WO2019027104A1 - 전기적 변수 인가 습식방사법 - Google Patents

전기적 변수 인가 습식방사법 Download PDF

Info

Publication number
WO2019027104A1
WO2019027104A1 PCT/KR2017/013965 KR2017013965W WO2019027104A1 WO 2019027104 A1 WO2019027104 A1 WO 2019027104A1 KR 2017013965 W KR2017013965 W KR 2017013965W WO 2019027104 A1 WO2019027104 A1 WO 2019027104A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
polymer
spinning solution
fiber
solution
Prior art date
Application number
PCT/KR2017/013965
Other languages
English (en)
French (fr)
Inventor
유웅열
양호성
한흥남
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to JP2020505201A priority Critical patent/JP7122770B2/ja
Publication of WO2019027104A1 publication Critical patent/WO2019027104A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus

Definitions

  • the present invention relates to a wet spinning method capable of producing a polymer fiber having improved mechanical properties.
  • the production of dense, defect-free precursor fibers is essential for producing high strength, high-resilience carbon fibers, and the degree of densification of the precursor fibers is primarily determined by the state of the coagulated filaments passing through the coagulating bath It is a property. Therefore, it is required to minimize the voids while increasing the homogeneity of the coagulated yarn during the coagulation step.
  • wet spinning is mainly used because it provides a high coagulation speed, is excellent in productivity, can maintain a relatively low viscosity and a process temperature, and minimizes changes in physical and chemical form of the additive.
  • Another object of the present invention is to provide a polymer fiber produced by using an electric variable wet spinning method.
  • An object of the present invention is to provide a method of manufacturing a polymer electrolyte membrane, which comprises ionizing a spinning solution containing a polymer and a solvent by applying a voltage to the spinning solution; Spinning the ionized spinning solution into a coagulating liquid to obtain coagulation; And stretching the coagulum to form a polymer fiber.
  • the present invention provides an electric variable wet spinning method comprising:
  • the step of ionizing the spinning solution by applying a voltage to the spinning solution containing the polymer and the solvent may include applying a voltage to the upper and lower ends of the spinning solution reservoir by connecting a power source of different polarity before spinning have.
  • the voltage applied to the spinning solution may range from 40 to 1000V.
  • the current generated in the spinning solution to which the voltage is applied may be 50 to 3000 ⁇ A.
  • the polymer may include a polymer having a repeating unit derived from a monomer having a group capable of forming an ion.
  • the polymer may be selected from the group consisting of polyacrylonitrile (PAN) homopolymer, polyacrylonitrile copolymer, polyvinyl alcohol (PVA) homopolymer, polyvinyl alcohol copolymer, polyvinyl chloride A polymer, a polyvinyl chloride copolymer, and rayon, or a mixture of two or more thereof.
  • PAN polyacrylonitrile
  • PVA polyvinyl alcohol
  • PVC polyvinyl alcohol copolymer
  • the group capable of forming an ion may include a carboxylic acid group (-COOH), a nitrile group (-CN), a hydroxy group (-OH), and a halogen group (-X) May be selected.
  • the polyacrylonitrile copolymer comprises repeating units derived from acrylonitrile; And a repeating unit derived from a monomer which weakens the bonding force of the nitrile period of the acrylonitrile.
  • the step of spinning the ionized spinning solution into the coagulating liquid to obtain coagulation may include the step of increasing the amount of the ionized polymer in the spinning solution to promote exchange of the solvent in the spinning solution and the non-solvent in the coagulating solution . ≪ / RTI >
  • Another object of the present invention is achieved by the provision of the polymer fibers produced by the electric variable wet spinning method.
  • the polymer fiber may be any one or a mixture of two or more of polyacrylonitrile fiber, polyvinyl alcohol fiber, polyvinyl chloride fiber and rayon fiber.
  • the polymer fiber may have a strength of 200 MPa or more, an elastic modulus of 6 GPa or more, and an elongation of 6% or more as measured according to ASTM D3822-07.
  • the solvent can be easily removed through the coagulation bath, thereby greatly reducing the size of the conventional wet spinning process .
  • FIG. 1 is a flowchart illustrating a method of manufacturing a polymer fiber using an electric variable wet spinning method according to an embodiment of the present invention. Referring to FIG. 1
  • FIG. 2 is a schematic cross-sectional view of a wet spinner according to an embodiment of the present invention.
  • FIG. 3 is a TGA (thermogravimetric analysis) graph of the sample according to Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the strain-breaking strength characteristics of the sample according to Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the strain-breaking strength characteristics of the sample according to Example 1 and Comparative Example 1.
  • FIG. 6 is a SAXS pattern photograph of a sample according to Example 1.
  • FIG. Like reference numerals refer to like elements throughout the specification.
  • well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
  • the terms first, second, etc. in this specification are used to distinguish one element from another element, and the element is not limited by the terms.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a polymer fiber using an electric variable wet spinning method according to an embodiment of the present invention. Referring to FIG. 1
  • a method of manufacturing a polymer fiber using an electric variable wet spinning method includes a step of applying a voltage to a spinning solution (S110), a spinning solution wet spinning step (S120) S130), a drying step (S140), and a winding step (S150).
  • the step of applying voltage to the spinning solution applies a voltage to the spinning solution before spinning spinning solution for fiber formation into the coagulating solution. This means applying a voltage to the spinning solution before it reaches the coagulating solution.
  • the spinning solution is a solution containing a polymer substance used as a starting material for fiber formation, and may also be named as spinning solution or spinning solution.
  • the spinning solution can be prepared by dissolving the polymer substance in a solvent.
  • the spinning solution may be a polymer solution.
  • a polymer material may be a known material used for ordinary precursor fibers without limitation, and preferably a polymer material used for precursor fibers for carbon fibers may be used.
  • the spinning solution of the present invention may comprise a polymer having a repeating unit derived from a monomer having a group capable of forming an ion.
  • the polymer contained in the spinning solution may include homopolymers or copolymers of polyacrylonitrile (PAN), homopolymers or copolymers of polyvinyl alcohol (PVA), polyvinyl chloride PVC), and rayon, and the like, or a mixture of two or more thereof.
  • PAN polyacrylonitrile
  • PAN has higher carbon yield after heat treatment and can preserve its orientation, so that it is more preferable from the viewpoint of high strength and high degree of manifestation of carbon fiber.
  • the polymer substance is ionized by the group capable of forming ions contained in the repeating unit of the polymer contained in the spinning solution, and the ionized polymer substance is oxidized / Current may be generated.
  • the monomer having a group capable of forming an ion contained in the spinning solution is not particularly limited as long as it is a substance capable of forming a negative (-) ion or a positive (+) ion.
  • the polyacrylonitrile (PAN) fiber used as the precursor of the carbon fiber imparts a very strong secondary bond between the polymer chains of the polyacrylonitrile constituting the fiber or between the repeating units derived from the acrylonitrile adjacent in the polymer chain
  • the nitrile group (-CN) prevents the arrangement of the polymer chains during spinning to form a helix structure and causes a cyclization reaction too rapid in the heat treatment.
  • a copolymer having a repeating unit derived from a polyacrylonitrile copolymer that is, a repeating unit derived from acrylonitrile and a monomer which weakens a bonding force between acrylonitrile and a nitrile group as a polymer of the spinning solution desirable.
  • the introduction of such a monomer prevents the lowering of the radioactivity due to the solubility problem, and it is possible to suppress the cyclization reaction too fast in the heat treatment.
  • examples of the monomer which weakens the bonding force between acrylonitrile and nitrile groups include methyl acrylate, itaconic acid, and methacrylic acid, and repeating from these monomers
  • the unit may be contained in the polymer in an amount of about 2% to 15% by weight.
  • the solvent contained in the spinning solution is not particularly limited as long as the fiber-forming polymer material is dissolved, and examples thereof include dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), and dimethylformamide ) May be used.
  • DMA dimethylacetamide
  • DMSO dimethyl sulfoxide
  • -CN nitrile groups
  • PAN polyacrylonitrile
  • the kind, molecular weight, content, degree of polymerization, and the like can be appropriately selected in consideration of the target physical properties of the precursor fiber or carbon fiber to be produced.
  • the polymer concentration can be, for example, 15% by weight or more, preferably 15 to 30% by weight, more preferably 17 to 25% by weight.
  • FIG. 2 is a schematic cross-sectional view of a wet spinner according to an embodiment of the present invention.
  • a wet spinner 200 includes a spinning liquid reservoir 220, a pump 240, a die 250, a power supply 270, a plurality of rolls rolls 280a, 280b, and 280c, and a coagulating solution 260 are contained. Meanwhile, the coagulation bath 210 may further contain the spinning solution 230 radiated and the solvent inside the spinning solution 230 exchanged during the coagulation process.
  • the step of applying the voltage to the spinning solution 230 may be performed by connecting a voltage to the spinning solution storage tank 220 in which the spinning solution 230 before spinning is stored, through the power supply unit 270.
  • the step of applying voltage to the spinning solution 230 may be performed by supplying power of different polarities to the upper and lower ends of the spinning solution storage tank 220 through the power supply unit 270.
  • a power source having a polarity selected from the positive (+) and negative (-) polarities is supplied to the upper end of the spinning liquid reservoir 220 and the positive (+) and negative A predetermined voltage may be applied to the spinning solution 230.
