 , 2d .
Der Spreizteil wird beim Einbau in einen Ringkern an Spreizendpunkten gegen die Innenwand des Ringkerns gepresst . Dabei wird das Zueinanderrutschen von voneinander zu trennenden Wicklungen über die Spreizendpunkte hinaus verhindert und somit zwischen den Spreizendpunkten, also im Wesentlichen quer zur radialen Richtung oder auch in Umfangsrichtung des Ringkerns ein vorgegebener Isolationsabstand sichergestellt . Der Spreizteil dient daher als Abstandshalter zwischen voneinander zu trennenden Wicklungen. Der Isolationsabstand ist durch den lichten Abstand L zwischen Spreizendpunkten festgelegt und ist diesem Abstand im Wesentlichen gleich .
Dadurch, dass Abstandselemente zur Sicherung eines Isolationsabstands auf eine platzsparende Weise am Ende des Stegs ausgebil det sind, kann der Trennsteg besonders schmal ausgebildet werden. Somit können relativ große, voneinander getrennte Wickel- räume trotz der Einhaltung eines großen Isolationsabstands gewährleistet werden .
Da das Isolierteil durch den Spreizteil in radialer Richtung federnd ist , ist eine einfache Montage beim Einbau in einen Ringkern möglich . Obwohl die Ringkerne bezüglich ihres Innendurchmessers relativ starke Abweichungen voneinander aufweisen können, gelingt es , mit dem angegebenen Isolierteil diese Toleranzen auszugleichen .
Der Trennsteg ist im Querschnitt vorzugsweise Y-förmig, d. h. zur Bildung eines im Querschnitt V-förmigen Spreizteils an seinem ersten Ende in zwei Federelemente verzweigt . Der Spreizteil weist in diesem Fall zwei - im Querschnitt abweichend von einer radialen Richtung verlaufende - elastisch verformbare , vorzugsweise blattförmige Federelemente (Biegefeder) auf . Die quer zum Trennsteghauptflache gemessene Querschnittslänge L eines Federelements ist gegenüber der Breite W des Trennstegs groß, z . B . L > 1 , 5W, vorzugsweise L > 2W .
Der Spreizwinkel ß kann beispielsweise zwischen 90 ° und 180 ° , vorzugsweise zwischen 120 ° und 170 ° liegen . Mit einem großen Spreizwinkel _> 150 ° gelingt es , eine besonders große Spreizweite und daher einen besonders großen Isolationsabstand sowie möglichst große Wickelräume zu erreichen .
Die Querschnittslänge L eines Federelements ist vorzugsweise gegenüber der radialen Länge h des Spreizteils groß, z . B . L > 2h . Die Querschnittslänge L eines Federelements kann in einer Variante mehr als 0 , 5a betragen, wobei a die radiale Länge des Trennstegs ist .
Die Breite W des Trennstegs wird in Abhängigkeit von elastischen Eigenschaften des Materials des Trennstegs und vom Durchmesser des Kernlochs so gewählt , dass der Trennsteg zwar dünn ist , aber beim Einsetzten ins Kernloch formstabil bleibt . Die Breite W des Trennstegs beträgt vorzugsweise zwischen 1 , 5 und 5 mm, z . B . 1 bis 1 , 5 mm bei einem Kernlochdurchmesser unterhalb von 15 mm, 1 , 5 bis 2 mm bei einem Kernlochdurchmesser zwischen 15 und 25 mm, 1 , 5 bis 2 , 5 mm bei einem Kernlochdurchmesser zwischen 20 und 50 mm und 2 , 5 bis 5 mm bei einem Kernlochdurchmesser zwischen 50 und 100 mm. Die Wandstärke w eines Federelements - abgesehen von seinen Bereichen mit abgeschrägten Kanten - beträgt vorzugsweise mindestens 50% der Breite W des Trennstegs .
Die Querschnittslänge L des j eweiligen Federelements beträgt vorzugsweise mindestens 3 , 5 mm. Die Querschnittslänge L eines Federelements kann in einer Variante mindestens 4 , 5 mm sein .
Die Spreizweite b des Spreizteils kann in einer Variante großer als 8 mm und in einer bevorzugten Variante größer als 9 mm sein.
Vorteilhafterweise kann am zweiten Ende des Trennstegs eine als Widerlager dienende Vorrichtung vorgesehen sein. Das Widerlager kann in einer Variante durch einen weiteren Spreizteil gebildet sein, der auch als Abstandshalter zur Sicherstellung des vorgegebenen Isolationsabstands dient und vorzugsweise wie der erste Spreizteil ausgebildet ist . Ein solches Isolierteil ist für eine Ringkerndrossel mit zwei Wicklungen geeignet .
In einer weiteren Variante kann das Widerlager durch einen z . B . formfesten Teil gebildet sein, der einen verbreiterten Teil des Trennstegs darstellt und als Abstandshalter zur Sicherstellung des vorgegebenen Isolationsabstands dient . Dieses Isolierteil kann insbesondere in einer Ringkerndrossel mit zwei Wicklungen eingesetzt werden . In einer Variante können die Hauptflächen des verbreiterten Teils in einem Winkel zwischen 60 ° und 120 ° , z . B . 80 ° zueinander verlaufen. Der verbreiterte Teil des Trennstegs kann im Querschnitt die Grundform eines Kreissektors aufweisen. Die vom Trennsteg abgewandte Kante des verbreiterten Teils des Trennstegs kann im Querschnitt die Form eines Kreisbogens aufweisen, dessen Länge z . B . mindestens 10 mm ist . Der verbreiterte Teil kann ferner abgeschrägte Kanten und/oder mindestens eine Vertiefung zur Aufnahme eines Halteelements aufweisen .
In einer weiteren Variante kann das Widerlager dadurch gebildet sein, dass der Trennsteg an seinem vom Spreizteil abgewandten Ende, das einen Sternpunkt bildet , sternförmig mit weiteren vorzugsweise gleichartig ausgebildeten Trennstegen verbunden ist . Die weiteren Trennstege weisen vorzugsweise auch j eweils einen Spreizteil an ihrem vom Sternpunkt abgewanden Ende . Eine Anzahl n _> 2 von Trennstegen wird zur isolierenden Unterteilung des Kernlochs in n Wickelräume verwendet . Es ist zweckmäßig, alle Spreizteile des Isolierteils gleichartig auszubilden. In einer Ausführungsform des Isolierteils sind die Stege im wesentlichen um einen Winkel von 360 °/n gegeneinander versetzt . Dadurch gelingt es einfach und in vorteilhafter Weise , das Kernloch in gleich große Wickelräume zu unterteilen .
