WO2020042577A1 - 一种锂离子电池硅基负极材料及其制备方法和电池 - Google Patents

一种锂离子电池硅基负极材料及其制备方法和电池 Download PDF

Info

Publication number
WO2020042577A1
WO2020042577A1 PCT/CN2019/077119 CN2019077119W WO2020042577A1 WO 2020042577 A1 WO2020042577 A1 WO 2020042577A1 CN 2019077119 W CN2019077119 W CN 2019077119W WO 2020042577 A1 WO2020042577 A1 WO 2020042577A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
ion battery
lithium
negative electrode
carbon nanotubes
Prior art date
Application number
PCT/CN2019/077119
Other languages
English (en)
French (fr)
Inventor
罗飞
刘柏男
褚赓
陆浩
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Priority to JP2021510930A priority Critical patent/JP7372690B2/ja
Priority to US17/250,688 priority patent/US20220131154A1/en
Priority to EP19855387.7A priority patent/EP3846249A4/en
Priority to KR1020217005342A priority patent/KR102629191B1/ko
Publication of WO2020042577A1 publication Critical patent/WO2020042577A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium battery materials, in particular to a silicon-based negative electrode material for a lithium ion battery, a preparation method thereof, and a battery.
  • Lithium-ion battery anode materials have gradually evolved from the initial coke to today's natural graphite, artificial graphite, etc.
  • the technology of carbon-based anodes has been very mature, however, the theoretical specific capacity of 372mAh / g has been unable to meet people's increasing energy density. Requirements, the development of new anode materials has become a top priority.
  • the silicon-based negative electrode material with a higher capacity is expected to be used in the next generation of high-energy density lithium-ion batteries. It has basically become the industry consensus, but the problems of volume expansion and unstable interface reactions during the cycle have not been completely resolved.
  • the development direction of silicon-based anode materials includes nano-silicon carbon composite materials, silicon oxide materials, modified silicon oxide materials, amorphous silicon alloys, etc. In each development direction, carbon coating is a necessary process step. A continuous carbon film formed on the surface of the material can improve the conductivity of the silicon-based material and suppress the side reactions between the material and the electrolyte.
  • the object of the present invention is to provide a silicon-based anode material for a lithium ion battery, a method for preparing the same and a battery.
  • the provided silicon-based anode material has the characteristics of stable structure, good rate performance, and excellent cycle performance.
  • an embodiment of the present invention provides a silicon-based negative electrode material for a lithium ion battery.
  • the silicon-based negative electrode material is composed of 90% to 99.9% by weight of silicon-based materials and Composite of carbon nanotubes and / or carbon nanofibers;
  • the silicon-based material is a powder material containing electrochemically active silicon, including one or a mixture of one or more of a nano-silicon-carbon composite material, a silicon oxide material, a modified silicon oxide material, and an amorphous silicon alloy; Electrochemically active silicon accounts for 0.1 wt% to 90 wt% of the silicon-based material;
  • the carbon nanotubes include single-walled carbon nanotubes and / or multi-walled carbon nanotubes; the carbon nanotubes and / or carbon nanofibers have a diameter of 0.4-50 nm and a length of 10 nm-50 ⁇ m;
  • the Raman spectrum of the silicon-based anode material of the lithium ion battery has an amorphous bulge at 475 ⁇ 10 cm -1 and / or a crystalline peak at 510 ⁇ 10 cm -1 ;
  • the Raman pattern of the silicon-based anode material of the lithium-ion battery has a radial breathing mode RBM in the range of 100-400 cm -1 ;
  • the X-ray diffraction XRD pattern of the silicon-based anode material of the lithium ion battery has a diffraction peak at 28.4 ° ⁇ 0.2 °.
  • the single-walled carbon nanotubes have a diameter of 0.4 nm-10 nm and a length of 10 nm-20 ⁇ m;
  • the multi-walled carbon nanotubes have a diameter of 0.4 nm-50 nm and a length of 10 nm-20 ⁇ m;
  • the carbon nanofibers have a diameter of 0.4 nm-50 nm and a length of 10 nm-20 ⁇ m.
  • the average particle diameter of the silicon-based negative electrode material of the lithium ion battery is between 50 nm and 40 m.
  • an average particle diameter of the silicon-based negative electrode material of the lithium ion battery is between 1 ⁇ m and 20 ⁇ m.
  • an embodiment of the present invention provides a method for preparing a silicon-based negative electrode material for a lithium ion battery according to the first aspect, including:
  • a silicon-based material is selected according to a desired mass ratio, and a catalyst is supported on the surface of the silicon-based material by a solid phase method or a liquid phase method to obtain a mixed material; wherein the silicon-based material is a powder material containing electrochemically active silicon, Including nano silicon carbon composite material, silicon oxide material, modified silicon oxide material and amorphous silicon alloy, or a mixture of one or more of them; the electrochemically active silicon accounts for 0.1 wt% to 90 wt of the silicon-based material %;
  • the catalyst includes one or a combination of a metal element, an inorganic compound containing the metal element, and an organic compound containing the metal element; the metal element includes iron, cobalt, nickel, copper, zinc Or more of aluminum, magnesium, lithium, gold, silver, ruthenium and platinum;
  • the mixed material in a high-temperature reaction furnace, raise the temperature to 600 ° C-1200 ° C under a protective atmosphere, and pass in a carbon source gas in accordance with the required ratio, keep it for 0.5 hours to 8 hours, and then stop introducing the carbon source gas and lower the temperature.
  • the carbon source gas includes one or more of acetylene, olefin, alkane, ketone, alcohol or aromatic gas.
  • the solid-phase method specifically includes: sufficiently mixing the silicon-based material and the catalyst through a mixer, a ball mill, or a fusion machine;
  • the liquid phase method specifically includes: fully mixing the silicon-based material with a solution containing the catalyst and drying; wherein the solution includes one or more types of water, alcohols, ketones, and amides. .
  • a mass ratio of the silicon-based material to the catalyst is 90: 10-99.9999: 0.0001.
  • the protective atmosphere is one or more of nitrogen, argon, hydrogen, helium, and neon;
  • the volume ratio of the protective atmosphere to the carbon source gas is 0.1: 9.9-9.9: 0.1.
  • an embodiment of the present invention provides a negative electrode sheet of a silicon-based negative electrode material for a lithium ion battery.
  • an embodiment of the present invention provides a lithium battery of a silicon-based negative electrode material for a lithium ion battery.
  • the lithium-ion battery silicon-based negative electrode material of the present invention covers the silicon-based material containing electrochemically active silicon by in-situ growth of carbon nanotubes or carbon nanofibers.
  • the anode material has stable structural performance and can greatly improve the material. Cycle performance.
  • the preparation method of the silicon-based negative electrode material is simple and efficient, and is easy for large-scale production.
