BG62854B1 - Метод за полимеризация - Google Patents

Метод за полимеризация Download PDF

Info

Publication number
BG62854B1
BG62854B1 BG100102A BG10010295A BG62854B1 BG 62854 B1 BG62854 B1 BG 62854B1 BG 100102 A BG100102 A BG 100102A BG 10010295 A BG10010295 A BG 10010295A BG 62854 B1 BG62854 B1 BG 62854B1
Authority
BG
Bulgaria
Prior art keywords
liquid
gas
fluidized bed
reactor
fluid
Prior art date
Application number
BG100102A
Other languages
English (en)
Other versions
BG100102A (bg
Inventor
Jean-Claude Chinh
Michel C. Filippelli
David Newton
Michael B. Power
Original Assignee
Bp Chemicals Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27266692&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=BG62854(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB939310388A external-priority patent/GB9310388D0/en
Priority claimed from GB939310387A external-priority patent/GB9310387D0/en
Priority claimed from GB939310390A external-priority patent/GB9310390D0/en
Application filed by Bp Chemicals Limited filed Critical Bp Chemicals Limited
Publication of BG100102A publication Critical patent/BG100102A/bg
Publication of BG62854B1 publication Critical patent/BG62854B1/bg

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0433Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00088Flow rate measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00362Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00119Heat exchange inside a feeding nozzle or nozzle reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00128Controlling the temperature by direct heating or cooling by evaporation of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/901Monomer polymerized in vapor state in presence of transition metal containing catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Glass Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