Das Isolierteil kann also in einer vorteilhaften Variante mehrere radial verlaufende Trennstege mit zwei abweichend von einer radialen Richtung verlaufenden, elastisch verformbaren Federelementen aufweisen. Es ist zweckmäßig, die mit demselben Trennsteg verbundenen Federelemente symmetrisch zueinander auszubilden . Es ist vorteilhaft , verschiedene Trennstege mit den Federelementen gleichartig auszubilden.
Das Isolierteil ist vorzugsweise einstückig ausgebildet . Das I- solierteil ist vorzugsweise ein Spritzgussteil , das in einer Va- riante einen Thermoplasten, z . B . Polycarbonat enthält . Polycar- bonat hat den Vorteil , dass es einerseits elektrisch sehr gut isoliert und andererseits ein sehr gutes Brandverhalten, nämlich eine nur sehr geringe Brennbarkeit entsprechend der Norm UL 94 V- O aufweist . Als Polycarbonat kommen beispielsweise die Materialien Lexan oder auch Macrolon in Betracht . Es kommen auch weitere elektrisch isolierende Materialien in Frage , die in einer für den Trennsteg vorgegebenen Stärke formstabil und in einer kleineren, für Federelemente vorgesehenen Stärke verformbar sind.
Das Isolierteil zeichnet sich durch eine hohe mechanische Stabilität, die es erlaubt , das Isolierteil als einstückiges Element bereits vor dem Bewickeln des Ringkerns in dessen Kernloch einzuschieben . Jeder zwischen zwei Trennstegen liegende Abschnitt des Ringkerns wird mit einer Wicklung bewickelt . Somit wird eine Ringkerndrossel mit einer Potentialtrennung bereitgestellt .
Aufgrund der mit den starren Trennstegen zusammenwirkenden Federelemente kann das Isolierteil mechanisch sehr fest im Kernloch eines Ringkerns befestigt werden, was den Vorteil hat , dass sich die Stege des Isolierteils 1 nicht während des Bewickeins wegdrücken lassen .
Mit dem angegebenen Isolierteil gelingt es , eine große Isolierstrecke , d . h . Luft- und Kriechstrecke zwischen zwei zu trennenden Wicklungen zu erzielen, ohne den durch das Kernloch definierten Wickelraum einzuschränken .
In einer vorteilhaften Ausführungsform des Isolierteils weist dieses eine n-zählige Symmetrieachse auf . Darunter ist zu verstehen, dass das Isolierteil bei Drehung um die Symmetrieachse um einen Winkel von 360°/n auf sich selbst abgebildet wird. Eine solche Symmetrie hat den Vorteil , dass die Herstellung wesent- lieh vereinfacht werden kann, da eine möglichst geringe Formenvielfalt zu beachten ist .
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der dazugehörigen Figuren näher erläutert . Die Figuren zeigen anhand schematischer und nicht maßstabsgetreuer Darstellungen verschiedene Ausführungsbeispiele der Erfindung . Gleiche o- der gleich wirkende Teile sind . mit gleichen Bezugszeichen bezeichnet . Es zeigen schematisch
Figur 1 eine Draufsicht auf ein Isolierteil zur Trennung von zwei Wicklungen;
Figur 2A die Proj ektion des Isolierteils gemäß Figur 1 auf die Proj ektionsebene BB' ;
Figur 2B die Draufsicht auf die Hauptfläche des Isolierteils gemäß Figur 1 ;
Figur 2C ein Federelement im Querschnitt durch die Querschnittsebene AA' ;
Figur 2D eine Ansicht des Isolierteils gemäß Figur 1 von unten;
Figur 2E eine Ansicht des Isolierteils gemäß Figur 1 von oben;
Figur 3 eine Draufsicht auf ein weiteres Isolierteil zur Trennung von zwei Wicklungen;
Figur 4 eine Draufsicht auf ein Isolierteil zur Trennung von drei Wicklungen;
Figur 5 eine Draufsicht auf ein Isolierteil zur Trennung von vier Wicklungen; Figur 6 das Isolierteil gemäß Figur 1 in einer perspektivischen Ansicht ;
Figur 7 eine perspektivische Ansicht einer Ringkerndrossel mit dem Isolierteil gemäß Figur 1.
Figur 8 Querschnitt der Ringkerndrossel gemäß Figur 7.
In Figuren 1 , 2A bis 2E und 6 sind verschiedene Ansichten eines Isolierteils gemäß einer ersten Ausführung vorgestellt .
Figur 1 zeigt eine Draufsicht auf eine Stirnseite des Isolierteils , d . h . auf eine quer zur Hauptfläche seines Trennstegs 11 verlaufende Seite des Isolierteils .
Der radial verlaufende Trennsteg 11 ist an seinem oberen (ersten) Ende zur Bildung von in diesem Beispiel blattförmigen Federelementen 111 , 112 verzweigt . Die paarweise am äußeren Ende des Trennstegs angeordneten Federelemente 111 , 112 verlaufen j eweils abweichend von der radialen Richtung .
Die Federelemente 111 , 112 bilden zusammen einen ersten Spreizteil 102 , der als Abstandshalter zur Einhaltung eines Isolationsabstands geeignet ist . Die Federelemente 111 , 112 bilden im Grundzustand - d . h . vor dem Einsetzen in das Kernloch eines Ringkerns - einen Winkel von z . B . 120 ° bis 170 ° zueinander und werden beim Einsetzen in das Kernloch (Fig . 7) weiter aufge- spreizt , wobei sie gegen die Innenwand des Ringkerns 2 drücken .
Durch ausüben eines Drucks in radiale Richtung können die Federelemente des Isolierteils verformt werden . Die Federerelemente 111 , 112 zeichnen sich durch ihre Biegsamkeit aus , was bedeutet , dass sie durch Drücken des verglichen mit den Federerelementen starren Stegs 11 in radiale Richtung zur Seite gebogen werden können, womit das Isolierteils an verschiedene Kernlochdurchmesser angepasst werden kann .