  • a power source having a polarity opposite to the charge of the polymer ion of the spinning solution 230 is supplied to the lower end of the spinning solution storage tank 220.
  • the amount of the polymer ions to be collected in the coagulation bath 210 can be increased by increasing the amount of polymer ions collected at the lower end of the spinning liquid reservoir 220.
  • a negative (-) power is supplied to the upper end of the spinning solution reservoir 220 and an anode (-) is connected to the lower end of the spinning solution reservoir 220 + ≪ / RTI >
  • the spinning solution 230 of the present embodiment when a voltage is applied, a group capable of forming an ion contained in the monomer is ionized and the polymer becomes a negative charge or a positive charge, and then the oxidation of the ionized polymer A current is generated in the spinning solution 230 by the reduction reaction.
  • the polymer ions generated in the spinning solution 230 are moved and collected to the lower end of the spinning solution storage tank 220, that is, the spinneret 250, and are then introduced into the coagulation bath 210 by spinning of the spinning solution 230 .
  • the current generated in the spinning solution 230 by applying a voltage to the spinning solution reservoir 220 is adjusted according to the cross-sectional area of the portion to which the pole is connected (the cross-sectional area of the upper portion of the volume of the spinning solution and the cross- , Where the voltage may be approximately 40-1000 volts. If the voltage is less than 40 V, ion generation and trapping inside the spinning solution 230 may be insufficient. Conversely, if the voltage is excessively higher than 1000 V, the polymer and the solvent may be degraded.
  • the current generated in the spinning liquid 230 by the voltage takes about 20 to 30 seconds to converge to a constant value, and the fibers radiated until this time are not used.
  • the current value may be several tens to several thousands of microamperes, specifically, 50 to 3,000 microamperes.
  • the spinning liquid wet spinning step S120 is performed by applying a voltage to the ionized spinning solution 230 to the nozzles of the spinneret 250 using the pressure of the pump 240, (Not shown) to the coagulation bath 210 containing the coagulation liquid 260.
  • the pump 240 may be a piston pump connected to the spinning liquid storage tank 220 and discharging the spinning liquid 230 from the upper side to the lower side of the spinning liquid storage tank 220.
  • a voltage may be applied to the upper end of the spinning liquid reservoir 220 by applying a voltage to the pump 240.
  • the nip 250 is disposed under the spinneret reservoir 220 with a nozzle having a circular cross section and the nozzle of the nip 250 is buried at a position in the coagulation liquid 260. Further, a fine jet port (not shown) is provided on the back side of the nozzle. Accordingly, the spinning solution 230 can be discharged in the vertical direction with respect to the bottom surface of the coagulation bath 210.
  • Such detents 250 are preferably multi-die, which can reduce the breakage of fibers during spinning compared to a single die.
  • the coagulating solution 260 can be employed without limitation in a solution used for ordinary wet spinning.
  • the temperature of the coagulating solution 260 is 3 ° C to 50 ° C It is desirable to set it appropriately within the range.
  • the spinning solution 230 radiated into the coagulation bath 210 is extruded while passing through the coagulating solution 260 to form a coagulation product 290 solidified in a fibrous form.
  • the spinning solution 230 passes through the coagulating solution 260 while sequentially passing the traveling roll 280a and the pulling roll 280b disposed at one end and the other end of the wall surface of the coagulation bath 210, respectively.
  • a plurality of polymer ions generated in the spinning solution 230 and moved to the lower end side of the spinning solution reservoir 220 are collected in the coagulation bath 210 by applying a voltage to the spinning solution 230 before the spinning, I will enter.
  • the non-solvent in the coagulating solution 260 is diffused into the coagulating solution 290, exchange of the solvent in the coagulating solution 290 and the coagulating solution 260 in the coagulating solution 260 is promoted,
  • the solvent removal in the coagulation bath 290 can be remarkably improved during the coagulation process using the coagulation bath 210 equipped with the coagulation bath 210.
  • the stretching step S130 separates the coagulum 290 obtained through the coagulation process from the coagulating liquid 260 in the coagulation bath 210 containing the coagulating liquid 260 .
  • the stretching process may be performed by rotating the difference between the rotation speeds of the two stretching rolls 280c1 and 280c2 disposed outside the coagulation bath 210 by a factor of 1: It can be carried out at an elongation of 20 times.
  • the elongation is not particularly limited and can be appropriately selected in consideration of the target elastic modulus and the process temperature of the fiber to be produced.
  • the stretching process may be a hot stretching process using a water bath (not shown) which is heated to 70 ° C or higher, preferably 90 ° C.
  • the coagulation yarn 290 in the coagulation bath 210 can be drawn by the stretching roll 280c outside the coagulation bath 210 and stretched by the pulling rolls 280b in the coagulation bath 210 during the stretching process. Thereby, the coagulum 290 is stretched and the molecular chains are oriented in the fiber axis direction, so that the coagulum 290 having excellent elasticity can be obtained.
  • the coagulation liquid 260 diffused into the coagulation bath 290 facilitates removal of the solvent from the coagulation bath 290 through the coagulation bath 210, Cavitation and defect can be suppressed.
  • the coagulation (290) can minimize cavity formation and defects and improve mechanical properties such as strength, elastic modulus, and elongation.
  • the greatest variable controlling the nature of the coagulum 290 formed from the spinning solution 230 is the electrical variable introduced into the spinning solution 230.
  • the solvent in the coagulum 290 and the non-coagulant in the coagulating liquid 260 are promoted by the voltage applied to the spinning liquid 230 before the coagulation, 260, the removal rate of the solvent inside the coagulation bath 290 through the coagulation bath 210 is increased, so that a dense and uniform coagulum 290 can be produced at the time of stretching.
  • the coagulation yarn 290 having a reduced size of voids after stretching can be produced.
  • the stretching process may be performed simultaneously with washing (washing), or may be carried out before or after the washing step of the coagulum 290.
  • the coagulum (290) having been drawn is dried.
  • the drying process may be carried out using a drier at a temperature of 150 ° C or less, preferably 50 ° C to 150 ° C, and various methods known in the art may be used.
  • the dried coagulum 290 is wound up to finally complete the production of the polymer fiber.
  • the polymer fiber of the present embodiment manufactured by the above-described manufacturing method may be, for example, polyacrylonitrile (PAN) fiber, polyvinyl alcohol (PVA) fiber, polyvinyl chloride (PVC) Preferably polyacrylonitrile (PAN) fibers.
  • PAN polyacrylonitrile
  • PVA polyvinyl alcohol
  • PVC polyvinyl chloride
  • the polyacrylonitrile (PAN) fiber, the polyvinyl alcohol (PVA) fiber, and the polyvinyl chloride (PVC) fiber may be formed of the respective homopolymers or copolymers as described above.
  • the polymer fibers of the present embodiment have reduced pores and defects, so that their mechanical properties are improved.
  • the strength of each fiber is improved by 10% or more, in detail, 22% or more, 20% or more, in particular, 55% or more, and the elongation can be improved by 10% or more, in detail, 32% or more.
  • the polymer fibers of this embodiment can have a pore size that is reduced to a lower pore size, for example, less than 0.5 times, as compared to fibers prepared by conventional wet spinning.
  • the polymer fiber of the present embodiment has a strength measured according to ASTM D3822-07 of 200 MPa or more, an elastic modulus of 6 GPa or more, and an elongation of 6% or more.
  • the polymer fiber of the present embodiment can satisfy the range of the strength of 200 MPa to 2000 MPa, elastic modulus of 6 GPa to 20 GPa, and elongation of 6% to 30% or more measured according to ASTM D3822-07.
  • the polymer fibers of this embodiment can be used as precursor fibers for producing carbon fibers. As the mechanical properties are improved, the mechanical properties of the carbon fibers produced by using the polymer fibers as precursors can be improved.
  • PAN polyacrylonitrile
  • DMF dimethylformamide
  • a negative voltage line and a positive voltage line were attached to the upper and lower ends of the spinning liquid reservoir using a power supply, and a voltage of 60 V was applied for 30 seconds to apply a current of 100 ⁇ A to the spinning solution .
  • the upper and lower end cross-sectional areas of the volume occupied by the spinning liquid were 7.065 cm 2 and 1.766 cm 2, respectively.
  • the spinning solution was then wet-spun into a 25 ⁇ ⁇ coagulation solution containing 60% by weight of dimethylformamide (DMF) and 40% by weight of water. Thereafter, the resulting coagulum was stretched 5 times at a temperature of 90 ⁇ , dried at 100 ⁇ in a dryer, and wound into a polyacrylonitrile (PAN) fiber.
  • DMF dimethylformamide
  • PAN polyacrylonitrile
  • FIG. 3 is a TGA (thermogravimetric analysis) graph of the sample according to Example 1 and Comparative Example 1
  • FIG. 4 is a graph showing the strain-breaking strength characteristics of the sample according to Example 1 and Comparative Example 1 Graph.
  • the fibers of Example 1 exhibit a faster weight loss from around 50 ° C. to 140 ° C., but a slower weight loss after 150 ° C. .
  • the fiber of Comparative Example 1 is less substituted with the coagulating solution than the fiber of Example 1 and the solvent in the coagulum has more defects in the fiber finally obtained by the solvent remaining in the coagulum .
  • the fracture strength and strain (elongation) of the fibers of Example 1 increased by an average of 22% and 32%, respectively, as compared with the fibers of Comparative Example 1.
  • Fig. 5 is a SAXS (low angle X-ray scattering) pattern photograph of a sample according to Comparative Example 1
  • Fig. 6 is a SAXS pattern photograph of a sample according to Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 전기적 변수 인가 습식방사법에 관한 것으로, 본 발명에 따른 전기적 변수 인가 습식방사법은 고분자 및 용매를 포함하는 방사액에 전압을 인가하여 상기 방사액을 이온화하는 단계; 상기 이온화된 방사액을 응고액 중으로 방사하여 응고사를 수득하는 단계; 및 상기 응고사를 연신하여 고분자 섬유를 형성하는 단계;를 포함하며, 이온화된 방사액에 의해 응고사 내부의 용매와 응고액 내의 비용매의 교환을 촉진시켜 역학적 특성이 향상된 고분자 섬유를 제조할 수 있다.