  • the lithium ion battery containing the material as a negative electrode has the characteristics of high energy density, high cycle performance, and high rate performance.
  • FIG. 1 is a flowchart of a method for preparing a silicon-based anode material for a lithium ion battery according to an embodiment of the present invention
  • Example 2 is a scanning electron microscope (SEM) image of the silicon-based anode material of the lithium ion battery obtained in Example 1 of the present invention
  • Example 3 is an X-ray diffraction (XRD) pattern of the silicon-based anode material of the lithium ion battery obtained in Example 1 of the present invention
  • Example 4 is a partial enlarged view of a Raman spectrum of a silicon-based anode material of a lithium ion battery obtained in Example 1 of the present invention
  • Example 5 is a partial enlarged view of a Raman spectrum of a silicon-based anode material of a lithium ion battery obtained in Example 1 of the present invention
  • Example 6 is a cycle retention diagram of a silicon-based anode material of a lithium ion battery obtained in Example 1 of the present invention.
  • Example 7 is a partially enlarged view of a Raman spectrum of a silicon-based anode material of a lithium ion battery obtained in Example 2 of the present invention.
  • Example 8 is a SEM image of a silicon-based anode material for a lithium ion battery obtained in Example 2 of the present invention.
  • Example 9 is a SEM image of a silicon-based negative electrode material of a lithium ion battery obtained in Example 3 of the present invention.
  • Example 10 is a SEM image of a silicon-based anode material for a lithium ion battery obtained in Example 4 of the present invention.
  • Example 11 is a SEM image of a silicon-based anode material of a lithium ion battery obtained in Comparative Example 1;
  • FIG. 12 is a cycle diagram of a silicon-based anode material for a lithium ion battery obtained in Comparative Example 1.
  • FIG. 12 is a cycle diagram of a silicon-based anode material for a lithium ion battery obtained in Comparative Example 1.
  • An embodiment of the present invention provides a silicon-based anode material for a lithium-ion battery.
  • the silicon-based anode material comprises 90 wt% -99.9wt% silicon-based material and 0.1 wt% -10 wt% of carbon nanotubes grown in situ on the surface of the silicon-based material and / or Carbon nanofibers are composited; their average particle size is between 50 nanometers and 40 micrometers, preferably between 1 micrometer and 20 micrometers.
  • Silicon-based materials are powder materials containing electrochemically active silicon, including one or a combination of nano-silicon-carbon composite materials, silicon oxide materials, modified silicon oxide materials, and amorphous silicon alloys; electrochemically active silicon 0.1% to 90% by weight of silicon-based materials;
  • the carbon nanotubes and carbon nanofibers have a diameter of 0.4 nm-50 nm and a length of 10 nm-50 ⁇ m.
  • the carbon nanotubes include single-walled carbon nanotubes and / or multi-walled carbon nanotubes; the diameter of the single-walled carbon nanotubes is preferably 0.4 nm-10 nm, and the length is preferably 10 nm-20 ⁇ m; the multi-walled carbon nanotubes and carbon nanofibers The diameter is preferably 0.4 nm to 50 nm, and the length is preferably 10 nm to 20 ⁇ m.
  • the Raman spectrum of silicon-based anode materials for lithium ion batteries is around 475cm -1 , with a typical value in the range of 475 ⁇ 10cm -1 , and amorphous bulges are visible, and / or around 510cm -1 , with a typical value of 510 ⁇ 10cm In the range of -1 , crystalline peaks are visible; when the single-walled carbon nanotubes are included in the silicon-based anode material of the lithium ion battery, the Raman spectrum of the silicon-based anode material of the lithium ion battery is in the range of 100-400 cm -1 Radial Breathing Mode (RBM) exists.
  • RBM Radial Breathing Mode
  • the X-ray diffraction (XRD) pattern of a silicon-based anode material for a lithium-ion battery is around 28.4 °, and a typical value is in a range of 28.4 ° ⁇ 0.2 °, and a diffraction peak is visible.
  • An embodiment of the present invention provides a method for preparing the foregoing silicon-based anode material for a lithium ion battery. As shown in the flowchart in FIG. 1, the steps include:
  • Step 110 Select a silicon-based material according to a required mass ratio, and load a catalyst on the surface of the silicon-based material by a solid phase method or a liquid phase method to obtain a mixed material;
  • silicon-based materials are powder materials containing electrochemically active silicon, including one or a combination of nano-silicon-carbon composite materials, silicon oxide materials, modified silicon oxide materials, and amorphous silicon alloys; Chemically active silicon accounts for 0.1% to 90% by weight of silicon-based materials;
  • the catalyst includes one or more of metal elements such as iron, cobalt, nickel, copper, zinc, aluminum, magnesium, lithium, gold, silver, ruthenium, and platinum, inorganic compounds containing the above metal elements, and organic compounds containing the above metal elements. Kind of mix.
  • the solid phase method refers to the complete mixing of silicon-based materials and catalysts in high-speed VC machines, cone mixers, ball mills, fusion machines and other equipment.
  • the liquid phase method refers to mixing and drying of a silicon-based material and a solution containing a catalyst; the solution includes one or more of water, alcohols, ketones, and amides.
  • the mass ratio of the silicon-based material to the catalyst is 90: 10-99.9999: 0.0001.
  • step 120 the mixed material is placed in a high-temperature reaction furnace, and the temperature is raised to 600-1200 ° C under a protective atmosphere, and a carbon source gas is passed in according to a required ratio, and the temperature is maintained for 0.5-8 hours, and then the carbon source gas is stopped and the temperature is decreased.
  • the carbon source gas includes one or a mixture of acetylenes such as acetylene, olefins such as ethylene, alkanes such as methane, ketones such as acetone, alcohols such as ethanol, and aromatic gases such as toluene.
  • acetylenes such as acetylene
  • olefins such as ethylene
  • alkanes such as methane
  • ketones such as acetone
  • alcohols such as ethanol
  • aromatic gases such as toluene.
  • the protective atmosphere is one or more of nitrogen, argon, hydrogen, helium, and neon;
  • the volume ratio of the protective atmosphere to the carbon source gas is 0.1: 9.9-9.9: 0.1.
  • the silicon-based negative electrode material of the lithium ion battery of the present invention covers the silicon-based material containing electrochemically active silicon by carbon nanotubes or carbon nanofibers grown in situ, and uses the structure of carbon nanotubes or carbon nanofibers to make After the silicon-based material expands and contracts, carbon nanotubes or carbon nanofibers are still connected to each other, thereby ensuring the connection of the conductive network.
  • the negative electrode material has stable structural performance and can greatly improve the cycle performance of the material.
  • the preparation method of the silicon-based negative electrode material is simple and efficient, and is easy for large-scale production.