Изобретението се отнася до непрекъснат процес за полимеризация в газова фаза на олефини в реактор с кипящ слой, по-специално до метод за увеличаване на поризводителността.
Предшестващо състояние на техниката
Методи за хомополимеризация и съполимеризация на олефини в газова фаза са добре известни в техниката. Такива процеси могат да се извършват, например чрез въвеждането на газообразен мономер в разбъркван или кипящ слой, съдържащ предварително формиран полиолефин и катализатор за полимеризацията.
При полимеризацията на олефини в кипящ слой полимеризацията се извършва в реактор, при който слой от полимерни частици се поддържа в кипящо състояние с помощта на възходящ газов поток, съставен от газообразния мономер за реакцията. Старитрането на такава полимеризация обикновено изисква слой от предварително формирани полимерни частици, подобни на полимера, който трябва да бъде произвеждан. По време на хода на полимеризацията с помощта на каталитична полимеризация на мономер се получава нов полимер, като полимерният продукт се извлича, за да може слоят да запазва приблизително еднакъв обем. Един от предпочитане методи в промишлеността използва флуидизираща решетка за разпределянето на флуидизиращия газ в слоя, която действа още и като носеща основа за слоя, когато се прекъсне подаването на газ. Полученият полимер обикновено се извежда от реактора с помощта на отвеждащ тръбопровод, намиращ се в долната част на реактора, близо до флуидизиращата решетка. Кипящият слой с състои от слой растящи полимерни частици, частици от полимерния продукт и частици катализатор. Тази реактивна смес се поддържа в състояние на кипене с помощта на непрекъснат възходящ поток от дъното на реактора, съставен от флуидизиращ газ, който включва рециклиран газ от горната част на реактора, заедно с допълващо захранващо количество суровина.
Флуидизиращият газ влиза през дъното на реактора и за предпочитане се прекарва през флуидизиращата решетка към кипящия слой.
Полимеризацията на олефини представлява екзотермична реакция и затова е необходимо да се осигури охлаждането на слоя, като се отстранява получаваната при полимеризацията топлина. Когато няма подобно охлаждане, слоят започва да се нагрява, докато, например, катализаторът престане на действа или пък слоят започва да се топи. При полимеризацията на олефини в кипящ слой предпочитаният метод за отстраняването на топлината от полимеризацията се състои в подаването в реактора за полимеризация на газ, за предпочитане флуидизиращ газ, който има по-ниска температура от желаната температура за полимеризация, като газът се прекарва през кипящ слой, за да отведе топлината, отделена при полимеризацията, отвежда се след това от реактора и се охлажда, като се прекарва през външен топлообменник, след което се рециклира към слоя. Температурата на рециклирания газ може да се коригира в топлообменника, за да може кипящият слой да се поддържа до желаната за полимеризация температура. При този метод на полимеризация на алфаолефини, обикновено рециклираният газ се състои от мономерен олефин, по желание придружен, например, с разреждащ газ или с газообразен преносител на веригата, като водород. По такъв начин рециклираният газ служи за подхранване на слоя са мономер, за флуидизиране на слоя или за поддържане на желаната температура в слоя. Изразходваните мономери при реакцията на полимеризация обикновено се допълват едновременно с прибавянето на газ към рециклирания газов поток.
Известно е, че скоростта на производство (т.е. добивът за единица време, като тегло на получения полимер за единица обем на съдържанието на реактора и за единица време) при промишлените реактори с кипящ слой от посочения вид се ограничава от максималната скорост, с която може да се отвежда топлината от реактора. Скоростта на отвеждането на топлината може например да се увеличи, като се увеличи скоростта на рециклиращия газ и/ или се намали температурата на рециклиращия газ. Обаче съществува ограничение на скоростта на рециклиращия газ, която може да се използва при промишлени условия Ако се надвиши тази граница, слоят става неустойчив и дори може да се вдигне нагоре в реактора заедно с газовия поток, което води до блокиране на линията на рециклиране и до повреда в компесора или вентилатора за рециклиращия газ. Също така има и ограничение за степента, до която може да се охлажда на практика рециклираният газ. Това на първо място се определя от икономически съображения, а на практика обикновено се определя според температурата на разполагаемите промишлени води за охлаждане. При желание, може да се използва охлаждане с хладилна техника, но това води до увеличение на производствените разходи. По тази причина използването на охлаждан рециркулационен газ в практиката за намаляване на топлината при полимеризация от газовата полимеризация с кипящ слой за производството на олефин има недостатък, че ограничава максимално възможната производителност.
Предшестващото ниво на техниката предлага известни методи за отстраняването на топлината от газовия кипящ слой при процеса на полимеризация.
GB 1415442 се отнася до полимеризация в газова фаза на винилхлорид в реактор с разбъркване или с кипящ слой ,като полимеризацията се извършва в присъствието на поне един газообразен разредител, който има точка на кипене под тази на винилхлорида. В пример 1 се описва контролиране на температурата на полимеризацията чрез междинно добавяне на течен винилхлорид към флуидизирания поливинилхлориден материал. Течният винилхлорид се изпарява незабавно в слоя, при което се отвежда топлина от полимеризацията.
В патент на US 3625932 се описва процес за полимеризация на винилхлорид, при който слоеве от частици поливинилхлорид се държат в състояние на флуидизиране в един многостепенен реактор с кипящ слой чрез въвеждането на газообразен винилхлориден мономер през дъното на реактора. Охлаждането на всеки от слоевете за намаляване на топлината, образувана там, поради полимеризацията, се извършва чрез впръскването на течен винилхлориден мономер във възходящ газов поток под ваните, върху които слоевете флуидизират.
Патент на FR 2215802 се отнася до разпръсквателна дюза от тип, съдържащ възвратен клапан, подходящ за впръскване на течности в кипящи слоеве, например при газова полимеризация в кипящ слой при етиле ново ненаситени мономери. Течността, използвана за охлаждането на слоя, може да бъде мономер за полимеризация. Ако трябва да се полимеризира етилен, той може да представлява течен наситен въглеводород. Разпръсквателната дюза е описана в литературата за полимеризация на винилхлорид в кипящ слой.
В патент GB 1398965 се описва полимеризация в кипящ слой на етиленово ненаситени мономери, по-специално на винилхлорид, при което управлението на температурата на полимеризация се извършва чрез впръскване на течен мономер в слоя с помощта на една или повече разпръсквателни дюзи, разположени на височина от 0 до 75% от височината на слоя флуидизиран материал в реактора.
В патент на US 4390669 се описва хомои съполимеризацията на олефин чрез един многостепенен процес в газова фаза, който може да се извършва в реактори с разбърквани слоеве, при реактори с кипящ слой, разбъркван кипящ слой, или при тръбни реактори. При този процес полученият от първата полимеризационна зона полимер се суспендира в една междинна зона в един леснолетлив течен въглеводород, и така получената суспензия се подава към втора полимеризационна зона, където течният въглерод се изпарява. В посочените примери от 1 до 5 газът от втората полимеризационна зона се прекарва през хладилник (топлообменник), при което част от течния въглеводород се кондензира (със съполимер, ако се използва такъв). Кондензатът от летливата течност се отправя частично в течно състояние към полимеризационния съд, където се изпарява, за да се използва за отвеждането на топлината на полимеризацията чрез скритата си топлина на изпарение. Това обяснение не посочва точно как течността се въвежда за полимеризация.
В патент ЕР 89691 се описва метод за увеличаване на добива за единица обем и време при непрекъснати процеси в кипящ слой за полимеризацията на течни мономери, като процесът включва охлаждането на част или на всичките невлезли в реакция течности, за да образуват двуфазна смес от газ и задържаната течност под точката на оросяване като тази двуфазна смес се връща отново в реактора. Този метод се нарича “Работа в кондензационен режим”. Описанието на ЕР 89691 посочва, че основното ограничение до степен, до която рециклираният газов поток може да се охлажда до точката на оросяване, е изискването съотношението газ-течност да се поддържа на достатъчно ниво, за да се запази течната фаза на двуфазната флуидна смес в суспендирано състояние, докато течността се изпари, и посочва по-нататък, че количеството на течност в газовата фаза не трябва да превишава 20 т.%, като за предпочитане не трябва да превишава около 10 т.%, но винаги при условие, че скоростта на двуфазния рецикличен поток ще бъде достатъчно голяма, за да поддържа течната фаза в суспензия в газа и да поддържа кипящия слой в реактора. В същия патент още се посочва, че е възможно да се формира двуфазов флуиден поток в реактора в точката на впръскване, като се впръскват поотделно газ и течност при условия, които ще създадат двуфазов поток, но че при работа по този начин не се получава особено предимство, поради ненужното усложняване и разходите за разделянето на газовата и течната фаза след охлаждането.
В патента на ЕР 173261 се обръща особено внимание на усъвършенстването на разпределението на въвеждания флуид в реакторите с кипящ слой и се излага по-специално работата в режим на кондензация, описан в ЕР 89691 (посочен по-горе). По-специално в ЕР 173261 се описва, че когато се използва входящ отвор към основата на реактора (под разделителната решетка) от типа вертикална тръба и конусен накрайник (което е показано в чертежите на ЕР 89691), не се получават задоволителни резултати при режима на кондензация, поради заливането с течност или разпенването в долната глава- явление, което се среща при индустриалните реактори, когато е сравнително ниско нивото на течност в рециклирания поток.
Техническа същност на изобретението
Установено е, че при охлаждането на рециклирания газов поток до температура, достатъчна да се образува течност, и с разделянето на течността от газа и след това - с подаването на течността направо към кипящия слой, може да се стигне до увеличаване на общото количество течност, която да бъде върната обратно в ректора за полимеризация с кипящ слой и да послужи за охлаждане на слоя чрез изпарение на течността, а по този начин да се повиши нивото на охлаждане, за да се получи по-голяма производителност.
И така съгласно настоящото изобретение се осигурява непрекъснат процес, използващ кипящ слой за полимеризацията на олефинов мономер, подбран от етилен, пропилен, смес от етилен и пропилен и смес от тях с един или повече алфаолефини в реактор с кипящ слой чрез непрекъснато рециклиране на газообразен поток, съставен поне от част от етилена и/или пропилена, преминаващ през кипящия слой в този реактор, в присъствието на полимеризиращ катализатор при реактивни условия, като поне част от този газообрезен поток се извежда от реактора, охлажда се до температура, при която течността кондензира, отделя се поне част от кондензираната течност от газообразния поток и се въвежда най-малко част от отделената течност направо в кипящия слой във или над точката, при която газообразният поток, преминаващ през кипящия слой, вече е достигнал до значителна степен температурата на газообразния поток, излизащ от реактора.
Газообразният рециркулационен поток, излизащ от реактора (който ще наричаме подолу “невлезли в реакция флуиди”), се състои от невлезли в реакция газообразни момонери и евентуално инертни въглеводороди, активатори или модератори на реакцията, както и задържани частици от катализатора или полимера.
Подаваният рициркулационен газообразен поток към реактора допълнително включва и достатъчно свежи мономери за подменянето на вече пслимеризиралите в реактора мономери.
Метод съгласно изобретението е подходящ за производство на полиолефини в газова фаза чрез полимеризиране на един или повече олефини, при което поне един от тях е етилен или пропилен. Предпочитаните алфаолефини, използвани по метода съгласно изобретението, имат от 3 до 8 въглеродни атома. Могат да се използват малки количества алфаолефини, които имат повече от 8 въглеродни атома, например от 9 до 18 въглеродни атома. По този начин става възможно да се получават хомополимери на етилена или пропилена, или съполимери на етилена или пропилена с един или повече С38 алфаолефини. Предпочитаните алфаолевини са бут-1-ен, пент-1-ен, хекс-1-ен, 4-метилпент-1-ен, окт-1-ен и бу тадиен. Примери на по-висши олефини, които могат да бъдат съполимеризирани с първичния етиленов или пропиленов мономер, или които могат да бъдат частична подмяна на C3-Cg мономера, са дец-1-ен и етилиден норборен.
Когато методът се използва са съполимеризация на етилен или пропилея с алфаолефин, етиленът или пропиленът съставляват главния компонент на съполимера, и за предпочитане е да бъдат в количество, най-малко 70% от общото количество на мономерите.
Методът съгласно изобретението може да се използва за получаването на широка гама от полимерни продукти, например на линеен полиетилен с ниска плътност (ЛПЕНП), основаващ се на съполимери на етилена с бутена,
4-метилпент-1-ен или хексен и полиетилен с висока плътност (ПЕВП), който може например да бъде хомополиетилен или съполимер на етилена с малка част от по-висш алфаолефин, например, бутен, пент-1-ен, хекс-1-ен или 4метилпент-1-ен.
Течността, която се кондензира от рециклирания газообразен поток, може да представлява кондензируем мономер, например бутен, хексен, октен, използвани като съмономер за получаването на ЛПЕНП, или може да бъде инертна кондензируема течност, например бутан, пентан, хексан.
Важно е течността да може да се изпарява в слоя при условията на полимеризация, така че да може да се получи желаният охлаждащ ефект и да се избегне значителното натрупване на течност в слоя. Добре е, когато най-малко 95, за предпочитане най-малко 98 тегл.%, а най-добре е, когато почти цялото количество, подавано към слоя, се изпарява там. При работа с течни съмономери част от съмономера полимеризира в слоя и такава полимеризация може да бъде и от течна и от газова фаза. Както е известно, при традиционната полимеризация при газова фаза или при процесите на съполимеризация малка част от мономера (и от съмономера, ако се използва такъв) показва склонност да остава свързан (абсорбиран или разтворен) в полимера на продукта, докато полимерът се подлага в последствие на дегазиране. Такива свързани количества или дори по-големи количества от абсорбиран или разтворен мономер/съмономер, могат да бъдат допускани в слоя, при условие, че тези количества не оказват неблагоприятно влияние върху флуидизацията на слоя.
Методът е особено подходящ за полимеризация на олефини при налягане от 0,5 до 6 МРа и при температура между 30°С и 130°С. Например при производството на ЛПЕНП е подходящо да се поддържа температура около 80-90°С, а при ПЕВП характерната температура е 85-105°С, в зависимост от активността на използвания катализатор.
Реакцията за полимеризацията може да се извършва при наличието на каталитична система от типа Ziegler-Nata, съставена от твърд катализатор, включващ главно съединение на преходен метал и съкатализатор, съставен от органично съединение на метал (напр. оргтанометално съединение, или алкилалуминиево съединение).
Известни са каталитични системи с голяма активност, които могат да произвеждат големи количества полимери в сравнително кратко време, като по този начин става възможно да се прескочи фазата за отстраняването на остатъците от катализатора от полимера. Тези високо активни каталитични системи обикновено се състоят от твърд катализатор, включващ главно атоми на преходен метал, на магнезий и на халоген. Също така е възможно да се използва високоактивен катализатор, съставен главно от хромен оксид, активиран чрез термообработка и свързан със зърнообразен носител, основаващ се на огнеупорен оксид. Методът е също така подходящ за използване с металоценови катализатори и Ziegler - катализатори с носител силициев диоксид.
Предимството на метода съгласно изобретението е, че повишеният охлаждащ ефект е благоприятен при процесите на полимеризация, използващи силно активни катализатори, нап-ример металоценови катализатори.
Катализаторите могат успешно да се използват във формата на преполимери, във вид на прах, приготвени предварително по време на етапа на предварителна полимеризация с помощта на катализатор, както е описано по-горе. Тази предварителна полимеризация може да се извършва по всякакъв подходящ метод, например полимеризация в течен въглеводороден разредител или в газова фаза с помощта на периодичен процес, полунепрекъснат или непрекъснат процес.
Предпочитаният метод съгласно изобретението е почти целият рециркулационен газообразен поток да се охлажда и сепарира и почти цялата сепарирана течност да се въвежда в кипящия слой.
При един вариант на приложение на настоящото изобретение, рециклираният газообразен поток се разделя на първи поток и втори поток. Първият поток се вкарва пряко в реактора по традиционен начин чрез впръскване под флуидизационната решетка, а вторият поток се охлажда и потокът се разделя на газов и течен поток. Газовият поток може да се върне към първия поток и да се въведе отново в реактора под слоя, например под решетката за флуидизиарне, ако се използва такава решетка. Сепарираната течност се въвежда в кипящия слой с гласно изобретението.
Рециклираният газообразен поток се охлажда с помощта на топлообменник или топлообменници до температура, при която течността се кондензира в газовия поток. Подходящи за това топлообменници са известни в тази област.
Напускащият от горната страна на реактора газообразен поток може да задържи известно количество частици от катализатора и от полимера и, ако е необходимо, те могат да бъдат отстранени от рециклирания газов поток с помощта на циклон. Малка част от тези частици или ситнеж може да се задържи в рециклирания газообразен поток и след охлаждане и сепариране на течността от газа ситните частици при желание могат да бъдат въведени отново в кипящия слой заедно със сепарирания течен поток.
Рециклираният газов поток може също така да е съставен от инертни въглеводороди, използвани за впръскване на катализатора, активатори или модератори на реакцията в реактора.
Добавъчно количество мономери, например етилен, за подменяне на изразходваните мономери при полимеризацията може да се прибави към рециклирания газов поток на подходящо за това място.
Кондензируеми мономери, например бутен, хексан, 4-метилпент-1-ен и октен, които, например могат да се използват като съмономери за производството на ЛПЕНП, или инертни кондензируеми течности, например пентан, изопентан, бутан и хексан, могат да бъдат въвеждани в течна форма.
Инертни кондензируеми течности, например пентан, могат да се впръскват в рецик лирания газообразен поток, например между топлообменника и сепаратора. За получаването на ЛПЕНП съмономерът, например бутен, може по желание да се впръсква в рециклирания газообразена поток, преди да се подаде към топлообменника.
Подходящи средства за сепариране на течността могат да бъдат например, циклонни сепаратори, големи съдове, които намаляват скоростта на газовия поток, за де получи сепариране (изхвърлящи барабани), сепаратори за газ-течност от капкоотражателен тип и скрубери за течности, например скрубери тип вентури. Такива сепаратори са добре в тази област на техниката.
Използването на капкоотражателен тип сепаратор за отделяне на газ-течност е особено благоприятно при метода от изобретението.
Използването на циклоненн сепаратор в рециклирания газов поток преди сепаратора на газ-течност е за предпочитане. Той отстранява голяма част от ситните частици от газообразния поток, които напускат реактора и по този начин се улеснява използването на капкоотражателния сепаратор, а също така се намалява възможността да се задръства сепаратора, което води до по-ефикасна работа.
Друго предимство на използването на сепаратор от капкоотражателен тип е, че падът на налягането в сепаратора може да бъде по-голям от пада при други видове сепаратори, като по този начин се увеличава ефективността на целия процес.
Особено подходящ сепаратор от капкоотражателен тип, използван при метода по изобретението, е вертикален газов сепаратор, известен като “Peerless” (тип DPV Р8Х). Този вид сепаратор използва слепването на течните капчици върху едно лопатково устройство за отделянето на течността от газа. На дъното на сепаратора се намира голям резервоар за събирането на течността. Освен за събирането на течността в него резервоарът спомага за осигуряването на контрол върху изпускането на течността от сепаратора. Този вид сепаратор е много ефикасен и осигурява 100% сепарация на кондензираната течност от газовия поток.
По желание може да се постави филтърна мрежа или друго подходящо устройство в резервоара за течности на сепаратора, за да се събират всякакви остатъчни дребни частици, намиращи се в сепарираната течност.
Сепарираната течност може по подходящ начин да се въведе в кипящия слой в или над точката, при която се подава рециклираният газообразен поток в реактора, след като температурата е достигнала приблизително стойността на температурата на рециклирания газов поток, който се извлича от реактора. Въвеждането на сепарираната течност може да става в различни точки, намиращи в тази зона на кипящия слой, като те могат и да се намират на различни височини в зоната. Точката или точките на въвеждането на течността се подреждат така, че локалната концентрация на течността да не оказва неблагоприятно влияние върху флуидизирането на слоя или на качеството на продукцията и да спомага за бързото разпръскване на течността от всяка точка и тя да се изпари в слоя, за да отнеме топлина от екзотермичната реакция на полимеризацията. По този начин количеството течност, въведено за охлаждане, може да се доближи до максималното допустимо натоварване, без да се нарушават характеристиките при флуидизиране на слоя, като по този начин се създава възможност да се постигне по-висока производителност на реактора.
По желание течността може да се въвежда в кипящия слой на различни височини в слоя. Подобен метод може да улесни контролирането на включването на съмономера. Контролираното измерване на течността в кипящия слой осигурява полезен допълнителен контрол върху температурния профил на слоя, а когато течността съдържа съмономер, се осигурява полезен контрол на включването на съмономера в съполимера.
За предпочитане е течността да се въвежда в долната част в зоната на кипящия слой, където рециклираният газообразен поток е достигнал до значителна степен температурата на изтегляния от реактора газообразен поток. При индустриалните методи за полимеризация в кипящ слой в газова фаза на олефини обикновено се работи при почти изотермични условия при стационарно състояние. Обаче, макар и за значителна част от кипящия слой да се поддържа изотермична температура на полимеризацията, обикновено съществува температурен градиент в зоната на слоя, непосредствено над точката на въвеждането на охладения рециркулационен газообразен поток в слоя. По-ниската температурна граница на та зи зона, при която съществува температурен градиент, е температурата на входящия охладен рециркулационен газов поток, а горната граница почти представлява изотермичната температура на слоя. При индустриалните реактори от този тип, използващи решетка за флуидизиране, този температурен градиент обикновено съществува в пласт с дебелина от около 15 до 30 cm (6 до 12 цола) над решетката.
За да се получи максимална полза от охлаждането на сепарираната течност, важно е течността да се въвежда в слоя над зоната, в която има температурен градиент, т.е. в частта на слоя, която вече до голяма степен е достигнала температурата на напускащия реактора газообразен поток.
Точката или точките на въвеждането на течността в кипящия слой може да бъде, например, с 50-70 cm над фрлуидизиращата решетка.
На практика методът съгласно изобретението може да се осъществи, например, като най-напред се определи температурняит профил вътре в кипящия слой по време на полимеризацията, като например се използват термодвойки, разположени по стените на реактора. Точката или точките на въвеждането на течността се подреждат така, че да осигурят влизането на течността в зоната на слоя, така че рециклираният газообразен поток да е достигнал до голяма степен температурата на газообразния поток, който се изтегля от реактора.
Фигура 1 представлява температурен профил на типичен реактор с кипящ слой, използван за полимеризация на олефини в газова фаза.
Температурният профил (фиг.1 А) е показан в кипящ слой, използван за получаването на ПЕВП с дебит от 23,7 t/h. Температурите са измерени с помощта на термодвойки, разположени по стените на реактора, отговарящи на различни позиции (1-5) вътре в кипящия слой. Разположението на 1-5 в реактора с кипящ слой е показано на фиг. 1В.
Нивата на флуидизационната решетка (А) и горния край на кипящия слой (В) са показани на температурния профил и на диаграмата. Посоченият по-горе температурен градиент може да се види като зона, намираща се между поз.1 и поз.З. Зоната, при която рециклираният газов поток е достигнал до голяма степен температурата на невлезлите в реакция флуиди, напускащи реактора, е показана като зона между поз.З и поз.5. Именно в тази зона сепарираната течност се въвежда в кипящия слой по метода съгласно изобретението.
За предпочитане е течността да се въвежда в кипящия слой в долната част на тази зона, т.е. малко над позиция 3 на температурния профил от фиг.1 А.
С увеличаването на количеството на течността, която може да бъде въвеждана в кипящия слой, може да се постигне по-голяма производителност, поради подобреното охлаждане. Добивът за единица обем и време може по този начин да се увеличи в сравнение с други процеси на полимеризация в кипящ слой в газова фаза.
Друго предимство на метода съгласно изобретението е, че чрез отделното въвеждане на течността в кипящия слой може да се използват прецизни средства за измерване, за да се регулира подаването на течността към слоя. Този метод довежда до по-добър контрол на охлаждането и на подаваното количество течен мономер към слоя. По метода от изобретението може да работи така, че да не се разчита например на необходимостта да се задържа течност в рециклирания газов поток. В резултат на това количество то подавана течност към слоя може да варира в много по-широки граници, отколкото до сега. Подобреният контрол на скоростта на прибавяне на съмономера или на инертни въглеводороди към слоя може например да се използва за регулиране на плътността на образувания полимер и на добива за единица обем и време.
Важно е температурата вътре в кипящия слой да се поддържа на ниво, което се намира под температурата на синтероване на полиолефина, съставляващ слоя.
Газът от сепаратора се рецикулриа към слоя обикновено откъм дъното на реактора. Ако се използва решетка за флуидизиране, подобна рециркулация обикновено става в зоната под решетката, а решетката улеснява равномерното разпределение на газа за флуидизиране на слоя. За предпочитане е използването на решетка за флуидизиране. Решетките за флуидизация, подходящи за ползване при метода от изобретението, могат да имат традиционна конструкция, например плоска или вдлъбната плоча, перфорирана с множество отвори, разпределени повече или по-малко равномерно по повърхността. От ворите могат да имат диаметър около 5 mm.
По метода съгласно изобретението се работи със скорост на газа в кипящия слой, по-голяма или равна на тази, която е необходима за флуидизирането на слоя. Минималната скорост на газа обикновено възлиза на около 6 cm/s, но за предпочитане е при метода от изобретението той да се извършва със скорост на газа в границите между 40 и 100 и найдобре между 50 - 70 cm/s.
В метода съгласно изобретението катализаторът или преполимерът по желание могат да бъдат пряко въведени в кипящия слой със сепариран течен поток. Този може да доведе до подобрена дисперсия на катализатора или на преполимера в слоя.
По желание в слоя могат да се въведат течни или течноразтворими добавки, като например активатори, съкатализатори и други подобни, заедно с кондензиралата течност по метода съгласно изобретението.
В случай, че методът съгласно изобретението се използва за получаването на етиленови хомо- или съполимери, добавъчният етилен, например, за подменяне на изразходвания етилен по време на полимеризацията, може успешно да се въвежда в сепарирания газов потока преди неговото повторно въвеждане в слоя (напр. под решетката за флуидизиране, ако се използва такава). Чрез прибавянето на добавъчен етилен към сепарирания газов поток вместо към рециклирания газообразен поток преди сепарацията, количеството течност, което може да бъде възстановено от сепаратора, може да се увеличи и да се повиши производителността.
Сепарираният течен поток може да бъде подложен на допълнително охлаждане (напр. като се използват хладилни съоръжения), преди да се въведе в кипящия слой. Това позволява още по-добър охлаждащ ефект в слоя, отколкото би могъл да бъде получен само чрез ефекта на изпаряване на течността (скрита топлина на изпарението), като по този начин се осигури допълнително увеличаване на производителността на метода. Охлаждането на сепарирания течен поток може да се постигне с помощта на подходящо охлаждащо средство, напр. чрез прост топлообменник или хладилник, разположен между сепаратора и реактора. Друго предимство на този аспект от изобретението е това, че чрез охлаждането на течно стта преди въвеждането й в кипящия слой се намалява всяка тенденция на катализатора или на преполимера, съдържащ се в течния поток, да се получи полимеризация преди въвеждането в кипящия слой.
Течността може да се въвежда в кипящия слой чрез подходящо устройство за впръскване. Може да се използва едно единствено такова устройство, както и повече, които да се подредят в границите на кипящия слой.
Едно от предпочитаните решения е осигуряването на множество устройства за впръскване, които да са равномерно разположени в кипящия слой в зоната на въвеждането на течността. Броят на използваните устройства за впръскване трябва да е достатъчен, за да се осигури достатъчно проникване и разпръскване на течността в слоя при всяко от тях. Предпочитаният брой на устройствата за впръскване е четири.
Всяко от устройствата за впръскване може, по желание, да приеме сепарираната течност с помощта на обща свързваща тръба, поставена в реактора. Това може да се осъществи, например с помощта на захранваща тръба, минаваща през центъра на реактора. Предпочита се устройства за впръскване да са наредени по такъв начин, че да се подават предимно във вертикална посока в кипящия слой, но могат да се подредят и така, че да се подават от стените на реактора предимно в хоризонтална посока. Скоростта, с която може да се подава течността в слоя, зависи главно от желаната степен на охлаждане в слоя, а това на свой ред зависи от желаната скорост и производителност. Скоростта на производството, която може да се получи при индустриалните процеси за полимеризация на олефини, зависи и от активността на използвания катализатор и от кинетиката на катализаторите. Така, например, когато се използват катализатори с много голяма активност и се желае голяма производителност, скоростта на подаване на течността ще е голяма. Характерните скорости на въвеждане на течността могат, например, да бъдат в границите между 0,3 и 4,9 ш3 течност на кубичен метър от материала на слоя на час, или дори повече. При традиционните катализатори Ziegler от “свръхактивен” тип (като тези, основаващи се на преходен метал, магнезиев халид и органометален съкатализатор), скоростта на подаваната течност може например да се намира в границите между 0,5 до
1,5 т3 течност на кубичен метър от материала на стоя на час.
По метода от изобретението тегловното съотношение между течността и всичкия газ, който се въвежда в слоя, може например да се намира в границите между 1:100 до 2:1, за предпочитане в границите между 5:100 и 85:100, а най-добре, между 6:100 и 25:100. Под “всичкия газ” се разбира връщаният към кипящия слой в реактора газ, заедно с всякакъв друг газ, използван допълнително за работа на устройството за впръскване.
По този начин чрез впръскване на течността в кипящия слой се помага на катализатора, намиращ се в течността, да локализира охлаждащия ефект на проникването на течността, която обгражда всяко устройство за впръскване, а така се избягва появяването на горещи точки и последваща агломерация.
Може да се използва всякакво друго средство за впръскване, при условие, че ще се получи достатъчно проникване и дисперсия на течността в слоя.
Предпочитаното средство за впръскване представлява дюза или множество дюзи, които включват пулверизиращи дюзи, работещи с газ, или дюзи, работещи само с течност.
Съгласно друг аспект от изобретението се осигурява непрекъснат процес с кипящ слой в газова среда за полимеризацията на олефинов мономер, избран от: етилен, пропилен, смеси на етилен и пропилен и смеси от тях с един или повече алфаолефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газов поток, съдържащ най-малко част от етилена и/или пропилена през кипящ слой на реактора, в присъствието на полимеризационен катализатор при реактивни условия, като поне част от този газообразен поток се отвежда от реактора и се охлажда до температура, при която течността се кондензира, като се сепарира част от кондензираната течност от газообразния поток и се въвежда течността направо в кипящия слой чрез една или повече дюзи, пулверизиращи само с течност, или и с помощта на газ. За предпочитане кипящият слой трябва да лежи върху флуидизационна решетка.
Най-добре е устройствата за впръскване да представляват дюзи, които се издават към слоя през стената на реактора (или през носещата слоя решетка) и които съдържат един или повече струйни отвори за подаване на течността към слоя.
В метода съгласно изобретението е от значение да се постигне добра дисперсия и проникване на течността в слоя. Важните фактори за постигането на доброто проникване и дисперсия са енергията и посоката на навлизащата в слоя течност, броят на точките на въвеждането на течността на единица напречно сечение на слоя и разположението в пространството на точките на въвеждане на течността.
С друг аспект от изобретението се осигурява метод за полимеризация на олефинов мономер, като олефиновият мономер за предпочитане се избира между етилен, пропилен, смес от етилен и пропилен и смеси от тях, с един или повече други алфаолефинови олефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразен поток, съставен от мономер, за предпочитане включващ наймалко етилен и/или пропилен, през кипящ слой в реактора при наличието на полимеризиращ катализатор, при условия на реакция, като наймалко част от изваждания от реактора газообразен поток се охлажда до температура, при която течността се кондензира, като се сепарира поне част от кондензираната течност от газообразния поток и се въвежда най-малко част от сепарираната течност директно в кипящия слой във или над точката, при която преминаващият през кипящия слой газообразен поток е достигнал до голяма степен температурата на газообразния поток, който излиза от реактора, като течността се въвежда в реактора във формата на една или повече струи само от течност или една или повече струи от течност и газ, от едно или повече струйни отверстия, като всяка струя има хоризонтална кинетична енергия при струите, които изхвърлят само течност при наймалко lOOxlO3 kg.s '.m'2 х m.s'1, а при струите c газ и течност от 200х103 kg.s'l.nr2 х m.s1, при което хоризонталната кинетична енергия се определя като скорост на протичане на масата на течността (в килограми за секунда) в хоризонтална посока, за единица напречно сечение (квадратни метри) на изхода на струята, от която излиза, умножено по хоризонталния компонент на скоростта (метри за секунда) на струята.
За предпочитане кинетичната енергия на всяка от струите с течност или течност и газ е да възлиза най-малко на 250x103, и най-добре, поне на ЗООхЮ3 kg.s'.nr2 х m.s1. Особено за предпочитане е да се използва хоризонтална кинетична енергия между ЗООхЮ3 и 500х103 kg.s l.m'2 х m.s1. В случаите, когато течната струя излиза от струен отвор в посока, която не е хоризонтална, тогава хоризонталният компонент на скоростта на струята се изчислява от cos Q° х скорост на струята, като Q0 представлява ъгълът, под който излиза струята по отношение на хоризонталата.
Предпочита се посоката на движение на една или повече струи от течност или от течност и газ в слоя да бъде до голяма степен хоризонтална. Когато един или повече струйни отвори изпускат течността или течност и газ в струи в нехоризонтална посока, за предпочитане е те да се насочват под ъгъл, не поголям от 45°, а най-добре - не повече от 20° спрямо хоризонталата.
Дюзата или повечето дюзи могат да бъдат изработени така, че да съдържат един или повече струйни отвори. Броят на дюзите и разпределението и броят на струйните отвори представляват важен фактор за получаването на добро разпределение на течността вътре в слоя. Когато се използва множество дюзи, за предпочитане е те да бъдат разположени вертикално и да бъдат поставени на хоризонтални интервали на еднакво разстояние една от друга. В този случай също се предпочита те да бъдат разположени на равни разстояния една от друга и от вертикалната стена на кипящия слой. Броят на дюзите на 10 квадратни метра от хоризонталната напречна площ на слоя се предпочита да възлиза от 1 до 4, като се предпочита да бъде от 2 до 3. Когато пресметнатият брой не възлиза на цяло число, той се закръгля на цяло число. За предпочитане е броят на струйните отвори във всяка дюза да бъде между 1 и 40, като найдобре е той да бъде от 3 до 16. Когато дюзата съдържа повече от един струен отвор, предпочита се струйните отвори да бъдат разположени по нейната периферия, на равни разстояния един от друг.
Както е посочено по-горе, струите течност могат да бъдат съставени или само от течност или от смес от течност и газ. Такъв газ може да бъде пренасян с течността или пък може да се използва за много ситно пулверизиране на течността, или да се използва за задвижването на течността.
Подходящата разпръскваща дюза, работеща с газ, използвана по метода съгласно изобретението, се състои от: поне един входящ отвор за течност под налягане; поне един входящ отвор за разпръскващ газ; смесителна камера за смесване на течността и газа, и поне един изходящ отвор, през който се разпръсква сместа.
Разпръскващият газ може да бъде инертен газ, например азот, но за предпочитане е да бъде добавъчен етилен.
Всяка дюза може да се изработи с множество изходящи отвори с подходяща конфигурация. Отворите например могат да имат кръгла форма, да бъдат като процепи, елипсовидни или с друга подходяща форма. Всяка дюза може да съдържа множество изходящи отвори с различна конфигурация.
Размерът на изходящите отвори за предпочитане е такъв, че да осигурява малък пад на налягането през тях.
Предпочита се изходящите отвори да бъдат подредени симетрично около периферията на всяка дюза, но могат да бъдат разположени и несиметрично.
Подаването на разпръскващия газ към всяка дюза се поддържа при достатъчно налягане, за да може да се разбива течността на ситни капчици и да не се допуска навлизането на частици от кипящия слой, както и да не става задръстване на отворите на дюзата.
Относителният размер на смесителната камера се проектира така, че да може да осигурява оптимално диспергиране. Обемът на смесителната камера по отношение на обема на преминаващата течност през камерата се изразява така: обем на смесителната камера (в cm3) / скорост на протичане на течността (cm3/s) за предпочитане е да се намира в границите между 5х10'3 до 5х10‘‘ s.
Предпочита се скоростта на течността да се поддържа такава, че да бъде достатъчна, за да не допуска сепарирането на никакви частици, например ситнеж от потока на течността.
Тегловното съотношение между диспергиращия газ и течността, подавани към всяка дюза, обикновено е в границите от 5:95 до 25:75.
На фиг. 2 е показана подходяща дюза за използване по метода съгласно изобретението.
Дюзата е съставена от кожух 7, състоящ се от горна 8 и долна зона 9. Горната зона 8 е снабдена с голям брой изходящи отвори 10, подредени по периферията, и в нея се намира смесителната камера 11. Долната зона има централно разположена тръба 12, която достига до смесителната камера и външна тръба 13, разположена около вътрешната тръба. Тръба 13 има връзка със смесителната камера чрез подходящи отвори 14. Към дюзата се подава течност под налягане с помощта на тръба 13, а газът се подава през тръба 12. Долната зона на дюза 9 е свързана чрез традиционно устройство за подаване на течност под налягане и газ. След смесването на течността с газ в камера 11 тя се изхвърля от дюзата през изходящите отвори 10 във формата на пулверизирана струя.
Предпочитана е дюза, на която изходящите отвори са съставени от група в основни линии хоризонтално изработени процепи, наредени по периферията на дюзата. Дюзата също може да има вертикално ориентиран отвор или отвори, разположени така, че да осигурят отстраняването на частици, полепнали от горната страна на дюзата, с помощта на сместа от газ и течност под налягане.
Процепите обикновено могат да имат размер, равен на отвор с диаметър от около
6,5 mm, и могат например да бъдат с размери 0,75 х 3,5 mm.
Устройството за впръскване може като вариант да представлява дюза или дюзи, разпръскващи течността, без да се използва газ.
Подходяща безгазова дюза за използване по метода от изобретението се състои от поне един входящ отвор за течността под налягане и поне един изходящ отвор за течността под налягане, като вътре в дюзата се поддържа достатъчно високо налягане на течността, за да се осигури излизащата течност през изходящия отвор да има желаната кинетична енергия.
Падът на налягането във всяка дюза може по желание да се регулира например чрез използването на ограничаващи устройства, например клапани.
Изходите могат да имат конструкция, подобна на описаната по-горе за разпръсквателните дюзи, работещи с газ. Предпочитаната конфигурация за изходящите отвори на разпръсквателните дюзи, работещи без газ, е да бъдат с кръгли отвори.
Размерът на капчиците течност се влияе от голям брой фактори, по-специално при газовите разпръсквателни дюзи, от съотношението на подаваните течност и газ към дюзата и размера и конфигурацията на диспергиращата камера. Благоприятният размер на течните капчици при газовата разпръсквателна дюза се намира между 50 до 1000 μ. При разпръскващите дюзи без газ, размерът на капчиците на течността се влияе главно от пада на налягането в дюзата и размера и конфигурацията на изходящите отвори. Размерът на капчиците течност при дюза без газ варира приблизително между 2000 и 4000 μ. Такива капчици могат да се образуват, например чрез разпрашаването на течната струя от движението на частиците от твърдо вещество, образуващи слоя.
Падът на налягането и при двата вида дюзи трябва да бъде достатъчен, за да не допусне навлизането на частици от кипящия слой. При газовите дюзи имаме подходящ пад на налягането между 2 и 7, за предпочитане 3 до 5 bar, а при дюзите за пръскане на течности падът в налягането трябва да бъде в границите между 2 и 4, за предпочитане 4-5 bar.
В случай на авария при подаването на течност или диспергиращ газ, към двата вида дюзи, са осигурени подходящи средства за осигуряването на аварийно продухване на газа, за да не се допусне блокирането на дюзата, поради навлизането на частици от кипящия слой. Подходящ газ за продухване е азотът.
Важно е изходящите отвори на газовите дюзи или на дюзите, изхвърлящи само течност, да имат достатъчно голям размер, за да позволяват преминаването на всякакъв ситнеж, който може да се намира в сепарирания течен поток.
И при двата вида дюзи изходящите отвори трябва да бъдат поставени на различни нива вътре в дюзата. Например изходящите отвори могат да бъдат подредени на групи редове.
При дюза от вида, показан на фиг. 2, броят на изходящите отвори на всяка дюза се предпочита да бъде между 4 и 40, например между 20 и 40, и най-добре от 4 до 16. Диаметърът на такава дюза се предпочита да бъде между 4 до 30 cm, напр. от 10 до 30 cm, и най-добре от 7 до 12 cm.
И други видове дюзи могат да се окажат подходящи за използване по метода от изобретението, например ултразвуковите дюзи. Преди да се започне подаването на течност по метода от изобретението, полимеризацията с кипящ слой при газова фаза може да се стартира по традиционния начин, например като се зареди слоят с частици полимер, след което се пропуска газ през слоя. Ако е подходящо, течността може да се въведе в слоя, например чрез средството за впръскване, описано погоре. Докато се подава разпръскващ газ към газовите дюзи или продухващ газов поток към дюзите за разпръскване без газ, трябва да се поддържа скорост, достатъчна да не се допусне навлизането на частици в изходящите отвори на дюзите.
Пояснения на приложените фигури
Методите съгласно изобретението са пояснени с приложените фигури, от които:
На фигурите от 3 до 5 са илюстрирани схематично процесите съгласно изобретението.
На фигура 3 е показан реактор с кипящ слой в газова фаза, който в основни линии се състои от тях на реактор 15, което в основата си представлява изправен нагоре цилиндър с флуидизационна решетка 16, разположена в долната му част. Тялото на реактора съдържа кипящ слой 17 и зона за намаляване на скоростта 18, която има увеличен напречен разрез в сравнение с кипящия слой.
Газообразната реакционна смес, която излиза откъм горната страна на реактора с кипящ слой, е съставена от рециркулационен газообразен поток и се прекарва през тръбопровод 19 до циклон 20 за сепариране на поголямата част от ситните частици. Отстранените ситни частици могат да се върнат в кипящия слой. Рециркулационният газообразен поток, който напуска циклона, преминава към първи топлообменник 21 и компресор 22.
Има и втори топлообменник 23 за отстраняване на топлината от компресията, след като рециклираният газообразен поток е преминал през компресор 22.
Топлообменникът или топлообменниците могат да бъдат подредени пред или след компресора 22.
След охлаждане и компресия до температура, при която ще се образува кондензат, получената смес от газ и течност се прекарва към сепаратор 24, където се отстранява течността.
Напускащият сепаратора газ се рецик лира през тръбопровод 25 към дъното на реактора 15. Газът се прекарва през решетката за флуидизиране 16 към слоя, като по този начин се осигурява поддържането на слоя във флуидизирано състояние.
Сепарираната течност от сепаратор 24 се прекарва през тръбопровод 25 към реактора 15. Ако е необходимо, може да се постави и помпа 26 на тръбопровод 25’.
Към реактора се подават катализатор и предполимер в сепарирания течен поток през тръбопровода 27. Частиците на полимерния продукт могат по-лесно да се извадят от реактора чрез тръбопровод 28.
Разположението, показано на фиг. 3, е особено подходящо за използване при преустройване на съществуващите реактори за полимеризация в газова фаза в такива с кипящ слой.
На фиг. 4 е показана алтернативна схема за осъществяване на метода съгласно изобретението. При тази схема компресорът 22 е разположен на тръбопровод 25 след сепарирането на газообразния рециркулационен поток с помощта на сепаратор 24. Предимство е, когато компресорът компресира намаленото количество газ и следователно може да има помалък размер и да се постигне по-добро оптимизиране на процеса и на разходите.
На фиг. 5 е показана схема за осъществяване на метода съгласно изобретението, като компресорът 22 отново е разположен на тръбопровод 25 след сепаратор 24, но преди втория топлообменник 23, който е разположен в сепарирания газов поток, вместо да е разположен през сепаратора, а с това разположение се оптимизира методът.
Примери за изпълнение на изобретението
Методът съгласно изобретението е пояснен със следните примери.
Примери от 1 до 11.
С компютър са създадени примери за симулиране на полимеризацията на олефини в реактор с кипящ слой при газова фаза в условията съгласно изобретението (примери I до 5, 9 и 10) и за сравнение - в традиционни условия, без сепарирана течност в рециклирания поток (примери 6 до 8 и 11).
Примерите от 1 до 8 се отнасят до съполимеризацията на етилен с различни алфаолефини в присъствието на традиционен Zieg ler-катализатор.
Примерите от 9 до 11 се отнасят до хомополимеризацията на етилен в присъствието на традиционен хромоксиден катализатор с носител силициев диоксид.
Добивът за единица обем и време и температура на входа в реактора се изчисляват с компютъра на програма за термичен баланс с точност 15%. Температурата на оросяване и скоростта на потока на рециркулационната течност се изчисляват за полимеризационната система с помощта на традиционна софтуерна програма с точност около ±10%.
Примерите 1, 3, 4 и 10 най-точно представляват типични условия за изпълнение на метода съгласно изобретението. Резултатите са посочени в таблиците 1 и 2 и ясно показват повишен добив за единица обем и време, който може да се получи по метода от изобретението.
Показателят “% на течност в рециркулиращия поток” в таблиците 1 и 2 представлява в проценти общото тегло на рециркулационната течност, преминаваща през средството за впръскване, разделено на общото тегло на газа (рециркулационен газ плюс - какъвто и да е газ за пулверизиране).
Примери от 12 до 15.
Използва се експериментална апаратура за тестуване въвеждането на течност в кипящ слой чрез устройство за впръскване, както е описано по-горе. Схемата на експерименталната апаратура е показана на фиг. 6. Апаратурата за тестуване се състои от алуминиев съд за флуидизиране 50 със зона за намаление на скоростта 56, съдържаща слой 51 от полиетилен на прах (висока плътност или линеен полиетилен ниска плътност), изготвен предварително чрез полимеризация на етилен в кипящ слой при газова фаза в инсталация за кипящ слой, при газова фаза от промишлен размер. Слоят 51 се флуидизира чрез прекарване на непрекъснат поток от сух газообразен азот през тръбопровод 52 и през нагревател за предварително нагряване 53 в долна камера 54 на съд 50 и от там - към слоя през решетка 55. Азотът в газова форма се подава от един захранващ резервоар за течен азот в промишлено изпълнение, а подаденото количество азот за флуидизиране и налягането на газа в системата се контролира чрез клапани 57 и 69, като обемната скорост на потока се определя с помощта на традиционен разходомер с турбинно колело (непоказан). Устройството за предварително загряване има номинална топлопроизводителност от 72 kW и може да контролира затоплянето на азота до желаната температура. В кипящия слой 51 се въвежда летлив течен въглеводород 58 (1-хексен или n-пентан) от резервоар охладител 59 чрез помпа 60 и тръбопровод 61. Летливият течен въглеводород навлиза в слоя през дюза 62. Изпробвани са различни устройства на дюзи, като някои са от вида, при който течността се разпръсква без газ, а други - от вида, работещ с газ. При втория случай се въвежда газ през тръбопровод 63 (този вид дюза е показана на фиг. 2). Навлизащите в кипящия слой летливи течни въглеводороди през дюзите 62 се изпаряват в слоя, като причиняват охлаждане чрез поглъщане на скритата температура за изпаряването. Азотът като флуидизиращ газ и придружаващият до доведен до летливост течен въглеводород излизат от горната страна на слоя към зоната за намаляване на скоростта 56, при което голяма част от всякакъв полиетилен на прах, задържан в газовия поток, пада обратно в слоя. След това газът преминава през тръбопровод 64, филтърно устройство 65 и през възвратния клапан 66 към охладителния резервоар 59. Резервоарът 59 съдържа два топлообменника 67 и 68. Топлообменникът 67 се охлажда от преминаващата през него студена вода, а топлообменникът 68 - от рециркулацията на охладен разтвор от гликол/вода. Преминаването на газа през топлообменниците 67, 68 охлажда газа и предизвиква кондензацията на течния въглеводород (хексан или пентан). Събраният на дъното на резервоара 59 кондензиран въглеводород се рециркулира обратно от там - към слоя. Освободеният до голяма степен газообразен азот от въглеводорода след това преминава през обратен регулиращ вентил 69 към атмосферата. Флуидизирането и изпаряването на течния въглеводород в слоя се контролира с помощта на рентгенов апарат, състоящ се от източник на рентгенови лъчи 70, усилвател на изображението 71 и видеокамера 72, чиито образи се регистрират непрекъснато върху видеомагнетофон (непоказан). Източникът на рентгенови лъчи, усилвателят на изображения и видеокамерата се монтират на подвижна греда 73, което позволява по желание да се избира контролираната част от слоя.
С метода от изобретението се осигурява значително повишаване на производителността на процесите на полимеризация в кипящ слой с газова фаза в сравнение със съществуващите процеси. Методът от изобретението може да се използва при нови инсталации или да се осъществява в съществуващи инсталации, за да се получи значително увеличение на производителността и да се подобри управлението на прибавянето на течност към слоя. В случаите, когато се монтира нова инсталация, може да се осъществи значително намаление на капиталните разходи, като се използват по-малки реактивни съдове, компресори и други помощни съоръжения, които биха били достатъчни, за да се получи сравнима производителност с тази при традиционните инсталации. А при случаите на съществуващи инсталации, модификацията на инсталациите съгласно изобретението осигурява значително увеличение на производителността и подобрено управление на технологичния процес.
Резултатите от изпитванията са показани на таблица 3, в която примерите 12, 14 и 15 са изпълнени съгласно изобретението, а пример 13 е сравнителен пример 12 и сравнителен пример 13 показват използването на същото дюзово устройство, но при сравнителния пример прибавянето на течност в “студената” зона на полимеризацията с кипящ слой в газова фаза е моделирано, като се работи с температура на слоя от 45°С в сравнение с използваните 98°С при пример 12. При тези обстоятелства, около дюзата се образуваха бучки от полимер, омокрени от течен въглеводород.
В примерите 12, 14 и сравнителен пример 13 се използваха дюзи за пулверизиране с газ, а в пример 15 е използвана дюза, работеща само с течност. При всички примери 12, 14 и 15 се получава добро проникване и дисперсия на течния въглеводород, като проникването на течността може да бъде спрямо единствено от стената на съда. При сравнителния пример 12 проникването на течността се задържа от образуването на агломерирани бучки от полимер/течен въглеводород.
Таблица 1
Пример 1 2 3 4 5 6
Продукт C2/C4 С2 / 04 . СгТСб 02/С6 .....Й2/Й4 С2/С4
съполимер съполимер съполимер съполимер съполимер съполимер
Налягане в реактора (бара) 24 26 24 24 26 24
Температура в реактора (°C) 93 93 82 82 76 93
Технологичен газ (mol-%)
Етилен 37,5 42,3 29,1 312 55,8 28.5
Етан 14,8 18,5 15.9 14,2 3,1 25,2
водород 262 29,6 4,9 10 11,1 19,9
Азот 9.3 6 39,1 35 5,7 24,3
Бутан 0,2 82 18,6 8,14
Пентан 10,4 102 1 1 5.4
Хексен 5,3
4-МР1 7,7
Други олигомери 1,6 1,4 2.3 3.3 0.3 1,96
Скорост на газа (cm/s) 60 60 60 60 60 60
височина на слоя (m) 14,5 14,5 14,5 14,5 14,5 14.5
Добив за един, обем и час (kg/rtrLh) 140 193 105 116 193 74
Темпер. на входа на реактора (°C) 46,5 362 53,4 48,8 44,8 49,9
Точка на оросяване (°C) 70,9 78,9 67,7 69,5 61,6 46,1
% на течност в рециркул. поток 14,4 21,5 11 11,3 21,3 0
Таблица 2
Пример 7 8 9 10 11
Продукт 02/04 С2/С4 С2 ύέ С2
съполимер съполимер хомополимер хомополимер хомополимер
Налягане в реактора (бара) 24 24 24 24 20
Температура в реактора (°C) 74 76 103 103 103
Технологичен газ <moi>
Етилен 36.7 37,5 29.1 29.1 35
Етан 7.4 9.7 16,4 17 17,5
Водород 8,4 7,5 12.5 12.5 15
Азот 24,3 31,9 24,4 25,6 28,1
Бутан 19,3 12,15
Пентан 13,3 112
Хексен
4-МР1
Други олигомери 3.9 1.25 4,3 4,6 4,4
Скорост на газа (αη/5) 60 60 60 60 60
Височина на слоя «л* 14,5 14.5 14,5 14,5 14,5
Добив за един, обем и час (kg/m*ji> 55 55 193 178 75
Темпер. на входа на реактора (°C) 50,1 49,7 36,4 36,1 57
Точка на оросяване (°C) 38,2 23,5 62,3 56,3 -44,5
% на течност в рециркул. поток 0 0 21 15,7 0
Таблица 3
Пример 12 13 14 15
Тип дюза С пулвериз. газ С пулвериз. газ С пулвериз. газ Без пулвериз. газ
Изходящи отвори 4 хоризонтални процепа 4 хоризонтални процепа 4 хоризонтални процепа 2 кръгли отвора с диам. 1,75 мм
Разположение над решетката (сп) 52 52 10 52
Скорост на флуццизиращия газ (cm/s) 45 42 52 38
Температура на слоя (°C) 98 45 78 97
Налягане (МРа) 1.01 0.97 0.78 0,75
Материал на слоя ПЕБП ВР-качество 6070 ТТЕВП ВР-качество 6070 /ЮбНП ВР-качество 0209 ПЕвП ВР-качество 6070
Зареждане на слоя (кя) 60 58,5 61 г 58,0
Течност хексен хексен п-пенпа „ хексен
Течен поток (m7h) 1,65 1,48 1,78 0,69
Налягане при дюзата (МРа) 0,33 0,32 0,38 0,54
Налягане на N2 за лулверизация (МРа) 0,42 0,40 7545 няма
Пулверизиращ газ .течност тегловни % 5.4 5.3 5,6 няма
птЧечност за mJ0T слоя 11,38 10,έΐ 12,80 4,95
Хоризонтално проникване на течността (см) над 21 под 15 над 21 над 21
%на кондензирана течност (% всичко течност : всичко газ) 105,5 94.6 1212 46,6
Патентни претенции