Description

전기적 변수 인가 습식방사법
본 발명은 역학적 특성이 개선된 고분자 섬유를 제조할 수 있는 습식방사법에 관한 것이다.
본 출원은 2017년 7월 31일에 출원된 한국출원 제10-2017-0097219호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
고강도 고탄성 탄소섬유를 제조하기 위해서는 치밀하고 결점이 없는 전구체 섬유의 제조가 필수적이며, 전구체 섬유의 치밀화도는 일차적으로 방사 응고욕 coagulating bath)을 통과하는 응고사(coagulated filament)의 상태에 따라 결정되는 것이 속성이다. 따라서, 응고 공정 시 응고사의 균질성을 높이면서 공극을 최소화하는 것이 요구된다.
이러한 전구체 섬유의 제조 방법으로는 습식방사, 건식방사, 용융방사 등이 이용되고 있다.
그 중, 습식방사는 높은 응고 속도를 제공하므로 생산성이 우수하고, 상대적으로 낮은 점도 및 공정온도를 유지함으로써 첨가제의 물리·화학적 형태 변화를 최소화할 수 있다는 장점으로 인해 주로 이용되고 있다.
그러나, 습식방사의 경우 응고욕의 응고 공정에서 응고사 내부의 용매를 완전히 제거하기가 매우 어렵기 때문에 대규모의 응고조 및 수세조 등의 습식방사 설비가 필요하다.
습식방사를 사용하여 섬유 구조를 치밀하게 하는 많은 연구가 이루어졌으나, 섬유의 성능 향상을 위한 혁신적인 공정 변화나 새로운 변수 도입 등은 여전히 답보 상태에 있는 실정이다.
본 발명의 목적은 기존의 습식방사 공정에 전기적 변수를 도입하여 역학적 특성이 개선된 고분자 섬유를 제조할 수 있는 습식방사법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 전기적 변수 인가 습식방사법을 이용하여 제조된 고분자 섬유를 제공하는 데 있다.
본 발명의 목적은, 고분자 및 용매를 포함하는 방사액에 전압을 인가하여 상기 방사액을 이온화하는 단계; 상기 이온화된 방사액을 응고액 중으로 방사하여 응고사를 수득하는 단계; 및 상기 응고사를 연신하여 고분자 섬유를 형성하는 단계;를 포함하는 전기적 변수 인가 습식방사법이 제공됨에 의해서 달성된다.
상기 고분자 및 용매를 포함하는 방사액에 전압을 인가하여 상기 방사액을 이온화하는 단계는, 방사액 저장조의 상단 및 하단에 방사 전 서로 다른 극성의 전원을 연결하여 전압을 인가하는 단계를 포함할 수 있다.
상기 방사액에 인가되는 전압은 40 내지 1000V일 수 있다.
상기 전압이 인가된 방사액에 발생되는 전류는 50 내지 3000μA 일 수 있다.
상기 고분자는 이온을 형성할 수 있는 기(group)를 가지는 단량체로부터 유래된 반복단위를 갖는 고분자를 포함할 수 있다.
상기 고분자는 폴리아크릴로니트릴(Polyacrylonitrile; PAN) 단독중합체, 폴리아크릴로니트릴 공중합체, 폴리비닐알코올(Polyvinyl alcohol; PVA) 단독중합체, 폴리비닐알코올 공중합체, 폴리비닐클로라이드(Polyvinyl chloride; PVC) 단독중합체, 폴리비닐클로라이드 공중합체 및 레이온(rayon) 중 선택된 어느 하나 또는 2 이상의 혼합물일 수 있다.
상기 이온을 형성할 수 있는 기는 카르복실산기(carboxylic acid group; -COOH), 니트릴기(nitrile group: -CN), 하이드록시기(hydroxy group; -OH) 및 할로겐기(halogen group: -X) 중 선택된 어느 하나 이상일 수 있다.
상기 폴리아크릴로니트릴 공중합체는 아크릴로니트릴로부터 유래된 반복단위; 및 상기 아크릴로니트릴의 니트릴 기간의 결합력을 약화시키는 단량체로부터 유래된 반복단위를 갖는 공중합체일 수 있다.
상기 이온화된 방사액을 응고액 중으로 방사하여 응고사를 수득하는 단계는, 상기 방사액 내부에 이온화된 고분자의 양이 증가하여 상기 방사액 내의 용매와 상기 응고액 내의 비용매의 교환이 촉진되는 단계를 포함할 수 있다.
또한, 본 발명의 다른 목적은, 상기 전기적 변수 인가 습식방사법에 의해 제조된 고분자 섬유가 제공됨에 의해서 달성된다.
상기 고분자 섬유는 폴리아크릴로니트릴 섬유, 폴리비닐알코올 섬유, 폴리비닐클로라이드 섬유 및 레이온 섬유 중 어느 하나 또는 2 이상의 혼합물일 수 있다.
상기 고분자 섬유는 ASTM D3822-07에 의거하여 측정된 강도 200 MPa 이상, 탄성 모듈러스 6GPa 이상 및 신도 6% 이상일 수 있다.
본 발명에 따르면, 이온화된 방사액에 의해 응고사 내부의 용매와 응고액의 교환이 촉진되어 응고 공정 중에 응고사 내부의 용매 제거가 용이하여 연신 시에 공동형성이 억제됨으로써, 기공 및 결함이 감소되어 역학적 물성이 향상된 고분자 섬유를 제조할 수 있다.
또한, 본 발명에 따르면, 응고사 내부로 응고액의 확산과 응고액과 방사액 용매의 교환이 현저하게 촉진됨으로 인해 응고조를 통한 용매의 제거가 용이하므로, 기존 습식방사 공정의 규모를 크게 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기적 변수 인가 습식방사법을 이용한 고분자 섬유의 제조 방법을 도시한 순서도이다.
도 2는 본 발명의 일 실시예에 따른 습식방사장치의 개략적인 단면도이다.
도 3은 실시예 1 및 비교예 1에 따른 시료의 TGA(열중량분석) 그래프이다.
도 4는 실시예 1 및 비교예 1에 따른 시료의 스트레인-파괴 강도(Strain-Breaking strength) 특성을 나타낸 그래프이다.
도 5는 비교예 1에 따른 시료의 SAXS(저각 X선 산란) 패턴 사진이다.
도 6은 실시예 1에 따른 시료의 SAXS 패턴 사진이다.
본 명세서에 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바의 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서에서 제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로서, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다.
이하, 도 1 내지 도 6을 참조하여 본 발명에 따른 전기적 변수 인가 습식방사법, 그를 이용한 고분자 섬유의 제조 방법 및 그에 의하여 제조된 고분자 섬유에 관하여 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 전기적 변수 인가 습식방사법을 이용한 고분자 섬유의 제조 방법을 도시한 순서도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전기적 변수 인가 습식방사법을 이용한 고분자 섬유의 제조 방법은, 방사액에 전압 인가 단계(S110), 방사액 습식방사 단계(S120), 연신 단계(S130), 건조 단계(S140) 및 권취(winding) 단계(S150)를 포함할 수 있다.
방사액에 전압 인가 단계(S110)는 섬유 형성용 방사액을 응고액 중으로 방사하기 전에 방사액에 전압을 인가한다. 이는 방사액이 응고액에 닿기 전에 방사액에 전압을 인가하는 것을 의미한다.
방사액은 섬유 형성을 위한 출발 물질로서 사용되는 고분자 물질을 함유한 용액으로서, 방사 원액 또는 방사 용액으로도 명명될 수 있다.
