WO2021187220A1 - 蓄熱材組成物 - Google Patents

蓄熱材組成物 Download PDF

Info

Publication number
WO2021187220A1
WO2021187220A1 PCT/JP2021/009160 JP2021009160W WO2021187220A1 WO 2021187220 A1 WO2021187220 A1 WO 2021187220A1 JP 2021009160 W JP2021009160 W JP 2021009160W WO 2021187220 A1 WO2021187220 A1 WO 2021187220A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
heat storage
storage material
material composition
composition according
Prior art date
Application number
PCT/JP2021/009160
Other languages
English (en)
French (fr)
Inventor
相培 李
重和 宮下
崇 桃井
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to CN202180022184.XA priority Critical patent/CN115298283A/zh
Priority to EP21771487.2A priority patent/EP4123254A4/en
Priority to AU2021239493A priority patent/AU2021239493B2/en
Publication of WO2021187220A1 publication Critical patent/WO2021187220A1/ja
Priority to US17/945,535 priority patent/US20230020444A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage material composition.
  • a latent heat storage material composition utilizing latent heat generated or absorbed at the time of a phase change from a liquid to a solid or a phase change from a solid to a liquid is known.
  • the latent heat storage material composition is used, for example, in a heat storage system for heating and cooling a building.
  • the latent heat storage material composition is simply referred to as a "heat storage material composition”.
  • the heat storage material composition has a stable and sufficient heat storage effect in a required temperature range. Therefore, for example, when the heat storage material composition is used in the heat storage system for heating and cooling of the building, the heat storage material composition has a large amount of heat storage, and the melting point and freezing point of the heat storage material composition are in the heating and cooling of the building. It is desirable to meet or approximate the conditions of use.
  • the melting point means the temperature at which the heat storage material composition melts in the heating process for heating
  • the freezing point means the temperature at which the heat storage material composition solidifies in the cooling process for cooling.
  • the melting point of the heat storage material composition used in the heat storage system for heating and cooling of buildings is 27 ° C. or lower.
  • the heat storage material composition used in the heat storage system for heating and cooling of a building has a small melting temperature range and a large latent heat of melting in this melting temperature range.
  • the heat storage material composition used in the heat storage system for heating and cooling of a building has a large latent heat of melting in a small melting temperature range.
  • Patent Document 1 discloses a heat storage material composition in which ammonium salts such as ammonium chloride, ammonium bromide, and ammonium nitrate are added to calcium chloride hexahydrate.
  • the heat storage material composition of Patent Document 1 is not suitable for use as a heat storage system for heating and cooling of buildings because the melting point exceeds 27 ° C. Further, the heat storage material composition of Patent Document 1 has a large melting temperature range.
  • An object of the present invention is to provide a heat storage material composition having a melting point of 27 ° C. or lower and a large latent heat of melting in a small melting temperature range.
  • the heat storage material composition according to the aspect of the present invention contains a main agent mixture composed of calcium chloride hexahydrate, ammonium chloride, and water, and the calcium chloride hexahydrate in 100% by mass of the main agent mixture.
  • a main agent mixture composed of calcium chloride hexahydrate, ammonium chloride, and water
  • the calcium chloride hexahydrate in 100% by mass of the main agent mixture.
  • Sample No. It is a specific parameter expression figure which showed the composition of a heat storage material composition by a specific parameter.
  • Sample No. It is a graph which shows the supercooling degree of B1 to B13.
  • Sample No. It is a graph which shows the supercooling degree of C1 to C23.
  • the heat storage material composition according to the present embodiment contains a main agent mixture consisting of calcium chloride hexahydrate, ammonium chloride, and water.
  • the base mixture consists of calcium chloride hexahydrate, ammonium chloride and water.
  • Calcium chloride hexahydrate is a heat storage substance. Calcium chloride hexahydrate generally causes a large supercooling phenomenon.
  • Ammonium chloride is a melting point depressant.
  • the calcium chloride hexahydrate (CaCl 2 ⁇ 6H 2 O) , may be a known.
  • 100% by mass of the main agent mixture contains calcium chloride hexahydrate, usually 45.0 to 55.0% by mass, preferably 50.0 to 54.0% by mass. It preferably contains 51.0 to 53.0% by mass.
  • 100% by mass of the main agent mixture means that the total amount of calcium chloride hexahydrate, ammonium chloride, and water is 100% by mass.
  • the latent heat of melting at a melting point of 27 ° C. or lower and 25 ° C. or higher and 28 ° C. or lower tends to increase.
  • ammonium chloride As ammonium chloride (NH 4 Cl), known ones can be used.
  • 100% by mass of the main agent mixture contains ammonium chloride, usually 1.0 to 5.0% by mass, preferably 2.0 to 4.0% by mass, and more preferably 2. Contains 5 to 3.5% by mass.
  • the content of ammonium chloride is within the above range, the latent heat of melting at a melting point of 27 ° C. or lower and 25 ° C. or higher and 28 ° C. or lower tends to increase.
  • Water for example, pure water can be used.
  • 100% by mass of the base mixture is water, usually 43.0 to 50.0% by mass, preferably 45.5 to 48.5% by mass, more preferably 46.0. Includes up to 48.0% by mass.
  • the latent heat of melting at a melting point of 27 ° C. or lower and 25 ° C. or higher and 28 ° C. or lower tends to increase.
  • the melting point of the heat storage material composition is 27 ° C. or lower and the latent heat of melting at 25 ° C. or higher and 28 ° C. or lower. Is preferable because it tends to be large.
  • FIG. 1 is a specific parameter representation diagram showing the composition of the heat storage material composition with specific parameters.
  • a pentagonal region satisfying the above equations (1) to (5) is indicated by reference numeral R.
  • the sides satisfying each of the above equations (1) to (5) are designated as F1 to F5, respectively.
  • the heat storage material composition according to the present embodiment further contains a supercooling inhibitor because supercooling is further suppressed.
  • the degree of supercooling is indicated by, for example, the degree of supercooling.
  • the supercooling degree means the difference between the freezing point T F and supercooling temperature T S (T F ⁇ T S ).
  • Supercooling temperature T S can be measured by a surface temperature change of the sample was placed RTD in a thermostatic chamber.
  • overcooling inhibitor examples include strontium chloride hexahydrate, strontium hydroxide octahydrate, barium hydroxide octahydrate, strontium chloride, strontium hydroxide, barium hydroxide, calcium hydroxide, and aluminum hydroxide.
  • At least one hypercooling inhibitor selected from the group is used.
  • the supercooling inhibitor is preferably strontium hydroxide octahydrate or strontium hydroxide because supercooling is further suppressed.
  • the heat storage material composition according to the present embodiment contains 100 parts by mass of the main agent mixture and 0.3 to 1.1 parts by mass of strontium hydroxide octahydrate or strontium hydroxide, supercooling is further suppressed. Therefore, it is preferable.
  • the heat storage material composition according to the present embodiment has a degree of supercooling of 1 to 2 when it contains 100 parts by mass of the main agent mixture and 0.5 to 1.0 parts by mass of strontium hydroxide octahydrate or strontium hydroxide. It is more preferable because it tends to be in the range of .5 ° C.
  • the heat storage material composition according to the present embodiment further contains a supercooling suppressing additive in addition to the supercooling suppressing agent because supercooling is further suppressed.
  • overcooling inhibitor examples include decanoic acid, diatomaceous earth, rayon, octadecane, monododecyl sodium phosphate, 1-propanol, polyester non-woven fabric, polyester fiber, alumina, bromooctadecane, 2-propanol, and glycerin.
  • the supercooling inhibitor is composed of the above substances, the degree of supercooling tends to be in the range of 0.9 to 3.9 ° C, which is preferable.
  • polyester non-woven fabric for example, Della (registered trademark) ⁇ is used.
  • polyester fiber for example, a fiber obtained by crushing Della is used.
  • the supercooling inhibitor is strontium hydroxide octahydrate
  • the supercooling inhibitor is decanoic acid, diatomaceous earth, rayon, octadecane, monododecyl sodium phosphate, 1-propanol, polyester non-woven fabric, polyester fiber,
  • one or more substances selected from the group consisting of alumina are preferable because supercooling is further suppressed.
  • the heat storage material composition according to the present embodiment includes 100 parts by mass of the main agent mixture, 0.3 to 1.1 parts by mass of strontium hydroxide octahydrate, and 0.4 to 1.1 parts by mass of the supercooling inhibitor. When and is included, the degree of supercooling tends to be in the range of 0.9 to 3.9 ° C, which is preferable.
  • the heat storage material composition according to the present embodiment includes 100 parts by mass of the main agent mixture, 0.5 to 1.0 parts by mass of strontium hydroxide octahydrate, and 0.4 to 1.1 parts by mass of the supercooling inhibitor. When and is included, the degree of supercooling tends to be in the range of 0.9 to 3.9 ° C, which is more preferable.
