WO2020067500A1 - 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法 - Google Patents

抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法 Download PDF

Info

Publication number
WO2020067500A1
WO2020067500A1 PCT/JP2019/038349 JP2019038349W WO2020067500A1 WO 2020067500 A1 WO2020067500 A1 WO 2020067500A1 JP 2019038349 W JP2019038349 W JP 2019038349W WO 2020067500 A1 WO2020067500 A1 WO 2020067500A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
metal
metal oxide
oxide layer
laminate according
Prior art date
Application number
PCT/JP2019/038349
Other languages
English (en)
French (fr)
Inventor
貴朗 村田
秀樹 益田
崇 柳下
Original Assignee
株式会社三菱ケミカルホールディングス
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三菱ケミカルホールディングス, 公立大学法人首都大学東京 filed Critical 株式会社三菱ケミカルホールディングス
Priority to JP2020549476A priority Critical patent/JP7204153B2/ja
Priority to CN201980063922.8A priority patent/CN112770900A/zh
Priority to EP19865633.2A priority patent/EP3858596A4/en
Publication of WO2020067500A1 publication Critical patent/WO2020067500A1/ja
Priority to US17/212,078 priority patent/US20210206136A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • C25F3/20Polishing of light metals of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings

Definitions

  • the present invention relates to an antibacterial material, a laminate, an antibacterial laminate, a medical member, a method for producing an antibacterial material, a method for producing an antibacterial laminate, and an antibacterial method.
  • This application claims priority based on Japanese Patent Application No. 2018-183510 filed on September 28, 2018 and Japanese Patent Application No. 2019-145611 filed on August 7, 2019. , The contents of which are incorporated herein.
  • Antibacterial substances such as antibiotics and synthetic antibacterial agents are used for the treatment of human and livestock diseases, the improvement of the productivity of agricultural and livestock marine products, the preservation of food, etc., for the production of pharmaceuticals, veterinary drugs, pesticides, feed additives, foods, etc. It is used as an additive.
  • drug-resistant microorganisms such as drug-resistant bacteria and drug-resistant viruses, which have resistance to drugs such as antibacterial substances and antiviral agents, and have become ineffective or ineffective, has become a problem. . Therefore, there is a tendency that the use of a drug for the purpose of suppressing the growth of microorganisms is restricted.
  • the following articles have been proposed as articles that can exhibit an antibacterial effect without using a drug.
  • a plurality of microprojections are arranged, and an average distance between adjacent microprojections is 30 to 90 nm, and a microprojection structure having an average aspect ratio of the microprojections of 3.0 to 6.25 is provided on the surface.
  • Antimicrobial articles Patent Document 1.
  • a micro-asperity layer having on its surface a micro-projection structure on which a plurality of micro-projections are arranged, the average distance between adjacent micro-projections is 1 ⁇ m or less, and the height of the micro-projections is 80 to 1000 nm.
  • An antimicrobial article comprising a fine uneven layer having on its surface a microprojection structure on which a plurality of microprojections are arranged, wherein the average distance between adjacent microprojections is more than 0.5 ⁇ m and 5.0 ⁇ m or less (Patent Document 5).
  • Antibiotics are used as medicines, veterinary medicines, pesticides, feed additives, food additives, and the like for the purpose of treating diseases of humans and livestock, improving the productivity of agricultural and livestock marine products, and preserving foods.
  • the emergence of resistant bacteria that have resistance to a plurality of types of antibiotics and are not effective or have become less effective has become a problem. Therefore, the use of antibiotics tends to be restricted for the purpose of suppressing the emergence of resistant bacteria and the like.
  • a medical component made of a metal material impregnated with a compound (Patent Document 7).
  • An anodized film is formed on the surface of aluminum or aluminum alloy using a bath solution to which a low-density acrylic resin is added, and further, germanium is impregnated using a bath solution containing an organic germanium under predetermined processing conditions. Surface treatment method of aluminum or aluminum alloy (Patent Document 8).
  • Patent Document 10 An antibacterial treatment method for an aluminum material (Patent Document 10).
  • (11) A synthetic polymer film having a surface having a plurality of protrusions, wherein the two-dimensional size of the plurality of protrusions is more than 20 nm and 500 nm when viewed from the normal direction of the synthetic polymer film.
  • the antibacterial articles and the like of (1) to (5) are manufactured by an imprint method using a mold having micropores, and the microprojections in the antibacterial article are made of a cured product of a curable resin. According to the study of the present inventors, in the antimicrobial article in which the microprojections are made of resin, there are cases where the antibacterial effect is not exhibited due to the type of resin of the microprojections, the average distance between adjacent microprojections, the type of bacteria, and the like. is there.
  • the present invention provides an antibacterial material capable of exhibiting an excellent antibacterial effect without using a drug, a laminate having a layer composed of such an antibacterial material, a medical member having the antibacterial material, a method for producing the antibacterial material, and an antibacterial method. It is another object of the present invention to provide an antibacterial laminate which exhibits an antibacterial effect more widely without using an antibiotic, and a method for producing the same.
  • An antibacterial laminate characterized in that the total content of at least one of a sulfur atom, a phosphorus atom and a carbon atom derived from the anion is 1.0 atm% or more when analyzed by XPS.
  • the anion is SO 4 2 ⁇ , PO 4 3 ⁇ , C 2 O 4 2 ⁇ , C 3 H 2 O 4 2 ⁇ , C 4 H 4 O 5 2 ⁇ and C 6 H 5 O 7 3 ⁇ .
  • the antibacterial laminate according to [1] which is selected from the group consisting of: [3] In the metal oxide layer present on the outermost surface, The antibacterial laminate according to [1] or [2], wherein an existing ratio of at least one of a sulfur atom, a phosphorus atom, and a carbon atom derived from the anion is 3.0 atm% or more.
  • [4] The antibacterial laminate according to any one of [1] to [3], further comprising a metal layer.
  • [5] The antibacterial laminate according to any one of [1] to [4], wherein the metal contained in the metal oxide layer and the metal layer is a valve metal.
  • the total of the proportions of the valve metals is at least 10 atm% when analyzed by XPS, and The antibacterial laminate according to [5] or [6], wherein the total content of the non-valve metal and the halogen atom is 1.0 atm% or less when analyzed by XPS.
  • the non-valve metal is at least one selected from the group consisting of silver, copper, titanium and germanium, The antibacterial laminate according to [7], wherein the halogen atom is an iodine atom.
  • An atom derived from the anion is a sulfur atom
  • the metal oxide layer present on the outermost surface has a plurality of convex portions on the outermost surface, The antibacterial laminate according to any one of [1] to [11], wherein an average interval between adjacent convex portions is 20 to 600 nm.
  • the antibacterial laminate according to [12], wherein the protrusion is a needle-like protrusion.
  • a medical member comprising the antibacterial material according to [18] or [19].
  • a method for producing an antibacterial material wherein an oxide film having a plurality of convex portions on the surface is formed by performing the combination with at least once.
  • An antibacterial method comprising providing the antibacterial material according to [18] or [19] at a location where bacterial growth is to be suppressed.
  • the antibacterial material of the present invention can exhibit an excellent antibacterial effect without using a drug.
  • the laminate of the present invention can exhibit an excellent antibacterial effect without using a drug.
  • the medical member of the present invention can exhibit an excellent antibacterial effect without using a drug.
  • ADVANTAGE OF THE INVENTION According to the manufacturing method of the antimicrobial material of this invention, the antimicrobial material which can exhibit the outstanding antimicrobial effect without using a chemical
  • an antibacterial laminate that exhibits an antibacterial effect more widely without using an antibiotic, and a method for producing the same.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1. It is sectional drawing which shows the manufacturing process of the antibacterial material of this invention. It is sectional drawing which shows an example of the laminated body of this invention.
  • 5 is a scanning electron microscope image of the surface of the oxide film of the antibacterial material of Example 1.
  • 3 is a scanning electron microscope image of a cross section of the antibacterial material of Example 1.
  • 13 is a scanning electron microscope image of the surface of the anodic oxide film of the aluminum plate with the anodic oxide film of Example 5.
  • 9 is a scanning electron microscope image of a cross section of the aluminum plate provided with the anodized film of Example 5.
  • 14 is a graph showing the total light transmittance of the antibacterial laminate of Example 13.
  • Bacteria means bacteria, fungi, and the like. Examples of the bacteria include Staphylococcus aureus, Escherichia coli, Bacillus subtilis, lactic acid bacteria, Pseudomonas aeruginosa, and streptococci. Fungi include filamentous fungi (molds, mushrooms), yeasts and the like. Examples of yeast include Saccharomyces, Schizosaccharomyces, Cryptococcus, Candida and the like. “XPS” is an abbreviation for X-ray Photoelectron Spectroscopy. The dimensional ratios in FIGS. 1 to 4 are different from actual ones for convenience of explanation. 2 to 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the antibacterial material of the present invention has a metal oxide film having a plurality of convex portions on the surface.
  • FIG. 1 is a top view showing an example of the antibacterial material of the present invention
  • FIG. 2 is a sectional view taken along the line II-II of FIG.
  • the antibacterial material in the illustrated example is an example in which the metal is aluminum.
  • the antibacterial material 10 has an aluminum substrate 12 and an oxide film 14 formed on the surface of the aluminum substrate 12.
  • a normal oxide film on aluminum is a collection of a plurality of hexagonal column-shaped cells, and at the center of the cell, pores are formed extending in the axial direction of the cell from the surface of the oxide film toward the aluminum substrate.
  • the pores of each cell 16 are enlarged by a pore diameter enlarging process described later to form an inverted conical concave portion 18.
  • a hexagonal lattice (dashed line in the figure) forming the boundary of the plurality of cells 16 and the oxide film 14 near the surface of the oxide film 14 and the vicinity thereof are formed. Remains.
  • the oxide film 14 is not eroded into the concave portions 18 and the convex portions 20 of needle-like projections are formed.
  • the ridge portion 22 whose oxide film 14 is eroded by the concave portion 18 and is lower than the convex portion 20 connects the adjacent convex portions 20. It is formed as follows.
  • any metal can be used as long as it can form an oxide film having pores by anodic oxidation.
  • the metal include aluminum, niobium, tantalum, tungsten, titanium, zirconium, hafnium, alloys of two or more of these metals, and alloys of one or more of these metals with other metals.
  • the metal aluminum or an alloy thereof is preferable because an oxide film having a plurality of convex portions is easily formed.
  • Examples of the form of the metal substrate include a deposited film, a foil, a plate, and a molded product other than these.
  • the average interval between adjacent convex portions is 20 to 400 nm, preferably 25 to 350 nm, more preferably 30 to 300 nm.
  • the average interval between adjacent convex portions is equal to or more than the lower limit of the above range, an oxide film having a plurality of convex portions is easily formed.
  • the average distance between adjacent convex portions is equal to or less than the upper limit of the above range, an antibacterial effect is exhibited.
  • Average spacing between adjacent protrusions is a value obtained by measuring the distance from the center of the top of a protrusion to the center of the top of an adjacent protrusion by means of electron microscope observation, and averaging these values. It is.
  • the average height of the projections is preferably 50 to 2500 nm, more preferably 70 to 2000 nm.
  • the “average height of the projections” is obtained by measuring the height difference between the top of the projections and the bottom of the recess existing between the projections at 50 points by electron microscope observation, and averaging these values. is there.
  • the projection is preferably a needle-like projection from the viewpoint of further increasing the antibacterial effect.
  • the needle-shaped protrusion refers to a protrusion having an aspect ratio of 1.5 or more obtained by dividing the average height of the protrusion by the average interval between adjacent protrusions.
  • the aspect ratio (average height / average interval) of the protrusions is preferably 1.5 to 10, more preferably 2 to 8, and even more preferably 3 to 7.
  • the aspect ratio of the projection is equal to or more than the lower limit of the above range, the antibacterial effect is further enhanced.
  • the aspect ratio of the projection is equal to or less than the upper limit of the above range, the durability of the projection becomes good.
  • the oxide film has a ridge formed so as to connect the adjacent convex portions and having a height lower than the convex portions.
  • the convex portion is reinforced by the ridge portion, and the durability of the convex portion is further improved.
  • the antibacterial material of the present invention described above has a plurality of protrusions having an average distance between adjacent protrusions of 20 to 400 nm on the surface, so that an antibacterial effect can be exhibited.
  • the convex portion is formed of a metal oxide film, an excellent antibacterial effect can be surely exerted as compared with a conventional convex portion formed of a cured product of a curable resin. It is not clear why the convex portion composed of a metal oxide film can exhibit an excellent antibacterial effect as compared to the convex portion composed of a cured product of a curable resin, The oxide film is harder, and it is considered that this hardness affects the manifestation of the antibacterial effect.
  • the method for producing an antibacterial material of the present invention comprises the steps of: anodizing a metal substrate to form an oxide film having pores; Is a method of forming an oxide film having a convex portion on the surface.
  • the method for producing the antibacterial material of the present invention will be described in detail, taking as an example the case where the oxide film is an aluminum oxide film (alumite).
  • the antibacterial material having an aluminum oxide film on the surface can be produced, for example, through the following steps (a) to (f). Although the regularity of the arrangement of the pores slightly decreases, the steps (b) and (c) may not be performed, and after the step (a), the steps (d) and (e) may be repeated. )), The step (d) may be performed only once.
  • B a step of removing an oxide film and forming a pore generation point of anodic oxidation;
  • C a step of anodizing the aluminum base again in the electrolytic solution to form an oxide film having pores at the pore generation points.
  • D a step of enlarging the pore diameter.
  • E After the step (d), a step of anodizing again in the electrolytic solution.
  • the regularity of pores formed by anodic oxidation is extremely low in the initial stage, but the regularity of pores is improved by performing anodic oxidation for a long time.
  • the anodic oxidation time is preferably 5 minutes or more, more preferably 15 minutes or more.
  • the regularity of the pores is improved by performing the anodic oxidation for a long time, but the pores tend to be relatively deep. Therefore, the treatment in the step (b) is performed to form the regular pores. Used as an origin. If only regular pores are to be formed without expecting regularity, the treatment time until a desired pore depth is reached may be set as appropriate.
  • the purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more. If the purity of aluminum is low, the regularity of pores obtained by anodic oxidation may decrease.
  • the electrolytic solution include sulfuric acid, oxalic acid aqueous solution, and phosphoric acid aqueous solution.
  • the concentration of sulfuric acid is preferably 0.7 mol / L or less. If the concentration of sulfuric acid exceeds 0.7 mol / L, the current value may be too high to maintain a constant voltage. When the formation voltage is 25 to 30 V, it is possible to form an oxide film having highly regular pores with a distance between adjacent pores of 63 nm.
  • the temperature of the electrolytic solution is preferably 30 ° C. or lower, more preferably 20 ° C. or lower.