  • the lithium ion battery containing the material as a negative electrode has the characteristics of high energy density, high cycle performance, and high rate performance.
  • the silicon-based negative electrode material of the lithium ion battery and the preparation method thereof of the present invention have been described above, and are further detailed below through some specific examples.
  • the commercial silicon oxide powder is thoroughly mixed with an aqueous solution of ferric chloride, and then spray-dried to obtain a catalyst-supported silicon oxide powder; wherein the weight fraction of the ferric chloride is five ten thousandths;
  • the SEM experiment of the present invention is performed on a S-4800 scanning electron microscope, and the following examples are the same.
  • FIG. 2 The SEM image of the silicon oxide composite material with the carbon nanotubes grown in situ obtained in this example is shown in FIG. 2. It can be seen that the carbon nanotubes grow in situ on the surface of the material.
  • the XRD experiment in the present invention is performed on a Bruke D8 Advance x-ray diffractometer, using Cu-K ⁇ radiation, and a scanning 2 ⁇ angle range of 10-90 degrees.
  • the following embodiments are the same.
  • the XRD pattern of the material obtained in this example is shown in Fig. 3, and there are characteristic peaks of silicon at 28.5 degrees.
  • the Raman experiment described in the present invention is performed on a ThermoFisher DXR laser micro Raman spectrometer, and the collection range is 100-3000 cm -1 , and the following examples are the same.
  • FIGS. 4 and 5 The Raman spectra of the materials obtained in this example are shown in FIGS. 4 and 5. It can be seen from FIG. 4 that there is a characteristic peak of silicon at 512 cm -1 degree; and it can be seen from FIG. 5 that there is an RBM peak within the range of 100-400 cm -1 .
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial silicon dioxide powder and nano-iron oxide are thoroughly mixed in a high-speed VC machine to obtain a catalyst-supported silicon dioxide powder; wherein the weight fraction of the nano-iron oxide is five ten thousandths;
  • the Raman spectrum of the material obtained in this example is shown in FIG. 7. It can be seen from FIG. 7 that there is a bulge of amorphous silicon at 475 cm -1 degree;
  • the SEM image of the silicon oxide composite material with the carbon nanotubes grown in situ obtained in this example is shown in FIG. 8, and it can be seen that there are carbon nanotubes grown in situ on the surface of the material.
  • the material obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1.
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial silicon dioxide powder and nano-metal copper are fully mixed in a high-speed VC machine to obtain a catalyst-supported silicon oxide powder; wherein the weight fraction of the nano-metal copper is five ten thousandths;
  • the SEM image of the silicon oxide composite material with the carbon nanotubes grown in situ obtained in this example is shown in FIG. 9. It can be seen that the carbon nanotubes grown in situ exist on the surface of the material.
  • the material obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1.
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial nano-silicon-carbon material powder is sufficiently mixed with an aqueous solution of nickel nitrate, and then spray-dried to obtain a catalyst-supported nano-silicon-carbon material powder; wherein the weight fraction of nickel nitrate is 5 / 10,000;
  • the catalyst-supported nano-silicon-carbon material powder was placed in a high-temperature rotary furnace, and the temperature was raised to 800 ° C. in an Ar atmosphere, and an acetylene gas equivalent to argon gas was passed in, kept for 4 hours, and then stopped.
  • the nano-silicon-carbon composite material in which carbon nanotubes were grown in situ was cooled down.
  • the SEM image of the nano-silicon-carbon composite material with the carbon nanotubes grown in situ obtained in this example is shown in FIG. 10, and it can be seen that there are carbon nanotubes grown in situ on the surface of the material.
  • the nano-silicon-carbon composite material in which carbon nanotubes were grown in situ obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1. .
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial nano-silicon-carbon material powder and nano-nickel oxide are thoroughly mixed in a high-speed VC machine to obtain a catalyst-supported nano-silicon-carbon material powder; wherein the weight fraction of the nano-nickel oxide is one thousandth;
  • the nano-silicon-carbon composite material in which carbon nanotubes were grown in situ obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1. .
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial nano-silicon-carbon material powder is mixed with a mixed alcohol solution of ferric chloride and aluminum chloride in a high-speed VC machine to obtain a catalyst-supported nano-silicon-carbon material powder; the weight fraction of the nano-nickel oxide is thousands One part
  • the nano-silicon-carbon composite material in which carbon nanotubes were grown in situ obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1. .
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the in-situ-grown carbon nanotube-modified modified silicon oxide composite material and graphite were mixed at a ratio of 450 mAh / g in the composite material, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in the table. 1 in.
  • This embodiment provides a specific method for preparing a silicon-based anode material, including:
  • the commercial silicon-based alloy powder is thoroughly mixed with an aqueous solution of ferric chloride, and then spray-dried to obtain a modified silicon oxide powder carrying a catalyst; wherein the weight fraction of ferric chloride is five ten thousandths;
  • the material obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1.
  • This comparative example provides a specific method for preparing a silicon-based anode material in comparison with Example 1, including:
  • the SEM image of the silicon oxide composite material obtained in this example is shown in Fig. 11, and it can be seen that the surface of the material is covered with a continuous carbon film.
  • the material obtained in this example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1. The cycle performance is shown in FIG. 12. It can be seen that the cycle performance of the material prepared in Comparative Example 1 is much lower than the cycle performance obtained in Example 1.
  • This comparative example provides a specific method for preparing a silicon-based anode material in comparison with Example 5, including:
  • the material obtained in this comparative example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1.
  • This comparative example provides a specific method for preparing a silicon-based anode material compared with Example 7, including:
  • the material obtained in this comparative example was mixed with graphite at a ratio of 450 mAh / g, and the electrochemical performance was evaluated according to the method described in Example 1. The data are recorded in Table 1.
  • This comparative example provides a specific method for preparing a silicon-based anode material in comparison with Example 8, including:

Abstract

本发明公开了一种锂离子电池硅基负极材料及其制备方法和电池,所锂离子电池硅基负极材料由90wt%-99.9wt%的硅基材料与0.1wt%-10wt%的在硅基材料表面原位生长的碳纳米管和/或碳纳米纤维复合而成;硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;电化学活性硅占硅基材料的0.1wt%-90wt%;碳纳米管包括单壁碳纳米管和/或多壁碳纳米管;碳纳米管和/或碳纳米纤维的直径为0.4-50nm,长度为10nm-50μm;锂离子电池硅基负极材料的拉曼图谱中在475±10cm -1具有非晶鼓包,和/或在510±10cm -1具有晶态峰;其中包括单壁碳纳米管时,在100-400cm -1范围内存在RBM;锂离子电池硅基负极材料的XRD图谱中在28.4°±0.2°具有衍射峰。

Description

一种锂离子电池硅基负极材料及其制备方法和电池
本申请要求于2018年08月27日提交中国专利局、申请号为201810978803.2、发明名称为“一种锂离子电池硅基负极材料及其制备方法和电池”的中国专利申请的优先权。
技术领域
本发明涉及锂电池材料技术领域,尤其涉及一种锂离子电池硅基负极材料及其制备方法和电池。
背景技术
锂离子电池自上世纪90年代首次面世以来,逐步占据了以手机,电脑等为代表的便携式消费电子市场,在大规模储能,电动汽车领域也有广阔的应用前景。锂离子电池负极材料从最开始的焦炭类逐渐演变到如今的天然石墨,人造石墨等,碳基负极的技术已经非常成熟,然而,372mAh/g的理论比容量已经不能满足人们对能量密度日益增长的要求,开发新型负极材料已成重中之重。
容量更高的硅基负极材料有望应用于下一代高能量密度锂离子电池已基本成为行业的共识,但循环过程中体积膨胀和不稳定的界面反应等问题还未完全解决。目前硅基负极材料的开发方向包括纳米硅碳复合材料,氧化亚硅材料,改性氧化亚硅材料,无定型硅合金等,在各个开发方向中,碳包覆都是必要的工艺步骤,在材料表面形成的连续碳膜可以提高硅基材料的导电性,抑制材料与电解液之间的副反应。
然而,有文献(Effect of Volume Expansion on SEI Covering Carbon-Coated Nano-Si/SiO Composite Journal of The Electrochemical Society,160(10))报道,普通包覆形成的碳膜在充放电循环中会明显开裂, 导致材料的电化学接触失效,循环急剧衰减。
因此,开发一种循环稳定、导电性好的硅基负极材料是锂离子电池领域的技术难题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种锂离子电池硅基负极材料及其制备方法和电池,所提供的硅基负极材料具有结构稳定、倍率性能好、循环性能优异的特点。
第一方面,本发明实施例提供了一种锂离子电池硅基负极材料,由90wt%-99.9wt%的硅基材料与0.1wt%-10wt%的在所述硅基材料表面原位生长的碳纳米管和/或碳纳米纤维复合而成;
所述硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;所述电化学活性硅占所述硅基材料的0.1wt%-90wt%;
所述碳纳米管包括单壁碳纳米管和/或多壁碳纳米管;所述碳纳米管和/或碳纳米纤维的直径为0.4-50nm,长度为10nm-50μm;
所述锂离子电池硅基负极材料的拉曼图谱中在475±10cm -1具有非晶鼓包,和/或在510±10cm -1具有晶态峰;当所述锂离子电池硅基负极材料中包括单壁碳纳米管时,所述锂离子电池硅基负极材料的拉曼图谱中在100-400cm -1范围内存在径向呼吸模RBM;
所述锂离子电池硅基负极材料的X射线衍射XRD图谱中在28.4°±0.2°具有衍射峰。
优选的,所述单壁碳纳米管的直径为0.4nm-10nm,长度为10nm-20μm;
所述多壁碳纳米管的直径为0.4nm-50nm,长度为10nm-20μm;
所述碳纳米纤维的直径为0.4nm-50nm,长度为10nm-20μm。
优选的,所述锂离子电池硅基负极材料的平均粒径在50nm-40μm之 间。
进一步优选的,所述锂离子电池硅基负极材料的平均粒径在1μm-20μm之间。
第二方面,本发明实施例提供了上述第一方面所述的锂离子电池硅基负极材料的制备方法,包括:
按所需质量比选取硅基材料,通过固相法或液相法在所述硅基材料表面负载催化剂,得到混合材料;其中,所述硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;所述电化学活性硅占所述硅基材料的0.1wt%-90wt%;所述催化剂包括金属单质、含所述金属单质的无机化合物、含所述金属单质的有机化合物中的一种或者几种的混合;所述金属单质包括铁、钴、镍、铜、锌、铝、镁、锂、金、银、钌和铂中的一种或多种;
将所述混合材料置于高温反应炉内,在保护气氛下升温至600℃-1200℃,按照所需比例通入碳源气体,保温0.5小时-8小时,然后停止通入碳源气体并降温,得到所述硅基负极材料;其中,所述碳源气体包括炔类、烯类、烷类、酮类、醇类或芳香类气体中的一种或者几种的混合。
优选的,所述固相法具体包括:将所述硅基材料与所述催化剂通过混合机、球磨机或融合机进行充分混合;
所述液相法具体包括:将所述硅基材料与含有所述催化剂的溶液充分混合后干燥;其中,所述溶液包括水、醇类、酮类、酰胺类的一种或几种的混合。
进一步优选的,所述硅基材料与所述催化剂的质量比为90:10-99.9999:0.0001。
优选的,所述保护气氛为氮气、氩气、氢气、氦气、氖气中的一种或者几种的混合;
所述保护气氛与碳源气体的体积比为0.1:9.9-9.9:0.1。
第三方面,本发明实施例提供了一种锂离子电池硅基负极材料的负极极片。
第四方面,本发明实施例提供了一种锂离子电池硅基负极材料的锂电池。
本发明的锂离子电池硅基负极材料,通过原位生长的碳纳米管或碳纳米纤维对包含有电化学活性硅的硅基材料进行的包覆,该负极材料结构性能稳定,能够大幅提高材料的循环性能。该硅基负极材料的制备方法简单高效,易于大规模生产。包含有该材料作为负极极片的锂离子电池具有高能量密度、高循环性能、高倍率性能的特点。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的锂离子电池硅基负极材料的制备方法流程图;
图2为本发明实施例1中所得锂离子电池硅基负极材料的扫描电子显微镜(SEM)图;