Der Trennsteg 11 weist an seinem unteren (zweiten) Ende einen verbreiterten Teil 10 auf , der im Querschnitt quer zur Hauptfläche des Trennstegs die Grundform eines Kreissegments hat . Der verbreitete Teil 10 bildet einen zweiten Abstandshalter zur Einhaltung eines Isolationsabstands .
Der verbreitete Teil 10 weist zwei Vertiefungen 100 auf , die j eweils zur Aufnahme eines Halteelements 5 (Fig . 7) geeignet sind.
Die Hauptfläche 110 des Trennstegs 11 verläuft parallel zu einer in Figuren 2B, 2D und 2E gezeigten Längsachse C, die entlang der axialen Richtung eines in Figur 7 gezeigten Ringkerns 2 , in den das Isolierteil eingesetzt wird, gerichtet ist .
Das Isolierteil hat den Vorteil , dass es aufgrund des vorzugsweise durch eine radiale Kraft verformbaren Spreizteils an verschiedene Kernlochdurchmesser von Ringkernen angepasst werden kann . Darüber hinaus hat das Isolierteil den Vorteil , dass es aufgrund seines einfachen Aufbaus einfach und preisgünstig, beispielsweise mittels Spritzguss hergestellt werden kann.
In Figur 2A ist eine Ansicht des Isolierteils gemäß Figur 1 aus der Perspektive der Ebene BB' und in Figur 2B eine Seitenansicht des Isolierteils gezeigt .
In Figur 2C ist das Federelement 111 in einem schematischen Querschnitt durch die Ebene AA" gezeigt .
Das Federelement 111 weist abgeschrägte Kanten 91 , 92 auf (Fig . 2C und 2E) . Die maximale Wandstärke w des Federelements 111 be- trägt mindestens die Hälfte der Trennstegbreite W . Dies gilt gleichermaßen für das zweite Federelement 112.
Der verbreiterte Teil 10 kann abgeschrägte Kanten 93 , 94 aufweisen (Fig . 2B und 2D) . Grundsätzlich können alle Kanten und/oder Stoßstellen - z . B . die Stoßstelle des Trennstegs 11 und des Teils 10 oder die Stoßstelle des Trennstegs 11 und des Federelements 111 bzw. 112 - abgerundet sein . Die am Isolierteil vorgesehenen Anschrägungen 91 bis 94 erleichtern das Einführen des Isolierteils in das Kernloch eines Ringkerns .
Einerseits durch die Federelemente 111 , 112 und andererseits durch den verbreiterten Teil 10 gelingt es , an beiden Enden des Isolierteils die Wicklungen 31 , 32 der Ringkerndrossel voneinander zu beabstanden und so den erforderlichen Mindestabstand (I- solationsabstand) zwischen den Wicklungen einzuhalten . Der Isolationsabstand kann z . B . 9 , 6 mm (Luftstrecke) betragen, was einer entlang der Innenwand des Ringkerns gemessenen Kriechstrecke von 12 , 7 mm entspricht .
In Figuren 3 bis 5 sind weitere mögliche Ausführungen eines Isolierteils mit n Trennstegen zur Potentialtrennung zwischen n Wicklungen gezeigt . Das Isolierteil weist in den hier gezeigten Ausführungen eine n-zählige Symmetrieachse auf . Die Symmetrieachse verläuft quer zur Ebene der Figuren.
Die Stege 11 und 12 (sowie Steg 13 in Fig . 4 , 5 und Steg 14 in Fig . 5) erstrecken sich in radialer Richtung von einem gedachten Mittelpunkt des Isolierteils weg . Durch den gedachten Mittelpunkt des Isolierteils läuft die in Figuren nicht gezeigte n- zählige Symmetrieachse .
In Figur 3 ist ein Isolierteil zur Trennung von zwei Wicklungen gezeigt (n = 2) . Der Trennsteg 11 weist an seinen beiden Enden j e einen Spreizteil 102 und 102 ' auf . Beide Spreizteile sind gleich ausgebildet . Der Spreizteil 102 umfasst zwei Federelemente 111 , 112 und der Spreizteil 102 ' zwei Federelemente 111 ' , 112 ' .
Das Federelement 111 weist eine Länge LIl = L und das Federelement vorzugsweise die gleiche Federlänge L12 auf . Die Spreizweite b beträgt bei gleich langen Federelementen 2L x sin (ß/2 ) , wobei L die Querschnittslänge eines Federelements und ß ein Spreizwinkel ist . Die radiale Länge h des Spreizteils beträgt ca . h = w + L x cos (ß/2 ) , wobei w die Wandstärke des Federelements ist .
Die Trennstege 11 , 12 , 13 , 14 bei n > 2 sind sternförmig miteinander verbunden (siehe Figuren 4 und 5) .
Eine Trennvorrichtung 1 des Isolierteils ist in Figuren 1 , 3 und 6 durch den Trennsteg 11 gebildet . In Figur 4 umfasst die Trennvorrichtung drei an einem gedachten Mittelpunkt sternförmig miteinander verbundene Trennstege 11 , 12 , 13 und in Figur 5 vier miteinander verbundene Trennstege 11 , 12 , 13 , 14.
In Figur 4 ist ein Isolierteil zur Trennung von drei Wicklungen gezeigt (n = 3 ) . Der Winkel zwischen zwei Trennstegen 11 und 12 , 12 und 13 sowie 13 und 11 beträgt hier 360 ° /n = 120 ° .
Der Trennsteg 12 ist an seinem nach außen weisenden Ende in Federelemente 121 , 122 und der Trennsteg 13 in Federelemente 131 , 132 verzweigt . Alle Trennstege weisen hier die gleiche Länge a auf .
Die radiale Länge h des durch die Federelemente 111 , 112 gebil deten Spreizteils ist wesentlich kleiner als die Steglänge a, da der Spreizwinkel ß groß gewählt ist . Aus diesem Grund ist auch die Spreizweite b (siehe Fig . 3 ) besonders groß .
In Figur 5 ist ein Isolierteil zur Trennung von vier Wicklungen gezeigt (n = 4) . Der Winkel zwischen zwei Trennstegen 11 und 12 , 12 und 13 , 13 und 14 sowie 14 und 11 beträgt hier 360 °/n = 90 ° .
Ein unsymmetrisches Isolierteil mit n Trennstegen ist auch möglich . Ein Isolierteil mit n > 4 Trennstegen zur Bildung von n voneinander getrennten Wickelräumen ist auch vorgesehen .