  • the concentration of oxalic acid is preferably 0.7 mol / L or less.
  • concentration of oxalic acid exceeds 0.7 mol / L, the current value becomes too high, and the surface of the oxide film may become rough.
  • formation voltage is 30 to 100 V, it is possible to form an oxide film having highly regular pores with an interval between adjacent pores of 100 to 200 nm.
  • the temperature of the electrolyte is preferably 60 ° C. or lower, more preferably 45 ° C. or lower.
  • the concentration of phosphoric acid is preferably 2.5 mol / L or less.
  • concentration of oxalic acid exceeds 2.5 mol / L, the current value becomes too high and the pores may be broken.
  • the formation voltage is 180 to 250 V, an oxide film having highly regular pores with a spacing between adjacent pores of 500 nm can be formed.
  • the temperature of the electrolyte is preferably 60 ° C. or lower, more preferably 45 ° C. or lower.
  • a method of removing the oxide film a method of dissolving the aluminum oxide film in a solution that selectively dissolves the aluminum oxide film without dissolving the aluminum film can be used. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • the pore diameter enlargement process is a process of increasing the diameter of pores obtained by anodic oxidation by immersion in a solution that dissolves an oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the time of the pore diameter enlargement treatment, the larger the pore diameter.
  • the antibacterial material 10 having the oxide film 14 in which the projection 20 surrounded by 18 is formed is obtained.
  • the end preferably ends in step (d).
  • the number of repetitions of the step (d) and the step (e) is increased, the time of the pore diameter enlargement treatment in the step (d) is increased, and the like.
  • the diameter of the pores may be increased until the above-mentioned ridge is formed on the oxide film.
  • the average spacing between adjacent projections is determined by the spacing between adjacent pores in the oxide film formed by anodic oxidation. The spacing between adjacent pores tends to decrease as the anodic oxidation formation voltage is reduced, and increase as the anodic oxidation voltage is increased.
  • the laminate of the present invention has a layer made of the above-described antibacterial material of the present invention.
  • FIG. 4 is a cross-sectional view illustrating an example of the laminate of the present invention.
  • the laminate in the illustrated example is an example in which the metal in the antibacterial material is aluminum.
  • the laminate 30 has a layer 32 made of an antibacterial material and another base material 34.
  • the layer 32 made of the antibacterial material has the aluminum base 12 in contact with another base 34 and the oxide film 14 formed on the surface of the aluminum base 12.
  • the oxide film 14 includes a plurality of concave portions 18, a convex portion 20 surrounded by the concave portions 18, and a ridge portion 22 formed to connect between adjacent convex portions 20 and having a height lower than the convex portions 20.
  • Examples of the material of the other base material include a cured product of a curable resin, plastic, glass, ceramics, and metal.
  • Examples of the form of the other substrate include a film, a sheet, a plate, and a molded product other than these.
  • the laminate of the present invention includes, for example, a step of producing a laminate having a metal substrate and another substrate, and anodizing the metal substrate of the laminate to form an oxide film having pores; It can be manufactured by performing the combination with the step of enlarging the hole diameter once or more.
  • the laminate of the present invention is an aluminum-deposited film, a step of forming an oxide film having pores by anodizing the deposited film of the aluminum-deposited film, and a step of increasing the diameter of the pores Is performed once or more.
  • the laminate of the present invention is not limited to the laminate 30 in the illustrated example as long as the laminate has a metal oxide film having a plurality of convex portions on the outermost surface.
  • the metal substrate may be completely anodized to form a laminate having the oxide film 14 and another substrate 34 in contact with the oxide film 14.
  • the other substrate is a transparent plastic film and the metal substrate is a vapor-deposited film of aluminum
  • an alumina layer having a plurality of protrusions is formed on the surface of the plastic film. It becomes the formed antibacterial transparent barrier film.
  • the antibacterial material of the present invention is provided, for example, at a place where it is desired to suppress the growth of bacteria.
  • Examples of applications of the antibacterial material and the laminate of the present invention include the following. Medical member: Details of the medical member will be described later.
  • Filters Air purifier filters, air conditioner filters, air filters, etc.
  • Water treatment members water purifiers, shower nozzles, inner surfaces of pipes, etc.
  • Building materials Interior materials (wallpaper, wall materials, flooring materials, ceiling materials, door surface materials, counters, etc.), water supplies, wind films, exterior materials, handrails, etc.
  • Packaging materials Food packaging films (aluminum-deposited films, barrier films, etc.), containers, bottles, etc.
  • Components for home appliances touch panels, display front materials, humidifier tanks, washing tubs of washing machines, etc.
  • Furniture tables, chairs, cookware, etc.
  • Household goods mold preventives for indentation, attic mold preventives, etc.
  • Vehicle components interior materials, straps, handrails, etc.
  • Agricultural materials vinyl houses, hydroponics facilities, plumbing, etc.
  • the medical member of the present invention has the antibacterial material of the present invention.
  • the medical member of the present invention may be made of the antibacterial material of the present invention, or may be a laminate having a layer made of the antibacterial material of the present invention. May be combined with the above member.
  • the medical member of the present invention may be an artificial organ or a medical device itself, may be a part of an artificial organ, a medical device, a medical device, or the like, may be a part of a medical facility, or may be an artificial organ. , Medical equipment, medical equipment, and other packaging materials.
  • Examples of the artificial organ include a dental implant (artificial tooth), an artificial heart, and an artificial joint.
  • Medical instruments include surgical instruments (scalpels, scissors, forceps, tweezers, retractors, catheters, stents, fixing bolts, etc.), syringes, stethoscopes, percussion instruments, speculum, stretchers, dental instruments (dental scalers, dental Mirror).
  • Medical devices include operating tables, artificial dialysis machines, infusion pumps, artificial heart and lung machines, dialysate supply devices, component blood sampling devices, artificial respirators, X-ray imaging devices, electrocardiographs, ultrasonic diagnostic devices, and particle beam therapy devices , Analyzers, pacemakers, hearing aids, massagers, and the like.
  • Examples of the medical facility include interior materials (wallpaper, wall materials, floor materials, ceiling materials, door surface materials, counters, etc.) such as hospital rooms, operating rooms, bathrooms, and toilets, handrails, and door knobs.
  • the antibacterial laminate of the present invention is a laminate having a non-metal substrate and a metal oxide layer, wherein the metal oxide layer is present on the outermost surface, and the metal oxide layer contains an anion, The total of the abundances of at least one of a sulfur atom, a phosphorus atom and a carbon atom derived from the anion is 1.0 atm% or more when analyzed by XPS.
  • the antibacterial laminate of the present invention does not exhibit antibacterial properties only by supporting Ag, Cu, Zn, or the like on anodized porous alumina.
  • the metal is anodically oxidized with a high-concentration electrolytic solution to dope the anion into the coating, and the metal itself exhibits antibacterial properties.
  • the non-metallic substrate is not particularly limited as long as it is a non-metallic substrate, but is, for example, resin or glass.
  • resin include, but are not limited to, polypropylene, polyethylene, polyethylene terephthalate, polystyrene, and nylon.
  • the metal oxide layer exists on the outermost surface of the antibacterial laminate of the present invention.
  • the metal oxide layer contains an anion.
  • the metal contained in the metal oxide layer is not particularly limited, but is preferably a valve metal.
  • the valve metal is a metal that forms a passive oxide film on the surface by contact with an oxidizing acid or oxidation treatment such as anodic oxidation treatment.
  • Specific examples of the valve metal include, but are not limited to, aluminum, chromium, titanium, and alloys of two or more thereof.
  • aluminum is preferable because of good workability, high safety, and low cost. Note that metals other than valve metals are referred to as “non-valve metals”.
  • the total of the abundance ratios of the valve metal in the metal oxide layer is 10 atm% or more, preferably 15 atm% or more, more preferably 20 atm% or more when analyzed by XPS.
  • the upper limit is not particularly limited, but is usually 40 atm%.
  • X-ray photoelectron spectrometer Quantum-2000 manufactured by ULVAC-PHI
  • X-ray source Monochromated-Al-K ⁇ ray (output: 16 kV, 34 W) Take-out angle: 45 ° Measurement area: 300 ⁇ m
  • the total of the non-valve metal and halogen atom abundance ratios in the metal oxide layer is preferably not more than 1.0 atm% when analyzed by XPS.
  • the lower limit is not particularly limited, but is usually 0.0 atm%.
  • the antibacterial laminate according to the present invention does not exhibit antibacterial properties only by carrying an antibacterial material such as silver, copper, titanium oxide, or iodine on the outermost surface, and the oxide film itself exhibits antibacterial properties. is there.
  • the non-valve metal is other than the metal contained in the metal oxide layer, and specifically includes silver, copper, titanium, and germanium.
  • the halogen atom is preferably at least one selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and more preferably at least one selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom. Atoms are more preferred.
  • the analysis method and the analysis condition by @XPS are the same as the analysis method and the analysis condition of the total of the abundance ratio of the valve metal.
  • the total content of at least one of a sulfur atom, a phosphorus atom, and a carbon atom derived from an anion contained in the metal oxide layer is preferably XPS from the viewpoint of exhibiting strong antibacterial properties.
  • XPS X-ray photoelectron spectroscopy
  • it is at least 1.0 atm%, preferably at least 2.5 atm%, more preferably at least 3.0 atm%.
  • the upper limit is not particularly limited, but is usually 10 atm%.
  • the metal oxide layer in order to make the sum of the abundance ratio of at least one atom of a sulfur atom, a phosphorus atom, and a carbon atom derived from an anion contained in the metal oxide layer into the above preferable range, for example, it may be manufactured by the following [method of manufacturing antibacterial laminate].
  • the type and concentration of the polybasic acid it is possible to adjust the total ratio of the sulfur, phosphorus and carbon atoms derived from the anion.
  • the abundance ratio (atm%) of each element on the surface can be obtained from the peak intensity of the wide spectrum.
  • ⁇ ⁇ ⁇ ⁇ ⁇ Sulfur atom is preferred as at least one of a sulfur atom, a phosphorus atom and a carbon atom derived from the anion.
  • the abundance ratio of oxygen atoms in the metal oxide layer is preferably at least 45 atm%, more preferably at least 55 atm% when analyzed by XPS.
  • the upper limit is not particularly limited, but is usually 60 atm%.
  • the analysis method and the analysis condition by @XPS are the same as the analysis method and the analysis condition of the total of the abundance ratio of the valve metal.
  • Whether or not at least one of the sulfur, phosphorus and carbon atoms is derived from an anion can be determined by chemical shift in XPS. For example, if a peak appears at 169.8 ⁇ 1.4, it can be determined that the sulfur atom is derived from an anion. If a peak appears at 290 ⁇ 1.3, it can be determined as a carbon atom derived from an anion. If a peak appears at 132.5 ⁇ 0.4, it can be determined as a phosphorus atom derived from an anion.
  • the anions include sulfate ion (SO 4 2 ⁇ ), phosphate ion (PO 4 3 ⁇ ), oxalate ion (C 2 O 4 2 ⁇ ), malonate ion (C 3 H 2 O 4 2 ⁇ ), apple At least one selected from the group consisting of acid ions (C 4 H 4 O 5 2 ⁇ ) and citrate ions (C 6 H 5 O 7 3 ⁇ ) is preferable. Above all, from the viewpoint of exhibiting strong antibacterial properties, sulfate ions or oxalate ions are more preferred, and sulfate ions are particularly preferred.
  • the total light transmittance of the metal oxide layer is preferably 30% or more, more preferably 50% or more, and still more preferably 60% or more.
  • the upper limit is not particularly limited, but is usually 95%.
  • the material of the present invention can be suitably used in applications requiring transparency in which the inside needs to be visually recognized.
  • the total light transmittance of the metal oxide layer can be measured by a conventionally known method with reference to JIS K 7136: 2000 “Plastic—How to Determine Haze of Transparent Material”.
  • the thickness of the metal oxide layer is preferably from 50 nm to 10 ⁇ m, more preferably from 55 nm to 1 ⁇ m, and still more preferably from 60 nm to 500 nm.
  • the thickness of the metal oxide layer is within this range, it is possible to suppress an increase in the time of an anodic oxidation treatment described later.
  • the thickness of the metal oxide layer can be confirmed by observing the cross section with an SEM or the like.
  • the metal oxide layer may have a plurality of convex portions on the outermost surface.
  • the average interval between adjacent convex portions may be in the range of 20 to 600 nm.
  • functions such as hydrophilicity and water repellency can be further provided.
  • the protrusion is preferably a needle-like protrusion.
  • the antibacterial laminate may further have a metal layer.
  • the metal contained in the metal layer may be the same as the metal contained in the metal oxide layer.
  • various metal thin films having a thickness of several nm may be provided in order to improve the adhesion between the metal layer and the resin film.
  • the method of using the antibacterial laminate of the present invention is not particularly limited, but it is preferable to dispose the antibacterial laminate of the present invention in a place where bacterial growth is to be suppressed.
  • Examples of uses of the antibacterial laminate of the present invention include the following. Medical member: Details of the medical member will be described later. Filters: Air purifier filters, air conditioner filters, air filters, etc. Water treatment members: water purifiers, shower nozzles, inner surfaces of pipes, etc. Building materials: Interior materials (wallpaper, wall materials, flooring materials, ceiling materials, door surface materials, counters, etc.), water supplies, wind films, exterior materials, handrails, etc.
  • Packaging materials Food packaging films (aluminum-deposited films, barrier films, etc.), containers, bottles, etc.
  • Components for home appliances touch panels, display front materials, humidifier tanks, washing tubs of washing machines, etc.
  • Furniture tables, chairs, cookware, etc.
  • Household goods mold preventives for indentation, attic mold preventives, etc.
  • Vehicle components interior materials, straps, handrails, etc.
  • Agricultural materials vinyl houses, hydroponics facilities, plumbing, etc.
  • the medical member may be composed of only the antibacterial laminate of the present invention, or may be a combination of the antibacterial laminate of the present invention and another member.
  • the medical member may be an artificial organ or a medical device itself, may be a part of an artificial organ, a medical device, a medical device, or the like, or may be a part of a medical facility, an artificial organ, or a medical device. It may be a packaging material such as a device or a medical device.
  • Examples of the artificial organ include a dental implant (artificial tooth), an artificial heart, and an artificial joint.
  • Medical instruments include surgical instruments (scalpels, scissors, forceps, tweezers, retractors, catheters, stents, fixing bolts, etc.), syringes, stethoscopes, percussion instruments, speculum, stretchers, dental instruments (dental scalers, dental Mirror).
  • Medical devices include operating tables, artificial dialysis machines, infusion pumps, artificial heart and lung machines, dialysate supply devices, component blood sampling devices, artificial respirators, X-ray imaging devices, electrocardiographs, ultrasonic diagnostic devices, and particle beam therapy devices , Analyzers, pacemakers, hearing aids, massagers, and the like.
  • Examples of the medical facility include interior materials (wallpaper, wall materials, floor materials, ceiling materials, door surface materials, counters, etc.) such as hospital rooms, operating rooms, bathrooms, and toilets, handrails, and door knobs.