Claims (33)

  1. Патентни претенции
    1. Непрекъснат метод за полимеризация в газова фаза в кипящ слой на олефинов мономер, подбран от етилен, пропилен, смес от етилен и пропилен, и смеси от тях с един или повече други алфаолефини в реактор с кипящ слой чрез непрекъснато рециклиране на газов поток, съставен най-малко от част от етилена и/или пропилена, преминаващ през кипящия слой в реактора в присъствието на полимеризиращ катализатор при реактивни условия, като най-малко част от газообразния поток се извежда от реактора, охлажда се до температура, при която течността се кондензира, характеризиращ се с това, че поне част от кондензираната течност се отделя от газообразния поток и поне част от тази отделена течност се въвежда в кипящия слой във или над точката, при която преминаващият през кипящия слой газообразен поток достига до значителна степен температурата на газообразния поток, който се извежда от реактора.
  2. 2. Непрекъснат метод за полимеризация в газова фаза в кипящ слой на олефинов
    30 мономер, подбран от етилен, пропилен, смеси от етилен и пропилен, и смеси от тях с един или повече други алфаолефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразен поток, състоящ се най-малко
    35 от част от етилена и/или пропилена, преминаващ през кипящ слой в реактора в присъствието на полимеризиращ катализатор при реактивни условия, като най-малко част от този изведен от реактора газообразен поток се
    40 охлажда до температура, при която течността се кондензира, характеризиращ се с това, че поне част от кондензираната течност от газообразния поток се подава направо към кипящия слой с помощта на една или повече дюзи,
    45 подаващи само течност или дюзи, работещи с помощта на газ.
  3. 3. Метод съгласно претенции 1 или 2, характеризиращ се с това, че кипящият слой се носи върху флуидизираща решетка.
    50
  4. 4. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че един или повече от алфаолефините имат от 4 до 8 въглеродни атома.
  5. 5. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че съдържанието на етилена или пропилена е в количество най-малко 70% от всичките мономери.
  6. 6. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че почти целият рециркулационен газообразен поток се охлажда и сепарира на течен и газов компонент, като почти цялото количество сепарирана течност се въвежда в реактора.
  7. 7. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че течността се въвежда направо в кипящия слой чрез множество отвори вътре в самия слой.
  8. 8. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че скоростта на газа в кипящия слой е в границите между 50-70 cm/s.
  9. 9. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че катализаторът или предполимерът се въвеждат в кипящия слой в кондензираната течност.
  10. 10. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че потокът от сепарираната течност се охлажда чрез охладителна техника, преди да се въведе в кипящия слой.
  11. 11. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че добавъчният етилен се въвежда в сепарирания рециркулационен газов поток преди повторното му въвеждане в реактора.
  12. 12. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че течността се въвежда в кипящия слой със скорост между 0,3 и 4,9 т3 течност на кубичен метър материал от слоя на час.
  13. 13. Метод съгласно всяка от предходните претенции, характеризиращ се с това, че тегловното съотношение течностщялото количество газ, въведено в слоя, се намира в границите между 5:100 и 85:100.
  14. 14. Метод съгласно претенция 2, характеризиращ се с това, че всяка дюза е разположена почти вертикално в кипящия слой.
  15. 15. Метод съгласно претенция 2, характеризиращ се с това, че пулверизиращата дюза, работеща с газ, се състои от поне един входящ отвор за течността под налягане; поне един входящ отвор за газ; смесителна камера за смесването на горната течност под налягане и горния газ; и поне един изходящ отвор, през който се разпръсква сместа от газ и течност.
  16. 16. Метод съгласно претенция 15, характеризиращ се с това, че пулверизиращият газ е добавъчен етилен.
  17. 17. Метод съгласно претенциите 15 или 16, характеризиращ се с това, че дюзата има множество изходящи отвори.
  18. 18. Метод съгласно претенция 17, характеризиращ се с това, че почти всички изходящи отвори имат формата на процепи.
  19. 19. Метод съгласно всяка от претенциите от 15 до 18, характеризиращ се с това, че обемът на смесителната (пулверизационна) камера, отнесен към обема на преминаващата през камерата течност, изразен като обем на смесителната камера (cm3): скорост на протичане на течността (cm3/s) се намира в границите между 5 х 10'3 и 5 х 10’* s.
  20. 20. Метод съгласно всяка от претенциите от 14 до 18, характеризиращ се с това, че тегловното съотношение на пулверизаращия газ и течността под налягане се намира в границите между 5:95 и 25:75.
  21. 21. Метод съгласно всяка от претенциите от 14 до 20, характеризиращ се с това, че размерът на капчиците течност на изходния отвор на дюзата е между 50 и 4000 μ.
  22. 22. Метод съгласно всяка от претенциите от 14 до 21, характеризиращ се с това, че падът на налягането в разпръскващата дюза, работеща с газ, се намира в границите между 3 и 5 bar, а в дюзата, работеща само с течност - между 4 и 5 bar.
  23. 23. Метод съгласно всяка от претенциите от 14 до 22, характеризиращ се с това, че дюзата е снабдена със средство за осигуряване на аварийно продухване с газ през посочената дюза.
  24. 24. Метод за полимеризация на олефинов мономер в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразния поток, включващ мономера, през кипящия слой в реактора в присъствието на полимеризиращ катализатор при реактивни условия, като наймалко част от този газообразен поток, извеждан от реактора, се охлажда до температура, при която течността се кондензира, характеризиращ се с това, че поне част от кондензираната течност се отделя от газообразния поток и наймалко част от отделената течност се въвежда направо в кипящия слой във или над точката, при която минаващият през кипящия слой газообразен поток е достигнал до голяма степен температурата на извеждания от реактора газообразен поток, като тази течност се въвежда в реактора във формата на една или повече струи само от течност или една или повече струи от течност и газ, от един или повече изходящи струйни отвори, като всяка струя има хоризонтална кинетична енергия, възлизаща най-малко на lOOxlO3 kg.s '.m2 х m.s'1 за струите, образувани само от течност, и най-малко 200x1ο3 kg.s'‘.m·2 х m.s ‘ за струите от течност и газ, при което хоризонталната кинетична енергия се определя като скорост на протичане на масата течност (kg/s) в хоризонтална посока за единица време (s) на единица площ напречно сечение (т2) от изходния отвор за струята, от който излиза, умножено по хоризонталния компонент на скоростта (m/s) на струята.
  25. 25. Метод съгласно претенция 24, характеризиращ се с това, че олефиновият мономер се избира от етилен, пропилен, етилен и пропилен, и смеси от тях с един или повече алфаолефини.
  26. 26. Метод съгласно претенциите 24 или 25, характеризиращ се с това, че хоризонталната кинетична енергия на всяка от струите от течност или от течност/газ възлиза най-малко на 250х103 kg.s '.m2 х m.s1.
  27. 27. Метод съгласно всяка от претенциите 24 до 26, характеризиращ се с това, че една или повече струи от течност или течност/газ се насочва в значителна степен в хоризонтално направление към слоя.
  28. 28. Метод съгласно всяка от претенции 24 до 27, характеризиращ се с това, че една или повече струи от течност или от течност/ газ излизат от изходящите отвори, които се намират в една или повече дюзи.
  29. 29. Метод съгласно претенция 28, характеризиращ се с това, че се използват множество дюзи, разположени на равни разстояния помежду си и от вертикалната стена на реактора с кипящ слой.
  30. 30. Метод съгласно претенция 28 или 29, характеризиращ се с това, че броят на дюзите на 10т2 от площта на хоризонталното напречно сечение на слоя е от 1 до 4.
  31. 31. Метод съгласно всяка от претенциите от 28 до 30, характеризиращ се с това, че броят на струйните изходящи отвори на всяка дюза е от 3 до 16.
  32. 32. Метод съгласно всяка от претенциите от 27 до 30, характеризиращ се с това че всяка дюза има множество струйни изходящи отвори, разположени по периферията на дюзата.
  33. 33. Метод съгласно всяка от претенциите от 28 до 32, характеризиращ се с това, че формата на изходните отвори на струята е подобна в значителна степен на процеп.
BG100102A 1993-05-20 1995-10-27 Метод за полимеризация BG62854B1 (bg)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB939310388A GB9310388D0 (en) 1993-05-20 1993-05-20 Polymerization process
GB939310387A GB9310387D0 (en) 1993-05-20 1993-05-20 Polymerization process
GB939310390A GB9310390D0 (en) 1993-05-20 1993-05-20 Polymerization process
PCT/GB1994/001074 WO1994028032A1 (en) 1993-05-20 1994-05-19 Polymerisation process