  • the heat storage material composition according to the present embodiment includes 100 parts by mass of the main agent mixture, 0.5 to 1.0 parts by mass of strontium hydroxide octahydrate, and 0.5 to 1.0 parts by mass of the supercooling inhibitor. Including and, the degree of supercooling is more likely to be in the range of 0.9 to 3.9 ° C, which is more preferable.
  • the supercooling inhibitor is strontium hydroxide
  • the supercooling inhibitor is from octadecane, rayon, bromooctadecan, 1-propanol, alumina, polyester non-woven fabric, 2-propanol, glycerin, and monododecyl sodium phosphate. It is preferable that one or more substances selected from the above group are used because supercooling is further suppressed.
  • the heat storage material composition according to the present embodiment contains 100 parts by mass of the main agent mixture, 0.3 to 1.1 parts by mass of strontium hydroxide, and 0.05 to 3.1 parts by mass of the supercooling inhibitor. This is preferable because the degree of supercooling tends to be in the range of 0.9 to 3.9 ° C.
  • the heat storage material composition according to the present embodiment contains 100 parts by mass of the main agent mixture, 0.3 to 1.1 parts by mass of strontium hydroxide, and 0.4 to 3.1 parts by mass of the supercooling inhibitor. This is more preferable because the degree of supercooling tends to be in the range of 0.9 to 3.9 ° C.
  • the heat storage material composition according to the present embodiment contains 100 parts by mass of the main agent mixture, 0.5 to 1.0 part by mass of strontium hydroxide, and 0.5 to 3.0 parts by mass of the supercooling inhibitor. This is even more preferable because the degree of supercooling is more likely to be in the range of 0.9 to 3.9 ° C.
  • the heat storage material composition according to the present embodiment further contains a thickener because phase separation is suppressed and the stability of the heat storage performance over a long period of time is improved.
  • thickeners include sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylate / maleic acid copolymer, and acrylate / sulfonic acid type.
  • One type of thickener is used.
  • the heat storage material composition according to the present embodiment further contains a melting point lowering agent
  • the melting point of the heat storage material composition can be further lowered. Therefore, it is preferable that the heat storage material composition further contains a melting point depressant because it is easy to adjust the melting point of the heat storage material composition to match or approach the optimum melting point of the heat storage system.
  • a melting point lowering agent at least one selected from the group consisting of, for example, sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. Seed melting point lowering agents are used.
  • the heat storage material composition according to the present embodiment has a melting point of 27 ° C. or lower and a latent heat of melting at 25 ° C. or higher and 28 ° C. or lower of 165 J / g or higher.
  • the melting point was measured by a differential scanning calorimetry (DSC). Specifically, for the heat absorption peak at the time of melting measured by DSC, the intersection of the baseline on the melting start side and the tangent line at the inflection point on the melting start side of the peak is obtained, and the temperature of this intersection is set to the melting point. And said.
  • DSC differential scanning calorimetry
  • the latent heat of melting at 25 ° C. or higher and 28 ° C. or lower was measured by DSC.
  • the latent heat of melting calculated by integrating the endothermic peak at the time of melting measured by DSC in the range of 25 ° C. to 28 ° C. was defined as the latent heat of melting at 25 ° C. or higher and 28 ° C. or lower.
  • Example 1 (Preparation of heat storage material composition) Calcium chloride hexahydrate (CaCl 2 ⁇ 6H 2 O, manufactured by Kishida Chemical Co., Ltd., special grade) and ammonium chloride (NH 4 Cl, Kishida Chemical Co., Ltd., special grade) and a pure water, a total of about 5g A predetermined amount was mixed so as to be. The amounts of calcium chloride hexahydrate, ammonium chloride and pure water were blended in such an amount that the composition of the obtained heat storage material composition became the composition shown in Table 1. When the obtained mixture was boiled in hot water at 50 ° C. or higher, a heat storage material composition was obtained (Sample No. A13). The heat storage material composition consists of calcium chloride hexahydrate, ammonium chloride, and pure water, and consists only of a so-called base mixture.
  • the content of calcium chloride hexahydrate in 100% by mass of the main agent mixture is CA% by mass
  • the content of ammonium chloride is NH% by mass
  • the content of water is W% by mass.
  • FIG. 1 is a specific parameter representation diagram showing the composition of the heat storage material composition with specific parameters.
  • a pentagonal region satisfying the above equations (1) to (5) is indicated by reference numeral R.
  • the sides satisfying each of the above equations (1) to (5) are designated as F1 to F5, respectively.
  • Sample No. The composition of the heat storage material composition of A13 is plotted in FIG.
  • the plot existing in the pentagonal region R satisfying the above equations (1) to (5) is indicated by a symbol ⁇ , and exists outside the region R not satisfying the above equations (1) to (5).
  • the plot is indicated by the symbol x.
  • Sample No. The plot of the heat storage material composition of A13 is indicated by the symbol ⁇ .
  • the latent heat of melting calculated by integrating the heat absorption peak at the time of melting obtained by DSC in the range of 25 ° C. to 28 ° C. was defined as the latent heat of melting at 25 ° C. or higher and 28 ° C. or lower.
  • Example 1 [Examples 2 to 10, Comparative Examples 1 to 19] The amount of each component added was adjusted so that the obtained heat storage material composition had the composition shown in Table 1, and the heat storage material composition was prepared in the same procedure as in Example 1 (Sample Nos. A1 to A12, A14-A29). (Specific parameter representation diagram) Sample No. For A1 to A12 and A14 to A29, the composition of the heat storage material composition was plotted in FIG. 1 in the same manner as in Example 1.
  • the melting point of the heat storage material composition is 27 ° C. or less and 25. It can be seen that the latent heat of melting at ° C. or higher and 28 ° C. or lower is large.
  • Example 11 to 23 (Preparation of heat storage material composition)
  • the main agent mixture of Example 2 (Sample No. A14) was prepared. It was also prepared supercooling inhibitor as strontium hydroxide octahydrate Sr (OH) 2 ⁇ 8H 2 O ( produced by Fuji Film Wako Pure Chemical Industries, Ltd.).
  • supercooling inhibitor as strontium hydroxide octahydrate Sr (OH) 2 ⁇ 8H 2 O ( produced by Fuji Film Wako Pure Chemical Industries, Ltd.).
  • the sample No. A14 100 parts by mass of the base resin mixture, Sr (OH) and 2 ⁇ 8H 2 O, by mixing the supercooling control additive, a necessary to prepare a heat storage material composition (Sample No.B1 ⁇ B13) ..
  • the supercooling inhibitory additives shown in Table 2 are as follows. ⁇ Decanoic acid: manufactured by Kishida Chemical Co., Ltd. ⁇ Diatomaceous earth: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., average particle size 50 ⁇ m -Rayon: Made by Unitika Ltd., fiber diameter 1 mm, fiber length 10 mm ⁇ Octadecan: Fuji Film Wako Pure Chemical Industries, Ltd. ⁇ Monododecyl sodium phosphate: Tokyo Chemical Industry Co., Ltd. ⁇ 1-Propanol: Kishida Chemical Co., Ltd.
  • Dila crushed fiber Fiber made by crushing polyester non-woven fabric Dila (registered trademark) manufactured by Unitika Ltd.
  • Alumina Alumina powder manufactured by Kishida Chemical Co., Ltd.
  • the supercooling temperature was measured by changing the surface temperature of a sample in which a resistance temperature detector was installed in a constant temperature bath.
  • the degree of supercooling was calculated by subtracting the supercooling temperature from the melting point.
  • Examples 24-44, Comparative Examples 20 and 21 (Preparation of heat storage material composition) First, the main agent mixture of Example 2 (Sample No. A14) was prepared. Further, strontium hydroxide Sr (OH) 2 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was prepared as a supercooling inhibitor. Next, in the blending amount shown in Table 3, the sample No. A heat storage material composition was prepared by mixing 100 parts by mass of the main agent mixture of A14, Sr (OH) 2, and if necessary, a supercooling inhibitory additive (Sample Nos. C1 to C23).
  • the supercooling inhibitory additives shown in Table 3 are as follows. ⁇ Octadecane: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. ⁇ Rayon: manufactured by Unitika Ltd., fiber diameter 1 mm, fiber length 10 mm -Diatomaceous earth: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., average particle size 50 ⁇ m ⁇ Bromooctadecane: manufactured by Kishida Chemical Co., Ltd. ⁇ 1-propanol: manufactured by Kishida Chemical Co., Ltd. ⁇ Alumina: manufactured by Kishida Chemical Co., Ltd.
  • the present invention it is possible to provide a heat storage material composition having a melting point of 27 ° C. or lower and a large latent heat of melting in a small melting temperature range.
  • the latent heat of melting in the small melting temperature range was defined as the latent heat of melting at 25 ° C. or higher and 28 ° C. or lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