  • the surface of the metal layer containing 95% by mass or more of the valve metal has a concentration of 0.04M or more.
  • the valve metal is as described above. That the metal layer contains 95% by mass or more of the valve metal means that the purity of the valve metal is 95% by mass or more.
  • the purity of the valve metal is not particularly limited as long as it is 95% by mass or more, but is preferably 99% by mass or more, more preferably 99.9% by mass or more, and still more preferably 99.99% by mass or more.
  • the purity of the valve metal is 95% by mass, it is possible to suppress the generation of macro defects on the surface due to the dissimilar metal falling off during anodic oxidation.
  • Polybasic acids are acids having a basicity of 2 or more.
  • the basicity is the number of hydrogen atoms replaced by metal atoms among the hydrogen atoms contained in one molecule of the acid.
  • the polybasic acid is not particularly limited, for example, sulfuric acid (dibasic acid), phosphoric acid (tribasic acid), oxalic acid (dibasic acid), malonic acid (dibasic acid), malic acid (dibasic acid) ) And citric acid (tribasic acid).
  • the polybasic acid is preferably at least one selected from the group consisting of sulfuric acid, phosphoric acid, oxalic acid, malonic acid, malic acid and citric acid, and is preferably selected from the group consisting of sulfuric acid, phosphoric acid and oxalic acid. At least one is more preferred, and sulfuric acid is even more preferred.
  • one kind of the polybasic acids may be used, or two or more kinds may be used.
  • the concentration of the polybasic acid, 0.04M (0.04mol / dm 3) above is not particularly limited as long as, 0.3M (0.3mol / dm 3) or more is preferred, 3M (3mol / dm 3) The above is more preferable.
  • the upper limit is not particularly limited, when the oxidizing power is obtained depending on the concentration, a concentration having no oxidizing power is preferable.
  • the concentration of the sulfuric acid is preferably 3 M (0.3 mol / dm 3 ) or more, more preferably 6 M (6 mol / dm 3 ) or more.
  • the upper limit of the concentration is usually not more than 15M (15mol / dm 3), 12M (12mol / dm 3) or less.
  • the anodic oxidation is not limited to one time, and may be performed two or more times.
  • the type and concentration of the polybasic acid may be changed.
  • the antibacterial laminate of the present invention can be produced, for example, through the following processes (a) and (b). (A) Anodizing an aluminum substrate in an electrolyte to form an oxide film (b) Anodizing the aluminum substrate and attaching it to a non-metal substrate
  • the process (a) will be described with reference to FIG. As shown in FIG. 7, when the aluminum substrate 112 is anodized, an oxide film 114 having pores 124 is formed, and an aluminum plate 110 with an anodized film is obtained.
  • the regularity of the pores formed by anodic oxidation improves as the anodic oxidation is performed for a longer time.
  • the antibacterial property of the antibacterial laminate of the present invention is not affected by the regularity of the pores, it is not necessary to perform anodic oxidation for a long time.
  • the purity of aluminum is preferably 95% or more, more preferably 99% or more, still more preferably 99.5% or more, and still more preferably 99.9% or more.
  • sulfuric acid As the electrolyte, sulfuric acid, oxalic acid aqueous solution or phosphoric acid aqueous solution is preferable.
  • the concentration of sulfuric acid is 0.3 M or more, preferably 3 M or more, more preferably 3 to 4.5 M.
  • the energization time during anodic oxidation is preferably 30 seconds to 15 minutes, more preferably 1 to 10 minutes, even more preferably 1 to 5 minutes.
  • the applied voltage at the time of anodic oxidation is preferably 15 to 50 V, more preferably 20 to 30 V.
  • the temperature of the electrolytic solution at the time of anodic oxidation is preferably 0 to 30 ° C, more preferably 0 to 20 ° C.
  • the concentration of oxalic acid is preferably 0.01 M or more, more preferably 0.01 to 0.7 M, and even more preferably 0.01 to 0.1 M.
  • the energization time during anodic oxidation is preferably 30 seconds to 15 minutes, more preferably 1 to 10 minutes, even more preferably 1 to 5 minutes.
  • the applied voltage at the time of anodic oxidation is preferably from 50 to 100 V, more preferably from 60 to 100 V.
  • the temperature of the electrolytic solution at the time of anodic oxidation is preferably 0 to 30 ° C, more preferably 0 to 20 ° C.
  • the concentration of phosphoric acid is preferably 0.01 M or more, more preferably 0.01 to 2.5 M, even more preferably 0.05 to 1 M.
  • the energization time during anodic oxidation is preferably 1 to 15 minutes, more preferably 1 to 10 minutes, and even more preferably 5 to 10 minutes.
  • the applied voltage at the time of anodic oxidation is preferably 100 to 300 V, more preferably 150 to 250 V.
  • the temperature of the electrolytic solution at the time of anodic oxidation is preferably 0 to 20 ° C, more preferably 0 to 10 ° C.
  • an antibacterial laminate is obtained. It is preferable to use a resin substrate made of polyethylene, polypropylene, polyethylene terephthalate, nylon, polystyrene, or the like, or a laminate of these, as the nonmetallic substrate used in this treatment.
  • the anodic oxidation treatment of (a) may be performed after attaching the aluminum base material to the non-metallic base material without performing the treatment of (b). Further, a film obtained by forming an aluminum film on a non-metallic substrate by a method such as sputtering or vapor deposition may be subjected to the anodic oxidation treatment (a) as an aluminum substrate.
  • the nonmetallic substrate it is preferable to use a resin substrate made of polyethylene, polypropylene, polyethylene terephthalate, nylon, polystyrene, or the like, or a laminate of these.
  • the metal oxide layer can be made transparent by completely anodizing the aluminum substrate by the anodic oxidation treatment (a).
  • a translucent resin substrate as the resin substrate.
  • the aluminum substrate is preferably a thin film.
  • the thickness of the aluminum substrate is preferably from 50 nm to 1 ⁇ m, more preferably from 55 nm to 500 nm.
  • Example 1 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio).
  • the formed antibacterial material (sample) was obtained.
  • Table 1 shows the average interval, average height, and aspect ratio of the convex portions.
  • FIG. 5 shows a scanning electron microscope image of the surface of the oxide film of the antibacterial material
  • FIG. 6 shows a scanning electron microscope image of a cross section of the antibacterial material.
  • Example 2 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio).
  • Example 3 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio).
  • Example 4 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio).
  • Table 1 shows the average interval, average height, and aspect ratio of the convex portions.
  • An acrylic curable resin composition was applied to the surface on the concave side of the mold, and a polyethylene terephthalate (hereinafter, referred to as “PET”) film having a thickness of 80 ⁇ m was placed thereon.
  • PET polyethylene terephthalate
  • the acrylic curable resin composition is cured by irradiating ultraviolet rays at a cumulative light amount of 1000 mJ / cm 2 through a PET film, and then the mold is separated to form a cured resin having a plurality of convex portions.
  • a PET film (sample) having a layer formed on the surface was obtained. Table 1 shows the average interval, average height, and aspect ratio of the convex portions.
  • Comparative Example 2 PET having a cured resin layer having a plurality of convex portions formed on the surface in the same manner as in Comparative Example 1, except that an aluminum plate on which an oxide film having a substantially conical concave portion with an average interval of 200 nm was formed was used as a mold. A film (sample) was obtained. Table 1 shows the average interval, average height, and aspect ratio of the convex portions.
  • Comparative Example 3 PET having a cured resin layer having a plurality of convex portions formed on the surface thereof in the same manner as in Comparative Example 1 except that an aluminum plate on which an oxide film having concave portions having a substantially conical shape with an average interval of 500 nm was used as a mold. A film (sample) was obtained. Table 1 shows the average interval, average height, and aspect ratio of the convex portions.
  • Test bacteria Staphylococcus aureus Staphylococcus aureus NBRC 12732
  • E. coli Escherichia coli NBRC 3972
  • test specimen 50 mm ⁇ 60 mm
  • test specimen 50 mm ⁇ 60 mm
  • three test pieces were prepared for each example. The following were prepared as unprocessed test pieces.
  • Examples 1-4 Comparative Example 1: As a control, an aluminum plate (50 mm ⁇ 50 mm) was immersed in 75% ethanol for 20 minutes, and then sufficiently dried to obtain a non-processed test piece. Six unprocessed test pieces were prepared for each example.
  • Comparative Examples 1-3 A commercially available acrylic film was used as a target product.
  • a control product 50 mm ⁇ 50 mm
  • Six unprocessed test pieces were prepared for each example.
  • test Bacterial Solution The test bacteria were transplanted to a normal agar medium and cultured at 35 ° C. for 24 hours. Then, one platinum loop was transplanted again to a normal agar medium and cultured at 35 ° C. for 20 hours. The cells were uniformly dispersed in a 1 / 500-concentration ordinary broth medium to obtain a test bacterial solution.
  • Test operation 0.4 mL of the test bacterium solution was dropped onto the processed surface of the test piece, and a polyethylene terephthalate plate (40 mm x 40 mm) treated in the same manner as the test piece was placed on top of it, and pressed down so that the test bacterium solution spread over the entire surface.
  • the same operation was performed on the unprocessed test pieces, and three test pieces and three unprocessed test pieces were allowed to stand at a temperature of 35 ° C. and a relative humidity of 90% or more for 24 hours. The remaining three unprocessed test pieces were used for measuring the number of bacteria immediately after inoculation of the test solution.
  • test piece and the unprocessed test piece after standing for 24 hours was placed in a sterilized stomacher bag, and 10 mL of SCDLP broth medium was added thereto, and the bacterial solution was sufficiently washed out to obtain a sample. After 1 mL of the sample was cultured at 35 ° C. for 48 hours using a standard agar medium, the number of viable cells was measured. The same operation was performed on the unprocessed test piece immediately after the inoculation.
  • Antibacterial activity value The antibacterial activity value was determined from the following formula. Table 1 shows the results. If the antibacterial activity value is 2.0 or more for both Staphylococcus aureus and Escherichia coli, it is determined that there is an antibacterial effect.
  • R (U t ⁇ U 0 ) ⁇ (A t ⁇ U 0 )
  • U 0 is an average value of the number of living bacteria logarithmic value immediately after inoculation of unprocessed specimens
  • U t is an average of the number of living bacteria logarithm of 24 hours after the unprocessed test piece
  • a t is the average value of the number of living bacteria logarithm of 24 hours after the test piece.
  • the viable cell count was a value converted per 1 cm 2 of the test piece.
  • Example 5 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in 0.3 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute to obtain an aluminum plate with an anodized film.
  • FIG. 8 shows a scanning electron microscope image of the surface of the aluminum plate provided with an anodized film
  • FIG. 9 shows a scanning electron microscope image of a cross section of the aluminum plate provided with an anodized film.
  • the obtained aluminum plate with anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 6 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in a 0.05M oxalic acid aqueous solution at a direct current of 80 V and a temperature of 17 ° C. for 100 seconds to obtain an aluminum plate with an anodized film.
  • the obtained aluminum plate with anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 7 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in a 0.1 M phosphoric acid aqueous solution at 195 V DC and a temperature of 0 ° C. for 8 minutes to obtain an aluminum plate with an anodized film.
  • the obtained aluminum plate with anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Test bacteria Staphylococcus aureus Staphylococcus aureus NBRC 12732
  • E. coli Escherichia coli NBRC 3972
  • test specimen 50 mm ⁇ 60 mm was immersed in 75% ethanol for 20 minutes, and then sufficiently dried to obtain a test specimen. Two test pieces were prepared for each example.
  • test Bacterial Solution The test bacteria were transplanted to a normal agar medium and cultured at 35 ° C. for 24 hours. Then, one platinum loop was transplanted again to a normal agar medium and cultured at 35 ° C. for 20 hours. The cells were uniformly dispersed in a 1 / 500-concentration ordinary broth medium to obtain a test bacterial solution.
  • test operation For Examples 5 to 7, 0.4 mL of the test bacterium solution was dropped onto the processed surface of the test piece, and a polyethylene terephthalate plate (40 mm x 40 mm) treated in the same manner as the test piece was placed on the drop, and the test bacterium was placed on the test piece. The solution was pressed down so as to spread all over. For Comparative Examples 4 and 5, the same operation was performed on one surface of the test piece. Three test pieces were allowed to stand at a temperature of 35 ° C. and a relative humidity of 90% or more for 24 hours.
  • test bacterium solution 0.4 mL of the test bacterium solution was dropped on one surface of the unprocessed test piece, and a polyethylene terephthalate plate (40 mm ⁇ 40 mm) treated in the same manner as the test piece was placed thereon, and pressed down so that the test bacterium solution spread over the entire surface. .
  • the unprocessed test piece was placed in a sterilized stomacher bag, 10 mL of SCDLP bouillon medium was added thereto, and the bacterial solution was sufficiently washed out to obtain a sample. After 1 mL of the sample was cultured at 35 ° C. for 48 hours using a standard agar medium, the viable cell count (initial count) was measured. Table 1 shows the measurement results. The viable cell count is the average of the results obtained from three test pieces.
  • Example 8 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in 0.3 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute to obtain an aluminum plate with an anodized film.
  • the obtained aluminum plate with anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 9 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in 0.3 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute. Further, heat treatment (300 ° C., 10 minutes) was performed to obtain an aluminum plate with an anodized film. The obtained aluminum plate with an anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 10 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electrolytically polished aluminum plate was anodized in 6 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute. The obtained aluminum plate with an anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 11 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was subjected to anodization in 8 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute to obtain an aluminum plate with an anodized film.
  • the obtained aluminum plate with anodized film was attached to a polyethylene plate to produce an antibacterial laminate (sample).
  • Example 12 An aluminum plate having a purity of 99.99% was mirror polished by feather cloth polishing and electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio). The electropolished aluminum plate was anodized in 12 M sulfuric acid under the conditions of DC 25 V and a temperature of 17 ° C. for 1 minute to obtain an aluminum plate with an anodized film.
  • Example 13 An aluminum layer having a thickness of 50 nm and a purity of 99.999% was formed on the surface of a polypropylene film substrate having a thickness of 0.2 mm (PP craft film PF-11 manufactured by Acrysandy) by a sputtering method. Obtained.
  • the aluminum laminated propylene film thus obtained was anodized under the conditions of DC 25 V and a temperature of 17 ° C. while being gradually immersed in an electrolytic solution using a dip coater at a speed of 2 mm / min.
  • An almost completely anodized antibacterial laminate (sample) was manufactured. 12 M sulfuric acid was used as the electrolyte.
  • the aluminum layer was completely anodized, and the laminate was translucent.
  • XPS analysis The surface of the test piece used in Examples 8 to 12 was measured under the following conditions, and the abundance ratio of each atom on the surface of the metal oxide layer was obtained.
  • X-ray photoelectron spectrometer Quantum-2000 manufactured by ULVAC-PHI X-ray source: Monochromated-Al-K ⁇ ray (output 16 kV, 34 W) Take-out angle: 45 ° Measurement area: 300 ⁇ m ⁇ Table 4 shows the obtained results. The numbers in the table represent atm%.
  • Example 13 shows that both the Staphylococcus aureus and Escherichia coli Proliferation was strongly suppressed.
  • the antibacterial material and the antibacterial laminate of the present invention can exhibit an excellent antibacterial effect without using a drug, and thus are useful as medical materials, food packaging materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