방사액은 고분자 물질을 용매에 용해하여 제조할 수 있다. 따라서, 이때 방사액은 고분자 용액일 수 있다. 이러한 고분자 물질은 통상의 전구체 섬유에 이용되는 공지된 물질이 제한 없이 채용 가능하며, 바람직하게는 탄소섬유용 전구체 섬유에 이용되는 고분자 물질이 이용될 수 있다.
바람직하게, 본 발명의 방사액은 이온을 형성할 수 있는 기(group)를 가지는 단량체로부터 유래된 반복단위를 갖는 고분자를 포함할 수 있다.
예를 들어, 방사액에 함유되는 고분자는 폴리아크릴로니트릴(Polyacrylonitrile; PAN)의 단독중합체 또는 공중합체, 폴리비닐알코올(Polyvinyl alcohol; PVA)의 단독중합체 또는 공중합체, 폴리비닐클로라이드(Polyvinyl chloride; PVC)의 단독중합체 또는 공중합체 및 레이온(rayon) 등에서 선택된 어느 하나 또는 2 이상의 혼합물일 수 있다. 그 중, 폴리아크릴로니트릴(PAN)이 열처리 후 탄소의 수율이 더 높으며 배향을 보존할 수 있으므로 탄소섬유의 고강도 및 고신도 발현 관점에서 보다 바람직하다.
상기 방사액에 전압이 인가한 결과, 방사액에 함유되는 고분자의 반복 단위에 함유된 이온을 형성할 수 있는 기에 의해 고분자 물질이 이온화되고, 이온화된 고분자 물질의 산화·환원 반응에 의해 방사액에 전류가 발생할 수 있다.
따라서, 방사액에 함유되는 이온을 형성할 수 있는 기를 가지는 단량체는 음(-)이온 또는 양(+)이온을 형성할 수 있는 물질이면 특별히 한정되지 않으며, 예를 들어 이온을 형성할 수 있는 기는 니트릴기(nitrile group: -CN), 카르복실산기(carboxylic acid group; -COOH), 하이드록시기(hydroxy group; -OH) 및 할로겐기(halogen group: -X) 중 선택된 어느 하나 이상일 수 있다.
탄소섬유의 전구체로 사용되는 폴리아크릴로니트릴(PAN) 섬유는 섬유를 구성하는 폴리아크릴로니트릴의 고분자 사슬 간에, 또는 고분자 사슬 내에 이웃하는 아크릴로니트릴 유래 반복 단위 서로 간에 매우 강한 2차 결합을 부여하는 니트릴 기(nitrile group; -CN)로 인해 방사 시 고분자 사슬의 배열을 방해하여 헬릭스(helix) 구조를 형성하게 하고, 열처리 시 너무 빠른 고리화 반응을 일으킨다.
따라서, 상기 방사액의 고분자로서 폴리아크릴로니트릴 공중합체, 즉 아크릴로니트릴로부터 유래된 반복단위 및 아크릴로니트릴의 니트릴기 간의 결합력을 약화시키는 단량체로부터 유래된 반복단위를 갖는 공중합체를 사용하는 것이 바람직하다. 이러한 단량체의 도입으로 용해도 문제로 인한 방사성의 저하를 막아, 열처리 시 너무 빠른 고리화 반응을 억제할 수 있다.
예를 들어, 아크릴로니트릴의 니트릴 기 간의 결합력을 약화시키는 단량체로는 메틸아크릴레이트(methyl acrylate), 이타코닉산(itaconic acid) 또는 메타아크릴산(methacrylic acid) 등을 들 수 있으며, 이들 단량체 유래 반복단위는 약 2중량% 내지 15중량%의 함량으로 고분자에 함유될 수 있다.
방사액에 함유되는 용매는 섬유 형성용 고분자 물질이 용해되는 한 특별히 한정되지는 않지만, 예컨대, 디메틸아세트아미드(dimethylacetamide; DMA), 디메틸술폭시드(dimethyl sulfoxide; DMSO) 및 디메틸포름아미드(dimethylformamide; DMF)와 같은 유기 용매가 이용될 수 있다. 그 중, 디메틸술폭시드(DMSO)가 폴리아크릴로니트릴(PAN)의 니트릴 기(-CN) 간의 강한 2차 결합을 끊고 더 쉽게 용매화(solvation)할 수 있으며, 이로 인해 습식방사 중 높은 연신율을 도입할 수 있으므로, 치밀성이 높은 응고사(coagulated filament)를 생산할 수 있기 때문에 가장 바람직하다.
한편, 고분자 물질은 제조하고자 하는 전구체 섬유나 탄소섬유의 목표하는 물성을 고려하여 종류, 분자량, 함량, 중합도 등이 적절히 선택될 수 있다.
또한, 방사에 의해 치밀한 응고사를 수득하기 위해, 일정 한계 이상의 고분자 농도를 가지는 방사액을 사용할 수 있으나, 농도가 높아질수록 용질을 용매에 녹이는 데에 높은 온도와 더 오랜 시간이 걸리며 이로 인해 용매화의 효과는 떨어지기 때문에 습식방사 공정 중 연신에 악영향을 미친다. 따라서, 고분자 농도는 예를 들어 15중량% 이상, 바람직하게는 15 내지 30중량%, 더욱 바람직하게는 17 내지 25중량%일 수 있다.
도 2는 본 발명의 일 실시예에 따른 습식방사장치의 개략적인 단면도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 습식방사장치(200)는 방사액 저장조(220), 펌프(240), 구금(250, die), 전원공급부(270), 복수의 롤(roll, 280a, 280b, 280c) 및 응고액(260)이 담기는 응고조(210)를 포함하여 구성될 수 있다. 한편, 응고조(210)에는 방사된 방사액(230)과 응고 공정 중 교환된 방사액(230) 내부의 용매가 더 담길 수 있다.
구체적으로, 방사액(230)에 전압 인가 단계는, 방사 전 방사액(230)이 저장된 방사액 저장조(220)에 전원공급부(270)를 통해 전압을 연결하여 수행할 수 있다.
보다 구체적으로, 방사액(230)에 전압 인가 단계는, 방사 전 방사액 저장조(220)의 상단 및 하단 각각에 전원공급부(270)를 통해 서로 다른 극성의 전원을 공급하여 수행할 수 있다.
즉, 방사액 저장조(220)의 상단에는 양극(+) 및 음극(-) 중 선택된 어느 하나의 극성을 가지는 전원을 공급하고, 방사액 저장조(220)의 하단에는 양극(+) 및 음극(-) 중 나머지 극성을 가지는 전원을 공급하여 소정의 전압을 방사액(230)에 인가할 수 있다.
바람직하게는, 방사액(230)의 고분자 이온의 전하와 반대되는 극성을 가지는 전원을 방사액 저장조(220)의 하단에 공급한다. 이 경우, 서로 다른 극성으로 인한 인력이 작용하기 때문에 방사액 저장조(220) 하단에 포집되는 고분자 이온의 양을 늘려 응고조(210)에 투입되는 고분자 이온의 양을 늘릴 수 있다.
예컨대, 방사액(230)의 고분자 이온이 음(-)전하를 띠는 경우, 방사액 저장조(220)의 상단에는 음극(-)의 전원을 공급하고 방사액 저장조(220)의 하단에는 양극(+)의 전원을 공급하여 소정의 전압을 방사액(230)에 인가한다.
본 실시예의 방사액(230)은 전압이 인가되면 단량체에 포함된 이온을 형성할 수 있는 기가 이온화하며 고분자가 음(-)전하 또는 양(+)전하를 띠게 되고, 이후 이온화된 고분자의 산화·환원 반응에 의해 방사액(230)에 전류가 발생하게 된다.
이렇게, 방사액(230) 중에 생성된 고분자 이온은 방사액 저장조(220) 하단, 즉 구금(250)으로 이동 및 포집되고, 추후 방사액(230)의 방사에 의해 응고조(210)로 들어가게 된다.