Publications (2)

Publication Number Publication Date
BG100102A BG100102A (bg) 1996-11-29
BG62854B1 true BG62854B1 (bg) 2000-09-29

Family

ID=27266692

Family Applications (1)

Application Number Title Priority Date Filing Date
BG100102A BG62854B1 (bg) 1993-05-20 1995-10-27 Метод за полимеризация

Country Status (31)

Country Link
US (4) US5541270A (bg)
EP (3) EP0926163A3 (bg)
JP (1) JPH08510497A (bg)
KR (1) KR100300468B1 (bg)
CN (1) CN1077111C (bg)
AT (2) ATE186056T1 (bg)
BG (1) BG62854B1 (bg)
BR (1) BR9406535A (bg)
CA (1) CA2161432C (bg)
CZ (1) CZ289037B6 (bg)
DE (2) DE69408450T2 (bg)
DZ (1) DZ1782A1 (bg)
EG (1) EG20361A (bg)
ES (1) ES2113104T3 (bg)
FI (1) FI112230B (bg)
GR (1) GR3025973T3 (bg)
HK (1) HK1008963A1 (bg)
HU (1) HU214842B (bg)
IN (1) IN190621B (bg)
MY (1) MY121539A (bg)
NO (1) NO309327B1 (bg)
NZ (1) NZ266173A (bg)
PL (1) PL177865B1 (bg)
RO (1) RO116551B1 (bg)
RU (1) RU2144042C1 (bg)
SG (1) SG49037A1 (bg)
SK (1) SK281033B6 (bg)
TW (1) TW347397B (bg)
UA (1) UA40615C2 (bg)
WO (1) WO1994028032A1 (bg)
ZA (1) ZA943399B (bg)