非金属基板と金属酸化物層とを有する積層体であって、前記金属酸化物層が最表面に存在し、かつ、前記金属酸化物層がアニオンを含み、前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計がXPSで分析したときに1.0atm%以上であることを特徴とする、抗菌性積層体。

Description

抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法
 本発明は、抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法に関する。
 本願は、2018年9月28日に、日本に出願された特願2018-183510号、及び2019年8月7日に、日本に出願された特願2019-145611号に基づき優先権を主張し、その内容をここに援用する。
 抗生物質、合成抗菌剤等の抗菌性物質は、人や家畜の疾病治療、農畜水産物の生産性の向上、食品の保存等の目的で、医薬品、動物用医薬品、農薬、飼料添加物、食品添加物等として用いられている。
 近年、抗菌性物質、抗ウイルス剤等の薬剤に対して抵抗性を有し、薬剤が効かない又は効きにくくなった薬剤耐性菌、薬剤耐性ウイルス等の薬剤耐性微生物の出現が問題になっている。そのため、微生物の増殖の抑制等を目的とした薬剤の使用が制限される傾向にある。
 薬剤を用いることなく抗菌効果を発揮できる物品としては、例えば、下記のものが提案されている。
 (1)複数の微小突起が配置され、隣接する微小突起間の平均距離が30~90nmであり、微小突起の平均アスペクト比が3.0~6.25である微小突起構造体を表面に有する抗菌性物品(特許文献1)。
 (2)複数の微小突起が配置された微小突起構造体を表面に有する、樹脂組成物の硬化物からなる微細凹凸層を備え、隣接する微小突起間の平均距離が90~500nmであり、微小突起の平均アスペクト比が1.0以上3.0未満であり、微細凹凸層の表面における水の静的接触角が30°以下である抗菌性物品(特許文献2)。
 (3)複数の微小突起が配置された微小突起構造体を表面に有する、樹脂組成物の硬化物からなる微細凹凸層を備え、隣接する微小突起間の平均距離が50~500nmであるカビ繁殖抑制部材(特許文献3)。
 (4)複数の微小突起が配置された微小突起構造体を表面に有する微細凹凸層を備え、隣接する微小突起間の平均距離が1μm以下であり、微小突起の高さが80~1000nmであり、微小突起の97%高さにおける幅Wtと底部における幅Wbとの比(Wt/Wb)が0.5以下である抗菌・抗カビ性物品(特許文献4)。
 (5)複数の微小突起が配置された微小突起構造体を表面に有する微細凹凸層を備え、隣接する微小突起間の平均距離が0.5μm超5.0μm以下である抗菌性物品(特許文献5)。
 抗生剤は、人や家畜の疾病治療、農畜水産物の生産性の向上、食品の保存等の目的で、医薬品、動物用医薬品、農薬、飼料添加物、食品添加物等として用いられている。
 近年、複数種類の抗生剤に対して抵抗性を有し、抗生剤が効かない、又は効きにくくなった耐性菌の出現が問題になっている。そのため、耐性菌の出現の抑制等を目的として抗生剤の使用が制限される傾向にある。
 抗生剤を用いることなく抗菌効果を発揮できる技術としては、例えば、下記のものが提案されている。
 (6)250~350g/Lの硫酸と、15~25g/Lの硫酸ニッケルと、80~320g/Lの低重合アクリル樹脂組成物とを含む水溶液を用いて、所定の条件で陽極酸化処理を行う、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法(特許文献6)。
 (7)金属材料を基材とする医療用部品であって、前記基材の表面に、微細孔及び/又は微細凹凸を有する皮膜を有し、前記微細孔及び/又は微細凹凸にヨウ素又はヨウ素化合物を含浸した、金属材料製医療用部品(特許文献7)。
 (8)低重アクリル樹脂を添加した浴液を用いてアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成し、更に、有機ゲルマニウムを含有する浴液を用いて、所定の処理条件によりゲルマニウムを含浸させる、アルミニウム又はアルミニウム合金の表面処理方法(特許文献8)。
 (9)アルミニウム又はその合金から形成された母材を、硫酸浴、シュウ酸浴又はこれらの混合浴中に金属の硝酸塩として硝酸銀及び硝酸銅のいずれか一つ又は二つ、或いは金属の硫酸塩としての硫酸銀及び硫酸銅のいずれか一つ又は二つを添加した電解液中にて、交直重畳、マイナス波を流すPR又はマイナス波を流すパルス波の電流を加えて電解処理し、これによって前記母材の表面に陽極酸化被膜を形成すると同時に、添加した硝酸塩又は硫酸塩の金属をこの陽極酸化被膜に析出させる、アルミニウム又はその合金の表面処理方法(特許文献9)。
 (10)アルミニウム材を電解浴中で陽極酸化処理すると共にその表面に多孔性陽極酸化皮膜を形成するに際して、前記電解浴中に酸化チタンTiO微粉末を分散させたことを特徴とする陽極酸化アルミニウム材の抗菌処理方法(特許文献10)。
 (11)複数の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、前記表面に含まれる窒素元素の濃度が0.7atm%以上である、合成高分子膜(特許文献11)。
特開2016-093939号公報 特開2016-104545号公報 特開2016-210164号公報 特開2016-215622号公報 特開2017-132916号公報 国際公開第2004/067807号 国際公開第2011/024216号 特開2010-001507号公報 特開2002-047596号公報 特開2000-064093号公報 特開2016-153510号公報
 (1)~(5)の抗菌性物品等は、微小孔を有するモールドを用いたインプリント法によって製造されており、抗菌性物品における微小突起は硬化性樹脂の硬化物からなる。本発明者らの検討によれば、微小突起が樹脂からなる抗菌性物品では、微小突起の樹脂の種類、隣接する微小突起間の平均距離、菌の種類等によって、抗菌効果が発揮されないケースがある。
 (6)~(11)に記載された技術は、抗生剤を使用することなく抗菌効果を発揮し得るものの、菌の種類等によっては、十分な抗菌効果を発揮できないケースがある。
 本発明は、薬剤を用いることなく優れた抗菌効果を発揮できる抗菌材、このような抗菌材からなる層を有する積層体、抗菌材を有する医療用部材、抗菌材の製造方法及び抗菌方法を提供すること、並びに、抗生剤を使用することなく、より広く抗菌効果を発揮する抗菌性積層体及びその製造方法を提供することを課題とする。
 [1] 非金属基板と金属酸化物層とを有する積層体であって、
 前記金属酸化物層が最表面に存在し、かつ、
 前記金属酸化物層がアニオンを含み、
 前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計がXPSで分析したときに1.0atm%以上であることを特徴とする、抗菌性積層体。
 [2] 前記アニオンが、SO 2-、PO 3-、C 2-、C 2-、C 2-及びC 3-からなる群から選択される、[1]に記載の抗菌性積層体。
 [3] 最表面に存在する前記金属酸化物層において、
 前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率が3.0atm%以上である、[1]又は[2]に記載の抗菌性積層体。
 [4] さらに金属層を有する、[1]~[3]のいずれか1つに記載の抗菌性積層体。
 [5] 前記金属酸化物層及び金属層に含まれる金属が、バルブ金属である、[1]~[4]のいずれか1つに記載の抗菌性積層体。
 [6] 前記バルブ金属がアルミニウムである、[5]に記載の抗菌性積層体。
 [7] 最表面に存在する前記金属酸化物層において、
 前記バルブ金属の存在比率の合計がXPSで分析したときに10atm%以上であり、かつ、
 非バルブ金属及びハロゲン原子の存在比率の合計がXPSで分析したときに1.0atm%以下である、[5]又は[6]に記載の抗菌性積層体。
 [8] 前記非バルブ金属が、銀、銅、チタン及びゲルマニウムからなる群から選ばれる少なくとも1種であり、
 前記ハロゲン原子が、ヨウ素原子である、[7]に記載の抗菌性積層体。
 [9] 最表面に存在する前記金属酸化物層において、
 前記アニオンに由来する原子がイオウ原子であり、かつ、
酸素原子の存在比率がXPSで分析したときに45atm%以上である、[1]~[8]のいずれか1つに記載の抗菌性積層体。
 [10] 前記金属酸化物層の全光線透過率が30%以上である、[1]~[9]のいずれか1つに記載の抗菌性積層体。
 [11] 前記金属酸化物層の厚みが50nm以上10μm以下である、[1]~[10]のいずれか1つに記載の抗菌性積層体。
 [12] 最表面に存在する前記金属酸化物層が、その最表面に複数の凸部を有し、
 隣接する凸部間の平均間隔が、20~600nmである、[1]~[11]のいずれか1つに記載の抗菌性積層体。
 [13] 前記凸部が、針状突起である、[12]に記載の抗菌性積層体。
 [14] 95質量%以上のバルブ金属を含む金属層の表面を、濃度0.04M以上の多塩基酸を用いて陽極酸化し、前記金属酸化物層を生成する工程を含む、[1]~[13]のいずれか1つに記載の抗菌性積層体の製造方法。
 [15] 前記多塩基酸の濃度が0.3M以上である、[14]に記載の抗菌性積層体の製造方法。
 [16] 前記バルブ金属がアルミニウムであり、前記多塩基酸が濃度3M以上の硫酸である、[14]又は[15]に記載の抗菌性積層体の製造方法。
 [17] 前記硫酸の濃度が6M以上である、[16]に記載の抗菌性積層体の製造方法。
 [18] 複数の凸部を表面に有する、金属の酸化皮膜を有し、
 隣接する凸部間の平均間隔が、20~400nmである、抗菌材。
 [19] 前記凸部が、針状突起である、[18]に記載の抗菌材。
 [20] [18]又は[19]に記載の抗菌材からなる層を有する、積層体。
 [21] [18]又は[19]に記載の抗菌材を有する、医療用部材。
 [22] [18]又は[19]に記載の抗菌材を製造する方法であり、金属基材を陽極酸化して細孔を有する酸化皮膜を形成する工程と、細孔の径を拡大させる工程との組み合わせを1回以上行うことによって、複数の凸部を表面に有する酸化皮膜を形成する、抗菌材の製造方法。
 [23] 菌の増殖を抑えたい箇所に、[18]又は[19]に記載の抗菌材を設ける、抗菌方法。
 本発明の抗菌材は、薬剤を用いることなく優れた抗菌効果を発揮できる。
 本発明の積層体は、薬剤を用いることなく優れた抗菌効果を発揮できる。
 本発明の医療用部材は、薬剤を用いることなく優れた抗菌効果を発揮できる。
 本発明の抗菌材の製造方法によれば、薬剤を用いることなく優れた抗菌効果を発揮できる抗菌材を製造できる。
 本発明の抗菌方法によれば、薬剤を用いることなく優れた抗菌効果を発揮できる。
 本発明によれば、抗生剤を使用することなく、より広く抗菌効果を発揮する抗菌性積層体及びその製造方法を提供できる。
本発明の抗菌材の一例を示す上面図である。 図1のII-II断面図である。 本発明の抗菌材の製造工程を示す断面図である。 本発明の積層体の一例を示す断面図である。 実施例1の抗菌材の酸化皮膜の表面の走査型電子顕微鏡像である。 実施例1の抗菌材の断面の走査型電子顕微鏡像である。 本発明の抗菌性積層体の製造方法を示す断面図である。 実施例5の陽極酸化被膜付きアルミニウム板の陽極酸化被膜の表面の走査型電子顕微鏡像である。 実施例5の陽極酸化被膜付きアルミニウム板の断面の走査型電子顕微鏡像である。 実施例13の抗菌性積層体の全光線透過率を示すグラフである。
 「~」を用いて表される数値範囲には、その両端の数値を含むものとする。
 「菌」とは、細菌、菌類等を意味する。細菌としては、黄色ブドウ球菌、大腸菌、枯草菌、乳酸菌、緑膿菌、レンサ球菌等が挙げられる。菌類としては、糸状菌(カビ、キノコ)、酵母等が挙げられる。酵母としては、サッカロマイセス、シゾサッカロマイセス、クリプトコッカス、カンジタ等が挙げられる。
 「XPS」は、X線光電子分光(X-ray Photoelectron Spectroscopy)の略称である。
 図1~図4における寸法比は、説明の便宜上、実際のものとは異なったものである。また、図2~図4においては、図1と同じ構成要素には同一の符号を付して、その説明を省略する。
[抗菌材]
 本発明の抗菌材は、複数の凸部を表面に有する、金属の酸化皮膜を有する。
 図1は、本発明の抗菌材の一例を示す上面図であり、図2は、図1のII-II断面図である。図示例の抗菌材は、金属がアルミニウムの例である。
 抗菌材10は、アルミニウム基材12と、アルミニウム基材12の表面に形成された酸化皮膜14とを有する。
 アルミニウムにおける通常の酸化皮膜は、複数の六角柱状のセルが集合したものであり、セルの中心には、酸化皮膜の表面からアルミニウム基材に向かってセルの軸方向に延びる細孔が形成されている。
 図示例の酸化皮膜14においては、各セル16の細孔が後述する細孔径拡大処理によって拡大されて逆円錐状の凹部18が形成されている。細孔が拡大されて凹部18が形成されるに伴い、酸化皮膜14の表面及びその近傍においては、複数のセル16の境界がなす六方格子(図中の破線)及びその近傍に酸化皮膜14が残る。3つのセル16が接する六方格子の格子点及びその近傍では、酸化皮膜14が凹部18に浸食されず、針状突起の凸部20が形成される。2つのセル16が接する六方格子の格子線及びその近傍では、酸化皮膜14が凹部18に浸食されて凸部20よりも高さが低くなった尾根部22が、隣接する凸部20間をつなぐように形成される。
 金属は、陽極酸化によって細孔を有する酸化皮膜を形成できるものであればよい。金属としては、アルミニウム、ニオブ、タンタル、タングステン、チタン、ジルコニウム、ハフニウム、これら金属の2種以上からなる合金、これら金属の1種以上と他の金属との合金等が挙げられる。金属としては、複数の凸部を有する酸化皮膜を形成しやすい点から、アルミニウム又はその合金が好ましい。
 金属基材の形態としては、蒸着膜、箔、板、これら以外の成形品等が挙げられる。
 隣接する凸部間の平均間隔は、20~400nmであり、25~350nmが好ましく、30~300nmがより好ましい。隣接する凸部間の平均間隔が前記範囲の下限値以上であれば、複数の凸部を有する酸化皮膜を形成しやすい。隣接する凸部間の平均間隔が前記範囲の上限値以下であれば、抗菌効果が発現される。
 「隣接する凸部間の平均間隔」は、電子顕微鏡観察によって、凸部の最頂部の中心から隣接する凸部の最頂部の中心までの距離を50点測定し、これらの値を平均したものである。
 凸部の平均高さは、50~2500nmが好ましく、70~2000nmがより好ましい。
 「凸部の平均高さ」は、電子顕微鏡観察によって、凸部の最頂部と、凸部間に存在する凹部の最底部との高低差を50点測定し、これらの値を平均したものである。
 凸部は、抗菌効果がさらに高くなる点から、針状突起であることが好ましい。
 針状突起とは、凸部の平均高さを隣接する凸部間の平均間隔で除したアスペクト比が1.5以上である凸部をいう。
 凸部のアスペクト比(平均高さ/平均間隔)は、1.5~10が好ましく、2~8がより好ましく、3~7がさらに好ましい。凸部のアスペクト比が前記範囲の下限値以上であれば、抗菌効果がさらに高くなる。凸部のアスペクト比が前記範囲の上限値以下であれば、凸部の耐久性が良好となる。
 酸化皮膜は、隣接する凸部間をつなぐように形成された、凸部よりも高さが低くされた尾根部を有することが好ましい。酸化皮膜が隣接する凸部間をつなぐ尾根部を有することによって、凸部が尾根部によって補強され、凸部の耐久性がさらに良好となる。
 以上説明した本発明の抗菌材にあっては、隣接する凸部間の平均間隔が20~400nmである複数の凸部を表面に有するため、抗菌効果を発揮できる。また、凸部が金属の酸化皮膜から構成されているため、従来の硬化性樹脂の硬化物から構成された凸部に比べ、優れた抗菌効果を確実に発揮できる。金属の酸化皮膜から構成された凸部が、硬化性樹脂の硬化物から構成された凸部に比べ優れた抗菌効果を発揮できる理由は定かではないが、硬化性樹脂の硬化物に比べ、金属の酸化皮膜の方が硬く、この硬さが抗菌効果の発現に影響しているものと考えられる。
[抗菌材の製造方法]
 本発明の抗菌材の製造方法は、金属基材を陽極酸化して細孔を有する酸化皮膜を形成する工程と、細孔の径を拡大させる工程との組み合わせを1回以上行うことによって、複数の凸部を表面に有する酸化皮膜を形成する方法である。
 以下、酸化皮膜が、アルミニウムの酸化皮膜(アルマイト)である場合を例にとり、本発明の抗菌材の製造方法を詳細に説明する。
 アルミニウムの酸化皮膜を表面に有する抗菌材は、例えば、下記工程(a)~(f)を経て製造できる。細孔の配列の規則性はやや低下するが、工程(b)、(c)を行わず、工程(a)の後、工程(d)、(e)を繰り返してもよいし、工程(a)の後、工程(d)を1回だけ行ってもよい。
 (a)アルミニウム基材を電解液中、陽極酸化して酸化皮膜を形成する工程。
 (b)酸化皮膜を除去し、陽極酸化の細孔発生点を形成する工程。
 (c)アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
 (d)細孔の径を拡大させる工程。
 (e)工程(d)の後、電解液中、再度陽極酸化する工程。
 (f)前記工程(d)と工程(e)を繰り返し行う工程。
 工程(a):
 図3に示すように、アルミニウム基材12を陽極酸化すると、細孔24を有する酸化皮膜14が形成される。陽極酸化で形成される細孔の規則性は初期の段階ではきわめて低いが、陽極酸化を長時間行うことで細孔の規則性が向上する。陽極酸化の時間は5分以上が好ましく、15分以上がより好ましい。ただし、陽極酸化を長時間行うと細孔の規則性は向上するが、比較的細孔が深くなる傾向にあるため、工程(b)の処理を行い、規則的な細孔の形成のための発生点として用いる。規則性を期待せず細孔を形成するのみであれば、所望の細孔深さとなるまでの処理時間を適宜設定すればよい。
 アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化で得られる細孔の規則性が低下することがある。
 電解液としては、硫酸、シュウ酸水溶液、リン酸水溶液等が挙げられる。
 硫酸を電解液として用いる場合:
 硫酸の濃度は0.7mol/L以下が好ましい。硫酸の濃度が0.7mol/Lを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 化成電圧が25~30Vのとき、隣接する細孔間の間隔が63nmの規則性の高い細孔を有する酸化皮膜を形成できる。
 電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。
 シュウ酸水溶液を電解液として用いる場合:
 シュウ酸の濃度は0.7mol/L以下が好ましい。シュウ酸の濃度が0.7mol/Lを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 化成電圧が30~100Vのとき、隣接する細孔間の間隔が100~200nmの規則性の高い細孔を有する酸化皮膜を形成できる。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。
 リン酸水溶液を電解液として用いる場合:
 リン酸の濃度は2.5mol/L以下が好ましい。シュウ酸の濃度が2.5mol/Lを超えると、電流値が高くなりすぎて細孔が壊れることがある。
 化成電圧が180~250Vのとき、隣接する細孔間の間隔が500nmの規則性の高い細孔を有する酸化皮膜を形成できる。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。
 工程(b):
 図3に示すように、酸化皮膜14を一旦除去し、アルミニウム基材12の表面の窪みを陽極酸化の細孔発生点26にすることで細孔の規則性を向上することができる。
 酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
 工程(c):
 図3に示すように、酸化皮膜を除去したアルミニウム基材12を再度、陽極酸化すると、円柱状の細孔24を有する酸化皮膜14が形成される。
 陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
 工程(d):
 図3に示すように、細孔24の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
 細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
 工程(e):
 図3に示すように、再度、陽極酸化すると、円柱状の細孔24の底部から下に延びる、直径の小さい円柱状の細孔24がさらに形成される。
 陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
 工程(f):