图3为本发明实施例1所得锂离子电池硅基负极材料的X射线衍射(XRD)图;
图4为本发明实施例1所得锂离子电池硅基负极材料的拉曼图谱的局部放大图;
图5为本发明实施例1所得锂离子电池硅基负极材料的拉曼图谱的局部放大图;
图6为本发明实施例1所得锂离子电池硅基负极材料的循环保持图;
图7为本发明实施例2所得锂离子电池硅基负极材料的拉曼图谱的局部放大图;
图8为本发明实施例2所得锂离子电池硅基负极材料的SEM图;
图9为本发明实施例3所得锂离子电池硅基负极材料的SEM图;
图10为本发明实施例4所得锂离子电池硅基负极材料的SEM图;
图11为对比例1所得锂离子电池硅基负极材料的SEM图;
图12为对比例1所得锂离子电池硅基负极材料的循环图。
具体实施方式
下面结合实施例,对本发明进行进一步的详细说明,但并不意于限制本发明的保护范围。
本发明实施例提供了一种锂离子电池硅基负极材料,由90wt%-99.9wt%的硅基材料与0.1wt%-10wt%的在硅基材料表面原位生长的碳纳米管和/或碳纳米纤维复合而成;其平均粒径在50纳米-40微米之间,优选在1微米-20微米之间。
硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;电化学活性硅占硅基材料的0.1wt%-90wt%;
碳纳米管及碳纳米纤维的直径为0.4nm-50nm,长度为10nm-50μm。
其中,碳纳米管包括单壁碳纳米管和/或多壁碳纳米管;单壁碳纳米管的直径优选为0.4nm-10nm,长度优选为10nm-20μm;多壁碳纳米管及碳纳米纤维的直径优选为0.4nm-50nm,长度优选为10nm-20μm。
锂离子电池硅基负极材料的拉曼图谱中在475cm -1附近,典型值为475±10cm -1范围内,可见非晶鼓包,和/或在510cm -1附近,典型值为在510±10cm -1范围内,可见晶态峰;当所述锂离子电池硅基负极材料中包括单壁碳纳米管时,所述锂离子电池硅基负极材料的拉曼图谱中在100-400cm -1范围内存在径向呼吸模(Radial Breathing Mode,RBM)。
锂离子电池硅基负极材料的X射线衍射(XRD)图谱中在28.4°附近, 典型值为28.4°±0.2°范围内,可见衍射峰。
本发明实施例提供了上述锂离子电池硅基负极材料的制备方法,如图1所示的流程图,其步骤包括:
步骤110,按所需质量比选取硅基材料,通过固相法或液相法在硅基材料表面负载催化剂,得到混合材料;
其中,硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金等的一种或者几种的混合;电化学活性硅占硅基材料的0.1wt%-90wt%;
催化剂包括铁、钴、镍、铜、锌、铝、镁、锂、金、银、钌和铂等金属单质、含上述金属单质的无机化合物、含上述金属单质的有机化合物中的一种或者几种的混合。
固相法是指通过将硅基材料与催化剂在高速VC机、锥形混合机、球磨机、融合机等设备进行充分混合完成。
液相法是指通过将硅基材料与含有催化剂的溶液充分混合后干燥完成;溶液包括水,醇类,酮类,酰胺类中的一种或几种的混合。
在上述混合中,硅基材料与催化剂的质量比为90:10-99.9999:0.0001。
步骤120,将混合材料置于高温反应炉内,在保护气氛下升温至600-1200℃,按照所需比例通入碳源气体,保温0.5-8小时,然后停止通入碳源气体并降温,得到所述硅基负极材料;
其中,碳源气体包括乙炔等炔类、乙烯等烯类、甲烷等烷类、丙酮等酮类、乙醇等醇类、甲苯等芳香类气体中的一种或者几种的混合。
保护气氛为氮气、氩气、氢气、氦气、氖气中的一种或者几种的混合;
保护气氛与碳源气体的体积比为0.1:9.9-9.9:0.1。
本发明的锂离子电池硅基负极材料,通过原位生长的碳纳米管或碳纳米纤维对包含有电化学活性硅的硅基材料进行的包覆,利用碳纳米管或碳 纳米纤维的结构使得硅基材料膨胀收缩后仍有碳纳米管或碳纳米纤维相互连接,从而保证导电网络的连通。该负极材料结构性能稳定,能够大幅提高材料的循环性能。该硅基负极材料的制备方法简单高效,易于大规模生产。包含有该材料作为负极极片的锂离子电池具有高能量密度、高循环性能、高倍率性能的特点。
以上对本发明所提出的锂离子电池硅基负极材料及其制备方法进行了说明,下面通过一些具体的实施例,对其进行进一步详述。
实施例1
本实施例提供了一种具体的锂离子电池硅基负极材料的制备方法:
第一、将商品氧化亚硅粉末与氯化铁的水溶液充分混合后,喷雾干燥得到负载催化剂的氧化亚硅粉末;其中氯化铁的重量分数为万分之五;
第二、将上述负载催化剂的氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到原位生长碳纳米管的氧化亚硅复合材料。
本发明的SEM实验在S-4800型扫描电镜上进行,以下各实施例均相同。
本实施例所得的原位生长碳纳米管的氧化亚硅复合材料的SEM图像见图2,可见材料表面存在原位生长的碳纳米管。
本发明所述XRD实验在Bruke D8 Advance型x射线衍射仪上进行,使用Cu-Kα辐射,扫描2θ角度范围为10-90度,以下各实施例均相同。
本实施例所得材料的XRD图谱见图3,在28.5度有硅的特征峰。
本发明所述的拉曼实验在ThermoFisher DXR激光显微拉曼光谱仪上进行,收集范围为100-3000cm -1,以下各实施例均相同。
本实施例所得材料的拉曼图谱见图4和图5。由图4可以看到,在512cm -1度有硅的特征峰;由图5可以看到,在100-400cm -1范围内存在RBM峰。
将上述原位生长碳纳米管的氧化亚硅复合材料与商品石墨按照1:9的比例复合为450mAh/g的复合材料,与钴酸锂组装为全电池,在1C/1C下循环,评估其循环性能,如图6所示可见本实施例得到材料的循环性能良好。同时,将数据记录在表1中,以便于进行对比。
实施例2
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品氧化亚硅粉末与纳米氧化铁在高速VC机中充分混合后,得到负载催化剂的氧化亚硅粉末;其中纳米氧化铁的重量分数为万分之五;
第二、将上述负载催化剂的氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到原位生长碳纳米管的氧化亚硅复合材料。
本实施例所得材料的拉曼图谱见图7。由图7可以看到,在475cm -1度有非晶硅的鼓包;