蓄熱材組成物は、塩化カルシウム6水和物と、塩化アンモニウムと、水と、からなる主剤混合物を含み、前記主剤混合物100質量%中における、前記塩化カルシウム6水和物の含有量をCA質量%、前記塩化アンモニウムの含有量をNH質量%、前記水の含有量をW質量%としたときに下記式(P1)及び(P2)で規定されるパラメーターX及びYが、下記式(1)~(5)を満たす。 [数1] X=CA/(CA+W) (P1) [数2] Y=NH/(CA+NH+W) (P2) [数3] X-51.75>0 (1) [数4] 52.75-X>0 (2) [数5] 4.25-Y>0 (3) [数6] 1.2245X+Y-66.367>0 (4) [数7] -2.1569X+Y+110.27>0 (5)

Description

蓄熱材組成物
 本発明は、蓄熱材組成物に関する。
 従来、液体から固体への相変化時や固体から液体への相変化時に発生又は吸収する潜熱を利用した潜熱蓄熱材組成物が知られている。潜熱蓄熱材組成物は、例えば、建造物の冷暖房の蓄熱システムに用いられる。以下、潜熱蓄熱材組成物を、単に「蓄熱材組成物」という。
 蓄熱材組成物には、必要な温度域で安定して十分な蓄熱効果を有することが望まれる。このため、例えば蓄熱材組成物が建造物の冷暖房の蓄熱システムに用いられる場合、蓄熱材組成物には、蓄熱量が大きいこと、及び蓄熱材組成物の融点及び凝固点が建造物の冷暖房での使用条件に合致する又は近似することが望まれる。ここで、融点とは蓄熱材組成物を加熱する昇温過程において融解する温度、凝固点とは蓄熱材組成物を冷却する冷却過程において凝固する温度、を意味する。
 なお、建造物の冷暖房の蓄熱システムに用いられる蓄熱材組成物の融点は、27℃以下であることが望ましい。
 また、建造物の冷暖房の蓄熱システムに用いられる蓄熱材組成物は、融解温度幅が小さく、かつこの融解温度幅における融解潜熱が大きいことが好ましい。ここで融解温度幅とは、融解開始から終了までの温度幅、具体的には、昇温過程において「蓄熱材組成物の融解が開始し、液相が発生し始める温度T」と「蓄熱材組成物の融解が完了し、すべて液相になる温度T」との差分ΔT(=T-T)を意味する。換言すれば、建造物の冷暖房の蓄熱システムに用いられる蓄熱材組成物は、小さい融解温度幅での融解潜熱が大きいことが望ましい。
 従来の蓄熱材組成物として、特許文献1に、塩化カルシウム6水和物に、塩化アンモニウム、臭化アンモニウム及び硝酸アンモニウム等のアンモニウム塩を加えた蓄熱材組成物が開示されている。
特開昭59-109578号公報
 しかしながら、特許文献1の蓄熱材組成物は、融点が27℃を超えるため、建造物の冷暖房の蓄熱システムの用途に適していない。また、特許文献1の蓄熱材組成物は融解温度幅が大きい。
 本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明の目的は、融点が27℃以下で、かつ小さい融解温度幅での融解潜熱が大きい蓄熱材組成物を提供することにある。
 本発明の態様に係る蓄熱材組成物は、塩化カルシウム6水和物と、塩化アンモニウムと、水と、からなる主剤混合物を含み、前記主剤混合物100質量%中における、前記塩化カルシウム6水和物の含有量をCA質量%、前記塩化アンモニウムの含有量をNH質量%、前記水の含有量をW質量%としたときに下記式(P1)及び(P2)で規定されるパラメーターX及びYが、下記式(1)~(5)を満たす。
[数1]
   X=CA/(CA+W)           (P1)
[数2]
   Y=NH/(CA+NH+W)        (P2)
[数3]
   X-51.75>0             (1)
[数4]
   52.75-X>0             (2)
[数5]
   4.25-Y>0              (3)
[数6]
   1.2245X+Y-66.367>0    (4)
[数7]
   -2.1569X+Y+110.27>0   (5)
蓄熱材組成物の組成を特定のパラメーターで示した特定パラメータ表現図である。 試料No.B1~B13の過冷度を示すグラフである。 試料No.C1~C23の過冷度を示すグラフである。
 以下、本実施形態に係る蓄熱材組成物について詳細に説明する。
[蓄熱材組成物]
 本実施形態に係る蓄熱材組成物は、塩化カルシウム6水和物と、塩化アンモニウムと、水と、からなる主剤混合物を含む。
 (主剤混合物)
 主剤混合物は、塩化カルシウム6水和物と、塩化アンモニウムと、水と、からなる。塩化カルシウム6水和物は、蓄熱物質である。塩化カルシウム6水和物は、一般的に、大きな過冷却現象を生じる。塩化アンモニウムは、融点降下剤である。
  <塩化カルシウム6水和物>
 塩化カルシウム6水和物(CaCl・6HO)としては、公知のものを用いることができる。
 本実施形態に係る蓄熱材組成物では、主剤混合物100質量%は、塩化カルシウム6水和物を、通常45.0~55.0質量%、好ましくは50.0~54.0質量%、より好ましくは51.0~53.0質量%含む。ここで、主剤混合物100質量%とは、塩化カルシウム6水和物、塩化アンモニウム、及び水の合計量が100質量%であることを意味する。塩化カルシウム6水和物の含有量が上記範囲内にあると、蓄熱材組成物の融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が大きくなりやすい。
  <塩化アンモニウム>
 塩化アンモニウム(NHCl)としては、公知のものを用いることができる。
 本実施形態に係る蓄熱材組成物では、主剤混合物100質量%は、塩化アンモニウムを、通常1.0~5.0質量%、好ましくは2.0~4.0質量%、より好ましくは2.5~3.5質量%含む。塩化アンモニウムの含有量が上記範囲内にあると、蓄熱材組成物の融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が大きくなりやすい。
  <水>
 水としては、例えば純水を用いることができる。
 本実施形態に係る蓄熱材組成物では、主剤混合物100質量%は、水を、通常43.0~50.0質量%、好ましくは45.5~48.5質量%、より好ましくは46.0~48.0質量%含む。水の含有量が上記範囲内にあると、蓄熱材組成物の融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が大きくなりやすい。
  <蓄熱材組成物の組成>
 蓄熱材組成物の組成は、主剤混合物100質量%中における、塩化カルシウム6水和物、塩化アンモニウム、及び水の含有量を用いて、下記式(P1)及び(P2)で規定されるパラメーターX及びYで表すことができる。具体的には、主剤混合物100質量%中における、塩化カルシウム6水和物の含有量をCA質量%、塩化アンモニウムの含有量をNH質量%、水の含有量をW質量%としたときに、下記式(P1)及び(P2)で規定されるパラメーターX及びYで表すことができる。
[数8]
   X=CA/(CA+W)           (P1)
[数9]
   Y=NH/(CA+NH+W)        (P2)
 また、蓄熱材組成物は、パラメーターX及びYが、下記式(1)~(5)を満たすと、蓄熱材組成物の融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が大きくなりやすいため好ましい。
[数10]
   X-51.75>0             (1)
[数11]
   52.75-X>0             (2)
[数12]
   4.25-Y>0              (3)