In Figur 7 ist eine beispielhafte Ringkerndrossel mit einem Isolierteil gemäß Ausführung der Figur 1 gezeigt . Die Ringkerndrossel umfasst einen Ringkern 2 mit einem Kernloch und zwei Wicklungen 31 , 32. Das Kernloch ist durch das Isolierteil 11 , 111 , 112 , 10 in zwei voneinander getrennte Wickelräume zur Aufnahme einer Wicklung 31 bzw. 32 aufgeteilt . Dadurch, dass der Trennsteg 11 mit z . B . 1 , 5 bis 3 mm relativ schmal ausgebildet ist , werden vergleichsweise große Wickelräume zur Verfügung gestellt .
Die Ringkerndrossel ist auf einer Montageplatte 4 befestigt , in der Öffnungen zur Aufnahme von Wicklungsenden zur Einhaltung eines vorgegebenen Rastermaßes der Ringkerndrossel vorgesehen sind . Auf der Montageplatte sind vorzugsweise zwei Halteelemente 5 zur vertikalen Fixierung der Ringkerndrossel vorgesehen, wobei in Figur 7 nur ein Halteelement 5 sichtbar ist . Das Halteelement 5 passt formschlüssig in die Vertiefung 100 des Isolierteils . Das Halteelement 5 hält die Drossel in der in Figur 7 vorgestellten Variante nicht am Isolierteil , sondern am Ringkern .
Die in radialer Richtung gemessene Länge des Trennstegs 11 beträgt vorzugsweise mindestens 50% des Durchmessers des Kernlochs . In einer Variante beträgt die Länge des Trennstegs 11 mindestens 70% des Durchmessers des Kernlochs . Der Querschnitt der Ringkerndrossel durch die Schnittebene DD" ist in Figur 8 gezeigt .
Die in axialer Richtung (Längsrichtung C, siehe Fig . 2B, 2D, 2E) gemessene Höhe des Isolierteils ist vorzugsweise größer als die Höhe des Ringkerns 2 , so dass das Isolierteil in dieser Richtung über den Ringkern hinaus z . B . beidseitig übersteht , siehe Figur 8. Dies ist zur Fixierung der Anordnung des Kerns und des Isolierteils beim Bauelementwickeln des Kerns vorteilhaft . Ein ü- berstehendes Isolierteil ist außerdem durch den Überstand des Trennstegs 11 zur Verlängerung einer sogenannten Luft- und Kriechstrecke geeignet , wobei selbst bei einer dicht bewickelten Drossel eine vorgegebene Luft- und Kriechstrecke auch im mittleren Bereich der Drossel sichergestellt werden kann .
In einer vorteilhaften Variante steht der Trennsteg 11 des Isolierteils in axialer Richtung beidseitig j e mindestens 3 mm über den Ringkern 2 bzw . über den (in Fig . 8 oberen oder unteren) Rand der Drossel hinaus . Der j eweilige Überstand beträgt in einer bevorzugten Variante mindestens 4 , 5 mm.
Die tatsächliche Luft- und Kriechstrecke setzt sich als Summe S = 11 + W + 12 aus der Querschnittsgröße des Trennstegs W, einem Abstand 11 zwischen der - in Figur 8 nach unten gewandten - Stirnseite des Trennstegs 11 und der endständigen, zum Trennsteg gewandten Windung der ersten Wicklung 31 , sowie einem Abstand 12 zwischen der Stirnseite des Trennstegs 11 und der endständigen, zum Trennsteg gewandten Windung der zweiten Wicklung 32 zusammen . Die tatsächliche Luft- und Kriechstrecke ist vorzugsweise mindestens so groß wie die vorgegebene Luft- und Kriechstrecke .
Dadurch, dass die tatsächliche Luft- und Kriechstrecke mittels eines überstehenden Isolierteils de facto verlängert ist , ist es möglich, einerseits die vorgegebene größere Luft- und Kriechstrecke einzuhalten und andererseits den vorhandenen Wickelraum auszunützen, was insbesondere bei Ringkernen mit einem kleinen Innendurchmesser einen wichtigen Vorteil darstellt . Die Wicklungen 31 , 32 sind in einer radialen Richtung, die in Figur 7 quer zum Trennsteg verläuft , um den Abstand d voneinander beabstandet . In einer bevorzugten, auch in Figur 8 gezeigten Variante ist dieser Abstand kleiner als die tatsächliche Luft- und Kriechstrecke S = 11 + W + 12. Eine ausreichende Luft- und Kriechstrecke ist somit mittels eines über den Ringkern hinaus überstehenden Trennstegs 11 des Isolierteils auch im mittleren Bereich der Drossel sichergestellt , wobei der Abstand d kleiner als die vorgegebene Luft- und Kriechstrecke gewählt werden darf .
Die Erfindung ist nicht auf die Anzahl der in Figuren dargestellten Elemente beschränkt . Die Ausbildung eines Spreizteils ist nicht auf blattförmige Federelemente beschränkt . Es kommen vielmehr alle möglichen geeigneten Vorrichtungen in Betracht , um eine Federung der vorzugsweise starren Stege in radialer Richtung zu erreichen. Die Stege können sowohl massiv als auch als Hohlprofil ausgeführt sein .
Bezugszeichenliste
1 Trennvorrichtung
10 Verbreiterung des Trennstegs 11
100 Vertiefung
102 erster Abstandshalter
102 ^ zweiter Abstandshalter
II , 12 , 13 Trennsteg
110 Hauptfläche des Trennstegs 11
III , 112 verformbare Federelemente des Trennstegs 11 121 , 122 verformbare Federelemente des Trennstegs 12 131 , 132 verformbare Federelemente des Trennstegs 13 31 , 32 Wicklungen
4 Montageplatte
5 Halteelement
91 , 92 abgeschrägte Kanten des Federelements 111
93 , 94 abgeschrägte Kanten des Teils 10
AA" Querschnittsebene
BB* Proj ektionsebene a radiale Länge des Trennstegs b Spreizweite des Spreizteils 102 d radialer Abstand zwischen einander gegenüberliegenden
Wicklungen
C Längsachse h Länge des Spreizteils
11 , 12 Abstand zwischen endständiger Wicklung und Stirnseite des Trennstegs
LlO Länge der Sekanten des Kreisbogens
LIl Länge des Federelements 111
L12 Länge des Federelements 112 w Wandstärke des verformbaren Federelements
W Breite des Trennstegs 11