本实施例所得原位生长碳纳米管的氧化亚硅复合材料的SEM图像见图8,可见材料表面存在原位生长的碳纳米管。
将本实施例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例3
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品氧化亚硅粉末与纳米金属铜在高速VC机中充分混合后,得到负载催化剂的氧化亚硅粉末;其中纳米金属铜的重量分数为万分之五;
第二、将上述负载催化剂的氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至1000℃,通入与氢气等量的甲烷气体, 保温4小时,然后停止通入甲烷气体,降温得到原位生长碳纳米管的氧化亚硅复合材料。
本实施例所得原位生长碳纳米管的氧化亚硅复合材料的SEM图像见图9,可见材料表面存在原位生长的碳纳米管。
将本实施例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例4
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品纳米硅碳材料粉末与硝酸镍的水溶液充分混合后,喷雾干燥得到负载催化剂的纳米硅碳材料粉末;其中硝酸镍的重量分数为万分之五;
第二、将上述负载催化剂的纳米硅碳材料粉末置于高温回转炉内,在Ar气氛下升温至800℃,通入与氩气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到原位生长碳纳米管的纳米硅碳复合材料。
本实施例所得原位生长碳纳米管的纳米硅碳复合材料的SEM图像见图10,可见材料表面存在原位生长的碳纳米管。
将本实施例所得原位生长碳纳米管的纳米硅碳复合材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例5
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品纳米硅碳材料粉末与纳米氧化镍在高速VC机中充分混合后,得到负载催化剂的纳米硅碳材料粉末;其中纳米氧化镍的重量分数为千分之一;
第二、将上述负载催化剂的纳米硅碳材料粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙醇蒸汽,保温2小时,然后停止通入乙醇蒸汽,降温得到原位生长碳纳米管的纳米硅碳复合材料。
将本实施例所得原位生长碳纳米管的纳米硅碳复合材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例6
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品纳米硅碳材料粉末与氯化铁,氯化铝的混合醇溶液在高速VC机中充分混合后,得到负载催化剂的纳米硅碳材料粉末;其中纳米氧化镍的重量分数为千分之一;
第二、将上述负载催化剂的纳米硅碳材料粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙醇蒸汽,保温2小时,然后停止通入乙醇蒸汽,降温得到原位生长碳纳米管的纳米硅碳复合材料。
将本实施例所得原位生长碳纳米管的纳米硅碳复合材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例7
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品改性氧化亚硅粉末与氯化铁的水溶液充分混合后,喷雾干燥得到负载催化剂的改性氧化亚硅粉末;其中氯化铁的重量分数为万分之五;
第二、将上述负载催化剂的改性氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到原位生长碳纳米管的改性氧化亚硅复合材料。
将本实施例所得原位生长碳纳米管的改性氧化亚硅复合材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
实施例8
本实施例提供了一种具体的硅基负极材料的制备方法,包括:
第一、将商品硅基合金粉末与氯化铁的水溶液充分混合后,喷雾干燥得到负载催化剂的改性氧化亚硅粉末;其中氯化铁的重量分数为万分之五;
第二、将上述负载催化剂的硅基合金粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到原位生长碳纳米管的硅基合金复合材料。
将本实施例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
对比例1
本对比例提供了与实施例1对比的一种具体的硅基负极材料的制备方法,包括:
将商品氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到本对比例的氧化亚硅复合材料。
本实施例所得氧化亚硅复合材料的SEM图像见图11,可见材料表面被 连续的碳膜包覆。
将本实施例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。其循环性能如图12所示,可见对比例1制备得到的材料循环性能远低于实施例1中得到的循环性能。
对比例2
本对比例提供了与实施例5对比的一种具体的硅基负极材料的制备方法,包括:
将商品硅碳复合材料置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙醇蒸汽,保温2小时,然后停止通入乙醇蒸汽,降温得到气相包覆的纳米硅碳复合材料。
将本对比例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
可见对比例2制备得到的材料循环性能远低于实施例5中得到的循环性能。
对比例3
本对比例提供了与实施例7对比的一种具体的硅基负极材料的制备方法,包括:
将改性氧化亚硅粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到气相包覆的改性氧化亚硅复合材料。
将本对比例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。
可见对比例3制备得到的材料循环性能远低于实施例7中得到的循环 性能。
对比例4
本对比例提供了与实施例8对比的一种具体的硅基负极材料的制备方法,包括:
将硅基合金粉末置于高温回转炉内,在Ar:H 2=1:0.1的混合气体下升温至900℃,通入与氢气等量的乙炔气体,保温4小时,然后停止通入乙炔气体,降温得到气相包覆的硅基合金材料。