[数13]
   1.2245X+Y-66.367>0    (4)
[数14]
   -2.1569X+Y+110.27>0   (5)
   [特定パラメータ表現図]
 パラメーターX及びYが、式(1)~(5)を満たす範囲を図1に示す。図1は、蓄熱材組成物の組成を特定のパラメーターで示した特定パラメータ表現図である。図1において、上記式(1)~(5)を満たす五角形の領域を符号Rで示す。また、符号Rの五角形の外周を構成する各辺のうち、上記式(1)~(5)のそれぞれを満たす辺を、それぞれ、F1~F5と示す。
 (過冷却抑制剤)
 本実施形態に係る蓄熱材組成物は、過冷却抑制剤をさらに含むと、過冷却がより抑制されるため好ましい。過冷却の度合いは、例えば、過冷度で示される。ここで、過冷度とは、凝固点Tと過冷却温度T(T≧T)との差分を意味する。過冷却温度Tは、恒温槽内に測温抵抗体を設置したサンプルの表面温度変化により測定することができる。
 過冷却抑制剤としては、例えば、塩化ストロンチウム6水和物、水酸化ストロンチウム8水和物、水酸化バリウム8水和物、塩化ストロンチウム、水酸化ストロンチウム、水酸化バリウム、水酸化カルシウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤が用いられる。過冷却抑制剤は、水酸化ストロンチウム8水和物又は水酸化ストロンチウムであると過冷却がさらに抑制されるため好ましい。
 本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム8水和物又は水酸化ストロンチウム0.3~1.1質量部とを含むと、過冷却がさらに抑制されるため好ましい。本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム8水和物又は水酸化ストロンチウム0.5~1.0質量部とを含むと、過冷度が1~2.5℃の範囲内になりやすいためより好ましい。
 (過冷却抑制添加剤)
 本実施形態に係る蓄熱材組成物は、過冷却抑制剤に加えて過冷却抑制添加剤をさらに含むと、過冷却がさらに抑制されるため好ましい。
 過冷却抑制添加剤としては、例えば、デカン酸、珪藻土、レーヨン、オクタデカン、リン酸モノドデシルナトリウム、1-プロパノール、ポリエステル不織布、ポリエステル繊維、アルミナ、ブロモオクタデカン、2-プロパノール、及びグリセリンからなる群より選択される1種以上の物質が用いられる。過冷却抑制添加剤が、上記物質からなると、過冷度が0.9~3.9℃の範囲内になりやすいため好ましい。
 ポリエステル不織布としては、例えばDilla(登録商標)}が用いられる。ポリエステル繊維としては、例えばDillaを解砕した繊維が用いられる。
 過冷却抑制剤と過冷却抑制添加剤との組み合わせには、好ましい特定の組み合わせがある。例えば、過冷却抑制剤が水酸化ストロンチウム8水和物である場合、過冷却抑制添加剤が、デカン酸、珪藻土、レーヨン、オクタデカン、リン酸モノドデシルナトリウム、1-プロパノール、ポリエステル不織布、ポリエステル繊維、及びアルミナからなる群より選択される1種以上の物質であると、過冷却がさらに抑制されるため好ましい。
 本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム8水和物0.3~1.1質量部と、過冷却抑制添加剤0.4~1.1質量部とを含むと、過冷度が0.9~3.9℃の範囲内になりやすいため好ましい。本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム8水和物0.5~1.0質量部と、過冷却抑制添加剤0.4~1.1質量部とを含むと、過冷度が0.9~3.9℃の範囲内によりなりやすいためより好ましい。本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム8水和物0.5~1.0質量部と、過冷却抑制添加剤0.5~1.0質量部とを含むと、過冷度が0.9~3.9℃の範囲内により一層なりやすいためさらに好ましい。
 また、過冷却抑制剤が水酸化ストロンチウムである場合、過冷却抑制添加剤が、オクタデカン、レーヨン、ブロモオクタデカン、1-プロパノール、アルミナ、ポリエステル不織布、2-プロパノール、グリセリン、及びリン酸モノドデシルナトリウムからなる群より選択される1種以上の物質であると、過冷却がさらに抑制されるため好ましい。
 本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム0.3~1.1質量部と、前記過冷却抑制添加剤0.05~3.1質量部とを含むと、過冷度が0.9~3.9℃の範囲内になりやすいため好ましい。本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム0.3~1.1質量部と、前記過冷却抑制添加剤0.4~3.1質量部とを含むと、過冷度が0.9~3.9℃の範囲内によりなりやすいためより好ましい。本実施形態に係る蓄熱材組成物は、主剤混合物100質量部と、水酸化ストロンチウム0.5~1.0質量部と、前記過冷却抑制添加剤0.5~3.0質量部とを含むと、過冷度が0.9~3.9℃の範囲内により一層なりやすいためさらに好ましい。
 (増粘剤)
 本実施形態に係る蓄熱材組成物は、増粘剤をさらに含むと、相分離が抑制されることにより、長期にわたる蓄熱性能の安定性が向上するため好ましい。このような増粘剤としては、例えば、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の増粘剤が用いられる。
 (融点降下剤)
 本実施形態に係る蓄熱材組成物は、融点降下剤をさらに含むと、蓄熱材組成物の融点をさらに降下させることができる。このため、蓄熱材組成物が融点降下剤をさらに含むと、蓄熱材組成物の融点を、蓄熱システムの最適な融点に一致又は近づける調整が容易になるため好ましい。このような融点降下剤としては、例えば、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤が用いられる。
 (特性)
 本実施形態に係る蓄熱材組成物は、融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が165J/g以上である。
 本実施形態では、融点は、示差走査熱量計(DSC)により測定した。具体的には、DSCにて測定した融解時の吸熱ピークについて、融解開始側のベースラインと、ピークの融解開始側の変曲点での接線と、の交点を求め、この交点の温度を融点とした。
 本実施形態では、25℃以上28℃以下での融解潜熱は、DSCにより測定した。具体的には、DSCにて測定した融解時の吸熱ピークについて、25℃~28℃の範囲内で積分して算出した融解潜熱を、25℃以上28℃以下での融解潜熱とした。
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
[実施例1]
 (蓄熱材組成物の作製)
 塩化カルシウム6水和物(CaCl・6HO、キシダ化学株式会社製、特級)と、塩化アンモニウム(NHCl、キシダ化学株式会社製、特級)と、純水とを、合計約5gになるように所定量混合した。塩化カルシウム6水和物、塩化アンモニウム及び純水の量は、得られる蓄熱材組成物の組成が表1に示す組成になるような量で配合した。得られた混合物を50℃以上で湯煎したところ、蓄熱材組成物が得られた(試料No.A13)。
 蓄熱材組成物は、塩化カルシウム6水和物、塩化アンモニウム、及び純水からなり、いわゆる主剤混合物のみからなる。
 