상기에서, 방사액 저장조(220)에 전압을 인가하여 방사액(230)에 발생되는 전류는 극이 연결되는 부분의 단면적(방사액이 차지하는 용적의 상단부 단면적, 하단부 단면적)과 전압에 따라 조절되며, 이때 전압은 대략 40 내지 1000V일 수 있다. 전압이 40V 미만으로 충분하지 못하면 방사액(230) 내부에서의 이온 생성 및 포집이 불충분할 수 있고, 반대로 전압이 1000V를 초과하여 너무 높으면 고분자 및 용매가 분해(degradation)될 수 있다.
본 실시예에서, 전압에 의해 방사액(230)에 발생하는 전류는 일정한 값으로 수렴하는데 약 20~30초 정도 소요되며 이 전까지 방사된 섬유는 사용하지 않는다. 이때, 전류 값은 수십 내지 수천 μA, 상세하게는 50 내지 3000μA일 수 있다. 상기 방사액(230)에 발생된 전류 값이 상기한 범위를 만족하는 경우 제조되는 고분자 섬유의 물성이 개선될 수 있다.
다시, 도 1 및 도 2를 참조하면, 방사액 습식방사 단계(S120)는 전압이 인가되어 이온화된 방사액(230)을 펌프(240)의 압력을 이용하여 구금(250)의 노즐(nozzle, 미도시)을 통해 응고액(260)이 담긴 응고조(210) 중에 방사한다.
이때, 펌프(240)는 방사액 저장조(220)에 체결되어 방사액 저장조(220)의 상측에서 하측으로 방사액(230)을 토출하는 피스톤 펌프(piston pump)일 수 있다. 이 경우, 펌프(240)에 전압을 인가하는 것에 의해 방사액 저장조(220)의 상단에 전압이 인가될 수도 있다.
또한, 상기 방사액 저장조의 방사액을 토출하기 위한 수단으로 피스톤 펌프 외에 당업계에 사용될 수 있는 다양한 종류의 장치들이 제한 없이 적용될 수 있다.
구금(250)은 원형 단면의 노즐을 구비하여 방사액 저장조(220) 아래에 배치되고, 구금(250)의 노즐은 응고액(260) 내의 일 위치에 침설된다. 또한, 노즐의 배면측에는 미세 분출구(미도시)가 구비된다. 따라서, 방사액(230)은 응고조(210)의 바닥면을 기준으로 수직 방향으로 토출될 수 있다.
이러한 구금(250)은 멀티 구금(multi die)인 것이 바람직하며, 이 경우 싱글 구금(single die)일 때보다 방사 중 섬유의 파단을 감소시킬 수 있다.
응고액(260)은 통상의 습식방사에 이용되는 용액이 제한 없이 채용 가능하다. 이러한 응고액(260)의 온도는 낮을수록 좋으며, 예를 들어 50℃ 이하, 바람직하게는 40℃ 이하, 더욱 바람직하게는 30℃ 이하일 수 있다. 응고액(260)의 온도가 낮아짐에 따라 더욱 치밀한 응고사(290)를 얻을 수 있다. 그러나, 응고액(260)의 온도가 3℃ 미만으로 지나치게 낮을 경우에는 응고사(290)의 인취(take-up) 속도 및 생산성이 감소되므로, 응고액(260)의 온도는 3℃ 내지 50℃ 범위 내에서 적절히 설정되는 것이 바람직하다.
응고조(210)중으로 방사된 방사액(230)은 응고액(260)을 통과하면서 압출되어 섬유상으로 고체화된 응고사(290)를 형성하게 된다. 일례로, 방사액(230)은 응고조(210) 벽면의 일단부 및 타단부 각각에 배치된 주행 롤(280a)과 인상 롤(280b)을 차례로 거치면서 응고액(260)을 통과하게 된다.
본 발명에 따르면, 방사 전 방사액(230)에 전압을 인가함으로써, 방사액(230) 내에 생성된 후 방사액 저장조(220) 하단측으로 이동 및 포집된 다수의 고분자 이온이 응고조(210)에 들어가게 된다.
이로 인해, 응고 공정 중 응고사(290)의 내부로 응고액(260) 내의 비용매 확산이 촉진된다. 즉, 응고 공정 중 방사액(230) 내부의 고분자 이온 양이 증가하여 나노스케일(nanoscale)에서의 응고사(290) 내부의 용매와 응고액(260) 내의 비용매 교환이 촉진된다.
이는 방사액(230) 내부의 고분자 이온이 응고 과정 중 응고사(290) 내부에 포함되며, 이때 응고사(290) 내부에 존재하는 고분자 이온이 용매보다 더 큰 유전율을 가지는 비용매와의 인력으로 인해 비용매를 응고사(290) 내부로 당기기 때문이다.
종국적으로, 본 발명에서는 응고사(290) 내부로 응고액(260)내의 비용매가 확산되어 응고사(290) 내부의 용매와 응고액(260) 내의 비용매 교환이 촉진됨으로 인해 응고액(260)이 구비된 응고조(210)를 이용한 응고 공정 동안 응고사(290) 내부의 용매 제거가 현저하게 개선될 수 있다.
다시, 도 1 및 도 2를 참조하면, 연신 단계(S130)는 응고액(260)이 담겨진 응고조(210)에서 응고 공정을 통해 수득된 응고사(290)를 응고액(260)으로부터 분리하여 연신한다.
연신이란 응고사(290)가 2차 전이온도 이상에서 롤(280c1)과 롤(280c2)의 회전 속도 차이에 의해 연신되어 응고사를 이루는 고분자의 분사 사슬이 재배열되는 것을 의미한다.
연신 공정은 통상의 공지된 방법이 제한 없이 채용 가능하며, 예를 들어, 연신 공정은 응고조(210) 외부에 배치된 2개의 연신 롤(280c1, 280c2)의 회전 속도 차이를 이하여 1배 내지 20배의 연신율로 수행할 수 있다. 그러나, 연신율은 특별히 이에 한정되는 것은 아니며, 제조하고자 하는 섬유의 목표하는 탄성율이나 공정온도 등을 고려하여 적절히 선택될 수 있다.
본 발명의 일 실시예에 의하면, 연신 공정은 70℃ 이상, 바람직하게는 90℃로 가열된 비용매만으로 이루어진 수세조(미도시)를 사용하는 열연신 공정일 수 있다.
연신 공정 시, 응고조(210) 중의 응고사(290)는 응고조(210) 중의 인상 롤(280b)에 의해 응고조(210) 외부의 연신 롤(280c)로 인취되어 연신될 수 있다. 이로써, 응고사(290)가 인장되어 분자 사슬들이 섬유축 방향으로 배향되면서 탄성이 우수한 응고사(290)를 수득할 수 있다.
본 발명에 따르면, 응고사(290) 내부로 확산된 응고액(260)으로 인해 응고조(210)를 통한 응고사(290) 내부의 용매 제거가 용이하므로 이후 연신 시에 기존의 습식방사에서 발생하는 공동형성(cavitation) 및 결함(defect)이 억제될 수 있다.
이는 종래 습식 방사에서는 응고사(290) 내부의 미처 빠져나가지 못한 용매가, 본 발명에 따른 방법에서는 보다 효과적으로 제거됨으로써, 응고사(290) 내부의 용매가 있던 자리의 기공이나 결함이 최소화되는 것에 기인한다. 이를 통해, 응고사(290)는 공동형성 및 결함이 최소화되어 강도, 탄성률, 신도 등의 역학적 물성이 향상될 수 있다.
예를 들어, 습식 방사에서 얻어진 섬유가 탄소섬유 등의 최종 섬유의 전구체로 사용되는 경우, 상기 전구체 섬유의 섬유 구조의 치밀성 또는 균질성이 불충분하면, 소성 시에 흠결 자리가 나타나 생성 탄소섬유의 성능을 훼손시킬 것이다. 따라서, 탄소섬유 등에 적용하는 전구체 섬유를 제조하는 경우에 있어서도, 치밀하고 균질한 전구체 섬유를 형성하기 위해 응고 공정에서 얻어지는 응고사의 성질이 매우 중요하다.
본 발명에 따르면, 방사액(230)으로부터 형성된 응고사(290)의 성질을 제어하는 가장 큰 변수는 방사액(230)에 도입된 전기적 변수이다.
이렇듯, 방사 전 방사액(230)에 인가된 전압에 의해 응고사(290) 내부의 용매와 응고액(260) 내의 비용매의 교환이 촉진되고, 응고사(290) 내부로 확산된 응고액(260)으로 인해 응고조(210)를 통한 응고사(290) 내부의 용매 제거율이 높아져 연신 시 치밀하고 균질한 응고사(290)가 제조될 수 있다.