 図3に示すように、工程(d)の細孔径拡大処理と工程(e)の陽極酸化を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の凹部18及び3つの凹部18に囲まれた凸部20が形成された酸化皮膜14を有する抗菌材10が得られる。最後は工程(d)で終わることが好ましい。
 複数の凸部を表面に有する酸化皮膜を形成するためには、工程(d)と工程(e)の繰り返し回数を多くする、工程(d)における細孔径拡大処理の時間を長くする等によって、酸化皮膜に上述した尾根部が形成されるまで、細孔の径を拡大すればよい。
 隣接する凸部間の平均間隔は、陽極酸化によって形成される酸化皮膜における隣接する細孔間の間隔によって決まる。隣接する細孔間の間隔は、陽極酸化の化成電圧を低くすると小さくなり、化成電圧を高くすると大きくなる傾向がある。
[積層体]
 本発明の積層体は、上述の本発明の抗菌材からなる層を有する。
 図4は、本発明の積層体の一例を示す断面図である。図示例の積層体は、抗菌材における金属がアルミニウムの例である。
 積層体30は、抗菌材からなる層32と、他の基材34とを有する。
 抗菌材からなる層32は、他の基材34に接するアルミニウム基材12と、アルミニウム基材12の表面に形成された酸化皮膜14とを有する。
 酸化皮膜14は、複数の凹部18と、凹部18に囲まれた凸部20と、隣接する凸部20間をつなぐように形成された、凸部20よりも高さが低くされた尾根部22とを有する。
 他の基材の材料としては、硬化性樹脂の硬化物、プラスチック、ガラス、セラミックス、金属等が挙げられる。
 他の基材の形態としては、フィルム、シート、板、これら以外の成形品等が挙げられる。
 本発明の積層体は、例えば、金属基材と他の基材とを有する積層体を製造し、積層体の金属基材を陽極酸化して細孔を有する酸化皮膜を形成する工程と、細孔の径を拡大させる工程との組み合わせを1回以上行うことによって製造できる。
 具体的には、本発明の積層体がアルミニウム蒸着フィルムである場合は、アルミニウム蒸着フィルムの蒸着膜を陽極酸化して細孔を有する酸化皮膜を形成する工程と、細孔の径を拡大させる工程との組み合わせを1回以上行う。
 なお、本発明の積層体は、複数の凸部を有する金属の酸化皮膜を最表面に有するものであればよく、図示例の積層体30に限定されない。
 例えば、金属基材が完全に陽極酸化されることによって、酸化皮膜14とこれに接する他の基材34とを有する積層体となっていてもよい。他の基材が透明なプラスチックフィルムであり、金属基材がアルミニウムの蒸着膜である場合は、蒸着膜を完全に陽極酸化することによって、複数の凸部を有するアルミナ層がプラスチックフィルムの表面に形成された抗菌性透明バリアフィルムとなる。
[抗菌材の用途]
 本発明の抗菌材は、例えば、菌の増殖を抑えたい箇所に設ける。
 本発明の抗菌材や積層体の用途としては、例えば、以下のものが挙げられる。
 医療用部材:医療用部材の詳細については、後述する。
 フィルター:空気清浄機のフィルター、空調機器のフィルター、エアフィルター等。
 水処理部材:浄水器、シャワーノズル、配管の内面等。
 建材:内装材(壁紙、壁材、床材、天井材、ドア面材、カウンター等)、水回り、ウインドフィルム、外装材、手すり等。
 包装資材:食品包装用フィルム(アルミニウム蒸着フィルム、バリアフィルム等)、容器、ボトル等。
 家電用部材:タッチパネル、ディスプレイの前面材、加湿器タンク、洗濯機の洗濯槽等。
 家具:テーブル、椅子、調理器具等。
 家庭用品:押入用カビ防止材、屋根裏カビ防止材等。
 車両用部材:内装材、つり革、手すり等。
 農業用資材:ビニルハウス、水耕栽培施設、配管等。
[医療用部材]
 本発明の医療用部材は、本発明の抗菌材を有する。
 本発明の医療用部材は、本発明の抗菌材からなるものであってもよく、本発明の抗菌材からなる層を有する積層体であってもよく、本発明の抗菌材や積層体と他の部材とを組み合わせたものであってもよい。
 本発明の医療用部材は、人工臓器や医療器具そのものであってもよく、人工臓器、医療器具、医療機器等の部品であってもよく、医療施設の一部であってもよく、人工臓器、医療器具、医療機器等の包装資材であってもよい。
 人工臓器としては、デンタルインプラント(人工歯)、人工心臓、人工関節等が挙げられる。
 医療器具としては、手術器具(メス、はさみ、鉗子、ピンセット、開創器、カテーテル、ステント、固定用ボルト等)、注射器、聴診器、打診器、検鏡、担架、歯科用器具(デンタルスケーラー、デンタルミラー等)等が挙げられる。
 医療機器としては、手術台、人工透析器、輸液ポンプ、人工心肺装置、透析液供給装置、成分採血装置、人工呼吸器、X線撮影装置、心電計、超音波診断装置、粒子線治療装置、分析装置、ペースメーカ、補聴器、マッサージ器、等が挙げられる。
 医療施設の一部としては、病室、手術室、浴室、トイレ等の内装材(壁紙、壁材、床材、天井材、ドア面材、カウンター等)、手すり、ドアノブ等が挙げられる。
[抗菌性積層体]
 本発明の抗菌性積層体は、非金属基板と金属酸化物層とを有する積層体であって、前記金属酸化物層が最表面に存在し、かつ、前記金属酸化物層がアニオンを含み、前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計がXPSで分析したときに1.0atm%以上であることを特徴とする。
 本発明の抗菌性積層体は、陽極酸化ポーラスアルミナにAg、Cu又はZn等を担持させることのみによって抗菌性を発揮させたものではない。本発明の抗菌性積層体は、高濃度の電解液で金属を陽極酸化してアニオンを被膜中にドープして、金属そのもので抗菌性を発揮している。
<非金属基板>
 前記非金属基板は、非金属からなる基板であれば特に限定されないが、例えば、樹脂又はガラスである。
 前記樹脂の具体例は、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリスチレン及びナイロンであるが、これらに限定されない。
<金属酸化物層>
 前記金属酸化物層は、本発明の抗菌性積層体の最表面に存在する。
 前記金属酸化物層は、アニオンを含む。
 前記金属酸化物層に含まれる金属は、特に限定されないが、バルブ金属が好ましい。
 バルブ金属は、酸化力のある酸との接触又は陽極酸化処理等の酸化処理により表面に不働態の酸化皮膜を生じる金属である。バルブ金属の具体例は、アルミニウム、クロム、チタン及びこれらのうち2種以上の合金であるが、これらに限定されない。
 前記バルブ金属としては、加工性が良く、安全性が高く、安価であることから、アルミニウムが好ましい。
 なお、バルブ金属を除く金属を「非バルブ金属」という。
 前記金属酸化物層における、前記バルブ金属の存在比率の合計は、XPSで分析したときに10atm%以上であり、15atm%以上が好ましく、20atm%以上がより好ましい。上限は特に限定されないが、通常、40atm%である。
 XPSによる分析方法及び分析条件は、以下のとおりである。
X線光電子分光分析装置:アルバック・ファイ社製 Quantum-2000
X線源:Monochromated-Al-Kα線(出力16kV 34W)
取り出し角度:45°
測定エリア:300μm
 前記金属酸化物層における、非バルブ金属及びハロゲン原子の存在比率の合計は、XPSで分析したときに1.0atm%以下が好ましい。下限は特に限定されないが、通常、0.0atm%である。本発明に係る抗菌性積層体は、最表面に銀、銅、酸化チタン、ヨウ素等の抗菌性材料を担持させることのみによって抗菌性を呈するものではなく、酸化皮膜そのものが抗菌性を呈するものである。
 前記非バルブ金属は、前記金属酸化物層に含まれる金属以外であり、具体的には銀、銅、チタン及びゲルマニウムが挙げられる。
 前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種が好ましく、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種がより好ましく、ヨウ素原子がさらに好ましい。
 XPSによる分析方法及び分析条件は、前記バルブ金属の存在比率の合計の分析方法及び分析条件と同様である。
 前記金属酸化物層における、前記金属酸化物層に含まれるアニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計は、強い抗菌性を発揮できる観点から、XPS(X線光電子分光法)で分析したときに1.0atm%以上であり、2.5atm%以上が好ましく、3.0atm%以上がより好ましい。上限は特に限定されないが、通常、10atm%である。
 前記金属酸化物層における、前記金属酸化物層に含まれるアニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計を、上記の好ましい範囲とするためには、例えば、後述の[抗菌性積層体の製造方法]により製造すればよい。特に、多塩基酸の種類と濃度を調整することで、前記のアニオンに由来するイオウ原子、リン原子及び炭素原子の存在比率の合計を調整することができる。
 なお、XPSにおいては、ワイドスペクトルのピーク強度から、各元素の表面における存在比率(atm%)を求めることができる。
 前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子は、イオウ原子が好ましい。この場合において、前記金属酸化物層における酸素原子の存在比率は、XPSで分析したときに45atm%以上が好ましく、55atm%以上がより好ましい。上限は特に限定されないが、通常、60atm%である。
 XPSによる分析方法及び分析条件は、前記バルブ金属の存在比率の合計の分析方法及び分析条件と同様である。
 前記イオウ原子、リン原子及び炭素原子の少なくとも1種の原子がアニオンに由来するか否かは、XPSにおいて、ケミカルシフトで判定できる。
 例えば、169.8±1.4にピークが出れば、アニオン由来のイオウ原子であると判定できる。また、290±1.3にピークが出れば、アニオン由来の炭素原子、132.5±0.4にピークが出れば、アニオン由来のリン原子と判定できる。
 前記アニオンは、硫酸イオン(SO 2-)、リン酸イオン(PO 3-)、シュウ酸イオン(C 2-)、マロン酸イオン(C 2-)、リンゴ酸イオン(C 2-)及びクエン酸イオン(C 3-)からなる群から選択される1種以上が好ましい。中でも、強い抗菌性を発揮できる観点から、硫酸イオンまたはシュウ酸イオンがより好ましく、硫酸イオンが特に好ましい。
 本発明の抗菌性積層体において、前記金属酸化物層の全光線透過率が、30%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましい。上限は特に限定されないが、通常、95%である。前記金属酸化物層の全光線透過率が50%以上であると、中のものを視認する必要のある透明性の求められる用途において、好適に本発明の材料を用いることができる。
 ここで、前記金属酸化物層の全光線透過率は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」等を参考に従来公知の方法で測定できる。
 本発明の抗菌性積層体において、前記金属酸化物層の厚みは、50nm以上10μm以下が好ましく、55nm以上1μm以下がより好ましく、60nm以上500nm以下がさらに好ましい。前記金属酸化物層の厚みがこの範囲内であると、後述する陽極酸化処理の時間が長くなることを抑制することができる。
 ここで、前記金属酸化物層の厚みは、断面をSEMで観察する等で確認することができる。
 本発明の抗菌性積層体において、前記金属酸化物層は、その最表面に複数の凸部を有してもよい。この場合において、隣接する凸部間の平均間隔は、20~600nmの範囲とすればよい。表面に上記範囲の構造を設けることにより、親水性や撥水性などの機能をさらに付与することができる。
 前記凸部は、針状突起が好ましい。
<金属層>
 前記抗菌性積層体は、さらに、金属層を有していてもよい。金属層に含まれる金属は、前記金属酸化物層に含まれる金属と同様であってもよい。また、樹脂フィルム上などに堆積された金属層を陽極酸化する場合、金属層と樹脂フィルムとの密着性を向上させるために、厚みが数nmの各種金属薄膜を設けてもよい。
<抗菌性積層体の使用方法及び用途>
 本発明の抗菌性積層体の使用方法は、特に限定されないが、菌の増殖を抑えたい箇所に本発明の抗菌性積層体を配置することが好ましい。
 本発明の抗菌性積層体の用途としては、例えば、以下のものが挙げられる。
 医療用部材:医療用部材の詳細については、後述する。
 フィルター:空気清浄機のフィルター、空調機器のフィルター、エアフィルター等。
 水処理部材:浄水器、シャワーノズル、配管の内面等。
 建材:内装材(壁紙、壁材、床材、天井材、ドア面材、カウンター等)、水回り、ウインドフィルム、外装材、手すり等。
 包装資材:食品包装用フィルム(アルミニウム蒸着フィルム、バリアフィルム等)、容器、ボトル等。
 家電用部材:タッチパネル、ディスプレイの前面材、加湿器タンク、洗濯機の洗濯槽等。
 家具:テーブル、椅子、調理器具等。
 家庭用品:押入用カビ防止材、屋根裏カビ防止材等。
 車両用部材:内装材、つり革、手すり等。
 農業用資材:ビニルハウス、水耕栽培施設、配管等。
 前記医療用部材は、本発明の抗菌性積層体のみからなるものであってもよく、本発明の抗菌性積層体と他の部材とを組み合わせたものであってもよい。
 前記医療用部材は、人工臓器や医療器具そのものであってもよく、人工臓器、医療器具、医療機器等の部品であってもよく、医療施設の一部であってもよく、人工臓器、医療器具、医療機器等の包装資材であってもよい。
 人工臓器としては、デンタルインプラント(人工歯)、人工心臓、人工関節等が挙げられる。
 医療器具としては、手術器具(メス、はさみ、鉗子、ピンセット、開創器、カテーテル、ステント、固定用ボルト等)、注射器、聴診器、打診器、検鏡、担架、歯科用器具(デンタルスケーラー、デンタルミラー等)等が挙げられる。
 医療機器としては、手術台、人工透析器、輸液ポンプ、人工心肺装置、透析液供給装置、成分採血装置、人工呼吸器、X線撮影装置、心電計、超音波診断装置、粒子線治療装置、分析装置、ペースメーカ、補聴器、マッサージ器、等が挙げられる。
 医療施設の一部としては、病室、手術室、浴室、トイレ等の内装材(壁紙、壁材、床材、天井材、ドア面材、カウンター等)、手すり、ドアノブ等が挙げられる。
[抗菌性積層体の製造方法]
 本発明の抗菌性積層体の製造方法(以下、単に「本発明の製造方法」という場合がある。)は、95質量%以上のバルブ金属を含む金属層の表面を、濃度0.04M以上の多塩基酸を用いて陽極酸化し、前記金属酸化物層を生成する工程を含む。
 バルブ金属は、上述したとおりである。
 金属層が95質量%以上のバルブ金属を含むとは、バルブ金属の純度が95質量%以上であることを意味する。バルブ金属の純度は、95質量%以上であれば特に限定されないが、99質量%以上が好ましく、99.9質量%以上がより好ましく、99.99質量%以上がさらに好ましい。前記バルブ金属の純度が95質量%であると、陽極酸化の際に異種金属が脱落し、表面にマクロな欠陥が発生することを抑制することができる。
 多塩基酸は、塩基度が2以上の酸である。ここで、塩基度は、その酸の1分子中に含まれる水素原子のうち、金属原子で置き換えられる水素原子の数である。
 前記多塩基酸は、特に限定されないが、例えば、硫酸(二塩基酸)、リン酸(三塩基酸)、シュウ酸(二塩基酸)、マロン酸(二塩基酸)、リンゴ酸(二塩基酸)及びクエン酸(三塩基酸)が挙げられる。
 前記多塩基酸としては、硫酸、リン酸、シュウ酸、マロン酸、リンゴ酸及びクエン酸からなる群から選択される少なくとも1種が好ましく、硫酸、リン酸及びシュウ酸からなる群から選択される少なくとも1種がより好ましく、硫酸がさらに好ましい。
 本発明の製造方法は、前記多塩基酸を1種使用してもよいし、2種以上使用してもよい。
 前記多塩基酸の濃度は、0.04M(0.04mol/dm)以上であれば特に限定されないが、0.3M(0.3mol/dm)以上が好ましく、3M(3mol/dm)以上がより好ましい。上限は特に限定されないが、濃度によって酸化力を有するようになる場合は、酸化力を有しない濃度が好ましい。
 前記バルブ金属がアルミニウムであり、前記多塩基酸が硫酸である場合は、前記硫酸の濃度は、3M(0.3mol/dm)以上が好ましく、6M(6mol/dm)以上がより好ましい。濃度の上限は、通常、15M(15mol/dm)以下であり、12M(12mol/dm)以下が好ましい。
 本発明の製造方法において、陽極酸化は、1回に限定されず、2回以上行ってもよい。2回以上行うときは、多塩基酸の種類及び濃度を変更してもよい。
 以下では、バルブ金属としてアルミニウムを用いる場合を例にとり、本発明の製造方法を具体的に説明する。
 本発明の抗菌性積層体は、例えば、以下の(a)及び(b)の処理を経て製造できる。
(a)アルミニウム基材を電解液中、陽極酸化して酸化皮膜を形成する
(b)アルミニウム基材を陽極酸化したものを非金属基材に貼り付ける
 上記(a)の処理について、図7を参照しながら説明する。
 図7に示すように、アルミニウム基材112を陽極酸化すると、細孔124を有する酸化皮膜114が形成され、陽極酸化被膜付きアルミニウム板110が得られる。陽極酸化で形成される細孔の規則性は、陽極酸化を長時間行うほど向上する。しかし、本発明の抗菌性積層体の抗菌性は、細孔の規則性に影響されるものではないので、長時間の陽極酸化を行う必要はない。
 アルミニウムの純度は95%以上が好ましく、99%以上がより好ましく、99.5%以上がさらに好ましく、99.9%以上がいっそう好ましい。アルミニウムの純度が高いほど、陽極酸化に要する時間を短くできることがある。
 電解液としては、硫酸、シュウ酸水溶液又はリン酸水溶液が好ましい。
 硫酸を電解液として用いる場合、硫酸の濃度は0.3M以上であり、3M以上が好ましく、3~4.5Mがより好ましい。陽極酸化の際の通電時間は、30秒~15分が好ましく、1~10分がより好ましく、1~5分がさらに好ましい。陽極酸化の際の印加電圧は、15~50Vが好ましく、20~30Vがより好ましい。陽極酸化の際の電解液の温度は、0~30℃が好ましく、0~20℃がより好ましい。
 シュウ酸水溶液を電解液として用いる場合、シュウ酸の濃度は0.01M以上が好ましく、0.01~0.7Mがより好ましく、0.01~0.1Mがさらに好ましい。陽極酸化の際の通電時間は、30秒~15分が好ましく、1~10分がより好ましく、1~5分がさらに好ましい。陽極酸化の際の印加電圧は、50~100Vが好ましく、60~100Vがより好ましい。陽極酸化の際の電解液の温度は、0~30℃が好ましく、0~20℃がより好ましい。
 リン酸水溶液を電解液として用いる場合、リン酸の濃度は0.01M以上が好ましく、0.01~2.5Mがより好ましく、0.05~1Mがさらに好ましい。陽極酸化の際の通電時間は、1~15分が好ましく、1~10分がより好ましく、5~10分がさらに好ましい。陽極酸化の際の印加電圧は、100~300Vが好ましく、150~250Vがより好ましい。陽極酸化の際の電解液の温度は、0~20℃が好ましく、0~10℃がより好ましい。
 (b)の処理により、抗菌性積層体が得られる。本処理において用いる非金属基材は、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン、ポリスチレン等からなる樹脂基板、これらの積層体を用いることが好ましい。
 (b)の処理を行わず、アルミニウム基材を非金属基材に貼り付けた後、(a)の陽極酸化処理を行ってもよい。また、スパッタリングや蒸着などの方法により、非金属基材上にアルミニウムを成膜したものを、アルミニウム基材として(a)の陽極酸化処理に供しても良い。非金属基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン、ポリスチレン等からなる樹脂基板、これらの積層体を用いることが好ましい。
 また、(a)の陽極酸化処理により、アルミニウム基材を完全に陽極酸化することで、金属酸化物層を透明にすることができる。この際に、抗菌性積層体を透明にするために、樹脂基板としては透光性の樹脂基板を用いることが好ましい。アルミニウム基材を完全に陽極酸化する工程に必要な時間を短縮するため、アルミニウム基材は薄膜であることが好ましい。具体的には、アルミニウム基材の厚みは、50nm以上1μm以下であることが好ましく、55nm以上500nm以下であることがより好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。本発明の実施の形態は、本発明の要旨を変更しない限り、種々の変形が可能である。
[実施例1]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 工程(a):
 電解研磨したアルミニウム板について、0.3mol/Lシュウ酸水溶液中で、直流40V、温度17℃の条件で60分間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜の一部又は全部を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム板について、0.3mol/Lシュウ酸水溶液中、直流40V、温度17℃の条件で30秒間陽極酸化を行った。