Claims

Patentansprüche
1. Isolierteil zum Einbau in das Kernloch eines Ringkerns (2 ) , enthaltend eine Trennvorrichtung (1) zur Bildung von separaten Wickelräumen und zur Verbindung von Abstandshaltern (102 , 102 ' ) , wobei die Trennvorrichtung (1) mindestens einen Trennsteg (11) aufweist , an dessen Ende ein erster Abstandshalter (102 ) angeordnet ist , wobei die Breite W des Trennstegs kleiner ist als die Breite b des Abstandshalters (102 ) .
2. Isolierteil nach Anspruch 1 , wobei der Trennsteg (11) an seinem ersten Ende als ersten Abstandshalter (102) einen elastisch verformbaren Teil aufweist .
3. Isolierteil nach Anspruch 1 oder 2 , wobei der Trennsteg (11) an seinem ersten Ende als elastisch verformbares Teil einen Spreizteil (102 , 111 , 112 ) aufweist , der im aufgespreizten Zustand eine Spreizweite b hat , die gegenüber der Breite W des Trennstegs (11 ) groß ist .
4. Isolierteil nach Anspruch 3 , wobei gilt b >_ 2W .
5. Isolierteil nach Anspruch 3 oder 4 , wobei die radiale Länge h des Spreizteils im aufgespreizten Zustand klein gegen seine Spreizweite b ist .
6. Isolierteil nach Anspruch 5 , wobei gilt h £ 0 , 4b .
7. Isolierteil nach einem der Ansprüche 3 bis 6 , wobei die radiale Länge h des Spreizteils im aufgespreizten Zustand gegen die radiale Länge a des Trennstegs gering ist , wobei gilt h < 0 , 5a .
8. Isolierteil nach einem der Ansprüche 3 bis 7 , wobei der Spreizteil (102 ) an einem ersten Ende zwei abweichend von einer radialen Richtung verlaufende , elastisch verformbare Federelemente (111 , 112 ) aufweist .
9. Isolierteil nach Anspruch 8 , wobei der Trennsteg (11) zur Bildung von Federelementen (111 , 112 ) Y-fδrmig ist .
10. Isolierteil nach einem der Ansprüche 2 bis 9 , wobei der Trennsteg (11) an seinem zweiten Ende als einen zweiten Abstandshalter einen verbreiterten Teil (10 ) aufweist , der beim Einsetzen in ein Kernloch als Widerlager für den ersten Abstandshalter ( 102 ) dient .
11. Isolierteil nach Anspruch 10 , wobei die Hauptflächen des verbreiterten Teils (10) einen Winkel zwischen 60 ° und 120 ° zueinander bilden .
12. Isolierteil nach einem der Ansprüche 2 bis 9 , wobei der Trennsteg (11) an seinem zweiten Ende einen weiteren Abstandshalter (102 " ) aufweist .
13. Isolierteil nach einem der Ansprüche 1 bis 9 , wobei die Trennvorrichtung (1 ) mehr als nur einen radial verlaufenden Trennsteg' (11 , 12 , 13 ) mit j eweils einem Abstandshalter (102 , 102 " ) umfasst , wobei die von Abstandshaltern (102 , 102 " ) abgewandten Enden verschiedener Trennstege (11 , 12 , 13 ) sternförmig miteinander verbunden sind .
14. Isolierteil nach Anspruch 13 , wobei die Trennvorrichtung (1) eine Anzahl n > 2 von Trennstegen (11, 12, 13, 14) aufweist, wobei die Trennstege (11 , 12 , 13 , 14) im wesentlichen um einen Winkel (oι) von 360 °/n gegeneinander versetzt sind.
15. Isolierteil nach einem der Ansprüche 1 bis 14 , das einstückig ausgebildet ist .
16. Isolierteil nach einem der Ansprüche 1 bis 15 , das ein Spritzgussteil ist .
17. Isolierteil nach einem der Ansprüche 1 bis 16 , das einen Thermoplasten enthält .
18. Ringkerndrossel mit einem Ringkern (2 ) und mit einem Isolierteil nach einem der Ansprüche 1 bis 17 im Kernloch des Ringkerns (2 ) .
19. Ringkerndrossel nach Anspruch 18 , wobei j eder zwischen zwei Trennstegen ( 11 , 12 , 13 ) liegende Abschnitt des Ringkerns (2 ) mit einer Wicklung (31 , 32 ) bewickelt ist .