또한, 본 발명에 따르면 연신 후 공극의 크기가 줄어든 응고사(290)가 제조될 수 있다.
기존 습식방사의 경우 응고욕의 응고 공정에서 응고사 내부의 용매를 완전히 제거하기가 매우 어려워 여러 온도를 가진 응고액을 구비한 응고조를 구비해야 하기 때문에 300m 이상 큰 규모의 응고 및 수세 설비가 필요하므로 비경제적이었다.
그러나, 본 발명에 따르면, 응고사(290) 내부로 응고액(260)의 확산이 촉진됨으로 인해 종래에 비해서 훨씬 작은 규모의 응고조를 통한 용매의 제거가 용이하므로, 기존 습식방사 공정의 규모를 줄일 수 있어 경제적이다.
한편, 연신 공정은 세정(수세)과 동시에 수행되거나, 응고사(290)의 세정 단계 전 또는 세정 단계 이후에 진행될 수도 있다.
건조 단계(S140)는 연신이 완료된 응고사(290)를 건조한다.
예를 들어, 건조 공정은 건조기를 이용하여 150℃ 이하, 바람직하게 50℃ 내지 150℃의 온도에서 실시될 수 있으며, 특별히 이에 한정되지 않고 공지된 다양한 방법이 이용될 수도 있다.
권취 단계(S150)는 건조된 응고사(290)를 권취하여 최종적으로 고분자 섬유의 제조를 완료한다.
상기한 구성의 제조방법으로 제조된 본 실시예의 고분자 섬유는, 예를 들어 폴리아크릴로니트릴(PAN) 섬유, 폴리비닐알코올(PVA) 섬유, 폴리비닐클로라이드(PVC) 섬유 또는 레이온 섬유일 수 있고, 바람직하게는 폴리아크릴로니트릴(PAN) 섬유일 수 있다. 이때, 폴리아크릴로니트릴(PAN) 섬유, 폴리비닐알코올(PVA) 섬유, 폴리비닐클로라이드(PVC) 섬유는 전술한 바와 같이 각각의 단독 중합체 또는 공중합체로 형성될 수 있다.
본 실시예의 고분자 섬유는 기공 및 결함이 감소되어 상대적으로 역학적 물성이 향상되며, 예를 들어 일반적인 습식방사법으로 제조되는 섬유보다 각각 강도는 10% 이상, 상세하게는 22% 이상 향상되고, 탄성 모듈러스는 20% 이상, 상세하게는 55% 이상 향상되고, 신도는 10% 이상, 상세하게는 32% 이상 향상될 수 있다.
또한, 본 실시예의 고분자 섬유는 일반적인 습식 방사법으로 제조되는 섬유보다 더 낮은 공극 크기, 예를 들어 0.5배 이하로 감소된 공극 크기를 가질 수 있다.
바람직하게, 본 실시예의 고분자 섬유는 ASTM D3822-07에 의거하여 측정된 강도가 200 MPa 이상이고, 탄성 모듈러스가 6GPa 이상이며, 신도가 6% 이상을 만족할 수 있다.
더욱 바람직하게는, 본 실시예의 고분자 섬유는 ASTM D3822-07에 의거하여 측정된 강도 200MPa 내지 2000MPa, 탄성 모듈러스 6GPa 내지 20GPa 및 신도 6% 내지 30%이상인 범위를 만족할 수 있다.
이러한 본 실시예의 고분자 섬유는 탄소섬유를 제조하기 위한 전구체 섬유로 활용 가능하며, 역학적 물성이 향상됨에 따라 이를 전구체로 이용하여 제조되는 탄소섬유의 역학적 성능을 향상시킬 수 있다.
실시예
이하, 본 발명의 바람직한 실시 예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 시료의 제조
실시예 1
폴리아크릴로니트릴(PAN) 공중합체(메타크릴산으로부터 유래된 반복돤위가 6중량% 포함) 20중량%와 디메틸포름아미드(DMF) 80중량%를 혼합하여 방사액을 제조하였다. 이어서, 방사액 50㎖를 습식방사장치의 방사액 저장조에 저장하였다.
이후, 방사 전, 전원공급장치를 이용하여 방사액 저장조의 상단 및 하단 각각에 음전하를 띤 전압선과 양전하를 띤 전압선을 부착하여 30초 동안 60V의 전압을 인가하여 방사액에 100μA의 전류를 인가하였다. 이때, 방사액이 차지하는 용적의 상단부 단면적과 하단부 단면적은 각각 7.065㎠, 1.766㎠이었다.
그런 다음, 방사액을 디메틸포름아미드(DMF) 60중량% 및 물 40중량%의 25℃ 응고액 중으로 습식방사하였다. 이후, 수득된 응고사를 90℃의 온도에서 5배로 연신한 후 건조기에서 100℃로 건조한 다음 권취하여 폴리아크릴로니트릴(PAN) 섬유를 제조하였다.
비교예 1
방사 전 방사액 저장조의 상단 및 하단에 전압을 인가하지 않은 것을 제외하고 나머지는 실시예 1과 동일하게 수행하였다.
2. 평가
실시예 1 및 비교예 1에 따른 시편의 TGA(Thermogravimetric analysis; 열중량분석)와 강도를 측정하고, 섬유 내부의 기공 분석을 위해 SAXS(small angle X-ray scattering; 저각 X선 산란) 패턴을 확인하여, 그 결과를 도 3 내지 도 6에 나타내었다.
평가 방법
ASTM D3822-07에 의거하여, 단섬유 인장 테스트기로 파괴 강도 스트레인(신도)을 측정하였다.
도 3은 실시예 1 및 비교예 1에 따른 시료의 TGA(열중량분석) 그래프이고, 도 4는 실시예 1 및 비교예 1에 따른 시료의 스트레인-파괴 강도(Strain-Breaking strength) 특성을 나타낸 그래프이다.
도 3을 참조하면, 비교예 1의 섬유와 비교하여, 실시예 1의 섬유는 50℃ 부근에서부터 140℃까지의 무게 감소는 더 빨리 일어나는 반면 150℃ 이후부터는 무게 감소가 더 느리게 일어나는 것을 알 수 있었다. 이는 실시예 1의 섬유는 상대적으로 물 함량이 더 높고, 반대로 비교예 1의 섬유는 상대적으로 용매(DMF)의 함량이 더 높다는 것을 의미한다. 이를 통해, 비교예 1의 섬유가 실시예 1의 섬유에 비해 응고사 내부에 있는 방사액 용매가 응고액으로 덜 치환되어, 응고사 내부에 잔존하는 용매에 의해 최종 얻어지는 섬유에 더 많은 결함을 가지고 있음을 알 수 있다.
도 4를 참조하면, 실시예 1의 섬유가 비교예 1의 섬유보다 더 높은 역학적 특성을 나타내는 것을 알 수 있다.
구체적으로, 실시예 1의 섬유는 비교예 1의 섬유에 비해 파괴강도와 스트레인(신도)이 각각 평균 22%, 32% 증가하였다.
도 5는 비교예 1에 따른 시료의 SAXS(저각 X선 산란) 패턴 사진이고, 도 6은 실시예 1에 따른 시료의 SAXS 패턴 사진이다.
도 5 및 도 6을 참조하면, 실시예 1의 섬유의 SAXS 패턴의 강도가 비교예 1의 섬유의 SAXS 패턴의 강도보다 낮음을 알 수 있었다. 이는 SAXS 패턴의 강도가 낮다는 것은 기공에 의해서 산란되는 빛이 낮다, 즉 기공에 의해서 산란되는 빛의 정도가 낮다는 것을 의미하기 때문이다.
이를 통해, 비교예 1의 섬유와 비교하여, 실시예 1의 섬유 내부의 기공의 수나 사이즈가 상대적으로 작음을 알 수 있다.
이상에서 설명한 본 발명의 바람직한 실시예들은 예시의 목적을 위해 개시된 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능할 것이나, 이러한 치환, 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.
[부호의 설명]
200: 습식방사 장치 210: 응고조
220: 방사액 저장조 230: 방사액
240: 펌프 250: 구금
260: 응고액 270: 전원공급부
280a : 주행 롤 280b: 인상 롤
280c: 연신 롤 280c1: 제1 연신 롤
280c2: 제2 연신 롤 290: 응고사