Families Citing this family (689)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538080B1 (en) * 1990-07-03 2003-03-25 Bp Chemicals Limited Gas phase polymerization of olefins
GB9500226D0 (en) * 1995-01-06 1995-03-01 Bp Chem Int Ltd Nozzle
IT1275573B (it) * 1995-07-20 1997-08-07 Spherilene Spa Processo ed apparecchiatura per la pomimerizzazione in fase gas delle alfa-olefine
JPH11510546A (ja) 1995-08-10 1999-09-14 エクソン・ケミカル・パテンツ・インク メタロセンで安定化されたアルモキサン
GB9524038D0 (en) * 1995-11-23 1996-01-24 Bp Chem Int Ltd Nozzle
FR2741549B1 (fr) * 1995-11-29 1998-01-02 Bp Chemicals Snc Procede d'introduction d'un catalyseur dans un reacteur de polymerisation d'olefine en phase gazeuse
CN1158309C (zh) 1995-12-18 2004-07-21 尤利维森技术公司 利用无载体催化剂的流化床反应***的改进
EP0814100A1 (en) * 1996-06-21 1997-12-29 Bp Chemicals S.N.C. Polymerisation process
KR100427837B1 (ko) * 1996-01-05 2004-09-08 비피 케미칼즈 리미티드 중합화방법
US6015779A (en) 1996-03-19 2000-01-18 Energy & Environmental International, L.C. Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents
EP0803519A1 (en) 1996-04-26 1997-10-29 Bp Chemicals S.N.C. Polymerisation process
JPH10152509A (ja) * 1996-05-14 1998-06-09 Mitsui Chem Inc 気相重合方法及びそのための気相重合装置ならびにブロワー
US6759499B1 (en) 1996-07-16 2004-07-06 Exxonmobil Chemical Patents Inc. Olefin polymerization process with alkyl-substituted metallocenes
EP0824118B1 (en) * 1996-08-13 2003-01-08 BP Chemicals Limited Polymerisation process
EP0824115A1 (en) * 1996-08-13 1998-02-18 Bp Chemicals S.N.C. Polymerisation process
EP0824114A1 (en) * 1996-08-13 1998-02-18 Bp Chemicals S.N.C. Polymerisation process
EP0824116A1 (en) * 1996-08-13 1998-02-18 Bp Chemicals S.N.C. Polymerisation process
EP0825204B1 (en) * 1996-08-13 2002-06-05 BP Chemicals Limited Polymerisation process
US6069212A (en) * 1996-08-20 2000-05-30 Bp Amoco Corporation Transfer of polymer particles between vapor phase polymerization reactors containing quench-cooled subfluidized particulate beds of polymerized monomer
US6111036A (en) * 1996-10-17 2000-08-29 Eastman Chemical Company Method for improving cooling of fluid bed polymer reactor
GB9622715D0 (en) * 1996-10-31 1997-01-08 Bp Chem Int Ltd Nozzle
DE19645939A1 (de) * 1996-11-07 1998-05-14 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Herstellung von ultrahochmolekularem Polyethylen und Methode zur Aktivierung des Katalysatorträgers
EP0853091A1 (en) * 1997-01-13 1998-07-15 Bp Chemicals S.N.C. Polymerisation process
FR2758823B1 (fr) * 1997-01-24 1999-06-04 Bp Chemicals Snc Procede de polymerisation en phase gazeuse
US5962606A (en) * 1997-02-19 1999-10-05 Union Carbide Chemicals & Plastics Technology Corporation Control of solution catalyst droplet size with an effervescent spray nozzle
US6075101A (en) * 1997-02-19 2000-06-13 Union Carbide Chemicals & Plastics Technology Corporation Control of solution catalyst droplet size with a perpendicular spray nozzle
US6451938B1 (en) 1997-02-25 2002-09-17 Exxon Mobil Chemical Patents Inc. Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands
BR9807921A (pt) 1997-04-04 2000-02-22 Dow Chemical Co Sistema de catalisador para sìntese de alto rendimento de poliolefinas.
US5990250A (en) * 1997-05-30 1999-11-23 Union Carbide Chemicals & Plastics Technology Corporation Method of fluidized bed temperature control
FI111846B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto polypropeeniseosten valmistamiseksi
ID23510A (id) * 1997-06-27 2000-04-27 Bp Chem Int Ltd Proses polimerisasi
US6063877A (en) * 1997-07-31 2000-05-16 Union Carbide Chemicals & Plastics Technology Corporation Control of gas phase polymerization reactions
US6630545B2 (en) 1997-09-15 2003-10-07 The Dow Chemical Company Polymerization process
US6150297A (en) 1997-09-15 2000-11-21 The Dow Chemical Company Cyclopentaphenanthrenyl metal complexes and polymerization process
US6076810A (en) * 1997-10-21 2000-06-20 Exxon Research And Engineering Co. Throat and cone gas injector and gas distribution grid for slurry reactor
US6677265B1 (en) 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
DE19801859A1 (de) 1998-01-20 1999-07-22 Bayer Ag Verfahren zur Vermeidung von Instabilitäten bei der Gasphasenpolymerisation von Kautschuk
JPH11209414A (ja) * 1998-01-29 1999-08-03 Idemitsu Petrochem Co Ltd オレフィンの重合方法
US6228957B1 (en) 1998-02-18 2001-05-08 Eastman Chemical Company Process for producing polyethlene
US6191239B1 (en) 1998-02-18 2001-02-20 Eastman Chemical Company Process for producing polyethylene
US6534613B2 (en) 1998-02-18 2003-03-18 Eastman Chemical Company Process for producing polyethylene
US6271321B1 (en) 1998-02-18 2001-08-07 Eastman Chemical Company Process for producing polyethylene
US6716786B1 (en) 1998-02-20 2004-04-06 The Dow Chemical Company Supported catalyst comprising expanded anions
BR9904880A (pt) 1998-03-23 2000-09-19 Montell Technology Company Bv Componente catalìco prepolimerizado para a polimerização de olefinas ch2=chr,processo para a sua preparação, catalisador e processo de polimeração de olefinas ch2=chr
GB9809207D0 (en) * 1998-04-29 1998-07-01 Bp Chem Int Ltd Novel catalysts for olefin polymerisation
US6245868B1 (en) 1998-05-29 2001-06-12 Univation Technologies Catalyst delivery method, a catalyst feeder and their use in a polymerization process
KR100581789B1 (ko) 1998-07-01 2006-05-23 엑손모빌 케미칼 패턴츠 인코포레이티드 프로필렌의 결정성 중합체 및 결정화가능한 중합체를포함하는 탄성 블렌드 조성물
IT1301990B1 (it) 1998-08-03 2000-07-20 Licio Zambon Catalizzatori per la polimerizzazione delle olefine.
US6291613B1 (en) 1998-10-27 2001-09-18 Eastman Chemical Company Process for the polymerization of olefins
ATE388967T1 (de) 1998-10-27 2008-03-15 Westlake Longview Corp Verfahren zur polymerisierung von olefine; polyethylene, und filme, und gegenstände damit hergestellt
BR9915199B1 (pt) 1998-11-02 2010-09-08 interpolìmero de etileno/alfa-olefina de cisalhamento fino, processo de preparação de interpolìmero de etileno/alfa-olefina, artigo manufaturado, composição de mistura de polìmeros e composição vulcanizada termoplástica.
US6189236B1 (en) * 1998-11-05 2001-02-20 Union Carbide Chemicals & Plastics Technology Corporation Process for drying a reactor system employing a fixed bed adsorbent
EP1135420B1 (en) * 1998-11-30 2004-10-06 BP Chemicals Limited Polymerisation control process
US6143843A (en) * 1999-01-22 2000-11-07 Union Carbide Chemicals & Plastics Technology Corporation Simulated condensing mode
US6218484B1 (en) * 1999-01-29 2001-04-17 Union Carbide Chemicals & Plastics Technology Corporation Fluidized bed reactor and polymerization process
US6313236B1 (en) 1999-03-30 2001-11-06 Eastman Chemical Company Process for producing polyolefins
EP1165634B1 (en) 1999-03-30 2004-08-11 Eastman Chemical Company Process for producing polyolefins
US6300432B1 (en) 1999-03-30 2001-10-09 Eastman Chemical Company Process for producing polyolefins
US6288181B1 (en) 1999-03-30 2001-09-11 Eastman Chemical Company Process for producing polyolefins
US6306981B1 (en) 1999-04-02 2001-10-23 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization process
FR2792853B1 (fr) 1999-04-30 2001-07-06 Bp Chemicals Snc Buse a ressort avec fente de 360 degres, pour l'injection de liquide dans un reacteur a lit fluidise
FR2792852B1 (fr) 1999-04-30 2002-03-29 Bp Chemicals Snc Buse a ressort avec orifices
NL1012082C2 (nl) * 1999-05-18 2000-11-21 Dsm Nv Wervelbedreactor.
NL1015200C2 (nl) * 2000-05-15 2001-11-19 Dsm Nv Werkwijze voor het in de gasfase polymeriseren van olefine monomeren.
US6150478A (en) * 1999-06-04 2000-11-21 Union Carbide Chemicals & Plastics Technology Corporation Ultrasonic catalyst feed for fluid bed olefin polymerization
US6417298B1 (en) 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
US6417299B1 (en) 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
CN101195667A (zh) 1999-08-31 2008-06-11 西湖朗维尤公司 聚烯烃生产方法
US6191238B1 (en) 1999-08-31 2001-02-20 Eastman Chemical Company Process for producing polyolefins
US6187879B1 (en) 1999-08-31 2001-02-13 Eastman Chemical Company Process for producing polyolefins
US6391985B1 (en) 1999-10-21 2002-05-21 Union Carbide Chemicals & Plastics Technology Corporation High condensing mode polyolefin production under turbulent conditions in a fluidized bed
DE19960415C1 (de) * 1999-12-15 2001-08-16 Anton More Verfahren und Vorrichtung zur Herstellung von Silanen
US6281306B1 (en) 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
WO2001051526A1 (en) 2000-01-12 2001-07-19 Eastman Chemical Company Procatalysts comprising bidentate ligands, catalyst systems, and use in olefin polymerization
US6465383B2 (en) 2000-01-12 2002-10-15 Eastman Chemical Company Procatalysts, catalyst systems, and use in olefin polymerization
US6696380B2 (en) 2000-01-12 2004-02-24 Darryl Stephen Williams Procatalysts, catalyst systems, and use in olefin polymerization
FI108001B (fi) * 2000-01-28 2001-11-15 Borealis Polymers Oy Nesteen syöttö
US6815512B2 (en) * 2000-02-28 2004-11-09 Union Carbide Chemicals & Plastics Technology Corporation Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection
US6455644B1 (en) 2000-02-28 2002-09-24 Union Carbide Chemicals & Plastics Technology Corporation Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection
FR2806327B1 (fr) * 2000-03-17 2002-06-14 Bp Chemicals Snc Buse a niveau de liquide variable
DE10016625A1 (de) 2000-04-04 2001-10-11 Basell Polyolefine Gmbh Gasphasenpolymerisationsverfahren mit Direktkühlsystem
US6359083B1 (en) * 2000-05-02 2002-03-19 Eastman Chemical Company Olefin polymerization process
AU782724B2 (en) 2000-05-12 2005-08-25 Basell Technology Company B.V. Pre-polymerized catalyst components for the polymerization of olefins
GB0014584D0 (en) * 2000-06-14 2000-08-09 Bp Chem Int Ltd Apparatus and process
US6660812B2 (en) * 2000-07-13 2003-12-09 Exxonmobil Chemical Patents Inc. Production of olefin derivatives
US6627573B2 (en) 2000-07-20 2003-09-30 The Dow Chemical Company Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom
US6905654B2 (en) 2000-10-06 2005-06-14 Univation Technologies, Llc Method and apparatus for reducing static charges during polymerization of olefin polymers
US6548610B2 (en) * 2000-10-06 2003-04-15 Univation Technologies, Llc Method and apparatus for reducing static charges during polymerization of olefin polymers
US6815011B2 (en) 2000-11-27 2004-11-09 Energy & Environmental International, L.C. Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents
US6489408B2 (en) * 2000-11-30 2002-12-03 Univation Technologies, Llc Polymerization process
CA2434795C (en) 2001-01-16 2010-01-26 Energy & Environmental International, L.C. Methods for forming amorphous ultra-high molecular weight polyolefins for use as drag reducing agents
ATE485319T1 (de) 2001-04-12 2010-11-15 Exxonmobil Chem Patents Inc Verfahren zur polymerisation von propylen und ethylen in lösung
US7012046B2 (en) * 2001-06-08 2006-03-14 Eaton Gerald B Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols
EP1927617A1 (en) 2001-07-19 2008-06-04 Univation Technologies, LLC Polyethylene films with improved physical properties.
US6660817B2 (en) 2001-07-24 2003-12-09 Eastman Chemical Company Process for the polymerization of ethylene and interpolymers thereof
US6646073B2 (en) 2001-07-24 2003-11-11 Eastman Chemical Company Process for the polymerization of ethylene and interpolymers thereof
US6759492B2 (en) 2001-07-24 2004-07-06 Eastman Chemical Company Process for the polymerization of ethylene and interpolymers thereof
US6635726B2 (en) 2001-07-24 2003-10-21 Eastman Chemical Company Process for the polymerization of ethylene and interpolymers thereof
GB0118609D0 (en) * 2001-07-31 2001-09-19 Bp Chem Int Ltd Degassing process
DE10139477A1 (de) * 2001-08-10 2003-02-20 Basell Polyolefine Gmbh Optimierung der Wärmeabfuhr im Gasphasenwirbelschichtverfahren
CN1266170C (zh) 2001-10-17 2006-07-26 英国石油化学品有限公司 烯烃(共)聚合的控制方法
WO2003037937A1 (en) 2001-10-18 2003-05-08 The Dow Chemical Company Diene functionalized catalyst supports and supported catalyst compositions
US6927256B2 (en) 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
WO2003040201A1 (en) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
US6703338B2 (en) 2002-06-28 2004-03-09 Univation Technologies, Llc Polymerization catalyst activators, method of preparing, and their use in polymerization processes
US20050208132A1 (en) * 2002-07-29 2005-09-22 Gayatri Sathyan Methods and dosage forms for reducing side effects of benzisozazole derivatives
US20050232995A1 (en) * 2002-07-29 2005-10-20 Yam Nyomi V Methods and dosage forms for controlled delivery of paliperidone and risperidone
US7179426B2 (en) * 2002-09-12 2007-02-20 Chevron Phillips Chemical Company, Lp Large catalyst activator
AU2003267414A1 (en) * 2002-09-25 2004-04-19 Shell Internationale Research Maatschappij B.V. Process for making a linear alpha-olefin oligomer using a heat exchanger
ES2324030T3 (es) * 2002-09-25 2009-07-29 Shell Internationale Research Maatschappij B.V. Procedimiento para producir un oligomero de alfa-olefina lineal usando un intercambiador de calor.
US7943700B2 (en) * 2002-10-01 2011-05-17 Exxonmobil Chemical Patents Inc. Enhanced ESCR of HDPE resins
EP1549687B1 (en) 2002-10-09 2011-04-20 Basell Poliolefine Italia S.r.l. Polymerization process
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
CA2499951C (en) 2002-10-15 2013-05-28 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
US6958376B2 (en) * 2002-10-24 2005-10-25 Exxonmobil Chemical Patents Inc. Inlet distribution device for upflow polymerization reactors
US6630548B1 (en) 2002-11-01 2003-10-07 Equistar Chemicals, Lp Static reduction
US7579407B2 (en) * 2002-11-05 2009-08-25 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US7459500B2 (en) * 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US6989344B2 (en) * 2002-12-27 2006-01-24 Univation Technologies, Llc Supported chromium oxide catalyst for the production of broad molecular weight polyethylene
US20100291334A1 (en) * 2002-12-27 2010-11-18 Univation Technologies, Llc Broad Molecular Weight Polyethylene Having Improved Properties
US6841498B2 (en) * 2003-02-12 2005-01-11 Formosa Plastic Corporation, U.S.A. Catalyst system for ethylene (co)polymerization
WO2004094487A1 (en) 2003-03-21 2004-11-04 Dow Global Technologies, Inc. Morphology controlled olefin polymerization process
JP4616248B2 (ja) 2003-04-17 2011-01-19 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 気相オレフィン重合方法
US6759489B1 (en) 2003-05-20 2004-07-06 Eastern Petrochemical Co. Fluidized bed methods for making polymers
JP2007500279A (ja) * 2003-05-30 2007-01-11 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション 気相重合およびその制御方法
JP5525680B2 (ja) 2003-11-14 2014-06-18 エクソンモービル・ケミカル・パテンツ・インク プロピレン−ベース・エラストマー、その製品およびその製造方法
US6870010B1 (en) 2003-12-01 2005-03-22 Univation Technologies, Llc Low haze high strength polyethylene compositions
US7410926B2 (en) * 2003-12-30 2008-08-12 Univation Technologies, Llc Polymerization process using a supported, treated catalyst system
US20050182210A1 (en) 2004-02-17 2005-08-18 Natarajan Muruganandam De-foaming spray dried catalyst slurries
ATE428499T1 (de) * 2004-03-16 2009-05-15 Union Carbide Chem Plastic Oligomerisierung von ethylen mit aluminiumphosphat-geträgerten gruppe 6 metallamidkatalysatoren
US7915192B2 (en) 2004-03-17 2011-03-29 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene copolymer formation
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
EP2221328B1 (en) 2004-03-17 2017-04-19 Dow Global Technologies LLC Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
US7531606B2 (en) 2004-05-26 2009-05-12 Chevron Phillips Chemical Company Lp Method for operating a gas phase polymerization reactor
GB0411742D0 (en) 2004-05-26 2004-06-30 Exxonmobil Chem Patents Inc Transition metal compounds for olefin polymerization and oligomerization
ES2483241T3 (es) 2004-08-09 2014-08-06 Dow Global Technologies Inc. Catalizadores de bis(hidroxiarilariloxilo) soportados para la fabricación de polímeros
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
SG156639A1 (en) * 2004-10-13 2009-11-26 Exxonmobil Chem Patents Inc Elastomeric reactor blend compositions
US7253239B2 (en) * 2004-10-29 2007-08-07 Westlake Longview Corporation Method for preventing or inhibiting fouling in a gas-phase polyolefin polymerization process
WO2006049699A1 (en) 2004-10-29 2006-05-11 Exxonmobil Chemical Patents Inc Catalyst compound containing divalent tridentate ligand
US7745526B2 (en) 2004-11-05 2010-06-29 Exxonmobil Chemical Patents Inc. Transparent polyolefin compositions
US7829623B2 (en) 2004-11-05 2010-11-09 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates having improved fabricability
US7598327B2 (en) * 2004-11-10 2009-10-06 Chevron Phillips Chemical Company Lp Method for polymerizing olefins in a gas phase reactor using a seedbed during start-up
TW200631965A (en) 2004-12-07 2006-09-16 Fina Technology Random copolymers and formulations useful for thermoforming and blow molding applications
US8709560B2 (en) 2004-12-16 2014-04-29 Exxonmobil Chemical Patents Inc. Polymeric compositions including their uses and methods of production
US7803876B2 (en) 2005-01-31 2010-09-28 Exxonmobil Chemical Patent Inc. Processes for producing polymer blends and polymer blend pellets
US7312279B2 (en) 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
EP3424966B1 (en) 2005-03-17 2020-05-27 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP2894176B1 (en) 2005-03-17 2022-06-01 Dow Global Technologies LLC Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
US7081285B1 (en) 2005-04-29 2006-07-25 Fina Technology, Inc. Polyethylene useful for blown films and blow molding
US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7220806B2 (en) 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7645834B2 (en) * 2005-04-29 2010-01-12 Fina Technologies, Inc. Catalyst system for production of polyolefins
US6995235B1 (en) 2005-05-02 2006-02-07 Univation Technologies, Llc Methods of producing polyolefins and films therefrom
ES2357363T3 (es) * 2005-05-10 2011-04-25 Ineos Europe Limited Nuevos copolímeros.
EP1731536A1 (en) 2005-06-09 2006-12-13 Innovene Manufacturing France SAS Supported polymerisation catalysts
US7282546B2 (en) 2005-06-22 2007-10-16 Fina Technology, Inc. Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations
US20070004875A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts useful for improving polyethylene film properties
US20070004876A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts for olefin polymerizations
US20070003720A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts useful for preparing polyethylene pipe
US7634937B2 (en) 2005-07-01 2009-12-22 Symyx Solutions, Inc. Systems and methods for monitoring solids using mechanical resonator
CN1923861B (zh) * 2005-09-02 2012-01-18 北方技术股份有限公司 在烯烃聚合催化剂存在下的烯烃聚合方法
TW200722441A (en) 2005-09-15 2007-06-16 Dow Global Technologies Inc Catalytic olefin block copolymers via polymerizable shuttling agent
BRPI0617041B1 (pt) 2005-09-15 2018-01-30 Dow Global Technologies Inc. PROCESSO PARA PREPARAR UM POLÍMERO DIFUNCIONAL EM a, ?"
US7737206B2 (en) 2005-11-18 2010-06-15 Exxonmobil Chemical Patents Inc. Polyolefin composition with high filler loading capacity
EP1963347B1 (en) 2005-12-14 2011-10-19 ExxonMobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
DE102006004429A1 (de) * 2006-01-31 2007-08-02 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit einem Metallisierungsschichtstapel mit einem porösen Material mit kleinem ε mit einer erhöhten Integrität
US7687672B2 (en) * 2006-02-03 2010-03-30 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US7858833B2 (en) * 2006-02-03 2010-12-28 Exxonmobil Chemical Patents Inc. Process for generating linear alpha olefin comonomers
WO2007092136A2 (en) * 2006-02-03 2007-08-16 Exxonmobil Chemical Patents, Inc. Process for generating alpha olefin comonomers
US7982085B2 (en) * 2006-02-03 2011-07-19 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US8003839B2 (en) * 2006-02-03 2011-08-23 Exxonmobil Chemical Patents Inc. Process for generating linear apha olefin comonomers
US7714083B2 (en) * 2006-03-08 2010-05-11 Exxonmobil Chemical Patents Inc. Recycle of hydrocarbon gases from the product tanks to a reactor through the use of ejectors
US20070299222A1 (en) 2006-04-04 2007-12-27 Fina Technology, Inc. Transition metal catalysts and formation thereof
US7683002B2 (en) 2006-04-04 2010-03-23 Fina Technology, Inc. Transition metal catalyst and formation thereof
US20070235896A1 (en) * 2006-04-06 2007-10-11 Fina Technology, Inc. High shrink high modulus biaxially oriented films
US20070249793A1 (en) * 2006-04-19 2007-10-25 Vanderbilt Jeffrey J Simplified process to prepare polyolefins from saturated hydrocarbons
US7696289B2 (en) * 2006-05-12 2010-04-13 Exxonmobil Chemical Patents Inc. Low molecular weight induced condensing agents
WO2007136506A2 (en) * 2006-05-17 2007-11-29 Dow Global Technologies Inc. Polyolefin solution polymerization process and polymer
GB0610667D0 (en) 2006-05-30 2006-07-05 Nova Chem Int Sa Supported polymerization catalysts
US7893181B2 (en) * 2006-07-11 2011-02-22 Fina Technology, Inc. Bimodal film resin and products made therefrom
US7449529B2 (en) * 2006-07-11 2008-11-11 Fina Technology, Inc. Bimodal blow molding resin and products made therefrom
US20080051538A1 (en) * 2006-07-11 2008-02-28 Fina Technology, Inc. Bimodal pipe resin and products made therefrom
US7514510B2 (en) 2006-07-25 2009-04-07 Fina Technology, Inc. Fluorenyl catalyst compositions and olefin polymerization process
US7470759B2 (en) * 2006-07-31 2008-12-30 Fina Technology, Inc. Isotactic-atactic polypropylene and methods of making same
US8198373B2 (en) * 2006-10-02 2012-06-12 Exxonmobil Chemical Patents Inc. Plastic toughened plastics
EP3467077A1 (en) * 2006-10-03 2019-04-10 Univation Technologies, LLC System for olefin polymerization
US7538167B2 (en) * 2006-10-23 2009-05-26 Fina Technology, Inc. Syndiotactic polypropylene and methods of preparing same
US20080114130A1 (en) * 2006-11-10 2008-05-15 John Ashbaugh Resin composition for production of high tenacity slit film, monofilaments and fibers
JP5341770B2 (ja) 2006-12-15 2013-11-13 フイナ・テクノロジー・インコーポレーテツド ポリプロピレンインフレーションフィルム
KR20090094003A (ko) * 2006-12-29 2009-09-02 피나 테크놀러지, 인코포레이티드 폴리프로필렌 필름 등급 수지를 제조하기 위해 n-부틸메틸디메톡시실란을 사용하는 숙시네이트 함유 중합 촉매 시스템
KR101057854B1 (ko) * 2007-01-22 2011-08-19 주식회사 엘지화학 폴리올레핀의 입도 조절 방법
US8088870B2 (en) 2007-03-06 2012-01-03 Univation Technologies, Llc Methods for applying solution catalysts to reactor surfaces
RU2461577C2 (ru) * 2007-03-30 2012-09-20 Юнивейшн Текнолоджиз, Ллк Системы и способы производства полиолефинов
US7754834B2 (en) * 2007-04-12 2010-07-13 Univation Technologies, Llc Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density
RU2454430C2 (ru) 2007-10-11 2012-06-27 Юнивейшн Текнолоджиз, Ллк Добавки для непрерывности и их применение в процессах полимеризации
TW200932762A (en) 2007-10-22 2009-08-01 Univation Tech Llc Polyethylene compositions having improved properties
EP2112175A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane
EP3187238B1 (en) 2007-11-27 2018-08-15 Univation Technologies, LLC Integrated hydrocarbons feed stripper
ATE519788T1 (de) 2007-12-18 2011-08-15 Basell Polyolefine Gmbh Gasphasenverfahren zur polymerisation von alpha- olefinen
PL2072586T3 (pl) 2007-12-20 2021-05-31 Borealis Technology Oy Powlekane rury o ulepszonych właściwościach mechanicznych i sposób ich wytwarzania
EP2072587B1 (en) 2007-12-20 2020-06-03 Borealis Technology Oy Coated pipes having improved mechanical properties at elevated temperatures and a method of production thereof
EP2072588B1 (en) 2007-12-20 2012-10-10 Borealis Technology Oy Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof
EP2072589A1 (en) 2007-12-20 2009-06-24 Borealis Technology Oy Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof
EP2112173A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Catalyst compounds and use thereof
EP2082797A1 (en) 2007-12-24 2009-07-29 Borealis Technology OY Reactor system for the catalytic polymerization of olefins comprising shielding means and a process and use thereof
EP2090356A1 (en) 2007-12-24 2009-08-19 Borealis Technology OY Reactor systems and process for the catalytic polymerization of olefins, and the use of such reactor system in catalytic polymeration of olefins
ES2666896T3 (es) 2007-12-24 2018-05-08 Borealis Technology Oy Sistema reactor y proceso para la polimerización catalítica de olefinas y el uso de tal sistema reactor en la polimerización catalítica de olefinas
EP2222725B1 (en) * 2007-12-27 2019-06-19 Univation Technologies, LLC Systems and methods for removing entrained particulates from gas streams
CA2713117C (en) * 2008-01-24 2016-06-07 Dow Global Technologies Inc. Method for gas phase polymerization
US8859084B2 (en) * 2008-01-29 2014-10-14 Fina Technology, Inc. Modifiers for oriented polypropylene
US8003741B2 (en) 2008-02-07 2011-08-23 Fina Technology, Inc. Ziegler-Natta catalyst
US20090202770A1 (en) * 2008-02-08 2009-08-13 Fengkui Li Polypropylene/polyisobutylene blends and films prepared from same
WO2010074994A1 (en) 2008-12-22 2010-07-01 Univation Technologies, Llc Systems and methods for fabricating polymers
CN101970515A (zh) * 2008-02-26 2011-02-09 里奎迈尔特公司 能量活化的室温可泵送的聚合物组合物以及用于活化和分配它们的设备
EP2103632A1 (en) 2008-03-20 2009-09-23 Ineos Europe Limited Polymerisation process
EP2268389B2 (en) * 2008-04-22 2019-12-25 Univation Technologies, LLC Reactor systems and processes for using the same
RU2485138C2 (ru) 2008-05-27 2013-06-20 Базелль Полиолефин Италия С.Р.Л. Способ газофазной полимеризации олефинов
EP2130863A1 (en) 2008-06-02 2009-12-09 Borealis AG High density polymer compositions, a method for their preparation and pressure-resistant pipes made therefrom
EP2130859A1 (en) 2008-06-02 2009-12-09 Borealis AG Polymer compositions having improved homogeneity and odour, a method for making them and pipes made thereof
EP2130862A1 (en) 2008-06-02 2009-12-09 Borealis AG Polymer compositions and pressure-resistant pipes made thereof
EP2133367A1 (en) 2008-06-09 2009-12-16 INEOS Manufacturing Belgium NV Novel Copolymers
US8759446B2 (en) 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US8545971B2 (en) * 2008-06-30 2013-10-01 Fina Technology, Inc. Polymeric compositions comprising polylactic acid and methods of making and using same
US8268913B2 (en) * 2008-06-30 2012-09-18 Fina Technology, Inc. Polymeric blends and methods of using same
US8580902B2 (en) 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
CN102112499B (zh) 2008-08-01 2014-02-05 埃克森美孚化学专利公司 催化剂体系和用于烯烃聚合的方法
WO2010036446A1 (en) 2008-09-24 2010-04-01 Univation Technologies, Llc Methods for cleaning the distributor plate in a fluidized bed reactor system
WO2010034520A1 (en) 2008-09-25 2010-04-01 Basell Polyolefine Gmbh Impact resistant lldpe composition and films made thereof
US8957158B2 (en) 2008-09-25 2015-02-17 Basell Polyolefine Gmbh Impact resistant LLDPE composition and films made thereof
US9334342B2 (en) 2008-10-01 2016-05-10 Fina Technology, Inc. Polypropylene for reduced plate out in polymer article production processes
EP2177548A1 (en) 2008-10-14 2010-04-21 Ineos Europe Limited Copolymers and films thereof
US8129483B2 (en) * 2008-10-15 2012-03-06 Univation Technologies, Llc Circulating fluidized bed reactor
EP2182525A1 (en) 2008-10-31 2010-05-05 Borealis AG Cable and polymer composition comprising a multimodal ethylene copolymer
EP2182526A1 (en) 2008-10-31 2010-05-05 Borealis AG Cable and polymer composition comprising an multimodal ethylene copolymer
EP2182524A1 (en) 2008-10-31 2010-05-05 Borealis AG Cable and Polymer composition comprising a multimodal ethylene copolymer
US20100119855A1 (en) * 2008-11-10 2010-05-13 Trazollah Ouhadi Thermoplastic Elastomer with Excellent Adhesion to EPDM Thermoset Rubber and Low Coefficient of Friction
ATE551369T1 (de) 2008-11-17 2012-04-15 Borealis Ag Mehrstufiger prozess zur herstellung von polyethylen mit reduzierter gelbildung
CN102257018B (zh) 2008-12-22 2013-11-06 尤尼威蒂恩技术有限责任公司 制造聚合物的体系和方法
WO2010080871A1 (en) 2009-01-08 2010-07-15 Univation Technologies, Llc Additive for gas phase polymerization processes
WO2010080870A2 (en) 2009-01-08 2010-07-15 Univation Technologies,Llc Additive for polyolefin polymerization processes
ES2370689T3 (es) 2009-02-25 2011-12-21 Borealis Ag Polímero multimodal de polipropileno, composición que comprende el mismo y un procedimiento para producir el mismo.
EP2223944A1 (en) 2009-02-26 2010-09-01 Borealis AG Process for producing semicrystalline propylene polymers
US8653198B2 (en) 2009-03-26 2014-02-18 Fina Technology, Inc. Method for the preparation of a heterophasic copolymer and uses thereof
US20100247887A1 (en) 2009-03-26 2010-09-30 Fina Technology, Inc. Polyolefin films for in-mold labels
US9090000B2 (en) 2009-03-26 2015-07-28 Fina Technology, Inc. Injection stretch blow molded articles and random copolymers for use therein
CN101927141B (zh) * 2009-06-19 2012-07-04 中国石油化工股份有限公司 聚合物颗粒在气相聚合反应器之间的转移方法
US8586685B2 (en) 2009-07-23 2013-11-19 Univation Technologies, Llc Polymerization reaction system
MY158186A (en) 2009-07-28 2016-09-15 Univation Tech Llc Polymerization process using a supported constrained geometry catalyst
ES2651292T3 (es) 2009-07-29 2018-01-25 Dow Global Technologies Llc Agentes de transferencia de cadena de doble o múltiple cabeza y su uso para la preparación de copolímeros de bloque
US9174384B2 (en) * 2009-09-01 2015-11-03 Fina Technology, Inc. Multilayer polypropylene films and methods of making and using same
EP2499169B1 (en) 2009-11-13 2014-04-02 Borealis AG Process for recovering a transition metal compound
WO2011058091A1 (en) 2009-11-13 2011-05-19 Borealis Ag Process for olefin polymerization
EP2322568B1 (en) 2009-11-13 2013-05-15 Borealis AG Process for producing an olefin polymerization catalyst
WO2011058089A1 (en) 2009-11-13 2011-05-19 Borealis Ag Process for producing a polymerization catalyst
US8425924B2 (en) 2009-11-24 2013-04-23 Exxonmobil Chemical Patents Inc. Propylene compositions containing a pyrethroid and products made therefrom
BR112012013675A2 (pt) 2009-12-07 2016-04-19 Univation Tech Llc métodos para a produção de carga estática de um catalisador e métodos para o uso do catalisador para produzir poliolefinas
IN2012DN02132A (bg) 2009-12-18 2015-08-21 Univation Tech Llc
WO2011078923A1 (en) 2009-12-23 2011-06-30 Univation Technologies, Llc Methods for producing catalyst systems
US8592535B2 (en) 2010-01-11 2013-11-26 Fina Technology, Inc. Ziegler-natta catalyst systems and polymers formed therefrom
EP2348056A1 (en) 2010-01-26 2011-07-27 Ineos Europe Limited Process for the gas phase polymerisation of olefins
MY159256A (en) 2010-02-18 2016-12-30 Univation Tech Llc Methods for operating a polymerization reactor
CA2789687C (en) 2010-02-22 2018-03-06 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
CN102947067B (zh) 2010-02-22 2015-06-03 英力士销售(英国)有限公司 改进的聚烯烃制造方法
US8058461B2 (en) 2010-03-01 2011-11-15 Exxonmobil Chemical Patents Inc. Mono-indenyl transition metal compounds and polymerization therewith
WO2011129956A1 (en) 2010-04-13 2011-10-20 Univation Technologies, Llc Polymer blends and films made therefrom
US10351640B2 (en) 2010-04-22 2019-07-16 Fina Technology, Inc. Formation of Ziegler-Natta catalyst using non-blended components
CN103554324B (zh) 2010-04-30 2016-02-03 大林产业株式会社 α-烯烃的气相聚合
EP2397221B1 (en) 2010-06-17 2017-04-12 Borealis AG Control system for a gas phase reactor, a gas phase reactor for catalytic production of polyolefines, a method for catalytic productions of polyolefines and a use of the control system
US8278403B2 (en) 2010-07-08 2012-10-02 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
EP2593217B1 (en) 2010-07-16 2014-07-02 Univation Technologies, LLC Systems and methods for measuring particle accumulation on reactor surfaces
GB201012273D0 (en) 2010-07-22 2010-09-08 Ineos Mfg Belguim Nv Polymer compositon
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
US20120046429A1 (en) 2010-08-23 2012-02-23 Fina Technology, Inc. Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components
US8557906B2 (en) 2010-09-03 2013-10-15 Exxonmobil Chemical Patents Inc. Flame resistant polyolefin compositions and methods for making the same
WO2012096698A2 (en) 2010-10-21 2012-07-19 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
EP2452959B1 (en) 2010-11-12 2015-01-21 Borealis AG Process for producing propylene random copolymers and their use
EP2452960B1 (en) 2010-11-12 2015-01-07 Borealis AG Process for preparing propylene polymers with an ultra high melt flow rate
EP2452976A1 (en) 2010-11-12 2012-05-16 Borealis AG Heterophasic propylene copolymers with improved stiffness/impact/flowability balance
EP2452957A1 (en) 2010-11-12 2012-05-16 Borealis AG Improved process for producing heterophasic propylene copolymers
JP5667701B2 (ja) 2010-11-24 2015-02-12 エクソンモービル アジア パシフィック リサーチ アンド デベロップメント カンパニー リミテッド フィラー高充填ポリマー組成物
US9394381B2 (en) 2010-11-29 2016-07-19 Ineos Sales (Uk) Limited Polymerisation control process
EP2457647A1 (en) 2010-11-29 2012-05-30 Ineos Commercial Services UK Limited Apparatus and process
BR112013012741B1 (pt) 2010-11-30 2020-04-28 Univation Tech Llc processo de polimerização
EP2646481B1 (en) 2010-11-30 2015-04-22 Univation Technologies, LLC Catalyst composition having improved flow characteristics and methods of making and using the same
EP2465876A1 (en) 2010-12-15 2012-06-20 INEOS Manufacturing Belgium NV Activating supports
EP2651982B1 (en) 2010-12-17 2018-04-11 Univation Technologies, LLC Systems and methods for recovering hydrocarbons from a polyolefin purge gas product
EP2465877A1 (en) 2010-12-20 2012-06-20 Ineos Commercial Services UK Limited Process
RU2577324C2 (ru) 2010-12-22 2016-03-20 Юнивейшн Текнолоджиз, Ллк Добавка для способов полимеризации полиолефина
US9012359B2 (en) 2011-01-20 2015-04-21 Ineos Sales (Uk) Limited Activating supports
US10711077B2 (en) 2011-02-07 2020-07-14 Fina Technology, Inc. Ziegler-natta catalyst composition with controlled morphology
US8586192B2 (en) 2011-02-15 2013-11-19 Fina Technology, Inc. Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same
US9382347B2 (en) 2011-02-16 2016-07-05 Fina Technology Inc Ziegler-Natta catalysts doped with non-group IV metal chlorides
EP2495037B1 (en) 2011-03-02 2020-08-19 Borealis AG High throughput reactor assembly for polymerization of olefins
ES2817776T3 (es) 2011-03-02 2021-04-08 Borealis Ag Un procedimiento para la producción de polímeros
CA2734167C (en) 2011-03-15 2018-03-27 Nova Chemicals Corporation Polyethylene film
CA2739969C (en) 2011-05-11 2018-08-21 Nova Chemicals Corporation Improving reactor operability in a gas phase polymerization process
US9637567B2 (en) 2011-05-13 2017-05-02 Univation Technologies, Llc Spray-dried catalyst compositions and polymerization processes employing the same
CA2740755C (en) 2011-05-25 2019-01-15 Nova Chemicals Corporation Chromium catalysts for olefin polymerization
US9321859B2 (en) 2011-06-09 2016-04-26 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9243092B2 (en) 2011-06-09 2016-01-26 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9315591B2 (en) 2011-06-09 2016-04-19 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
CA2742461C (en) 2011-06-09 2018-06-12 Nova Chemicals Corporation Modified phosphinimine catalysts for olefin polymerization
CA2742454C (en) 2011-06-09 2018-06-12 Nova Chemicals Corporation Methods for controlling ethylene copolymer properties
US9127106B2 (en) 2011-06-09 2015-09-08 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9221935B2 (en) 2011-06-09 2015-12-29 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9127094B2 (en) 2011-06-09 2015-09-08 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
EP2535372B1 (en) 2011-06-15 2016-09-14 Borealis AG In-situ reactor blend of a Ziegler-Natta catalysed, nucleated polypropylene and a metallocene catalysed polypropylene
WO2013028283A1 (en) 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
CA2749835C (en) 2011-08-23 2018-08-21 Nova Chemicals Corporation Feeding highly active phosphinimine catalysts to a gas phase reactor
EP2570455A1 (en) 2011-09-16 2013-03-20 Borealis AG Polyethylene composition with broad molecular weight distribution and improved homogeneity
WO2013070602A1 (en) 2011-11-08 2013-05-16 Univation Technologies, Llc Methods for producing polyolefins with catalyst systems
US9234060B2 (en) 2011-11-08 2016-01-12 Univation Technologies, Llc Methods of preparing a catalyst system
CN104066755B (zh) 2011-11-15 2017-07-14 格雷斯公司 用于聚合聚丙烯的方法
EP2594333B1 (en) 2011-11-21 2014-07-30 Borealis AG Method for recovering polymer and apparatus therefor
MX339257B (es) 2011-11-30 2016-05-18 Univation Tech Llc Metodos y sistemas para entrega de catalizadores.
EP2599828A1 (en) 2011-12-01 2013-06-05 Borealis AG Multimodal polyethylene composition for the production of pipes with improved slow crack growth resistance
ES2685520T3 (es) 2011-12-01 2018-10-09 Ineos Europe Ag Mezclas de polímeros
CA2760264C (en) 2011-12-05 2018-08-21 Nova Chemicals Corporation Passivated supports for use with olefin polymerization catalysts
RU2641002C2 (ru) 2011-12-14 2018-01-15 Инеос Юроуп Аг Новые полимеры
US8580893B2 (en) 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
EP2617741B1 (en) 2012-01-18 2016-01-13 Borealis AG Process for polymerizing olefin polymers in the presence of a catalyst system and a method of controlling the process
EP2807655B1 (en) 2012-01-26 2018-03-07 Ineos Europe AG Copolymers for wire and cable applications
CA2863694C (en) 2012-03-05 2020-11-03 Univation Technologies, Llc Methods for making catalyst compositions and polymer products produced therefrom
EP3838930B1 (en) * 2012-03-16 2023-06-28 Ineos Europe AG Polymerisation process
CN104395362B (zh) 2012-04-19 2018-01-12 英尼奥斯欧洲股份公司 用于烯烃聚合的催化剂、其生产方法及用途
CA2798855C (en) 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
US9115233B2 (en) 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
WO2014023637A1 (en) 2012-08-06 2014-02-13 Ineos Europe Ag Polymerisation process
EP2890490B1 (en) 2012-08-29 2020-05-06 Borealis AG Reactor assembly and method for polymerization of olefins
US11214659B2 (en) 2012-10-26 2022-01-04 Exxonmobil Chemical Patents Inc. Polymer blends and articles made therefrom
CN104755515B (zh) 2012-11-01 2017-08-25 尤尼威蒂恩技术有限责任公司 用于改进的聚合物产品的混合相容齐格勒‑纳塔/铬催化剂
US9587993B2 (en) * 2012-11-06 2017-03-07 Rec Silicon Inc Probe assembly for a fluid bed reactor
EP2730611B1 (en) 2012-11-09 2017-01-04 Abu Dhabi Polymers Company Limited (Borouge) Drip irrigation pipe comprising a polymer composition comprising a multimodal polyethylene base resin
EP2730612B1 (en) 2012-11-09 2016-09-14 Abu Dhabi Polymers Company Limited (Borouge) Polymer composition comprising a blend of a multimodal polyethylene and a further ethylene polymer suitable for the production of a drip irrigation pipe
CN104781628B (zh) 2012-11-12 2017-07-07 尤尼威蒂恩技术有限责任公司 用于气相聚合方法的再循环气体冷却器***
EP2922699A1 (en) 2012-11-21 2015-09-30 ExxonMobil Chemical Patents Inc. Films comprising ethlyene-based polymers and methods of making same
CA2797620C (en) 2012-12-03 2019-08-27 Nova Chemicals Corporation Controlling resin properties in a gas phase polymerization process
US11413855B2 (en) 2012-12-05 2022-08-16 Exxonmobil Chemical Patents Inc. Ethylene-based polymers and articles made therefrom
EP2740761B1 (en) 2012-12-05 2016-10-19 Borealis AG Polyethylene composition with improved balance of slow crack growth resistance, impact performance and pipe pressure resistance for pipe applications
EP2743278A1 (en) * 2012-12-11 2014-06-18 Basell Polyolefine GmbH Process for degassing and buffering polyolefin particles obtained by olefin polymerization