Figure JPOXMLDOC01-appb-T000001
 主剤混合物100質量%中における、塩化カルシウム6水和物の含有量をCA質量%、前記塩化アンモニウムの含有量をNH質量%、前記水の含有量をW質量%とし、下記式(P1)及び(P2)を用いてパラメーターX及びYを算出した。結果を表1に示す。
[数15]
   X=CA/(CA+W)           (P1)
[数16]
   Y=NH/(CA+NH+W)        (P2)
 また、得られたパラメーターX及びYは、下記式(1)~(5)を満たしていた。
[数17]
   X-51.75>0             (1)
[数18]
   52.75-X>0             (2)
[数19]
   4.25-Y>0              (3)
[数20]
   1.2245X+Y-66.367>0    (4)
[数21]
   -2.1569X+Y+110.27>0   (5)
 (特定パラメータ表現図)
 さらに、得られたパラメーターX及びYを図1に示した。図1は、蓄熱材組成物の組成を特定のパラメーターで示した特定パラメータ表現図である。図1において、上記式(1)~(5)を満たす五角形の領域を符号Rで示す。また、符号Rの五角形の外周を構成する各辺のうち、上記式(1)~(5)のそれぞれを満たす辺を、それぞれ、F1~F5と示す。
 試料No.A13の蓄熱材組成物の組成を図1にプロットした。なお、図1において、上記式(1)~(5)を満たす五角形の領域R内に存在するプロットを記号○で示し、上記式(1)~(5)を満たさない領域R外に存在するプロットを記号×で示した。試料No.A13の蓄熱材組成物のプロットは記号○で示した。
 (融点の測定)
 蓄熱材組成物を20mg採取し、示差走査熱量計(DSC)による熱分析を行った。得られた融解時の吸熱ピークについて、融解開始側のベースラインと、ピークの融解開始側の変曲点での接線と、の交点を求め、この交点の温度を融点とした。
 (25℃以上28℃以下での融解潜熱の測定)
 DSCで得られた融解時の吸熱ピークについて、25℃~28℃の範囲内で積分して算出した融解潜熱を、25℃以上28℃以下での融解潜熱とした。
 これらの結果を表1に示す。
[実施例2~10、比較例1~19]
 得られる蓄熱材組成物が表1に示す組成になるように、各成分の添加量を調整し、実施例1と同様の手順にて蓄熱材組成物を作製した(試料No.A1~A12、A14~A29)。
 (特定パラメータ表現図)
 試料No.A1~A12、A14~A29につき、実施例1と同様にして、蓄熱材組成物の組成を図1にプロットした。
 試料No.A1~A12、A14~A29につき、実施例1と同様にして、融点及び25℃以上28℃以下での融解潜熱を測定した。結果を表1に示す。
 表1及び図1より、上記式(1)~(5)のそれぞれを満たす符号R内にプロットされ、記号〇で示される実験例は、蓄熱材組成物の融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が大きいことが分かる。
[実施例11~23]
  (蓄熱材組成物の作製)
 はじめに、実施例2の主剤混合物(試料No.A14)を用意した。また、過冷却抑制剤として水酸化ストロンチウム8水和物Sr(OH)・8HO(富士フィルム和光純薬株式会社製)を用意した。
 次に、表2に示す配合量で、試料No.A14の主剤混合物の100質量部と、Sr(OH)・8HOと、必要により過冷却抑制添加剤と、を混合して、蓄熱材組成物を作製した(試料No.B1~B13)。
 表2に示す過冷却抑制添加剤は以下のとおりである。
・デカン酸:キシダ化学株式会社製
・珪藻土:富士フィルム和光純薬株式会社製、平均粒径50μm
・レーヨン:ユニチカ株式会社製、繊維径1mm、繊維長10mm
・オクタデカン:富士フィルム和光純薬株式会社製
・リン酸モノドデシルナトリウム:東京化成工業株式会社製
・1-プロパノール:キシダ化学株式会社製
・ディラ(不織布):ユニチカ株式会社製、ポリエステル製不織布ディラ(登録商標)
・ディラ解砕繊維:ユニチカ株式会社製、ポリエステル製不織布ディラ(登録商標)を解砕した繊維
・アルミナ:キシダ化学株式会社製アルミナ粉末
Figure JPOXMLDOC01-appb-T000002
 試料No.B1~B13につき、実施例1と同様にして、融点を測定した。
 また、過冷度を以下のようにして測定した。
 (過冷度の測定)
 恒温槽内に測温抵抗体を設置したサンプルの表面温度変化により、過冷却温度を測定した。融点から過冷却温度を差し引いて過冷度を算出した。
 結果を表2及び図2に示す。
[実施例24~44、比較例20及び21]
  (蓄熱材組成物の作製)
 はじめに、実施例2の主剤混合物(試料No.A14)を用意した。また、過冷却抑制剤として水酸化ストロンチウムSr(OH)(富士フィルム和光純薬株式会社製)を用意した。
 次に、表3に示す配合量で、試料No.A14の主剤混合物の100質量部と、Sr(OH)と、必要により過冷却抑制添加剤と、を混合して、蓄熱材組成物を作製した(試料No.C1~C23)。
 表3に示す過冷却抑制添加剤は以下のとおりである。
・オクタデカン:富士フィルム和光純薬株式会社製
・レーヨン:ユニチカ株式会社製、繊維径1mm、繊維長10mm
・珪藻土:富士フィルム和光純薬株式会社製、平均粒径50μm
・ブロモオクタデカン:キシダ化学株式会社製
・1-プロパノール:キシダ化学株式会社製
・アルミナ:キシダ化学株式会社製アルミナ粉末
・ディラ(不織布):ユニチカ株式会社製、ポリエステル製不織布ディラ(登録商標)
・2-プロパノール:キシダ化学株式会社製
・グリセリン:キシダ化学株式会社製
・リン酸モノドデシルナトリウム:東京化成工業株式会社製
・MgCl:キシダ化学株式会社製塩化マグネシウム
 