Claims (12)

  1. 고분자 및 용매를 포함하는 방사액에 전압을 인가하여 상기 방사액을 이온화하는 단계;
    상기 이온화된 방사액을 응고액 중으로 방사하여 응고사를 수득하는 단계; 및
    상기 응고사를 연신하여 고분자 섬유를 형성하는 단계;를 포함하는 전기적 변수 인가 습식방사법.
  2. 제1항에 있어서,
    상기 고분자 및 용매를 포함하는 방사액에 전압을 인가하여 상기 방사액을 이온화하는 단계는,
    방사액 저장조의 상단 및 하단에 방사 전 서로 다른 극성의 전원을 연결하여 전압을 인가하는 단계를 포함하는 전기적 변수 인가 습식방사법.
  3. 제1항에 있어서,
    상기 방사액에 인가되는 전압은 40 내지 1000V인 전기적 변수 인가 습식방사법.
  4. 제1항에 있어서,
    상기 전압이 인가된 방사액에 발생되는 전류는 50 내지 3000μA인 전기적 변수 인가 습식방사법.
  5. 제1항에 있어서,
    상기 고분자는 이온을 형성할 수 있는 기를 가지는 단량체로부터 유래된 반복단위를 갖는 고분자를 포함하는 전기적 변수 인가 습식방사법.
  6. 제5항에 있어서,
    상기 고분자는 폴리아크릴로니트릴 단독중합체, 폴리아크릴로니트릴 공중합체, 폴리비닐알코올 단독중합체, 폴리비닐알코올 공중합체, 폴리비닐클로라이드 단독중합체, 폴리비닐클로라이드 공중합체 및 레이온(rayon) 중 선택된 어느 하나 또는 2 이상의 혼합물인 전기적 변수 인가 습식방사법.
  7. 제5항에 있어서,
    상기 이온을 형성할 수 있는 기는 카르복실산기, 니트릴기, 하이드록시기 및 할로겐기중 선택된 어느 하나 이상인 전기적 변수 인가 습식방사법.
  8. 제6항에 있어서,
    상기 폴리아크릴로니트릴 공중합체는 아크릴로니트릴로부터 유래된 반복단위; 및 상기 아크릴로니트릴의 니트릴 기간의 결합력을 약화시키는 단량체로부터 유래된 반복단위를 갖는 공중합체인 전기적 변수 인가 습식방사법.
  9. 제5항에 있어서,
    상기 이온화된 방사액을 응고액 중으로 방사하여 응고사를 수득하는 단계는,
    상기 방사액 내부에 이온화된 고분자의 양이 증가하여 상기 방사액 내의 용매와 상기 응고액 내의 비용매의 교환이 촉진되는 단계를 포함하는 전기적 변수 인가 습식방사법.
  10. 제1항 내지 제9항 중 어느 한 항의 전기적 변수 인가 습식방사법에 의해 제조된 고분자 섬유.
  11. 제10항에 있어서,
    상기 고분자 섬유는 폴리아크릴로니트릴 섬유, 폴리비닐알코올 섬유, 폴리비닐클로라이드 섬유 및 레이온 섬유 중 어느 하나 또는 2 이상의 혼합물인 고분자 섬유.
  12. 제10항에 있어서,
    ASTM D3822-07에 의거하여 측정된 강도 200 MPa 이상, 탄성 모듈러스 6GPa 이상 및 신도 6% 이상인 고분자 섬유.
PCT/KR2017/013965 2017-07-31 2017-11-30 전기적 변수 인가 습식방사법 WO2019027104A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505201A JP7122770B2 (ja) 2017-07-31 2017-11-30 電気的パラメータ補助湿式紡糸法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0097219 2017-07-31
KR1020170097219A KR101938487B1 (ko) 2017-07-31 2017-07-31 전기적 변수 인가 습식방사법