20. Ringkerndrossel nach Anspruch 18 oder 19 , wobei der Trennsteg (11) des Isolierteils in axialer Richtung beidseitig über den Ringkern (2 ) hinaus übersteht .
21. Ringkerndrossel nach Anspruch 20 , wobei der jeweilige Überstand mindestens 3 mm beträgt.
EP06705950.1A 2005-02-11 2006-02-10 Isolierteil und ringkerndrossel Active EP1846933B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006344A DE102005006344A1 (de) 2005-02-11 2005-02-11 Isolierteil und Ringkerndrossel
PCT/DE2006/000231 WO2006084450A1 (de) 2005-02-11 2006-02-10 Isolierteil und ringkerndrossel

Publications (2)

Publication Number Publication Date
EP1846933A1 true EP1846933A1 (de) 2007-10-24
EP1846933B1 EP1846933B1 (de) 2013-08-21

Family

ID=36365774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06705950.1A Active EP1846933B1 (de) 2005-02-11 2006-02-10 Isolierteil und ringkerndrossel

Country Status (6)

Country Link
US (1) US7990248B2 (de)
EP (1) EP1846933B1 (de)
JP (2) JP5026989B2 (de)
CN (2) CN101116158A (de)
DE (1) DE102005006344A1 (de)
WO (1) WO2006084450A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257895B2 (en) 2004-06-17 2016-02-09 Grant A. MacLennan Distributed gap inductor filter apparatus and method of use thereof
US8519813B2 (en) * 2004-06-17 2013-08-27 Grant A. MacLennan Liquid cooled inductor apparatus and method of use thereof
US8902035B2 (en) * 2004-06-17 2014-12-02 Grant A. MacLennan Medium / high voltage inductor apparatus and method of use thereof
US8624696B2 (en) * 2004-06-17 2014-01-07 Grant A. MacLennan Inductor apparatus and method of manufacture thereof
US8902034B2 (en) 2004-06-17 2014-12-02 Grant A. MacLennan Phase change inductor cooling apparatus and method of use thereof
US8624702B2 (en) * 2004-06-17 2014-01-07 Grant A. MacLennan Inductor mounting apparatus and method of use thereof
DE102004039230A1 (de) * 2004-08-12 2006-02-23 Epcos Ag Induktives Bauelement für hohe Ströme und Verfahren zu dessen Herstellung
DE102005006344A1 (de) 2005-02-11 2006-08-17 Epcos Ag Isolierteil und Ringkerndrossel
DE102005010342A1 (de) * 2005-03-07 2006-09-14 Epcos Ag Induktives Bauelement
US8947187B2 (en) 2005-06-17 2015-02-03 Grant A. MacLennan Inductor apparatus and method of manufacture thereof
US8816808B2 (en) * 2007-08-22 2014-08-26 Grant A. MacLennan Method and apparatus for cooling an annular inductor
DE102008054939A1 (de) * 2008-12-18 2010-07-01 Vacuumschmelze Gmbh & Co. Kg Stromkompensierte Drossel und Verfahren zur Herstellung einer Stromkompensierten Drossel
JP5088898B2 (ja) * 2009-06-16 2012-12-05 Necトーキン株式会社 インダクタンス素子
DE102009054001A1 (de) * 2009-11-19 2011-08-04 Epcos Ag, 81669 Vorrichtung zur Potentialtrennung und Ringkerndrossel
CN102655043A (zh) * 2011-03-01 2012-09-05 台达电子工业股份有限公司 低损耗无气隙式扼流圈结构
CN103093924A (zh) * 2011-11-04 2013-05-08 旭丽电子(广州)有限公司 电感元件及制造电感元件的方法
JP2014204100A (ja) * 2013-04-10 2014-10-27 本田技研工業株式会社 チョークコイルおよび電子機器
CN104485201A (zh) * 2014-11-17 2015-04-01 深圳市雅玛西电子有限公司 Pfc电感和变频空调
JP6525676B2 (ja) * 2015-03-31 2019-06-05 ヴィオニア日信ブレーキシステムジャパン株式会社 ブレーキ制御装置用チョークコイル
DE102015107605B4 (de) 2015-05-13 2018-01-25 Sma Solar Technology Ag Induktives Bauelement für Leiterplattenmontage und Wechselrichter mit einem leiterplattenmontierten induktiven Bauelement
CN106887299A (zh) * 2015-12-16 2017-06-23 莱尔德电子材料(深圳)有限公司 包括锰锌铁氧体和镍锌铁氧体的共模扼流圈
DE102016206171A1 (de) * 2016-04-13 2017-10-19 Würth Elektronik eiSos Gmbh & Co. KG Trennelement für eine Ringkerndrossel und Ringkerndrossel
DE102016107818B4 (de) * 2016-04-27 2018-01-25 Sma Solar Technology Ag Drosselanordnung mit einem Einsatz