Figure JPOXMLDOC01-appb-T000003
 試料No.C1~C23につき、実施例24と同様にして、融点及び過冷度を測定した。結果を表3及び図3に示す。
 表2より、蓄熱材組成物に水酸化ストロンチウム8水和物Sr(OH)・8HOを1%添加すると、過冷度が2.1℃であることが分かった。また、蓄熱材組成物に各添加剤と水酸化ストロンチウム8水和物とを組み合わせて添加すると、過冷度が0.9~1.9℃であることが分かった。特に、蓄熱材組成物にオクタデカン0.5%と水酸化ストロンチウム8水和物1.0質量部とを組み合わせて添加すると、過冷度が0.9~1.9℃であることが分かった。
 表3より、蓄熱材組成物に水酸化ストロンチウムSr(OH)を1%添加すると、過冷度が2.5℃であることが分かった。また、蓄熱材組成物に各添加剤と水酸化ストロンチウムとを組み合わせて添加すると、過冷度が1~3.9℃であることが分かった。
 特願2020-045192号(出願日:2020年3月16日)の全内容は、ここに援用される。
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。
 本発明によれば、融点が27℃以下で、かつ小さい融解温度幅での融解潜熱が大きい蓄熱材組成物を提供することができる。なお、上記の小さい融解温度幅での融解潜熱は、具体的には、25℃以上28℃以下での融解潜熱とした。