WO2014099356A2 (en) 2012-12-18 2014-06-26 Exxonmobil Chemical Patents Inc. Polyethylene films and method of making same
EP2745926A1 (en) 2012-12-21 2014-06-25 Borealis AG Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor
EP2745927A1 (en) 2012-12-21 2014-06-25 Borealis AG Fluidized bed reactor with internal moving bed reaction unit
CA2800056A1 (en) 2012-12-24 2014-06-24 Nova Chemicals Corporation Polyethylene blend compositions
EP2749580B1 (en) 2012-12-28 2016-09-14 Borealis AG Process for producing copolymers of propylene
CN104918947A (zh) 2012-12-28 2015-09-16 尤尼威蒂恩技术有限责任公司 将铝氧烷的生产整合到催化剂生产中的方法
EP4039366A1 (en) 2012-12-28 2022-08-10 Univation Technologies, LLC Supported catalyst with improved flowability
CN105121015A (zh) 2013-01-14 2015-12-02 尤尼威蒂恩技术有限责任公司 制备高产率催化剂***的方法
EP2951211B1 (en) 2013-01-30 2019-11-13 Univation Technologies, LLC Processes for making catalyst compositions having improved flow
CN105143285B (zh) 2013-02-07 2019-03-08 尤尼威蒂恩技术有限责任公司 聚烯烃的制备
JP6466395B2 (ja) * 2013-03-14 2019-02-06 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット プロピレン/ブテンインターポリマー生成システム及び方法
US9644053B2 (en) 2013-03-15 2017-05-09 Univation Technologies, Llc Tridentate nitrogen based ligands for olefin polymerisation catalysts
JP2016512275A (ja) 2013-03-15 2016-04-25 ユニベーション・テクノロジーズ・エルエルシー 触媒用配位子
EP2796474B1 (en) 2013-04-22 2018-01-10 Borealis AG Multistage process for producing polypropylene compositions
PL2796500T3 (pl) 2013-04-22 2018-12-31 Abu Dhabi Polymers Company Limited (Borouge) Kompozycja kopolimeru przypadkowego propylenu do zastosowań do rur
EP2796472B1 (en) 2013-04-22 2017-06-28 Borealis AG Two-stage process for producing polypropylene compositions
PL2796501T3 (pl) 2013-04-22 2017-01-31 Abu Dhabi Polymers Company Limited (Borouge) Wielomodalna polipropylenowa kompozycja do zastosowań do rur
EP2796498B1 (en) 2013-04-22 2018-09-12 Abu Dhabi Polymers Company Limited (Borouge) Multimodal polypropylene composition for pipe applications
ES2628082T3 (es) 2013-04-22 2017-08-01 Borealis Ag Procedimiento con múltiples etapas para producir composiciones de polipropileno resistentes a baja temperatura
PL2796499T3 (pl) 2013-04-22 2018-12-31 Abu Dhabi Polymers Company Limited (Borouge) Kompozycja polipropylenowa o ulepszonej udarności do zastosowań w rurach
US9493591B2 (en) 2013-05-14 2016-11-15 Exxonmobil Chemical Patents Inc. Ethylene based polymers and articles made therefrom
BR112015029498B1 (pt) 2013-06-05 2020-10-27 Univation Technologies, Llc método para proteger um grupo fenol em um composto precursor e método para gerar um polímero de polietileno
US20160102429A1 (en) 2013-07-02 2016-04-14 Exxonmobil Chemical Patents Inc. Carpet Backing Compositions and Carpet Backing Comprising the Same
WO2015022025A1 (en) 2013-08-14 2015-02-19 Ineos Europe Ag Polymerization process
RU2016113526A (ru) 2013-09-10 2017-10-16 Инеос Юроуп Аг Способ (со-)полимеризации олефинов
BR112016003455B1 (pt) * 2013-09-12 2021-03-23 Dow Global Technologies Llc Processo para produzir polímero à base de olefina
EP2848635A1 (en) 2013-09-16 2015-03-18 Ineos Europe AG Polymerization process
EP2853562A1 (en) 2013-09-27 2015-04-01 Borealis AG Two-stage process for producing polypropylene compositions
EP2860203B1 (en) 2013-10-10 2016-12-14 Borealis AG Multistage process for producing polyethylene compositions
EP2860201A1 (en) 2013-10-10 2015-04-15 Borealis AG High temperature resistant polyethylene and process for the production thereof
EP2860200B1 (en) 2013-10-10 2017-08-02 Borealis AG Polyethylene composition for pipe and pipe coating applications
EP2860202B1 (en) 2013-10-10 2018-05-30 Borealis AG High temperature resistant polyethylene and process for the production thereof
EP2860204B1 (en) 2013-10-10 2018-08-01 Borealis AG Polyethylene composition for pipe applications
EP3080200B1 (en) 2013-12-09 2018-11-14 Univation Technologies, LLC Feeding polymerization additives to polymerization processes
EP2883885A1 (en) 2013-12-13 2015-06-17 Borealis AG Multistage process for producing polyethylene compositions
EP2883887A1 (en) 2013-12-13 2015-06-17 Borealis AG Multistage process for producing polyethylene compositions
JP2017500422A (ja) 2013-12-23 2017-01-05 イネオス ユーロープ アクチェンゲゼルシャフト スカベンジャー注入
CN105829358B (zh) 2013-12-23 2019-07-23 英尼奥斯欧洲股份公司 用于在聚合反应器***中使烯烃聚合的方法
US9206293B2 (en) 2014-01-31 2015-12-08 Fina Technology, Inc. Polyethyene and articles produced therefrom
WO2015123179A1 (en) 2014-02-11 2015-08-20 Univation Technologies, Llc Producing polyolefin products
WO2015153082A1 (en) 2014-04-02 2015-10-08 Univation Technologies, Llc Continuity compositions and methods of making and using the same
FR3020578B1 (fr) * 2014-05-05 2021-05-14 Total Raffinage Chimie Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unite de raffinage.
SG11201610213SA (en) 2014-06-11 2017-01-27 Fina Technology Chlorine-resistant polyethylene compound and articles made therefrom
US9624321B2 (en) 2014-06-13 2017-04-18 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
US9650448B2 (en) 2014-06-13 2017-05-16 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
JP2017519865A (ja) 2014-06-16 2017-07-20 ユニベーション・テクノロジーズ・エルエルシー ポリエチレン樹脂
CN106574014B (zh) 2014-06-16 2021-04-16 尤尼威蒂恩技术有限责任公司 修改聚乙烯树脂的熔体流动比率和/或溶胀的方法
BR112017003170B1 (pt) 2014-08-19 2022-02-15 Univation Technologies, Llc Método para fazer um suporte de catalisador de alumina-sílica fluorado e sistema de catalisador de alumina-sílica fluorado
CN106794455B (zh) 2014-08-19 2020-09-04 尤尼威蒂恩技术有限责任公司 氟化催化剂载体和催化剂***
US10189917B2 (en) 2014-08-19 2019-01-29 Univation Technologies, Llc Fluorinated catalyst supports and catalyst systems
EP2995631A1 (en) 2014-09-12 2016-03-16 Borealis AG Process for producing graft copolymers on polyolefin backbone
CN107075210B (zh) 2014-10-24 2020-06-09 埃克森美孚化学专利公司 热塑性硫化胶组合物
CA2870027C (en) 2014-11-07 2022-04-26 Matthew Zaki Botros Blow molding composition and process
CA2871463A1 (en) 2014-11-19 2016-05-19 Nova Chemicals Corporation Passivated supports: catalyst, process and product
CN107001663B (zh) 2014-11-26 2020-09-04 博里利斯股份公司 用于薄膜层的聚乙烯组合物
TWI600694B (zh) 2014-11-26 2017-10-01 柏列利斯股份公司 膜層
CN106715067A (zh) 2014-12-08 2017-05-24 博里利斯股份公司 丙烯共聚物粒料的制备方法
CN107405593B (zh) * 2014-12-09 2020-07-21 中国石油化工股份有限公司 一种烯烃聚合装置和烯烃聚合方法
CA2967047A1 (en) 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US10294312B2 (en) 2014-12-12 2019-05-21 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016094870A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016094861A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
CA2874344C (en) 2014-12-15 2021-08-31 Nova Chemicals Corporation Spheroidal catalyst for olefin polymerization
EA032875B1 (ru) 2014-12-22 2019-07-31 Сабик Глоубл Текнолоджиз Б.В. Способ перехода между несовместимыми катализаторами
WO2016102546A1 (en) 2014-12-22 2016-06-30 Sabic Global Technologies B.V. Process for transitioning between incompatible catalysts
CN107107433B (zh) 2015-01-21 2019-09-13 尤尼威蒂恩技术有限责任公司 用于聚烯烃中的凝胶减少的方法
EP3915759A1 (en) 2015-01-21 2021-12-01 Univation Technologies, LLC Method for controlling polymer chain scission
CN107207662B (zh) 2015-02-05 2021-04-09 博里利斯股份公司 用于生产聚乙烯的方法
EP3053936A1 (en) 2015-02-06 2016-08-10 Borealis AG Process for producing copolymers of ethylene with alpha-olefins
EP3053976A1 (en) 2015-02-09 2016-08-10 Borealis AG Adhesive composition
KR101894687B1 (ko) 2015-02-20 2018-10-04 보레알리스 아게 프로필렌의 헤테로상의 공중합체를 제조하기 위한 공정
SG11201707037TA (en) 2015-03-10 2017-09-28 Univation Tech Llc Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes
US10494454B2 (en) 2015-03-24 2019-12-03 Sabic Global Technologies B.V. Process for transitioning between incompatible catalysts
ES2727734T3 (es) 2015-04-20 2019-10-18 Univation Tech Llc Ligandos bi-aromáticos puenteados y compuestos de metal de transición reparados a partir de ellos
US10640583B2 (en) 2015-04-20 2020-05-05 Exxonmobil Chemical Patents, Inc. Catalyst composition comprising fluorided support and processes for use thereof
US10618989B2 (en) 2015-04-20 2020-04-14 Exxonmobil Chemical Patents Inc. Polyethylene composition
BR112017022405A2 (pt) 2015-04-20 2018-07-31 Univation Tech Llc ligandos biaromáticos em ponte e catalisadores de polimerização de olefina preparados a partir dos mesmos
US10533063B2 (en) 2015-04-20 2020-01-14 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
US10400049B2 (en) 2015-04-24 2019-09-03 Univation Technologies, Llc Methods for operating a polymerization reactor
CA2983736C (en) 2015-04-27 2023-09-12 Univation Technologies, Llc Supported catalyst compositions having improved flow properties and preparation thereof
CA2890606C (en) 2015-05-07 2022-07-19 Nova Chemicals Corporation Process for polymerization using dense and spherical ziegler-natta type catalyst
EP3294781B1 (en) 2015-05-08 2021-08-04 ExxonMobil Chemical Patents Inc. Polymerization process
CN104815779B (zh) * 2015-05-14 2017-10-27 神华集团有限责任公司 气相聚合***及其喷嘴装置
CA2891693C (en) 2015-05-21 2022-01-11 Nova Chemicals Corporation Controlling the placement of comonomer in an ethylene copolymer
CA2892552C (en) 2015-05-26 2022-02-15 Victoria Ker Process for polymerization in a fluidized bed reactor
CA2892882C (en) 2015-05-27 2022-03-22 Nova Chemicals Corporation Ethylene/1-butene copolymers with enhanced resin processability
WO2016195824A1 (en) 2015-05-29 2016-12-08 Exxonmobil Chemical Patents Inc. Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports
KR102001758B1 (ko) 2015-06-05 2019-10-01 엑손모빌 케미칼 패턴츠 인코포레이티드 프로필렌계 엘라스토머 조성물을 포함하는 스펀본드 패브릭 및 이의 제조 방법
ES2707391T3 (es) 2015-06-23 2019-04-03 Borealis Ag Procedimiento para la producción de resinas de LLDPE
WO2017005867A1 (en) 2015-07-09 2017-01-12 Ineos Europe Ag Copolymers and films thereof
CA2900772C (en) 2015-08-20 2022-07-12 Nova Chemicals Corporation Method for altering melt flow ratio of ethylene polymers
EP3341427B1 (en) 2015-08-26 2020-12-02 SABIC Global Technologies B.V. Ethylene gas phase polymerisation process
EP3135694A1 (en) * 2015-08-27 2017-03-01 SABIC Global Technologies B.V. Process for continuous polymerization of olefin monomers in a reactor
KR101749542B1 (ko) * 2015-09-03 2017-06-21 한택규 에틸렌의 선택적 올리고머화 반응 공정
EP3350236B1 (en) 2015-09-17 2023-10-04 ExxonMobil Chemical Patents Inc. Polyethylene polymers and articles made therefrom
EP3353217A4 (en) 2015-09-24 2018-11-07 ExxonMobil Chemical Patents Inc. Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports
EP3356374A1 (en) 2015-09-30 2018-08-08 Dow Global Technologies LLC Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
US10822433B2 (en) 2015-12-22 2020-11-03 Sabic Global Technologies B.V. Process for transitioning between incompatible catalysts
WO2017139031A1 (en) 2016-02-10 2017-08-17 Exxonmobil Chemical Patents Inc. Polyethylene shrink films and processes for making the same
EP3436464B1 (en) 2016-03-29 2020-08-05 Univation Technologies, LLC Metal complexes
JP2019513307A (ja) 2016-03-30 2019-05-23 エクソンモービル・ケミカル・パテンツ・インク 太陽電池用途向けの熱可塑性加硫物組成物
CN108884196B (zh) 2016-03-31 2021-06-18 陶氏环球技术有限责任公司 烯烃聚合催化剂体系及其使用方法
SG11201808179SA (en) 2016-03-31 2018-10-30 Dow Global Technologies Llc An olefin polymerization catalyst
KR102314329B1 (ko) 2016-03-31 2021-10-20 다우 글로벌 테크놀로지스 엘엘씨 올레핀 중합 촉매계 및 이의 사용 방법
CN109071844A (zh) 2016-04-22 2018-12-21 埃克森美孚化学专利公司 聚乙烯片材
EP3238938A1 (en) 2016-04-29 2017-11-01 Borealis AG Machine direction oriented films comprising multimodal copolymer of ethylene and at least two alpha-olefin comonomers
US10844529B2 (en) 2016-05-02 2020-11-24 Exxonmobil Chemicals Patents Inc. Spunbond fabrics comprising propylene-based elastomer compositions and methods for making the same
US9803037B1 (en) 2016-05-03 2017-10-31 Exxonmobil Chemical Patents Inc. Tetrahydro-as-indacenyl catalyst composition, catalyst system, and processes for use thereof
CN109312015B (zh) 2016-05-03 2021-10-26 埃克森美孚化学专利公司 四氢引达省基催化剂组合物、催化剂体系及其使用方法
US11059918B2 (en) 2016-05-27 2021-07-13 Exxonmobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
PL3252085T3 (pl) 2016-05-31 2023-02-13 Borealis Ag Pancerz o polepszonych właściwościach
WO2017207493A1 (en) 2016-05-31 2017-12-07 Borealis Ag Polymer composition and a process for production of the polymer composition
EP3257879A1 (en) 2016-06-17 2017-12-20 Borealis AG Bi- or multimodal polyethylene with low unsaturation level
ES2791353T3 (es) 2016-06-17 2020-11-04 Borealis Ag Polietileno bimodal o multimodal con propiedades reológicas potenciadas
WO2017216095A1 (en) 2016-06-17 2017-12-21 Borealis Ag Bi- or multimodal polyethylene terpolymer with enhanced rheological properties
ES2799148T3 (es) 2016-06-17 2020-12-15 Borealis Ag Polietileno bi- o multimodal con bajo nivel de insaturación
EP3257895A1 (en) 2016-06-17 2017-12-20 Borealis AG Bi- or multimodal polyethylene terpolymer with enhanced rheological properties
EP3475313B1 (en) 2016-06-22 2024-03-20 Borealis AG Composition comprising three polyethylenes and a process for production of the polymer composition
US10982019B2 (en) 2016-06-23 2021-04-20 Borealis Ag Process for catalyst deactivation
WO2018017180A1 (en) 2016-07-21 2018-01-25 Exxonmobil Chemical Patents Inc. Rotomolded compositions, articles, and processes for making the same
WO2018048472A1 (en) * 2016-09-09 2018-03-15 Exxonmobil Chemical Patents Inc. Pilot plant scale semi-condensing operation
EP3519447B1 (en) 2016-09-27 2020-12-02 ExxonMobil Chemical Patents Inc. Polymerization process
BR112019005988B1 (pt) 2016-09-27 2022-08-23 Exxonmobil Chemical Patents Inc Processo de polimerização
WO2018063765A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018063767A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
US11274170B2 (en) 2016-09-27 2022-03-15 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018063764A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018064048A1 (en) 2016-09-27 2018-04-05 Univation Technologies, Llc Method for long chain branching control in polyethylene production
RU2720143C1 (ru) 2016-09-28 2020-04-24 Бореалис Аг Способ получения композиции мультимодального покрытия
TWI756272B (zh) 2016-09-30 2022-03-01 美商陶氏全球科技有限責任公司 適用於鏈梭移之封端多頭或雙頭組合物及其製備方法
KR102606000B1 (ko) 2016-09-30 2023-11-27 다우 글로벌 테크놀로지스 엘엘씨 포스파구아니딘 4족 금속 올레핀 중합 촉매
JP6974448B2 (ja) 2016-09-30 2021-12-01 ダウ グローバル テクノロジーズ エルエルシー ビス連結ホスファグアニジン第iv族金属錯体およびそれから製造されたオレフィン重合触媒
BR112019006302B1 (pt) 2016-09-30 2022-10-18 Dow Global Technologies Llc Composição e método de polimerização
EP3519474A1 (en) 2016-09-30 2019-08-07 Dow Global Technologies LLC Process for preparing multi- or dual-headed compositions useful for chain shuttling
EP3519467B1 (en) 2016-09-30 2021-03-17 Dow Global Technologies LLC Bis-phosphaguanidine and poly-phosphaguanidine ligands with group iv metal catalysts produced therefrom
ES2827018T3 (es) 2016-09-30 2021-05-19 Dow Global Technologies Llc Catalizadores de metales de transición del grupo IV de tiourea y sistemas de polimerización
KR102444560B1 (ko) 2016-09-30 2022-09-20 다우 글로벌 테크놀로지스 엘엘씨 체인 셔틀링에 유용한 다중 또는 이중 헤드 구성 요소 및 이를 준비하는 과정
WO2018067289A1 (en) 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
WO2018067259A1 (en) 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Metallocene catalysts, catalyst systems, and methods for using the same
WO2018071250A1 (en) 2016-10-14 2018-04-19 Exxonmobil Chemical Patents Inc. Oriented films comprising ethylene-based and methods of making same
US20200048382A1 (en) 2016-10-19 2020-02-13 Exxonmobil Chemical Patents Inc. Mixed Catalyst Systems and Methods of Using the Same
WO2018075243A1 (en) 2016-10-19 2018-04-26 Exxonmobil Chemical Patents Inc. Supported catalyst systems and methods of using same
JP6967073B2 (ja) 2016-10-28 2021-11-17 フイナ・テクノロジー・インコーポレーテツドFina Technology, Incorporated Boppに応用するためのポリプロピレン中の結晶度を下げる作用剤の使用
US11142597B2 (en) 2016-11-08 2021-10-12 Univation Technologies, Llc Polyethylene composition
SG11201903393RA (en) 2016-11-08 2019-05-30 Univation Tech Llc Bimodal polyethylene
KR102433606B1 (ko) 2016-11-08 2022-08-22 유니베이션 테크놀로지즈, 엘엘씨 폴리에틸렌 조성물
WO2018093877A1 (en) 2016-11-17 2018-05-24 Univation Technologies, Llc Methods of measuring solids content in a slurry catalyst composition
WO2018093421A1 (en) 2016-11-18 2018-05-24 Exxonmobil Chemical Patents Inc. Polymerization processes utilizing chromium-containing catalysts
CN109963713B (zh) 2016-11-25 2021-09-14 博里利斯股份公司 聚烯烃膜组合物的制备方法及由其制成的膜
CN109923168B (zh) 2016-11-25 2023-01-24 博里利斯股份公司 组合物和方法
US11014998B2 (en) 2016-11-28 2021-05-25 Univation Technologies, Llc Producing a polyethylene polymer
WO2018102080A1 (en) 2016-12-02 2018-06-07 Exxonmobil Chemical Patens Inc. Olefin polymerization catalyst systems and methods for making the same
WO2018102091A1 (en) 2016-12-02 2018-06-07 Exxonmobil Chemical Patents Inc. Polyethylene films
US10023666B2 (en) * 2016-12-13 2018-07-17 Chevron Phillips Chemical Company Lp Process for transitioning between low percentage chrome and high percentage chrome catalysts
WO2018118155A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Polymerization process
US10563055B2 (en) 2016-12-20 2020-02-18 Exxonmobil Chemical Patents Inc. Carpet compositions and methods of making the same
US11142591B2 (en) 2016-12-20 2021-10-12 Exxonmobil Chemical Patents Inc. Polymerization process
US11186654B2 (en) 2016-12-20 2021-11-30 Exxonmobil Chemical Patents Inc. Methods for controlling start up conditions in polymerization processes
CN110267994A (zh) 2016-12-22 2019-09-20 埃克森美孚化学专利公司 喷雾干燥的烯烃聚合催化剂组合物和使用其的聚合方法
US11306163B2 (en) 2017-01-11 2022-04-19 Sabic Global Technologies B.V. Chromium oxide catalyst for ethylene polymerization
WO2018130539A1 (en) 2017-01-11 2018-07-19 Sabic Global Technologies B.V. Chromium oxide catalyst for ethylene polymerization
BR112019012967B1 (pt) 2017-01-20 2022-09-06 Basell Poliolefine Italia S.R.L. Método para prover um fluido a um reator de polimerização de fase gasosa, reator de polimerização de fase gasosa de leito fluidizado e processo para a preparação de poliolefinas
CN110461882B (zh) 2017-02-03 2021-12-14 埃克森美孚化学专利公司 制备聚乙烯聚合物的方法
SG11201907244SA (en) 2017-02-07 2019-09-27 Exxonmobil Chemical Patents Inc Processes for reducing the loss of catalyst activity of a ziegler-natta catalyst
ES2842974T3 (es) 2017-02-13 2021-07-15 Univation Tech Llc Resinas de polietileno bimodal
WO2018151904A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Group 4 catalyst compounds and process for use thereof
CN110325561B (zh) 2017-02-20 2022-10-14 埃克森美孚化学专利公司 第4族催化剂化合物及其使用方法
WO2018151790A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Hafnocene catalyst compounds and process for use thereof
WO2018151903A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
WO2018170227A1 (en) 2017-03-15 2018-09-20 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
CN110546171B (zh) 2017-03-15 2023-02-28 陶氏环球技术有限责任公司 用于形成多嵌段共聚物的催化剂体系
EP3596146B1 (en) 2017-03-15 2023-07-19 Dow Global Technologies LLC Catalyst system for multi-block copolymer formation
EP3596142B1 (en) 2017-03-15 2023-05-24 Dow Global Technologies LLC Catalyst system for multi-block copolymer formation
CN115260366A (zh) 2017-03-15 2022-11-01 陶氏环球技术有限责任公司 用于形成多嵌段共聚物的催化剂体系
CN110637049B (zh) 2017-04-06 2022-04-05 埃克森美孚化学专利公司 流延膜及其制造方法
WO2018191000A1 (en) 2017-04-10 2018-10-18 Exxonmobil Chemicl Patents Inc. Methods for making polyolefin polymer compositions
EP3621996B1 (en) 2017-05-10 2023-01-18 Univation Technologies, LLC Catalyst systems and processes for using the same
CA2969627C (en) 2017-05-30 2024-01-16 Nova Chemicals Corporation Ethylene copolymer having enhanced film properties
WO2018226311A1 (en) 2017-06-08 2018-12-13 Exxonmobil Chemical Patents Inc. Polyethylene blends and extrudates and methods of making the same
EP3418308B1 (en) 2017-06-20 2020-03-11 Borealis AG A method, an arrangement and use of an arrangement for olefin polymerisation
EP3418330B2 (en) 2017-06-21 2023-07-19 Borealis AG Polymer composition and a process for production of the polymer composition
CN109135067A (zh) 2017-06-27 2019-01-04 阿布扎比聚合物有限责任公司(博禄) 用于制造高压管的聚丙烯组合物
WO2019022801A1 (en) 2017-07-24 2019-01-31 Exxonmobil Chemical Patents Inc. POLYETHYLENE FILMS AND METHODS OF PRODUCING THE SAME
WO2019027586A1 (en) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. MIXED CATALYSTS COMPRISING 2,6-BIS (IMINO) PYRIDYL-IRON COMPLEXES AND BRONZED HAFNOCENES
US10913808B2 (en) 2017-08-04 2021-02-09 Exxonmobil Chemical Patents Inc. Mixed catalysts with unbridged hafnocenes with -CH2-SiMe3 moieties
EP3661981A1 (en) 2017-08-04 2020-06-10 ExxonMobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
CN111491959B (zh) 2017-08-04 2023-08-25 埃克森美孚化学专利公司 由聚乙烯组合物制成的膜及其制造方法
EP3676298A1 (en) 2017-08-28 2020-07-08 Univation Technologies, LLC Bimodal polyethylene
SG11202002090SA (en) 2017-09-11 2020-04-29 Univation Tech Llc Carbon black-containing bimodal polyethylene composition
BR112020008024B1 (pt) 2017-10-23 2023-12-05 Exxonmobil Chemical Patents Inc Composições de polietileno, artigos produzidos a partir das mesmas e processo de produção dos mesmos
WO2019081611A1 (en) 2017-10-24 2019-05-02 Borealis Ag MULTILAYER POLYMER FILM
US11161923B2 (en) 2017-10-27 2021-11-02 Univation Technologies, Llc Selectively transitioning polymerization processes
US11161924B2 (en) 2017-10-27 2021-11-02 Univation Technologies, Llc Polyethylene copolymer resins and films
WO2019094131A1 (en) 2017-11-13 2019-05-16 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
WO2019094132A1 (en) 2017-11-13 2019-05-16 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
US11015002B2 (en) 2017-11-15 2021-05-25 Exxonmobil Chemical Patents Inc. Polymerization processes
WO2019099589A1 (en) 2017-11-15 2019-05-23 Exxonmobil Chemical Patents Inc. Polymerization processes
EP3710501A2 (en) 2017-11-15 2020-09-23 ExxonMobil Chemical Patents Inc. Polymerization processes
CN111356869B (zh) 2017-11-17 2022-02-22 埃克森美孚化学专利公司 Pe-rt管道及其制造方法
CN111511781B (zh) 2017-11-28 2023-07-11 埃克森美孚化学专利公司 催化剂体系和使用其的聚合方法
CN111465626B (zh) 2017-11-28 2022-10-18 埃克森美孚化学专利公司 聚乙烯组合物和由其制成的膜
WO2019108327A1 (en) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprising polyethylene composition
CN115850552A (zh) 2017-12-01 2023-03-28 埃克森美孚化学专利公司 催化剂体系和使用其的聚合方法
US11325927B2 (en) 2017-12-05 2022-05-10 Univation Technologies, Llc Activated spray-dried Ziegler-Natta catalyst system
JP2021505700A (ja) 2017-12-05 2021-02-18 ユニベーション・テクノロジーズ・エルエルシー 改質された噴霧乾燥チーグラー・ナッタ(前駆)触媒系
US11591417B2 (en) 2017-12-13 2023-02-28 Exxonmobil Chemical Patents Inc. Deactivation methods for active components from gas phase polyolefin polymerization processes
WO2019125880A1 (en) 2017-12-18 2019-06-27 Dow Global Technologies Llc Hafnocene-titanocene catalyst system
BR112020010518B1 (pt) 2017-12-18 2023-11-28 Dow Global Technologies Llc Método para fazer uma composição de polietileno
EP3749707A1 (en) 2018-02-05 2020-12-16 ExxonMobil Chemical Patents Inc. Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene
EP3755705A1 (en) 2018-02-19 2020-12-30 ExxonMobil Chemical Patents Inc. Catalysts, catalyst systems, and methods for using the same
CN111801357A (zh) 2018-03-02 2020-10-20 博里利斯股份公司 方法
CN108593318B (zh) * 2018-03-05 2024-04-12 深圳万知达企业管理有限公司 一种流化除雾器性能检测装置
WO2019173030A1 (en) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Methods of preparing and monitoring a seed bed for polymerization reactor startup
SG11202008088YA (en) 2018-03-19 2020-10-29 Univation Tech Llc Ethylene/1-hexene copolymer
WO2019182968A1 (en) 2018-03-19 2019-09-26 Exxonmobil Chemical Patents Inc. Processes for producing high propylene content pedm using tetrahydroindacenyl catalyst systems
WO2019180166A1 (en) 2018-03-21 2019-09-26 Borealis Ag Bi- or multimodal polyethylene composition
EP3768738A2 (en) 2018-03-23 2021-01-27 Univation Technologies, LLC Catalyst formulations
SG11202008315TA (en) 2018-03-26 2020-10-29 Dow Global Technologies Llc Spray-dried zirconocene catalyst system
BR112020018814B1 (pt) 2018-03-28 2023-12-12 Univation Technologies, Llc Composição de polietileno bimodal, método para produzir uma composição de polietileno bimodal, artigo fabricado e tampa ou fecho de garrafa
EP3784677A4 (en) 2018-04-26 2022-03-09 ExxonMobil Chemical Patents Inc. NON-COORDINATING ANION ACTIVATORS CONTAINING A CATION WITH LARGE ALKYL GROUPS
WO2019209334A1 (en) 2018-04-27 2019-10-31 Exxonmobil Chemical Patents Inc. Polyethylene films and methods of making the same
CN112055720B (zh) 2018-05-02 2022-11-22 埃克森美孚化学专利公司 从中试装置放大到较大生产设施的方法
US11447587B2 (en) 2018-05-02 2022-09-20 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
US11986992B2 (en) 2018-05-22 2024-05-21 Exxonmobil Chemical Patents Inc. Methods for forming films and their related computing devices
CN112513109B (zh) 2018-05-24 2024-02-02 尤尼威蒂恩技术有限责任公司 单峰聚乙烯共聚物及其膜
SG11202011823SA (en) 2018-06-12 2020-12-30 Dow Global Technologies Llc Activator-nucleator formulations
KR20210020929A (ko) 2018-06-13 2021-02-24 유니베이션 테크놀로지즈, 엘엘씨 이중 모드 폴리에틸렌 공중합체 및 그의 필름
SG11202011750QA (en) 2018-06-13 2020-12-30 Univation Tech Llc Spray-dried ziegler-natta (pro)catalyst systems
EP3810666A1 (en) 2018-06-19 2021-04-28 ExxonMobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
US11680114B2 (en) 2018-07-19 2023-06-20 Borealis Ag Process for the preparation of an UHMWPE homopolymer
US11685798B2 (en) 2018-07-31 2023-06-27 Dow Global Technologies Llc Polyethylene formulations for large part blow molding applications
SG11202100284XA (en) 2018-07-31 2021-03-30 Univation Tech Llc Unimodal polyethylene copolymer and film thereof
CA3106989C (en) 2018-07-31 2023-07-04 Univation Technologies, Llc Unimodal polyethylene copolymer and film thereof
EP3867286A1 (en) 2018-08-29 2021-08-25 Univation Technologies, LLC Method of changing melt rheology property of bimodal polyethylene polymer
EP3844194A1 (en) 2018-08-29 2021-07-07 Univation Technologies, LLC Bimodal polyethylene copolymer and film thereof
WO2020046406A1 (en) 2018-08-30 2020-03-05 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US11993699B2 (en) 2018-09-14 2024-05-28 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
WO2020068413A1 (en) 2018-09-28 2020-04-02 Univation Technologies, Llc Bimodal polyethylene copolymer composition and pipe made thereof
EP3647645A1 (en) 2018-10-31 2020-05-06 Borealis AG Polyethylene composition for high pressure resistant pipes
EP3873954A1 (en) 2018-10-31 2021-09-08 Borealis AG Polyethylene composition for high pressure resistant pipes with improved homogeneity
CN113039211B (zh) 2018-11-01 2023-04-14 埃克森美孚化学专利公司 通过修整的催化剂在线调节和烯烃聚合
CN113056489B (zh) 2018-11-01 2023-04-14 埃克森美孚化学专利公司 淤浆修整催化剂进料器修改
EP3873947A1 (en) 2018-11-01 2021-09-08 ExxonMobil Chemical Patents Inc. On-line adjustment of mixed catalyst ratio by trim and olefin polymerization with the same
US20220033535A1 (en) 2018-11-01 2022-02-03 Exxonmobil Chemical Patents Inc. On-Line Adjustment of Mixed Catalyst Ratio and Olefin Polymerization
WO2020092584A2 (en) 2018-11-01 2020-05-07 Exxonmobil Chemical Patents Inc. In-line trimming of dry catalyst feed
US20210395400A1 (en) 2018-11-01 2021-12-23 Exxonmobil Chemical Patents Inc. Mixed Catalyst Systems with Properties Tunable by Condensing Agent
CA3118433A1 (en) 2018-11-06 2020-05-14 Dow Global Technologies Llc Alkane-soluble non-metallocene precatalysts
KR20210091199A (ko) 2018-11-06 2021-07-21 다우 글로벌 테크놀로지스 엘엘씨 알칸-가용성 비-메탈로센 전촉매를 사용한 올레핀 중합 방법
WO2020096732A1 (en) 2018-11-06 2020-05-14 Dow Global Technologies Llc Alkane-soluble non-metallocene precatalysts
US20210363314A1 (en) 2018-11-07 2021-11-25 Borealis Ag Polyolefin composition with improved impact and whitening resistance
SG11202102319WA (en) 2018-11-15 2021-04-29 Abu Dhabi Polymers Co Ltd Borouge Polymer composition for blow molding applications
US11912838B2 (en) 2018-11-28 2024-02-27 Borealis Ag Polyethylene composition for film applications
CN113272339A (zh) 2018-11-29 2021-08-17 博里利斯股份公司 聚合物生产工艺和聚合物
CN113227244A (zh) 2018-12-27 2021-08-06 埃克森美孚化学专利公司 具有较快结晶时间的基于丙烯的纺粘织物
WO2020136165A1 (en) 2018-12-28 2020-07-02 Borealis Ag A process for producing polyolefin film composition and films prepared thereof
EP3902850A1 (en) 2018-12-28 2021-11-03 Borealis AG A process for producing polyolefin film composition and films prepared thereof
CN113330041B (zh) 2019-01-25 2024-01-12 Sabic环球技术有限责任公司 用于乙烯聚合的氧化铬催化剂
KR20210127954A (ko) 2019-02-20 2021-10-25 피나 테크놀러지, 인코포레이티드 휨이 적은 중합체 조성물
EP3941950A1 (en) 2019-03-21 2022-01-26 ExxonMobil Chemical Patents Inc. Methods for improving production in gas phase polymerization
CN113677713A (zh) 2019-03-21 2021-11-19 埃克森美孚化学专利公司 改进气相聚合的方法
EP3715385B1 (en) 2019-03-26 2024-01-31 SABIC Global Technologies B.V. Chromium oxide catalyst for ethylene polymerization
CN113710731A (zh) 2019-04-17 2021-11-26 埃克森美孚化学专利公司 改进热塑性硫化橡胶的uv耐候性的方法
US20220259231A1 (en) 2019-04-30 2022-08-18 Dow Global Technologies Llc Metal-ligand complexes
CN113728020A (zh) 2019-04-30 2021-11-30 陶氏环球技术有限责任公司 双峰聚(乙烯-共-1-烯烃)共聚物
MX2021012793A (es) 2019-04-30 2021-12-10 Dow Global Technologies Llc Copolimero de poli(etileno-co-1-alqueno) bimodal.
WO2020251764A1 (en) 2019-06-10 2020-12-17 Univation Technologies, Llc Polyethylene blend
US20220306774A1 (en) 2019-06-24 2022-09-29 Borealis Ag Process for preparing polypropylene with improved recovery
WO2021011911A1 (en) 2019-07-17 2021-01-21 Exxonmobil Chemical Patents Inc. Ethylene-based copolymer and propylene-alpha-olefin-diene compositions for use in layered articles
JP7438324B2 (ja) 2019-07-22 2024-02-26 アブ・ダビ・ポリマーズ・カンパニー・リミテッド・(ブルージュ)・リミテッド・ライアビリティ・カンパニー シングルサイト触媒によるマルチモーダルポリエチレン組成物
AR119631A1 (es) 2019-08-26 2021-12-29 Dow Global Technologies Llc Composición a base de polietileno bimodal
EP4025614A1 (en) 2019-09-05 2022-07-13 ExxonMobil Chemical Patents Inc. Processes for producing polyolefins and impact copolymers with broad molecular weight distribution and high stiffness
BR112022004186A2 (pt) 2019-09-26 2022-05-31 Univation Tech Llc Composição de homopolímero de polietileno bimodal, métodos para fazer a composição de homopolímero de polietileno bimodal, para fabricar um artigo fabricado, para fazer um filme extrudado e para proteger um material sensível à umidade e/ou sensível ao oxigênio, formulação, artigo fabricado, filme extrudado, e, embalagem vedada
EP3835327A1 (en) 2019-12-09 2021-06-16 Borealis AG System for producing polyolefin and process for recovering polymerization product from gas phase reactor
EP4093780A1 (en) 2020-01-24 2022-11-30 ExxonMobil Chemical Patents Inc. Methods for producing bimodal polyolefins and impact copolymers
JP2023523494A (ja) 2020-01-27 2023-06-06 フォルモサ プラスティクス コーポレイション, ユーエスエー 触媒および触媒組成物の調製プロセス
WO2021154442A1 (en) 2020-01-31 2021-08-05 Exxonmobil Research And Engineering Company Polyethylene films having high tear strength
WO2021167850A1 (en) 2020-02-17 2021-08-26 Exxonmobil Chemical Patents Inc. Propylene-based polymer compositions having a high molecular weight tail
EP4110835A1 (en) 2020-02-24 2023-01-04 ExxonMobil Chemical Patents Inc. Lewis base catalysts and methods thereof
WO2021188256A1 (en) 2020-03-18 2021-09-23 Exxonmobil Chemical Patents Inc. Extrusion blow molded articles and processes for making same
WO2021188361A1 (en) 2020-03-20 2021-09-23 Exxonmobil Chemical Patents Inc. Linear alpha-olefin copolymers and impact copolymers thereof
CN115413281B (zh) 2020-03-24 2024-03-08 北欧化工股份公司 膜层用聚乙烯组合物
CN115335420B (zh) 2020-03-24 2024-04-05 北欧化工股份公司 膜层用聚乙烯组合物
KR20220158825A (ko) 2020-04-01 2022-12-01 다우 글로벌 테크놀로지스 엘엘씨 바이모달 선형 저밀도 폴리에틸렌 공중합체
CA3168710A1 (en) 2020-04-07 2021-10-14 Nova Chemicals Corporation High density polyethylene for rigid articles
CN111482146B (zh) * 2020-04-17 2022-02-22 中国石油化工股份有限公司 三相分离器、三相反应器以及三相反应方法
WO2021236322A1 (en) 2020-05-19 2021-11-25 Exxonmobil Chemical Patents Inc. Extrusion blow molded containers and processes for making same
EP4157898A1 (en) 2020-05-29 2023-04-05 Dow Global Technologies LLC Chemically converted catalysts
CA3180283A1 (en) 2020-05-29 2021-12-02 Rhett A. BAILLIE Chemically converted catalysts
CA3180366A1 (en) 2020-05-29 2021-12-02 Bethany M. NEILSON Attenuated post-metallocene catalysts
US20230235099A1 (en) 2020-05-29 2023-07-27 Dow Global Technologies Llc Catalyst systems and processes for producing polyethylene using the same
WO2021242800A1 (en) 2020-05-29 2021-12-02 Dow Global Technologies Llc Attenuated post-metallocene catalysts
KR20230018410A (ko) 2020-05-29 2023-02-07 다우 글로벌 테크놀로지스 엘엘씨 감쇠된 하이브리드 촉매
BR112022023951A2 (pt) 2020-05-29 2022-12-20 Univation Tech Llc Composição de polietileno bimodal, artigo, e, método para produzir a composição de polietileno bimodal
EP4157900A1 (en) 2020-05-29 2023-04-05 Dow Global Technologies LLC Catalyst systems and processes for producing polyethylene using the same
WO2021243211A1 (en) 2020-05-29 2021-12-02 Dow Global Technologies Llc Catalyst systems and processes for producing polyethylene using the same
WO2021242792A1 (en) 2020-05-29 2021-12-02 Dow Global Technologies Llc Attenuated post-metallocene catalysts
WO2022010622A1 (en) 2020-07-07 2022-01-13 Exxonmobil Chemical Patents Inc. Processes for making 3-d objects from blends of polyethylene and polar polymers
WO2022018239A1 (en) 2020-07-23 2022-01-27 Borealis Ag Multimodal ethylene copolymer
US20230272196A1 (en) 2020-08-05 2023-08-31 Dow Global Technologies Llc Thermoplastic compositions comprising recycled polymers and articles manufactured therefrom
CA3187544A1 (en) 2020-08-05 2022-02-10 Mohamed Esseghir Thermoplastic compositions comprising bimodal polyethylene and articles manufactured therefrom
WO2022035484A1 (en) 2020-08-10 2022-02-17 Exxonmobil Chemical Patents Inc. Methods for delivery of non-aromatic solutions to polymerization reactors
US20230272195A1 (en) 2020-08-25 2023-08-31 Exxonmobil Chemical Patents Inc. High Density Polyethylene Compositions With Exceptional Physical Properties
KR20220039181A (ko) 2020-09-22 2022-03-29 주식회사 엘지화학 올리고머 제조 장치
WO2022066550A1 (en) 2020-09-22 2022-03-31 Dow Global Technologies Llc Bimodal polyethylene copolymer and film thereof
US20230312894A1 (en) 2020-09-30 2023-10-05 Univation Technologies, Llc Bimodal polyethylene copolymers for pe-80 pipe applications
EP4225816A1 (en) 2020-10-08 2023-08-16 ExxonMobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
WO2022081685A1 (en) 2020-10-15 2022-04-21 Dow Global Technologies Llc Olefin polymerization catalysts bearing a 6-amino-n-aryl azaindole ligand
EP4247532A1 (en) 2020-11-19 2023-09-27 ExxonMobil Chemical Patents Inc. Polyolefin discharge process and apparatus
WO2022108972A1 (en) 2020-11-23 2022-05-27 Exxonmobil Chemical Patents Inc. Improved process to prepare catalyst from in-situ formed alumoxane
WO2022108973A1 (en) 2020-11-23 2022-05-27 Exxonmobil Chemical Patents Inc. Metallocene polypropylene prepared using aromatic solvent-free supports
WO2022108971A1 (en) 2020-11-23 2022-05-27 Exxonmobil Chemical Patents Inc. Toluene free supported methylalumoxane precursor
CA3202882A1 (en) 2020-12-21 2022-06-30 Michel Gorgerin Polypropylene blend
EP4019583B1 (en) 2020-12-28 2024-04-10 ABU DHABI POLYMERS CO. LTD (BOROUGE) - Sole Proprietorship L.L.C. Polyethylene composition for film applications with improved toughness and stiffness
EP4029914A1 (en) 2021-01-14 2022-07-20 Borealis AG Heterophasic polyolefin composition
CN112843968A (zh) * 2021-01-30 2021-05-28 郑州睿强实验设备有限公司 一种用于化工实验的固态烟气处理装置
CN116964107A (zh) 2021-02-11 2023-10-27 埃克森美孚化学专利公司 聚合一种或多种烯烃的方法
CN116829607A (zh) 2021-02-15 2023-09-29 陶氏环球技术有限责任公司 制备具有反向共聚单体分布的聚(乙烯-共-1-烯烃)共聚物的方法
EP4301792A2 (en) 2021-03-05 2024-01-10 ExxonMobil Chemical Patents Inc. Processes for making and using slurry catalyst mixtures
WO2022214420A1 (en) 2021-04-06 2022-10-13 Sabic Global Technologies B.V. Chromium based catalyst for ethylene polymerization
CA3214562A1 (en) 2021-04-26 2022-11-03 Michael Mcleod Thin single-site catalyzed polymer sheets
EP4352118A1 (en) 2021-06-10 2024-04-17 Dow Global Technologies LLC Catalyst compositions that have modified activity and processes to make them
WO2022258804A1 (en) 2021-06-11 2022-12-15 Borealis Ag A process for producing a multimodal ethylene polymer and films prepared therefrom
CN117881705A (zh) 2021-09-20 2024-04-12 陶氏环球技术有限责任公司 制备催化活性预聚物组合物的方法以及由此制备的组合物
WO2023042155A1 (en) 2021-09-20 2023-03-23 Nova Chemicals (International) S.A. Olefin polymerization catalyst system and polymerization process
WO2023064917A1 (en) 2021-10-15 2023-04-20 Univation Technologies, Llc Hdpe lpbm resin using advanced chrome catalyst by polyethylene gas phase technology
WO2023064921A1 (en) 2021-10-15 2023-04-20 Univation Technologies, Llc Hdpe intermediate bulk container resin using advanced chrome catalyst by polyethylene gas phase technology
CA3235407A1 (en) 2021-10-21 2023-04-27 Univation Technologies, Llc Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom
WO2023081577A1 (en) 2021-11-02 2023-05-11 Exxonmobil Chemical Patents Inc. Polyethylene compositions, articles thereof, and methods thereof
WO2023096865A1 (en) 2021-11-23 2023-06-01 Dow Global Technologies Llc Supported catalyst systems containing a silocon bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and polyethylene copolymer resins in a gas phase polymerization reactor
CA3238446A1 (en) 2021-11-23 2023-06-01 Andrew M. Camelio Supported catalyst systems containing a germanium bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and polyethylene copolymer resins in a gas phase polymerization reactor
WO2023096864A1 (en) 2021-11-23 2023-06-01 Dow Global Technologies Llc Supported catalyst systems containing a carbon bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and poly ethylene copolymer resins in a gas phase polymerization reactor
AR128453A1 (es) 2022-02-11 2024-05-08 Dow Global Technologies Llc Composiciones de polietileno de densidad media bimodal adecuadas para el uso como cintas de goteo de microirrigación
WO2023187552A1 (en) 2022-03-22 2023-10-05 Nova Chemicals (International) S.A. Organometallic complex, olefin polymerization catalyst system and polymerization process
EP4257640A1 (en) 2022-04-04 2023-10-11 Borealis AG Pipe comprising a polypropylene composition
WO2023239560A1 (en) 2022-06-09 2023-12-14 Formosa Plastics Corporaton, U.S.A. Clay composite support-activators and catalyst compositions
WO2023244901A1 (en) 2022-06-15 2023-12-21 Exxonmobil Chemical Patents Inc. Ethylene-based polymers, articles made therefrom, and processes for making same
WO2023250240A1 (en) 2022-06-24 2023-12-28 Exxonmobil Chemical Patents Inc. Low cost processes of in-situ mao supportation and the derived finished polyolefin catalysts
WO2024025741A1 (en) 2022-07-27 2024-02-01 Exxonmobil Chemical Patents Inc. Polypropylene compositions with enhanced strain hardening and methods of producing same
EP4317216A1 (en) 2022-08-03 2024-02-07 Abu Dhabi Polymers Co. Ltd (Borouge) LLC Low density ethylene terpolymer composition
EP4344869A1 (en) 2022-09-30 2024-04-03 Borealis AG Multimodal ethylene copolymer composition and films comprising the same
WO2024083689A1 (en) 2022-10-18 2024-04-25 Borealis Ag Multilayer film
WO2024118536A1 (en) 2022-11-29 2024-06-06 Fina Technology, Inc. Polypropylenes for additive manufacturing
WO2024129637A1 (en) 2022-12-12 2024-06-20 Univation Technologies, Llc Decreasing triboelectric charging of, and/or reactor fouling by, polyolefin particles
EP4389418A1 (en) 2022-12-19 2024-06-26 Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. Multilayer collation shrink film
EP4389414A1 (en) 2022-12-19 2024-06-26 Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. Multilayer collation shrink film
EP4389820A1 (en) 2022-12-21 2024-06-26 Borealis AG Polypropylene random copolymer compositions with improved impact resistance for pipe applications