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH225840A (de) 1941-05-16 1943-02-28 Wuelfel Eisenwerk Elastische Kupplung.
CH290733A (de) 1950-05-26 1953-05-15 Siemens Ag Drosselspule.
US2947960A (en) * 1957-09-18 1960-08-02 Superior Electric Co Winding and core therefor
DE1253353B (de) 1962-10-12 1967-11-02 Messwandler Bau Gmbh Wickelstromwandler mit einer aus Flachband hergestellten Primaerwicklung
US3209294A (en) * 1962-10-23 1965-09-28 Westinghouse Electric Corp Magnetic core structures
US3321725A (en) 1965-12-16 1967-05-23 Gen Electric Current transformers having multiturn primary windings
JPS5730834Y2 (de) 1977-11-22 1982-07-07
JPS54156754U (de) * 1978-03-31 1979-10-31
JPS54156754A (en) 1978-05-30 1979-12-11 Fuji Industries Co Ltd Method and container for shaping and charging solid cosmetic material
DE3047603A1 (de) * 1980-12-17 1982-07-22 Siemens AG, 1000 Berlin und 8000 München Ringkerndrossel
DE3318557A1 (de) * 1983-05-20 1984-11-22 Siemens AG, 1000 Berlin und 8000 München Halterung fuer ein elektrisches bauelement, insbesondere eine ringkerndrossel
JPS6045421U (ja) * 1983-09-06 1985-03-30 日本フエライト株式会社 コモンモ−ドチヨ−クコイル
JPS60179013A (ja) 1984-02-25 1985-09-12 磯 直行 衣服用ハンガ−
JPS60179013U (ja) * 1984-05-08 1985-11-28 株式会社村田製作所 トロイダル磁心用絶縁ケ−ス
JPH063770B2 (ja) * 1985-06-05 1994-01-12 株式会社村田製作所 チツプコイル
JPS6251720U (de) * 1985-09-18 1987-03-31
JPS62123817A (ja) * 1985-11-25 1987-06-05 Matsushita Electric Ind Co Ltd ラインフイルタ
DE8620742U1 (de) 1986-08-01 1988-02-25 Siemens AG, 1000 Berlin und 8000 München Ringkerndrossel
EP0258592B1 (de) 1986-08-01 1992-12-09 Siemens Aktiengesellschaft Potentialtrennung für eine Ringkerndrossel
JP2749374B2 (ja) 1989-05-26 1998-05-13 松下電器産業株式会社 蒸し調理器
US5393934A (en) * 1991-02-28 1995-02-28 Yazaki Corporation Busbar conductor
US5169099A (en) * 1991-12-17 1992-12-08 Yang Chin Hui Adjustable overhead conductor carrier
DE4301596C2 (de) * 1993-01-22 1995-11-02 Bosch Gmbh Robert Stromschiene, insbesondere für einen induktiven Sensor
JPH06302437A (ja) 1993-04-13 1994-10-28 Mitsubishi Electric Corp 電力用コイル部品
JPH08285897A (ja) 1995-04-13 1996-11-01 Denshi Giken:Kk コイル構造体
JPH0945539A (ja) 1995-07-31 1997-02-14 Tokin Corp コモンモードチョークコイル
DE19604480A1 (de) 1996-02-08 1997-08-14 Asea Brown Boveri Leitungsabschnitt einer gasisolierten Leitung
JPH09237717A (ja) 1996-02-28 1997-09-09 Tokin Corp コモンモードチョークコイル
JPH10106861A (ja) 1996-09-30 1998-04-24 Soshin Denki Kk ノイズフィルタ
US6365836B1 (en) * 1999-02-26 2002-04-02 Nordx/Cdt, Inc. Cross web for data grade cables
DE19932475C2 (de) * 1999-07-12 2002-04-25 Vacuumschmelze Gmbh Induktives Bauelement
JP2001274030A (ja) 2000-03-24 2001-10-05 Soshin Electric Co Ltd 大電流用チョークコイル
DE10223995C1 (de) * 2002-05-29 2003-11-27 Epcos Ag Spulenkörper und Kerndrossel mit dem Spulenkörper
AU2003289050A1 (en) 2002-12-13 2004-07-09 Matsushita Electric Works, Ltd. Coil unit and compound coil unit
DE10308010A1 (de) * 2003-02-25 2004-09-09 Epcos Ag Isolierteil, Ringkern, Ringkerndrossel und Verfahren zur Herstellung der Ringkerndrossel
DE102004037853A1 (de) * 2004-08-04 2006-03-16 Epcos Ag Halterung für eine Drosselspule und ein induktives Bauelement mit der Halterung
DE102004037844A1 (de) * 2004-08-04 2006-02-23 Epcos Ag Halterung für eine elektrische Komponente
DE102004039230A1 (de) 2004-08-12 2006-02-23 Epcos Ag Induktives Bauelement für hohe Ströme und Verfahren zu dessen Herstellung
KR100662907B1 (ko) * 2004-09-11 2007-01-02 삼성전자주식회사 트로이덜 라인필터 및 그 권선방법
DE102004048966A1 (de) 2004-10-07 2006-04-13 Epcos Ag Vorrichtung zur Potentialtrennung, Ringkerndrossel und Verfahren zur Herstellung der Ringkerndrossel
DE102005006344A1 (de) 2005-02-11 2006-08-17 Epcos Ag Isolierteil und Ringkerndrossel
DE102005010342A1 (de) * 2005-03-07 2006-09-14 Epcos Ag Induktives Bauelement
DE102005027943A1 (de) * 2005-06-16 2006-12-28 Epcos Ag Trägervorrichtung für eine Ringkerndrossel, Halterung für ein induktives Bauelement und induktives Bauelement
DE102005027942A1 (de) * 2005-06-16 2006-12-28 Epcos Ag Haltevorrichtung, Trägervorrichtung für eine Ringkerndrossel und induktives Bauelement
DE102006030248A1 (de) * 2006-06-30 2008-01-03 Epcos Ag Gehäuse zur Aufnahme eines elektronische Bauelements und elektronische Bauelementtaranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006084450A1 *