Claims (13)

  1.  塩化カルシウム6水和物と、
     塩化アンモニウムと、
     水と、からなる主剤混合物を含み、
     前記主剤混合物100質量%中における、前記塩化カルシウム6水和物の含有量をCA質量%、前記塩化アンモニウムの含有量をNH質量%、前記水の含有量をW質量%としたときに下記式(P1)及び(P2)で規定されるパラメーターX及びYが、下記式(1)~(5)を満たす、蓄熱材組成物。
    [数1]
       X=CA/(CA+W)           (P1)
    [数2]
       Y=NH/(CA+NH+W)        (P2)
    [数3]
       X-51.75>0             (1)
    [数4]
       52.75-X>0             (2)
    [数5]
       4.25-Y>0              (3)
    [数6]
       1.2245X+Y-66.367>0    (4)
    [数7]
       -2.1569X+Y+110.27>0   (5)
  2.  融点が27℃以下で、かつ25℃以上28℃以下での融解潜熱が165J/g以上である、請求項1に記載の蓄熱材組成物。
  3.  前記主剤混合物100質量%は、
     前記塩化カルシウム6水和物45.0~55.0質量%と、
     前記塩化アンモニウム1.0~5.0質量%と、
     前記水43.0~50.0質量%とを含む、請求項1又は2に記載の蓄熱材組成物。
  4.  塩化ストロンチウム6水和物、水酸化ストロンチウム8水和物、水酸化バリウム8水和物、塩化ストロンチウム、水酸化ストロンチウム、水酸化バリウム、水酸化カルシウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含む、請求項1から3のいずれか一項に記載の蓄熱材組成物。
  5.  ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の増粘剤をさらに含む、請求項1から4のいずれか一項に記載の蓄熱材組成物。
  6.  塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含む、請求項1から5のいずれか一項に記載の蓄熱材組成物。
  7.  前記過冷却抑制剤が、水酸化ストロンチウム8水和物又は水酸化ストロンチウムである、請求項4から6のいずれか一項に記載の蓄熱材組成物。
  8.  前記主剤混合物100質量部と、前記水酸化ストロンチウム8水和物又は水酸化ストロンチウム0.3~1.1質量部とを含む、請求項7に記載の蓄熱材組成物。
  9.  過冷却抑制添加剤をさらに含む、請求項4から8のいずれか一項に記載の蓄熱材組成物。
  10.  前記過冷却抑制剤が、水酸化ストロンチウム8水和物であり、
     前記過冷却抑制添加剤は、デカン酸、珪藻土、レーヨン、オクタデカン、リン酸モノドデシルナトリウム、1-プロパノール、ポリエステル不織布、ポリエステル繊維、及びアルミナからなる群より選択される1種以上の物質である、請求項9に記載の蓄熱材組成物。
  11.  前記主剤混合物100質量部と、前記水酸化ストロンチウム8水和物0.3~1.1質量部と、前記過冷却抑制添加剤0.4~1.1質量部とを含む、請求項10に記載の蓄熱材組成物。
  12.  前記過冷却抑制剤が、水酸化ストロンチウムであり、
     前記過冷却抑制添加剤は、オクタデカン、レーヨン、ブロモオクタデカン、1-プロパノール、アルミナ、ポリエステル不織布、2-プロパノール、グリセリン、及びリン酸モノドデシルナトリウムからなる群より選択される1種以上の物質である、請求項9に記載の蓄熱材組成物。
  13.  前記主剤混合物100質量部と、前記水酸化ストロンチウム0.3~1.1質量部と、前記過冷却抑制添加剤0.05~3.1質量部とを含む、請求項12に記載の蓄熱材組成物。
PCT/JP2021/009160 2020-03-16 2021-03-09 蓄熱材組成物 WO2021187220A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180022184.XA CN115298283A (zh) 2020-03-16 2021-03-09 蓄热材料组合物
EP21771487.2A EP4123254A4 (en) 2020-03-16 2021-03-09 COMPOSITION OF HEAT STORAGE MATERIAL
AU2021239493A AU2021239493B2 (en) 2020-03-16 2021-03-09 Heat-storage material composition
US17/945,535 US20230020444A1 (en) 2020-03-16 2022-09-15 Heat-storage material composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045192 2020-03-16
JP2020045192A JP7168604B2 (ja) 2020-03-16 2020-03-16 蓄熱材組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/945,535 Continuation US20230020444A1 (en) 2020-03-16 2022-09-15 Heat-storage material composition

Publications (1)

Publication Number Publication Date
WO2021187220A1 true WO2021187220A1 (ja) 2021-09-23

Family

ID=77771264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009160 WO2021187220A1 (ja) 2020-03-16 2021-03-09 蓄熱材組成物

Country Status (6)