 工程(d):
 酸化皮膜が形成されたアルミニウム板を、30℃の5質量%リン酸に11分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 細孔径拡大処理したアルミニウム板について、0.3mol/Lシュウ酸水溶液中、直流40V、温度17℃の条件で30秒間陽極酸化を行った。
 工程(f):
 工程(d)及び工程(e)を合計で4回繰り返し、最後に工程(d)を行い、平均間隔100nmの略円錐形状の凹部及び凹部に囲まれた凸部を有する酸化皮膜(アルマイト)が形成された抗菌材(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。また、抗菌材の酸化皮膜の表面の走査型電子顕微鏡像を図5に示し、抗菌材の断面の走査型電子顕微鏡像を図6に示す。
[実施例2]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 工程(a):
 電解研磨したアルミニウム板について、0.3mol/L硫酸中で、直流25V、温度17℃の条件で30分間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜の一部又は全部を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム板について、0.3mol/L硫酸中、直流25V、温度17℃の条件で6秒間陽極酸化を行った。
 工程(d):
 酸化皮膜が形成されたアルミニウム板を、30℃の10質量%リン酸に4分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 細孔径拡大処理したアルミニウム板について、0.3mol/L硫酸中、直流25V、温度17℃の条件で6秒間陽極酸化を行った。
 工程(f):
 工程(d)及び工程(e)を合計で5回繰り返し、平均間隔63nmの略円錐形状の凹部及び凹部に囲まれた凸部を有する酸化皮膜(アルマイト)が形成された抗菌材(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[実施例3]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 工程(a):
 電解研磨したアルミニウム板について、0.05mol/Lシュウ酸水溶液中で、直流80V、温度17℃の条件で30分間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜の一部又は全部を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム板について、0.05mol/Lシュウ酸水溶液中、直流80V、温度17℃の条件で15秒間陽極酸化を行った。
 工程(d):
 酸化皮膜が形成されたアルミニウム板を、30℃の5質量%リン酸に15分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 細孔径拡大処理したアルミニウム板について、0.05mol/Lシュウ酸水溶液中、直流80V、温度17℃の条件で15秒間陽極酸化を行った。
 工程(f):
 工程(d)及び工程(e)を合計で5回繰り返し、平均間隔200nmの略円錐形状の凹部及び凹部に囲まれた凸部を有する酸化皮膜(アルマイト)が形成された抗菌材(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[実施例4]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 工程(a):
 電解研磨したアルミニウム板について、0.1mol/Lリン酸水溶液中で、直流195V、温度0℃の条件で60分間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜の一部又は全部を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム板について、0.1mol/Lリン酸水溶液中、直流195V、温度0℃の条件で90秒間陽極酸化を行った。
 工程(d):
 酸化皮膜が形成されたアルミニウム板を、30℃の10質量%リン酸に35分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 細孔径拡大処理したアルミニウム板について、0.1mol/Lリン酸水溶液中、直流195V、温度0℃の条件で90秒間陽極酸化を行った。
 工程(f):
 工程(d)及び工程(e)を合計で4回繰り返し、平均間隔500nmの略円錐形状の凹部及び凹部に囲まれた凸部を有する酸化皮膜(アルマイト)が形成されたアルミニウム板(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[比較例1]
 平均間隔100nmの略円錐形状の凹部を有する酸化皮膜が形成されたアルミニウム板をモールドとして用意した。
 ジペンタエリスリトールヘキサアクリレートの20質量部、2官能以上の親水性(メタ)アクリレート(東亞合成社製、アロニックスM-260、ポリエチレングリコール鎖の平均繰り返し単位は13)の70質量部、ヒドロキシエチルアクリレートの10質量部及び1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン社製、イルガキュア(登録商標)184)の1.5質量部を混合し、アクリル系硬化性樹脂組成物を得た。
 モールドの凹部側の表面にアクリル系硬化性樹脂組成物を塗布し、この上に厚さ80μmのポリエチレンテレフタレート(以下、「PET」と記す。)フィルムを被せた。
 紫外線照射機を用いて、積算光量1000mJ/cmでPETフィルム越しに紫外線を照射し、アクリル系硬化性樹脂組成物の硬化を行った後、モールドを分離し、複数の凸部を有する硬化樹脂層が表面に形成されたPETフィルム(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[比較例2]
 平均間隔200nmの略円錐形状の凹部を有する酸化皮膜が形成されたアルミニウム板をモールドとして用いた以外は、比較例1と同様にして複数の凸部を有する硬化樹脂層が表面に形成されたPETフィルム(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[比較例3]
 平均間隔500nmの略円錐形状の凹部を有する酸化皮膜が形成されたアルミニウム板をモールドとして用いた以外は、比較例1と同様にして複数の凸部を有する硬化樹脂層が表面に形成されたPETフィルム(供試品)を得た。凸部の平均間隔、平均高さ、アスペクト比を表1に示す。
[抗菌性試験]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)に準拠し、実施例1~4、比較例1~4の供試品について抗菌性試験を行った。
 1.供試菌
 黄色ブドウ球菌:Staphylococcus aureus NBRC 12732
 大腸菌:Escherichia coli NBRC 3972
 2.試験片の調製
 供試品(50mm×60mm)を75%エタノールに20分間浸漬した後、十分に乾燥させたものを試験片とした。試験片は、例ごとに3個用意した。
 無加工試験片としては、下記のものを用意した。
 実施例1~4、比較例1:対照品としてアルミニウム板(50mm×50mm)を75%エタノールに20分間浸漬した後、十分に乾燥させたものを無加工試験片とした。無加工試験片は、例ごとに6個用意した。
 比較例1~3:対象品として市販のアクリルフィルムを用いた。対照品(50mm×50mm)を75%エタノールに20分間浸漬した後、十分に乾燥させたものを無加工試験片とした。無加工試験片は、例ごとに6個用意した。
 3.試験菌液の調製
 供試菌を普通寒天培地に移植し、35℃で24時間培養した後、1白金耳を再度普通寒天培地に移植し、35℃で20時間培養した。この菌体を1/500濃度普通ブイヨン培地に均一に分散させたものを試験菌液とした。
 4.試験操作
 試験片の加工面に試験菌液0.4mLを滴下し、その上から試験片と同様の処理をしたポリエチレンテレフタレート板(40mm×40mm)を被せ、試験菌液が全体に行き渡るように押さえつけた。また、無加工試験片についても同様な操作を行い、試験片3個及び無加工試験片3個を温度35℃、相対湿度90%以上で24時間静置した。無加工試験片の残り3個については、試験菌液接種直後の菌数測定に用いた。
 5.菌数測定
 24時間静置後の試験片及び無加工試験片を、それぞれ滅菌ストマッカー袋に入れ、これにSCDLPブイヨン培地10mLを加え、菌液を十分に洗い出して試料とした。試料1mLを、標準寒天培地を用いて35℃で48時間培養した後、生菌数を測定した。接種直後の無加工試験片についても同様の操作を行った。
 6.抗菌活性値
 下記式から抗菌活性値を求めた。結果を表1に示す。抗菌活性値が黄色ブドウ球菌、大腸菌の両方において2.0以上であれば、抗菌効果があると判断される。
 R=(U-U)-(A-U
 ただし、Uは、無加工試験片の接種直後の生菌数の対数値の平均値であり、Uは、無加工試験片の24時間後の生菌数の対数値の平均値であり、Aは、試験片の24時間後の生菌数の対数値の平均値である。なお、生菌数は、試験片1cm当たりに換算した値とした。
Figure JPOXMLDOC01-appb-T000001
[実施例5]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、0.3M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 陽極酸化被膜付きアルミニウム板の表面の走査型電子顕微鏡像を図8に示し、陽極酸化被膜付きアルミニウム板の断面の走査型電子顕微鏡像を図9に示す。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例6]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、0.05Mシュウ酸水溶液中で、直流80V、温度17℃の条件で100秒間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例7]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、0.1Mリン酸水溶液中で、直流195V、温度0℃の条件で8分間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[比較例4]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化したアルミニウム板(50mm×50mm)を供試品とした。
[比較例5]
 アクリルフィルム(50mm×50mm)を供試品とした。
[抗菌性試験]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)に準拠し、実施例5~7、比較例4、5の供試品について抗菌性試験を行った。
 1.供試菌
 黄色ブドウ球菌:Staphylococcus aureus NBRC 12732
 大腸菌:Escherichia coli NBRC 3972
 2.試験片の調製
 供試品(50mm×60mm)を75%エタノールに20分間浸漬した後、十分に乾燥させたものを試験片とした。試験片は、例ごとに2個用意した。
 3.試験菌液の調製
 供試菌を普通寒天培地に移植し、35℃で24時間培養した後、1白金耳を再度普通寒天培地に移植し、35℃で20時間培養した。この菌体を1/500濃度の普通ブイヨン培地に均一に分散させたものを試験菌液とした。
 4.試験操作
 実施例5~7については、試験片の加工面に試験菌液0.4mLを滴下し、その上から試験片と同様の処理をしたポリエチレンテレフタレート板(40mm×40mm)を被せ、試験菌液が全体に行き渡るように押さえつけた。
 比較例4、5については、試験片の片面について同様の操作を行った。
 試験片3個を温度35℃、相対湿度90%以上で24時間静置した。
 5.菌数測定
 24時間静置後の試験片を、それぞれ滅菌ストマッカー袋に入れ、これにSCDLPブイヨン培地10mLを加え、菌液を十分に洗い出して試料とした。試料1mLを、標準寒天培地を用いて35℃で48時間培養した後、生菌数を測定した。
 測定結果を表1に示した。なお、実施例5~7、比較例4、5の生菌数は、試験片2個から得られた結果の平均値である。
 6.初発菌数の測定
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化したアルミニウム板(50mm×50mm)を75%エタノールに20分間浸漬した後、十分に乾燥させたものを無加工試験片とした。無加工試験片は、3個用意した。
 無加工試験片の片面に試験菌液0.4mLを滴下し、その上から試験片と同様の処理をしたポリエチレンテレフタレート板(40mm×40mm)を被せ、試験菌液が全体に行き渡るように押さえつけた。無加工試験片を滅菌ストマッカー袋に入れ、これにSCDLPブイヨン培地10mLを加え、菌液を十分に洗い出して試料とした。試料1mLを、標準寒天培地を用いて35℃で48時間培養した後、生菌数(初発菌数)を測定した。測定結果を表1に示した。生菌数は3個の試験片から得られた結果の平均値である。
7.抗菌性の評価
 初発菌数に比べて生菌数が1/100以下(1%以下)になったものについて、抗菌性ありと評価した。評価を表1に示した。
 抗菌性あり・・・○
 一部菌に抗菌性あり・・・△
 抗菌性なし・・・×
[結果の説明]
 実施例5、6は、黄色ブドウ球菌、大腸菌の増殖を強く抑制していた。電解液に硫酸を使用した実施例5は、特に優れた抗菌性を示した。リン酸を電解液として用いた実施例7は黄色ブドウ球菌の増殖を抑制できたが、大腸菌に対しては効果が弱かった。
 特に強い効果を示した、硫酸を電解液として用いた供試品について、JIS Z 2801:2010よりも厳しい条件下で、さらに効果の検証を行った。
[実施例8]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、0.3M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例9]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、0.3M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行った。さらに、熱処理(300℃、10分)を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例10]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、6M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行った。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例11]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、8M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例12]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
 電解研磨したアルミニウム板について、12M硫酸中で、直流25V、温度17℃の条件で1分間陽極酸化を行い、陽極酸化被膜付きアルミニウム板を得た。
 得られた陽極酸化被膜付きアルミニウム板をポリエチレン板に貼り付けて、抗菌性積層体(供試品)を製造した。
[実施例13]
 厚さ0.2mmのポリプロピレンフィルム基材(アクリサンデー社製PPクラフトフィルムPF-11)の表面に、スパッタリング法により厚み50nm、純度99.999%のアルミニウム層を成膜し、アルミニウム積層プリプロピレンフィルムを得た。
 得られたアルミニウム積層プリプロピレンフィルムを、ディップコーターを用いて2mm/分の速さで徐々に電解液に浸漬させながら、直流25V、温度17度の条件で陽極酸化し、成膜したアルミニウム層がほぼ完全に陽極酸化された抗菌性積層体(供試品)を製造した。電解液には12M硫酸を用いた。得られた積層体は、アルミニウム層が完全に陽極酸化されており、透光性であった。
[比較例6]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化したアルミニウム板(50mm×50mm)を供試品とした。
[抗菌性試験]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)の内容を一部改変し、実施例8~13、比較例6の供試品について抗菌性試験を行った。具体的には、菌液調整の際、菌体を均一に分散する普通ブイヨン培地の濃度を、JIS規格よりも5倍濃い1/100濃度とした。それ以外は、実施例5~7と同様の作業を行い、生菌数を測定した。測定結果を表2に示した。なお、生菌数は3個の試験片から得られた結果の平均値である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[抗菌性試験の結果の説明]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)よりも細菌が増殖しやすい環境下で行った試験では、実施例8、9は、黄色ブドウ球菌の増殖を抑制できたが、大腸菌に対しては効果が弱かった。一方、実施例10~13は、黄色ブドウ球菌、大腸菌の双方の増殖を強く抑制できた。
 実施例8、9から、熱処理の有無によっては、抗菌性に違いが出なかった。
[XPS分析]
 実施例8~12で用いた試験片の表面について以下の条件で測定を行ない、金属酸化物層の表面における、各原子の存在比率を求めた。
X線光電子分光分析装置:アルバック・ファイ社製Quantum-2000
X線源:Monochromated-Al-Kα線(出力16kV、34W)
取り出し角度:45°
測定エリア:300μm□
 得られた結果を表4に示す。なお、表中の数字はatm%を表している。
[XPS分析の結果の説明]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)よりも細菌が増殖しやすい環境下で行った試験でも効果を示した試験片の表面からは、硫酸電解液のアニオン由来のSが検出された。さらに、陽極酸化に使用する電解液の濃度により、表面の電解液由来のアニオン由来元素を多くできることが明らかになった。また、実施例8、9から、熱処理の有無によっては、表面状態に大きな違いは発生しなかった。また、Cのピーク位置はC-C、C-H結合に由来する285evにシャープなピークが観察され、カルボキシル基に由来する290±1.3evに目立ったピークが観測されなかったために、Cはアニオン由来ではなく、表面に付着した汚れ等に由来するものと判断した。
Figure JPOXMLDOC01-appb-T000004
[透過率の測定]
 実施例13で得られた抗菌性積層体及びその製造に用いたポリプロピレンフィルム基材(ブランクフィルム)について、全光線透過率の測定を行った。測定にはJIS K 7136:2000に準拠したヘイズメーター:スガ試験機社製を用いた。結果を図10に示す。結果から明らかなように、実施例13で得られた抗菌性積層体は可視光の全波長帯の光を透過していた。
 [抗菌性試験]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)の内容を一部改変し、アクリル板、アルミニウム板(アルミ板)及び実施例13の供試品について抗菌性試験を行った。具体的には、菌液調整の際、菌体を均一に分散する普通ブイヨン培地の濃度を、JIS規格よりも10倍濃い1/50濃度、25倍濃い1/20、50倍濃い1/10とし、それぞれの培地濃度で抗菌性試験を実施した。測定結果を表5に示した。なお、生菌数は3個の試験片から得られた結果の平均値である。
Figure JPOXMLDOC01-appb-T000005
[抗菌性試験の結果の説明]
 JIS Z 2801:2010(対応国際規格ISO 22196:2007)よりも大きく細菌が増殖しやすい環境下で行った試験であっても、実施例13の抗菌性積層体は黄色ブドウ球菌、大腸菌の双方の増殖を強く抑制できた。
 本発明の抗菌材及び抗菌性積層体は、薬剤を用いることなく優れた抗菌効果を発揮できることから、医療用部材、食品用包装資材等として有用である。
 10 抗菌材
 12 アルミニウム基材
 14 酸化皮膜
 16 セル
 18 凹部
 20 凸部
 22 尾根部
 24 細孔
 26 細孔発生点
 30 積層体
 32 抗菌材からなる層
 34 他の基材
 110 陽極酸化被膜付きアルミニウム板
 112 アルミニウム基材
 114 酸化皮膜
 124 細孔