Also Published As

Publication number Publication date
JP5026989B2 (ja) 2012-09-19
WO2006084450A1 (de) 2006-08-17
DE102005006344A1 (de) 2006-08-17
JP2012129543A (ja) 2012-07-05
EP1846933B1 (de) 2013-08-21
CN101116158A (zh) 2008-01-30
US20080164968A1 (en) 2008-07-10
JP2008530787A (ja) 2008-08-07
CN102751071B (zh) 2016-09-14
US7990248B2 (en) 2011-08-02
CN102751071A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
EP1846933B1 (de) Isolierteil und ringkerndrossel
DE1465098C3 (de) Elektrisches Verbindungsstück
WO2015021960A1 (de) Halterahmen für steckverbinder
EP1597739B1 (de) Isolierteil, ringkern, ringkerndrossel und verfahren zur herstellung der ringkerndrossel
DE69509930T2 (de) Dielektrisches Filter
EP1797572B1 (de) Vorrichtung zur potentialtrennung, ringkerndrossel und verfahren zur herstellung der ringkerndrossel
DE69328662T2 (de) Filterverbinder hoher Dichte
DE102004015237A1 (de) Sensor mit Vorsprung und Verfahren zu dessen Herstellung
EP2507869B1 (de) Verteilerleiste
EP3723196B1 (de) Antenne
DE3236664A1 (de) Filter vom distributionskonstanten-typ
DE4442044C2 (de) Einstellbarer Kondensator
DE69817837T2 (de) Magnetische anordnung für einen transformator oder dergleichen
DE102009054001A1 (de) Vorrichtung zur Potentialtrennung und Ringkerndrossel
DE19915866B4 (de) Kleintransformator mit Abdeckung
EP0100922B1 (de) Steckvorrichtungshälfte einer Vielfachsteckvorrichtung
DE102015003579A1 (de) HF-Steckverbinder zur lotfreien Kontaktierung eines Koaxialkabels
DE2618317C2 (de) Adapter zur Verbindung elektromagnetischer Schaltgeräte mit gedruckten Leiterplatten
DE3037915A1 (de) Vorrichtung zum halten und stuetzen von stromleitern, stuetzleitern, stuetzisolator und verfahren zu dessen herstellung
DE3408432A1 (de) Fuer eine elektrische steckkontaktvorrichtung vorgesehenes kontaktstueck
DE102011018167B4 (de) Induktiver Näherungs- oder Abstandssensor
WO2010028812A1 (de) Elektrische vorrichtung mit schraubklemme
DE69306903T2 (de) Elektrischer Verbinder mit Hermaphroditischen Kontaktelementen
DE102023112101A1 (de) Stromschieneneinheit
WO2021074114A1 (de) Formadaptive halterung für eine kernausführung und damit hergestelltes induktives bauelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB HU LI

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB HU LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB HU LI

17Q First examination report despatched

Effective date: 20110630

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEIST, GUENTER

Inventor name: STABENOW, JUERGEN

Inventor name: NIKLAS, KARL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB HU LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 628516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013135

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019623

Country of ref document: HU

26N No opposition filed

Effective date: 20140522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013135

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013135

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013135

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181205

Year of fee payment: 8

Ref country code: CH

Payment date: 20190221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190215

Year of fee payment: 14

Ref country code: HU

Payment date: 20190201

Year of fee payment: 14

Ref country code: FR

Payment date: 20190221

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 628516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240222

Year of fee payment: 19