Publications (1)

Publication Number Publication Date
WO2019027104A1 true WO2019027104A1 (ko) 2019-02-07

Family

ID=65027895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013965 WO2019027104A1 (ko) 2017-07-31 2017-11-30 전기적 변수 인가 습식방사법

Country Status (3)

Country Link
JP (1) JP7122770B2 (ko)
KR (1) KR101938487B1 (ko)
WO (1) WO2019027104A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930018065A (ko) * 1992-02-25 1993-09-21 나가이 야타로 아크릴 섬유 및 이의 제조방법
JP2714829B2 (ja) * 1988-12-01 1998-02-16 株式会社小松製作所 中空繊維膜の紡糸方法
JP2714854B2 (ja) * 1989-06-09 1998-02-16 株式会社小松製作所 曝気用中空糸の製造方法
JP2008013877A (ja) * 2006-07-06 2008-01-24 Kaneka Corp 染色性に優れたアクリル系合成繊維
KR20080096814A (ko) * 2006-03-03 2008-11-03 몬테피브레 에스.피.에이. 낮은 필링 형성의 직물을 위한 아크릴섬유의 생산 공정 및 그로부터 수득되는 아크릴섬유

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161430A (ja) 2000-11-29 2002-06-04 Kuraray Co Ltd 水溶性ポリビニルアルコール系繊維の製造方法
CN102102233B (zh) 2010-12-17 2013-04-03 东华大学 一种聚丙烯腈基纳米碳纤维原丝的制备方法
JP2015183166A (ja) * 2014-03-26 2015-10-22 東レ株式会社 アクリロニトリル系共重合体およびポリアクリロニトリル系炭素繊維前駆体繊維、炭素繊維の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714829B2 (ja) * 1988-12-01 1998-02-16 株式会社小松製作所 中空繊維膜の紡糸方法
JP2714854B2 (ja) * 1989-06-09 1998-02-16 株式会社小松製作所 曝気用中空糸の製造方法
KR930018065A (ko) * 1992-02-25 1993-09-21 나가이 야타로 아크릴 섬유 및 이의 제조방법
KR20080096814A (ko) * 2006-03-03 2008-11-03 몬테피브레 에스.피.에이. 낮은 필링 형성의 직물을 위한 아크릴섬유의 생산 공정 및 그로부터 수득되는 아크릴섬유
JP2008013877A (ja) * 2006-07-06 2008-01-24 Kaneka Corp 染色性に優れたアクリル系合成繊維

Also Published As

Publication number Publication date
JP2020529529A (ja) 2020-10-08
KR101938487B1 (ko) 2019-01-14
JP7122770B2 (ja) 2022-08-22

Similar Documents

Publication Publication Date Title
WO2014204282A1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 및 그 제조방법
CN1247835C (zh) 中空聚合物纤维的制造方法、中空聚合物纤维及其用途方法
TW201739503A (zh) 流體分離膜、流體分離膜模組以及多孔質碳纖維
WO2017116117A1 (ko) 라이오셀 섬유 및 이의 제조방법
WO2009145446A1 (en) Para-aramid fiber and method of preparing the same
US20140106167A1 (en) Method for hybrid dry-jet gel spinning and fiber produced by that method
US20160060793A1 (en) Carbon fiber bundle and method for producing same
WO2019027104A1 (ko) 전기적 변수 인가 습식방사법
WO2021045462A1 (ko) 탄소섬유의 제조방법 및 이를 이용하여 제조된 탄소섬유
CN107849739B (zh) 来自具有不同分解温度的聚合物的纱线以及其形成方法
JP2011042893A (ja) ポリアクリロニトリル系繊維の製造方法、および炭素繊維の製造方法
KR101407127B1 (ko) 고강도 고탄성의 탄소섬유 제조를 위한 전구체 섬유의 응고방법
KR20140074136A (ko) 탄소섬유용 pan계 프리커서 제조장치
WO2015152594A1 (ko) 라이오셀 섬유
JP3969799B2 (ja) 高強度アクリル繊維、及びそれを用いた炭素繊維の製造方法
US11242623B2 (en) Continuous method for producing a thermally stabilized multifilament thread, multifilament thread, and fiber
JPS6317929B2 (ko)
JPH08325840A (ja) 高弾性率ポリパラフエニレンベンゾビスオキサゾール繊維及びその製造法
KR20190063221A (ko) 폴리아크릴로니트릴계 섬유의 제조방법
JPH1112854A (ja) アクリル系炭素繊維用前駆体繊維およびその製造方法
KR20190084187A (ko) 탄소섬유 표면처리 장치 및 방법
JP7311649B2 (ja) 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維
JPH055224A (ja) 均一性に優れた炭素繊維の製造方法
JPS61215708A (ja) マルチフイラメントヤ−ンの製造方法
WO2022030854A1 (ko) 폴리아크릴로니트릴계 내염화 섬유, 탄소섬유 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920176

Country of ref document: EP

Kind code of ref document: A1