将本对比例所得材料与石墨按照比例混合为450mAh/g的复合材料,按照实施例1所述方法评价其电化学性能,将数据记录在表1中。可见对比例4制备得到的材料循环性能远低于实施例8中得到的循环性能。
  充电比容量 首次效率 50周保持 300周保持
实施例1 455 88.5 95% 90%
实施例2 450 88 94% 89%
实施例3 457 88.5 94% 89.5%
实施例4 450 89 96% 91%
实施例5 445 89.5 95% 85%
实施例6 443 90 93% 83%
实施例7 450 90.5 98% 90%
实施例8 453 90 93% 80%
对比例1 455 88.5 90% 80%
对比例2 445 89.5 95% 75%
对比例3 450 90.5 95% 85%
对比例4 453 90 90% 75%
表1
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种锂离子电池硅基负极材料,其特征在于,所述锂离子电池硅基负极材料由90wt%-99.9wt%的硅基材料与0.1wt%-10wt%的在所述硅基材料表面原位生长的碳纳米管和/或碳纳米纤维复合而成;
    所述硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;所述电化学活性硅占所述硅基材料的0.1wt%-90wt%;
    所述碳纳米管包括单壁碳纳米管和/或多壁碳纳米管;所述碳纳米管和/或碳纳米纤维的直径为0.4nm-50nm,长度为10nm-50μm;
    所述锂离子电池硅基负极材料的拉曼图谱中在475±10cm -1具有非晶鼓包,和/或在510±10cm -1具有晶态峰;当所述锂离子电池硅基负极材料中包括单壁碳纳米管时,所述锂离子电池硅基负极材料的拉曼图谱中在100-400cm -1范围内存在径向呼吸模RBM;
    所述锂离子电池硅基负极材料的X射线衍射XRD图谱中在28.4°±0.2°具有衍射峰。
  2. 根据权利要求1所述的锂离子电池硅基负极材料,其特征在于,
    所述单壁碳纳米管的直径为0.4nm-10nm,长度为10nm-20μm;
    所述多壁碳纳米管的直径为0.4nm-50nm,长度为10nm-20μm;
    所述碳纳米纤维的直径为0.4nm-50nm,长度为10nm-20μm。
  3. 根据权利要求1所述的锂离子电池硅基负极材料,其特征在于,所述锂离子电池硅基负极材料的平均粒径在50nm-40μm之间。
  4. 根据权利要求3所述的锂离子电池硅基负极材料,其特征在于,所述锂离子电池硅基负极材料的平均粒径在1μm-20μm之间。
  5. 一种上述权利要求1-4任一所述的锂离子电池硅基负极材料的制备方法,其特征在于,所述制备方法包括:
    按所需质量比选取硅基材料,通过固相法或液相法在所述硅基材料表 面负载催化剂,得到混合材料;其中,所述硅基材料为含有电化学活性硅的粉体材料,包括纳米硅碳复合材料、氧化亚硅材料、改性氧化亚硅材料和无定型硅合金的一种或者几种的混合;所述电化学活性硅占所述硅基材料的0.1wt%-90wt%;所述催化剂包括金属单质、含所述金属单质的无机化合物、含所述金属单质的有机化合物中的一种或者几种的混合;所述金属单质包括铁、钴、镍、铜、锌、铝、镁、锂、金、银、钌和铂中的一种或多种;
    将所述混合材料置于高温反应炉内,在保护气氛下升温至600℃-1200℃,按照所需比例通入碳源气体,保温0.5小时-8小时,然后停止通入碳源气体并降温,得到所述硅基负极材料;其中,所述碳源气体包括炔类、烯类、烷类、酮类、醇类或芳香类气体中的一种或者几种的混合。
  6. 根据权利要求5所述的制备方法,其特征在于,
    所述固相法具体包括:将所述硅基材料与所述催化剂通过混合机、球磨机或融合机进行充分混合;
    所述液相法具体包括:将所述硅基材料与含有所述催化剂的溶液充分混合后干燥;其中,所述溶液包括水、醇类、酮类、酰胺类的一种或几种的混合。
  7. 根据权利要求6所述的制备方法,其特征在于,所述硅基材料与所述催化剂的质量比为90:10-99.9999:0.0001。
  8. 根据权利要求5所述的制备方法,其特征在于,所述保护气氛为氮气、氩气、氢气、氦气、氖气中的一种或者几种的混合;
    所述保护气氛与碳源气体的体积比为0.1:9.9-9.9:0.1。
  9. 一种包括上述权利要求1-4任一所述的锂离子电池硅基负极材料的负极极片。
  10. 一种包括上述权利要求1-4任一所述的锂离子电池硅基负极材料的锂电池。
PCT/CN2019/077119 2018-08-27 2019-03-06 一种锂离子电池硅基负极材料及其制备方法和电池 WO2020042577A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021510930A JP7372690B2 (ja) 2018-08-27 2019-03-06 リチウムイオン電池用シリコン系負極材及びその製造方法並びに電池
US17/250,688 US20220131154A1 (en) 2018-08-27 2019-03-06 Silicon-based anode material for lithium-ion battery, preparation method therefor, and battery
EP19855387.7A EP3846249A4 (en) 2018-08-27 2019-03-06 SILICON-BASED NEGATIVE ELECTRODE MATERIAL OF A LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF AND BATTERY
KR1020217005342A KR102629191B1 (ko) 2018-08-27 2019-03-06 리튬 이온 전지의 실리콘계 음극재료 및 그 제조 방법과 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810978803.2 2018-08-27
CN201810978803.2A CN110034282A (zh) 2018-08-27 2018-08-27 一种锂离子电池硅基负极材料及其制备方法和电池