Claims (23)

  1.  非金属基板と金属酸化物層とを有する積層体であって、
     前記金属酸化物層が最表面に存在し、かつ、
     前記金属酸化物層がアニオンを含み、
     前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率の合計がXPSで分析したときに1.0atm%以上であることを特徴とする、抗菌性積層体。
  2.  前記アニオンが、SO 2-、PO 3-、C 2-、C 2-、C 2-及びC 3-からなる群から選択される、請求項1に記載の抗菌性積層体。
  3.  最表面に存在する前記金属酸化物層において、
     前記アニオンに由来するイオウ原子、リン原子及び炭素原子の少なくとも1種の原子の存在比率が3.0atm%以上である、請求項1又は2に記載の抗菌性積層体。
  4.  さらに金属層を有する、請求項1~3のいずれか1項に記載の抗菌性積層体。
  5.  前記金属酸化物層及び金属層に含まれる金属が、バルブ金属である、請求項1~4のいずれか1項に記載の抗菌性積層体。
  6.  前記バルブ金属がアルミニウムである、請求項5に記載の抗菌性積層体。
  7.  最表面に存在する前記金属酸化物層において、
     前記バルブ金属の存在比率の合計がXPSで分析したときに10atm%以上であり、かつ、
     非バルブ金属及びハロゲン原子の存在比率の合計がXPSで分析したときに1.0atm%以下である、請求項5又は6に記載の抗菌性積層体。
  8.  前記非バルブ金属が、銀、銅、チタン及びゲルマニウムからなる群から選ばれる少なくとも1種であり、
     前記ハロゲン原子が、ヨウ素原子である、請求項7に記載の抗菌性積層体。
  9.  最表面に存在する前記金属酸化物層において、
     前記アニオンに由来する原子がイオウ原子であり、かつ、
    酸素原子の存在比率がXPSで分析したときに45atm%以上である、請求項1~8のいずれか1項に記載の抗菌性積層体。
  10.  前記金属酸化物層の全光線透過率が30%以上である、請求項1~9のいずれか1項に記載の抗菌性積層体。
  11.  前記金属酸化物層の厚みが50nm以上10μm以下である、請求項1~10のいずれか1項に記載の抗菌性積層体。
  12.  最表面に存在する前記金属酸化物層が、その最表面に複数の凸部を有し、
     隣接する凸部間の平均間隔が、20~600nmである、請求項1~11のいずれか1項に記載の抗菌性積層体。
  13.  前記凸部が、針状突起である、請求項12に記載の抗菌性積層体。
  14.  95質量%以上のバルブ金属を含む金属層の表面を、濃度0.04M以上の多塩基酸を用いて陽極酸化し、前記金属酸化物層を生成する工程を含む、請求項1~13のいずれか1項に記載の抗菌性積層体の製造方法。
  15.  前記多塩基酸の濃度が0.3M以上である、請求項14に記載の抗菌性積層体の製造方法。
  16.  前記バルブ金属がアルミニウムであり、前記多塩基酸が濃度3M以上の硫酸である、請求項14又は15に記載の抗菌性積層体の製造方法。
  17.  前記硫酸の濃度が6M以上である、請求項16に記載の抗菌性積層体の製造方法。
  18.  複数の凸部を表面に有する、金属の酸化皮膜を有し、
     隣接する凸部間の平均間隔が、20~400nmである、抗菌材。
  19.  前記凸部が、針状突起である、請求項18に記載の抗菌材。
  20.  請求項18又は19に記載の抗菌材からなる層を有する、積層体。
  21.  請求項18又は19に記載の抗菌材を有する、医療用部材。
  22.  請求項18又は19に記載の抗菌材を製造する方法であり、金属基材を陽極酸化して細孔を有する酸化皮膜を形成する工程と、細孔の径を拡大させる工程との組み合わせを1回以上行うことによって、複数の凸部を表面に有する酸化皮膜を形成する、抗菌材の製造方法。
  23.  菌の増殖を抑えたい箇所に、請求項18又は19に記載の抗菌材を設ける、抗菌方法。
PCT/JP2019/038349 2018-09-28 2019-09-27 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法 WO2020067500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020549476A JP7204153B2 (ja) 2018-09-28 2019-09-27 抗菌性積層体、及び抗菌性積層体の製造方法
CN201980063922.8A CN112770900A (zh) 2018-09-28 2019-09-27 抗菌材料、层积体、抗菌性层积体、医疗用构件、抗菌材料的制造方法、抗菌性层积体的制造方法和抗菌方法
EP19865633.2A EP3858596A4 (en) 2018-09-28 2019-09-27 ANTIMICROBIAL MATERIAL, LAMINATED BODY, ANTIMICROBIAL LAMINATED BODY, MEDICAL ELEMENT, METHOD FOR MANUFACTURING ANTIMICROBIAL MATERIAL, METHOD FOR MANUFACTURING ANTIMICROBIAL LAMINATOR AND ANTIMICROBIAL LAMINATOR
US17/212,078 US20210206136A1 (en) 2018-09-28 2021-03-25 Antimicrobial material, layered body, antimicrobial layered body, medical member, antimicrobial material production method, antimicrobial layered body production method, and antimicrobial method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-183510 2018-09-28
JP2018183510 2018-09-28
JP2019-145611 2019-08-07
JP2019145611 2019-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/212,078 Continuation US20210206136A1 (en) 2018-09-28 2021-03-25 Antimicrobial material, layered body, antimicrobial layered body, medical member, antimicrobial material production method, antimicrobial layered body production method, and antimicrobial method