Country Link
US (1) US20230020444A1 (ja)
EP (1) EP4123254A4 (ja)
JP (1) JP7168604B2 (ja)
CN (1) CN115298283A (ja)
AU (1) AU2021239493B2 (ja)
WO (1) WO2021187220A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814225A (zh) * 2023-08-31 2023-09-29 北京智慧能源研究院 适用高寒高海拔地区高导热复合结构储热材料及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215480A (ja) * 1982-06-09 1983-12-14 Hitachi Ltd 蓄熱材料
JPS5926614U (ja) * 1982-08-10 1984-02-18 宇野 正見 保温冷却用包装体
JPS59109578A (ja) 1982-12-15 1984-06-25 Mitsubishi Electric Corp 蓄熱材
JPH05500523A (ja) * 1989-06-23 1993-02-04 ジ オーストラリアン ナショナル ユニバーシティー 低温蓄熱用のための塩化カルシウム6水和物配合物
JP2000351963A (ja) * 1999-04-09 2000-12-19 Koji Mizutani 蓄冷剤、蓄冷パック及び保冷ボックス
CN107556972A (zh) * 2017-08-24 2018-01-09 中国科学院青海盐湖研究所 常低温相变储能介质及其制备方法
WO2019172149A1 (ja) * 2018-03-06 2019-09-12 株式会社カネカ 蓄冷材組成物およびその利用
JP2020045192A (ja) 2018-09-18 2020-03-26 セイコーエプソン株式会社 媒体搬送装置、媒体処理装置、及び記録システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899695A (ja) * 1981-12-09 1983-06-14 Hitachi Ltd 蓄熱材料
BE902448A (fr) * 1985-05-17 1985-11-18 Centre Nat Rech Scient Materiaux a base de chlorure de calcium hydrate accumulant de la chaleur par changement de phase a une temperature voisine de 23,5 degres c.
ATE46714T1 (de) * 1985-05-17 1989-10-15 Centre Nat Rech Scient Waermespeichermaterial auf der basis von calciumchloridhydrat mit einem phasenuebergang bei einer temperatur von ca. 24,5 grad c.
FR2621044B1 (fr) * 1987-09-28 1989-12-08 Centre Nat Rech Scient Composition a base de chlorure de calcium hydrate pour le stockage et la restitution de calories par changement de phase vers 20 oc et procede pour sa preparation
CA2060215A1 (en) * 1989-06-23 1990-12-24 Stephen Kaneff Calcium chloride hexahydrate formulations for low temperature heat storage application
JP2003041242A (ja) * 2001-04-10 2003-02-13 Masao Umemoto 混合保冷剤
JP2004307772A (ja) 2003-04-03 2004-11-04 Yamaguchi Michiko 潜熱蓄冷熱共晶体組成物
GB2476427B (en) * 2009-02-11 2012-06-27 Artica Technologies Ltd Phase change material pack
JP5500523B2 (ja) 2010-04-30 2014-05-21 株式会社日本アレフ 変位センサ
CN102134473A (zh) * 2011-01-18 2011-07-27 益田润石(北京)化工有限公司 一种六水氯化钙相变蓄能材料组合物
CN102277137A (zh) * 2011-05-30 2011-12-14 中国科学院青海盐湖研究所 一种氯化钙基的室温相变储能介质
CN102268244A (zh) * 2011-08-01 2011-12-07 天津科技大学 一种低温无机共晶盐相变材料的制备方法
CN104419381A (zh) * 2013-09-06 2015-03-18 广州市香港科大***研究院 相变材料及其制备方法
CN103923613A (zh) * 2014-03-28 2014-07-16 西北农林科技大学 一种低温六水氯化钙蓄热材料及制备方法
JP2015218212A (ja) 2014-05-15 2015-12-07 株式会社ネギシ 新規な潜熱蓄熱材組成物
CN107201215A (zh) * 2017-07-06 2017-09-26 贺迈新能源科技(上海)有限公司 一种低温无机相变储能材料及其制备方法
JP7266282B2 (ja) 2018-02-07 2023-04-28 株式会社ヤノ技研 蓄熱材組成物
JP7041116B2 (ja) * 2019-11-25 2022-03-23 矢崎総業株式会社 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215480A (ja) * 1982-06-09 1983-12-14 Hitachi Ltd 蓄熱材料
JPS5926614U (ja) * 1982-08-10 1984-02-18 宇野 正見 保温冷却用包装体
JPS59109578A (ja) 1982-12-15 1984-06-25 Mitsubishi Electric Corp 蓄熱材
JPH05500523A (ja) * 1989-06-23 1993-02-04 ジ オーストラリアン ナショナル ユニバーシティー 低温蓄熱用のための塩化カルシウム6水和物配合物
JP2000351963A (ja) * 1999-04-09 2000-12-19 Koji Mizutani 蓄冷剤、蓄冷パック及び保冷ボックス
CN107556972A (zh) * 2017-08-24 2018-01-09 中国科学院青海盐湖研究所 常低温相变储能介质及其制备方法
WO2019172149A1 (ja) * 2018-03-06 2019-09-12 株式会社カネカ 蓄冷材組成物およびその利用
JP2020045192A (ja) 2018-09-18 2020-03-26 セイコーエプソン株式会社 媒体搬送装置、媒体処理装置、及び記録システム

Also Published As

Publication number Publication date
AU2021239493B2 (en) 2023-10-05
EP4123254A4 (en) 2023-08-23
CN115298283A (zh) 2022-11-04
JP7168604B2 (ja) 2022-11-09
EP4123254A1 (en) 2023-01-25
JP2021147408A (ja) 2021-09-27
US20230020444A1 (en) 2023-01-19
AU2021239493A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2019172260A1 (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
WO2021187220A1 (ja) 蓄熱材組成物
WO2020246477A1 (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
US20220282146A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
JP2004307772A (ja) 潜熱蓄冷熱共晶体組成物
WO2020031618A1 (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
JP7405684B2 (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
WO2021182388A1 (ja) 蓄熱材組成物
WO2007099798A1 (ja) 蓄熱材組成物
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
JP3473283B2 (ja) 蓄熱材組成物
JP2020196818A (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
JP2020196819A (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
JP2020196816A (ja) 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム
RU2790484C1 (ru) Способ получения теплоаккумулирующего материала на основе тригидрата двойной соли нитратов кальция-калия (варианты)
JP2022185304A (ja) 蓄熱材、及び太陽熱利用蓄熱システム
JPH0680958A (ja) 蓄熱材組成物
JP2929418B2 (ja) 蓄熱装置
JP2022188452A (ja) 蓄熱材組成物、及び建築物の冷暖房用の蓄熱システム
WO2015176184A1 (en) Phase change material composition and uses thereof
JPS58183786A (ja) 蓄熱材
JP2001152141A (ja) 蓄熱材組成物
JPH1036823A (ja) 蓄熱材組成物
JPS6022031B2 (ja) 蓄熱剤組成物
JPH101663A (ja) 蓄熱材組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021239493

Country of ref document: AU

Date of ref document: 20210309

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771487

Country of ref document: EP

Effective date: 20221017