Publications (1)

Publication Number Publication Date
WO2020042577A1 true WO2020042577A1 (zh) 2020-03-05

Family

ID=67234638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077119 WO2020042577A1 (zh) 2018-08-27 2019-03-06 一种锂离子电池硅基负极材料及其制备方法和电池

Country Status (6)

Country Link
US (1) US20220131154A1 (zh)
EP (1) EP3846249A4 (zh)
JP (1) JP7372690B2 (zh)
KR (1) KR102629191B1 (zh)
CN (1) CN110034282A (zh)
WO (1) WO2020042577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249324A (zh) * 2020-09-22 2022-03-29 陕西煤业化工技术研究院有限责任公司 一种锂离子电池用负极材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828786B (zh) * 2019-10-09 2021-08-06 兰溪致德新能源材料有限公司 长循环氧化亚硅/碳复合负极材料的制备方法
CN111082006B (zh) * 2019-12-06 2022-07-19 深圳市比克动力电池有限公司 氧化亚硅复合负极材料及其制备方法、锂离子电池
CN111384384A (zh) * 2020-03-25 2020-07-07 内蒙古骏成新能源科技有限公司 一种硅碳复合材料制备方法、硅碳负极材料及其制备方法
CN113422008B (zh) * 2021-05-07 2022-06-14 上海大学 一种微米氧化亚硅@碳纳米管复合锂离子电池负极材料的合成方法
CN114899398B (zh) * 2022-04-20 2024-01-26 同济大学 硼氮共掺杂碳纳米管包覆氧化亚硅复合材料的制备及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812168A (zh) * 2005-01-26 2006-08-02 中国科学院金属研究所 一种锂离子电池负极材料改性方法
CN101540390A (zh) * 2009-04-28 2009-09-23 重庆大学 一种锂离子电池负极复合材料及其制备方法
CN102185128A (zh) * 2011-04-02 2011-09-14 上海交通大学 一种硅碳复合材料及其制备方法
CN108023072A (zh) * 2017-11-29 2018-05-11 北京化工大学 一种锂离子电池硅碳复合负极材料及其制备方法
CN108183201A (zh) * 2017-11-29 2018-06-19 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244984A (ja) 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd 電極用複合粒子およびその製造法、ならびに非水電解質二次電池
CN100511781C (zh) * 2004-12-22 2009-07-08 松下电器产业株式会社 复合负极活性材料及其制备方法以及非水电解质二次电池
ATE525761T1 (de) 2006-07-14 2011-10-15 Korea Kumho Petrochem Co Ltd Anodenaktives material für eine lithium- sekundärbatterie hybridisiert mit kohlenstoffnanofasern
KR101065778B1 (ko) 2008-10-14 2011-09-20 한국과학기술연구원 탄소나노튜브 피복 실리콘-구리 복합 입자 및 그 제조 방법과, 이를 이용한 이차전지용 음극 및 이차전지
TW201330350A (zh) * 2011-11-01 2013-07-16 Hitachi Maxell Energy Ltd 鋰蓄電池
KR20170044360A (ko) 2015-10-15 2017-04-25 지에스에너지 주식회사 이차전지용 음극활물질 및 이의 제조방법
CN106876665B (zh) * 2015-12-14 2019-08-02 中国科学院苏州纳米技术与纳米仿生研究所 硅碳复合颗粒、其制备方法及应用
JP6854135B2 (ja) * 2017-01-17 2021-04-07 株式会社ダイセル 電極用スラリー、電極及びその製造方法並びに二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812168A (zh) * 2005-01-26 2006-08-02 中国科学院金属研究所 一种锂离子电池负极材料改性方法
CN101540390A (zh) * 2009-04-28 2009-09-23 重庆大学 一种锂离子电池负极复合材料及其制备方法
CN102185128A (zh) * 2011-04-02 2011-09-14 上海交通大学 一种硅碳复合材料及其制备方法
CN108023072A (zh) * 2017-11-29 2018-05-11 北京化工大学 一种锂离子电池硅碳复合负极材料及其制备方法
CN108183201A (zh) * 2017-11-29 2018-06-19 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Effect of Volume Expansion on SEI Covering Carbon-Coated Nano-Si/SiO Composite", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 160, no. 10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249324A (zh) * 2020-09-22 2022-03-29 陕西煤业化工技术研究院有限责任公司 一种锂离子电池用负极材料及其制备方法

Also Published As

Publication number Publication date
JP7372690B2 (ja) 2023-11-01
CN110034282A (zh) 2019-07-19
EP3846249A4 (en) 2022-06-08
JP2021535562A (ja) 2021-12-16
KR102629191B1 (ko) 2024-01-25
KR20210032512A (ko) 2021-03-24
EP3846249A1 (en) 2021-07-07
US20220131154A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2020042577A1 (zh) 一种锂离子电池硅基负极材料及其制备方法和电池
Yi et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes
JP6963734B2 (ja) 炭素系複合材料、その製造方法、およびそれを含むリチウムイオン二次電池
Yang et al. In-situ carbonization for template-free synthesis of MoO2-Mo2C-C microspheres as high-performance lithium battery anode
Ni et al. Self-adaptive electrochemical reconstruction boosted exceptional Li+ ion storage in a Cu 3 P@ C anode
Zhao et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
WO2017070988A1 (zh) 一种钠离子二次电池负极材料及其制备方法和用途
WO2019062494A1 (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
CN106252651B (zh) 一种锂离子电池多孔复合负极材料及其制备方法
Tan et al. Carbon coated porous Co3O4 polyhedrons as anode materials for highly reversible lithium-ion storage
Wu et al. High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials
WO2021077586A1 (zh) 一种用于电极材料的硅氧颗粒及其制备方法和应用
CN104681784A (zh) 一种钒酸锂负极材料、负极、电池以及负极材料制备方法
CN110034284A (zh) 具有表面碳纳米墙的硅基负极材料及其制备方法和电池
Tan et al. High performance sodium ion anodes based on Sn4P3 encapsulated within amphiphilic graphene tubes
CN115642234A (zh) 具有孔隙梯度结构的硅碳负极材料及其制备方法及锂离子电池
CN105590753B (zh) 一种壳核型纳米复合粒子的制备方法及其应用
CN113517427B (zh) 一种碳包覆锑/三硫化二锑复合材料的制备方法及应用
EP4345942A1 (en) Graphitized porous silicon-carbon anode material, preparation method thereof and lithium ion battery
Du et al. Construction of 3D nanoarchitectural porous carbon supported carbon nanotubes@ CoP with enhanced lithium ions storage performance
CN110649237B (zh) 一种铁氧化物@碳纳米复合材料及其制备方法和应用
CN108249439A (zh) 一种过渡金属碳化物/氮化物纳米粒子的制备方法及其在锂空气电池中的应用
Ma et al. Drop-casting preparation of a binder-free SiOx anode with micron-sized SiOx particles for high-performance lithium-ion batteries
CN115101725A (zh) 一种硅纳米线电极的制备方法及其在锂离子电池中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005342

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021510930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855387

Country of ref document: EP

Effective date: 20210329