Publications (1)

Publication Number Publication Date
WO2020067500A1 true WO2020067500A1 (ja) 2020-04-02

Family

ID=69953129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038349 WO2020067500A1 (ja) 2018-09-28 2019-09-27 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法

Country Status (5)

Country Link
US (1) US20210206136A1 (ja)
EP (1) EP3858596A4 (ja)
JP (1) JP7204153B2 (ja)
CN (1) CN112770900A (ja)
WO (1) WO2020067500A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181986A1 (en) * 2020-03-13 2021-09-16 Ricoh Company, Ltd. Anti-pathogen structure, method for producing anti-pathogen structure, apparatus for producing anti-pathogen structure, and liquid composition
JPWO2021193742A1 (ja) * 2020-03-25 2021-09-30
JPWO2021193843A1 (ja) * 2020-03-27 2021-09-30
JP7097486B1 (ja) 2021-09-07 2022-07-07 ジオマテック株式会社 抗ウイルス性微細構造を備える物品及び抗ウイルス性微細構造の転写方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517319B (zh) * 2022-03-01 2024-03-29 九牧厨卫股份有限公司 一种灰金色杀菌膜、灰金色杀菌产品及其制备方法
CN115970057B (zh) * 2022-09-09 2024-05-28 浙江科惠医疗器械股份有限公司 一种具有花瓣状TiO2纳米孔抗菌涂层的制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064093A (ja) 1998-08-21 2000-02-29 Kyoto Booze:Kk 陽極酸化アルミニウム材の抗菌処理方法
JP2002047596A (ja) 2000-05-22 2002-02-15 Soken:Kk アルミニウム又はその合金の表面処理方法
WO2004067807A1 (ja) 2003-01-30 2004-08-12 Nihon Alumina Kakou Kabushiki Kaisha アルミニウム又はアルミニウム合金の表面に陽極酸化皮膜を形成する方法
JP2006057161A (ja) * 2004-08-23 2006-03-02 Gha:Kk 抗菌部材、抗菌革材及びそれらの製造方法
JP2008061897A (ja) * 2006-09-08 2008-03-21 Saga Univ 生体インプラント
JP2010001507A (ja) 2008-06-18 2010-01-07 Minoru Mitani アルミニウム又はアルミニウム合金の表面処理方法及びその表面処理方法により処理されたアルミニウム又はその合金製品
US20100280601A1 (en) * 2000-09-05 2010-11-04 Rolf Hofer Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
WO2011024216A1 (ja) 2009-08-25 2011-03-03 株式会社プロステック 医療用部品およびその製造方法
JP2014523279A (ja) * 2011-06-03 2014-09-11 シンセス・ゲーエムベーハー 外科用インプラント
JP2015511666A (ja) * 2012-03-02 2015-04-20 シンセス・ゲーエムベーハーSynthes GmbH 陽極酸化チタン装置及び関連方法
WO2016021367A1 (ja) * 2014-08-07 2016-02-11 シャープ株式会社 表面が殺菌作用を備えたフィンを有する熱交換器、殺菌作用を備えた表面を有する金属部材、熱交換器のフィンの表面または金属部材の表面を用いたカビの発生を抑制する方法および殺菌方法、ならびに、金属部材を有する電気湯沸かし器、飲料供給器および弁当箱のふた
JP2016093939A (ja) 2014-11-13 2016-05-26 大日本印刷株式会社 抗菌性物品
JP2016104545A (ja) 2014-12-01 2016-06-09 大日本印刷株式会社 抗菌性物品
JP2016153510A (ja) 2014-11-20 2016-08-25 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
JP2016210164A (ja) 2015-05-01 2016-12-15 大日本印刷株式会社 カビ繁殖抑制部材、及び農業用カビ繁殖抑制物品
JP2016215622A (ja) 2015-05-14 2016-12-22 大日本印刷株式会社 抗菌・抗カビ性物品、及び農業用抗菌・抗カビ性物品
JP2017132916A (ja) 2016-01-28 2017-08-03 大日本印刷株式会社 抗菌性物品
WO2017130029A1 (en) * 2016-01-29 2017-08-03 Nanoti Limited Scratch resistance and corrosion behavior of nanotubular and nano-pitted anodic films on medical grade bulk titanium substrates
JP2018183510A (ja) 2017-04-27 2018-11-22 東芝ライフスタイル株式会社 衣類乾燥機
JP2019145611A (ja) 2018-02-19 2019-08-29 三菱日立パワーシステムズ株式会社 差動トランス式変位計の断線検知システム、差動トランス式変位計、及び断線検知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995987A (en) * 1989-09-21 1991-02-26 Betz Laboratories, Inc. Enhancement of the efficacy of antimicrobials by the addition of anions capable of interfering with microbial electrochemical reactions
JP4651760B2 (ja) * 1998-12-28 2011-03-16 ピジョン株式会社 防菌防黴剤の繊維集合材料への吸着量の低減方法
JP6249592B2 (ja) * 2011-03-17 2017-12-20 住友化学株式会社 銀−共役化合物複合体組成物
JP5472752B2 (ja) * 2011-06-01 2014-04-16 株式会社ハイジェニックス 殺菌用水溶液の製造方法、アルコール殺菌液及びその製造方法
CN107774284B (zh) * 2017-11-10 2020-01-10 纳琦环保科技有限公司 水性纳米抗菌光催化钛氧化物复合溶胶的制备方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064093A (ja) 1998-08-21 2000-02-29 Kyoto Booze:Kk 陽極酸化アルミニウム材の抗菌処理方法
JP2002047596A (ja) 2000-05-22 2002-02-15 Soken:Kk アルミニウム又はその合金の表面処理方法
US20100280601A1 (en) * 2000-09-05 2010-11-04 Rolf Hofer Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
WO2004067807A1 (ja) 2003-01-30 2004-08-12 Nihon Alumina Kakou Kabushiki Kaisha アルミニウム又はアルミニウム合金の表面に陽極酸化皮膜を形成する方法
JP2006057161A (ja) * 2004-08-23 2006-03-02 Gha:Kk 抗菌部材、抗菌革材及びそれらの製造方法
JP2008061897A (ja) * 2006-09-08 2008-03-21 Saga Univ 生体インプラント
JP2010001507A (ja) 2008-06-18 2010-01-07 Minoru Mitani アルミニウム又はアルミニウム合金の表面処理方法及びその表面処理方法により処理されたアルミニウム又はその合金製品
WO2011024216A1 (ja) 2009-08-25 2011-03-03 株式会社プロステック 医療用部品およびその製造方法
JP2014523279A (ja) * 2011-06-03 2014-09-11 シンセス・ゲーエムベーハー 外科用インプラント
JP2015511666A (ja) * 2012-03-02 2015-04-20 シンセス・ゲーエムベーハーSynthes GmbH 陽極酸化チタン装置及び関連方法
WO2016021367A1 (ja) * 2014-08-07 2016-02-11 シャープ株式会社 表面が殺菌作用を備えたフィンを有する熱交換器、殺菌作用を備えた表面を有する金属部材、熱交換器のフィンの表面または金属部材の表面を用いたカビの発生を抑制する方法および殺菌方法、ならびに、金属部材を有する電気湯沸かし器、飲料供給器および弁当箱のふた
JP2016093939A (ja) 2014-11-13 2016-05-26 大日本印刷株式会社 抗菌性物品
JP2016153510A (ja) 2014-11-20 2016-08-25 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
JP2016104545A (ja) 2014-12-01 2016-06-09 大日本印刷株式会社 抗菌性物品
JP2016210164A (ja) 2015-05-01 2016-12-15 大日本印刷株式会社 カビ繁殖抑制部材、及び農業用カビ繁殖抑制物品
JP2016215622A (ja) 2015-05-14 2016-12-22 大日本印刷株式会社 抗菌・抗カビ性物品、及び農業用抗菌・抗カビ性物品
JP2017132916A (ja) 2016-01-28 2017-08-03 大日本印刷株式会社 抗菌性物品
WO2017130029A1 (en) * 2016-01-29 2017-08-03 Nanoti Limited Scratch resistance and corrosion behavior of nanotubular and nano-pitted anodic films on medical grade bulk titanium substrates
JP2018183510A (ja) 2017-04-27 2018-11-22 東芝ライフスタイル株式会社 衣類乾燥機
JP2019145611A (ja) 2018-02-19 2019-08-29 三菱日立パワーシステムズ株式会社 差動トランス式変位計の断線検知システム、差動トランス式変位計、及び断線検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3858596A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181986A1 (en) * 2020-03-13 2021-09-16 Ricoh Company, Ltd. Anti-pathogen structure, method for producing anti-pathogen structure, apparatus for producing anti-pathogen structure, and liquid composition
JPWO2021193742A1 (ja) * 2020-03-25 2021-09-30
WO2021193742A1 (ja) * 2020-03-25 2021-09-30 本田技研工業株式会社 機能性材料及びその製造方法
JPWO2021193843A1 (ja) * 2020-03-27 2021-09-30
WO2021193843A1 (ja) * 2020-03-27 2021-09-30 本田技研工業株式会社 機能性材料及びその製造方法
JP7308353B2 (ja) 2020-03-27 2023-07-13 本田技研工業株式会社 機能性材料及びその製造方法
JP7097486B1 (ja) 2021-09-07 2022-07-07 ジオマテック株式会社 抗ウイルス性微細構造を備える物品及び抗ウイルス性微細構造の転写方法
JP2023038822A (ja) * 2021-09-07 2023-03-17 ジオマテック株式会社 抗ウイルス性微細構造を備える物品及び抗ウイルス性微細構造の転写方法

Also Published As

Publication number Publication date
JP7204153B2 (ja) 2023-01-16
EP3858596A1 (en) 2021-08-04
CN112770900A (zh) 2021-05-07
EP3858596A4 (en) 2021-11-24
JPWO2020067500A1 (ja) 2021-09-02
US20210206136A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
WO2020067500A1 (ja) 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法
EP2371398B1 (en) Medical supplies and method of producing the same
Zhao et al. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys
Nikoomanzari et al. Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements
CN102497892B (zh) 采用纳米银进行的骨接合
Sowa et al. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
Ionita et al. Modifying the TiAlZr biomaterial surface with coating, for a better anticorrosive and antibacterial performance
WO2022262600A1 (zh) 促细胞生长和抑细菌粘附的医用材料及加工方法
Jain et al. Photofunctionalization of anodized titanium surfaces using UVA or UVC light and its effects against Streptococcus sanguinis
JP5692729B2 (ja) 金属処理
Yildiz et al. Characterization and investigation of biological properties of silver nanoparticle-doped hydroxyapatite-based surfaces on zirconium
Erdogan et al. Anodized nanostructured 316L stainless steel enhances osteoblast functions and exhibits anti-fouling properties
Ferreira et al. Nanotexturization of Ti-based implants in simulated body fluid: Influence of synthesis parameters on coating properties and kinetics of drug release
WO2018179358A1 (ja) 抗菌性生体インプラントの製造方法
WO2018179357A1 (ja) 抗菌性生体インプラント
Zhao Nanosurface modification of Ti64 implant by anodic fluorine-doped alumina/titania for orthopedic application
JP2023140163A (ja) 抗菌性を有する金属酸化物粒子及びその製造方法、抗菌材及びその製造方法、塗料、成形体、繊維、並びに抗菌方法
JP4587302B2 (ja) 医家向け抗菌製品
EP3816327B1 (en) The formation method of porous antibacterial coatings on titanium and titanium alloys surface
JP2023003168A (ja) 抗菌シート及びその製造方法
Jastrzębska Can titanium anodization lead to the formation of antimicrobial surfaces?
Benčina et al. Toward novel antibacterial surfaces used for medical implants
Stoian et al. Complex Bioactive Chitosan–Bioglass Coatings on a New Advanced TiTaZrAg Medium–High-Entropy Alloy. Coatings 2023, 13, 971
JP2023072630A (ja) 培養器具及び培養器具の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549476

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001743

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865633

Country of ref document: EP

Effective date: 20210428