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1487845A (fr) * 1965-07-27 1967-07-07 Sir Soc Italiana Resine Spa Procédé de polymérisation de monomères vinyliques gazeux et en particulier d'alpha-oléfines
GB1110566A (en) * 1965-07-27 1968-04-18 Sir Soc Italiana Resine Spa Method of polymerizing gaseous vinyl-type monomers
DE1720292B2 (de) * 1967-08-10 1975-05-22 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Propylenpolymerisaten
US3625932A (en) * 1967-12-26 1971-12-07 Phillips Petroleum Co Vapor phase polymerization of vinyl chloride in a multiple stage fluidized bed reactor
US4003712A (en) * 1970-07-29 1977-01-18 Union Carbide Corporation Fluidized bed reactor
US4012573A (en) * 1970-10-09 1977-03-15 Basf Aktiengesellschaft Method of removing heat from polymerization reactions of monomers in the gas phase
FR2177480B1 (bg) * 1972-03-07 1974-08-30 Solvay
BE786462R (fr) * 1972-07-19 1973-01-19 Solvay Procede de polymerisation du chlorure de
FR2215802A5 (en) * 1972-12-28 1974-08-23 Solvay Fluidised bed polymn using cooling liq. injection - with non return valve on nozzles to prevent back flow of powder clogging feed pipes
JPS56166207A (en) * 1980-05-27 1981-12-21 Mitsui Petrochem Ind Ltd Gas-phase polymerization of olefin
US4287327A (en) * 1980-09-29 1981-09-01 Standard Oil Company (Indiana) Process for controlling polymer particle size in vapor phase polymerization
DE3200725A1 (de) * 1982-01-13 1983-07-21 Robert Bosch Gmbh, 7000 Stuttgart Bremsanlage
IT1150650B (it) * 1982-03-10 1986-12-17 Montedison Spa Reattore a letto fluido
US4588790A (en) * 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4543399A (en) * 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
DZ520A1 (fr) * 1982-03-24 2004-09-13 Union Carbide Corp Procédé perfectionné pour accroitre le rendement espace temps d'une réaction de polymérisation exothermique en lit fluidisé.
CA1241525A (en) * 1984-08-24 1988-09-06 Larry L. Simpson Fluidized bed polymerization reactors
US4877587A (en) * 1984-08-24 1989-10-31 Union Carbide Chemicals And Plastics Company Inc. Fluidized bed polymerization reactors
US4933149A (en) * 1984-08-24 1990-06-12 Union Carbide Chemicals And Plastics Company Inc. Fluidized bed polymerization reactors
US4640963A (en) * 1985-02-15 1987-02-03 Standard Oil Company (Indiana) Method and apparatus for recycle of entrained solids in off-gas from a gas-phase polyolefin reactor
JPH0616903Y2 (ja) * 1986-09-12 1994-05-02 東燃株式会社 気相重合装置のガス分散板
FR2617411B1 (fr) * 1987-06-30 1989-11-17 Bp Chimie Sa Dispositif et procede d'alimentation en gaz d'un appareil a lit fluidise
FR2618786B1 (fr) * 1987-07-31 1989-12-01 Bp Chimie Sa Procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise
FR2634212B1 (fr) * 1988-07-15 1991-04-19 Bp Chimie Sa Appareillage et procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise
FR2642429B1 (fr) * 1989-01-31 1991-04-19 Bp Chimie Sa Procede et appareil de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise
US5352749A (en) * 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5436304A (en) * 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5317036A (en) * 1992-10-16 1994-05-31 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization reactions utilizing soluble unsupported catalysts
US5462999A (en) * 1993-04-26 1995-10-31 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
AU682821B2 (en) * 1993-04-26 1997-10-23 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds

Also Published As

Publication number Publication date
ATE186056T1 (de) 1999-11-15
RU2144042C1 (ru) 2000-01-10
US5733510A (en) 1998-03-31
ATE163017T1 (de) 1998-02-15
BR9406535A (pt) 1996-01-02
US5668228A (en) 1997-09-16
US5804677A (en) 1998-09-08
CN1124029A (zh) 1996-06-05
EP0802202A1 (en) 1997-10-22
ZA943399B (en) 1995-11-17
ES2113104T3 (es) 1998-04-16
SK281033B6 (sk) 2000-11-07
WO1994028032A1 (en) 1994-12-08
PL311280A1 (en) 1996-02-05
EP0926163A2 (en) 1999-06-30
HK1008963A1 (en) 1999-05-21
EP0802202B1 (en) 1999-10-27
FI955561A (fi) 1995-11-17
MY121539A (en) 2006-02-28
FI112230B (fi) 2003-11-14
NO954648D0 (no) 1995-11-17
BG100102A (bg) 1996-11-29
GR3025973T3 (en) 1998-04-30
DE69408450T2 (de) 1998-05-20
TW347397B (en) 1998-12-11
EP0699213A1 (en) 1996-03-06
AU694924B2 (en) 1998-08-06
US5541270A (en) 1996-07-30
UA40615C2 (uk) 2001-08-15
CA2161432C (en) 2007-04-24
CA2161432A1 (en) 1994-12-08
DZ1782A1 (fr) 2002-02-17
AU6726094A (en) 1994-12-20
DE69421418T2 (de) 2000-02-10
CZ294095A3 (en) 1996-02-14
PL177865B1 (pl) 2000-01-31
RO116551B1 (ro) 2001-03-30
HUT73870A (en) 1996-10-28
EP0699213B1 (en) 1998-02-04
CZ289037B6 (cs) 2001-10-17
DE69421418D1 (de) 1999-12-02
FI955561A0 (fi) 1995-11-17
CN1077111C (zh) 2002-01-02
EP0926163A3 (en) 1999-07-28
NO309327B1 (no) 2001-01-15
HU9503302D0 (en) 1996-01-29
KR100300468B1 (ko) 2001-11-14
SK143395A3 (en) 1997-01-08
SG49037A1 (en) 1998-05-18
NZ266173A (en) 1996-06-25
DE69408450D1 (de) 1998-03-12
NO954648L (no) 1995-11-17
HU214842B (hu) 1998-06-29
EG20361A (en) 1999-01-31
IN190621B (bg) 2003-08-09
JPH08510497A (ja) 1996-11-05

Similar Documents

Publication Publication Date Title
BG62854B1 (bg) Метод за полимеризация
US6096839A (en) Atomizer nozzle
RU2198184C2 (ru) Способ полимеризации
KR100466302B1 (ko) 유동층에 유체를 분무하기 위한 노즐
JPH10511890A (ja) ツイン流体ノズル
US6001938A (en) Polymerization process
US6225422B1 (en) Gas fluidized bed polymerization process for olefins
KR19980018658A (ko) 중합방법
EP0825204B1 (en) Polymerisation process
KR100427837B1 (ko) 중합화방법
EP0824114A1 (en) Polymerisation process
EP0814100A1 (en) Polymerisation process
AU701999B2 (en) Polymerisation process
EP0803519A1 (en) Polymerisation process
AU694924C (en) Polymerisation process