WO2018074462A1 - 方向性電磁鋼板および方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板および方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018074462A1
WO2018074462A1 PCT/JP2017/037506 JP2017037506W WO2018074462A1 WO 2018074462 A1 WO2018074462 A1 WO 2018074462A1 JP 2017037506 W JP2017037506 W JP 2017037506W WO 2018074462 A1 WO2018074462 A1 WO 2018074462A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
steel sheet
oxide ceramic
grain
oriented electrical
Prior art date
Application number
PCT/JP2017/037506
Other languages
English (en)
French (fr)
Inventor
拓実 馬田
重宏 ▲高▼城
敬 寺島
稔 ▲高▼島
早川 康之
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018503684A priority Critical patent/JP6350773B1/ja
Priority to CN201780062746.7A priority patent/CN109844179B/zh
Priority to EP17861461.6A priority patent/EP3514261B1/en
Priority to US16/342,829 priority patent/US11091842B2/en
Priority to RU2019111597A priority patent/RU2706941C1/ru
Priority to KR1020197007875A priority patent/KR102230629B1/ko
Publication of WO2018074462A1 publication Critical patent/WO2018074462A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/02Coating with enamels or vitreous layers by wet methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet.
  • Oriented electrical steel sheets are soft magnetic materials used as iron core materials for transformers and generators.
  • the grain-oriented electrical steel sheet is characterized in that the ⁇ 001> orientation, which is the easy axis of iron, has a crystal structure highly aligned with the rolling direction of the steel sheet.
  • Such a texture is formed through finish annealing that preferentially grows crystal grains with a ⁇ 110 ⁇ ⁇ 001> orientation called a so-called Goss orientation in finish annealing in the manufacturing process of grain-oriented electrical steel sheets. .
  • As magnetic properties of products of grain-oriented electrical steel sheets high magnetic flux density and low iron loss are required.
  • the magnetic properties of the grain-oriented electrical steel sheet are improved by applying a tensile stress (tension) to the steel sheet surface.
  • a tensile stress tension
  • a forsterite film having a thickness of about 2 ⁇ m is formed on the surface of the steel sheet, and a film mainly composed of silica glass having a thickness of about 2 ⁇ m is formed thereon.
  • the technology to do is common. That is, a silicate glass coating having a low coefficient of thermal expansion compared to a steel plate is formed at a high temperature, which is lowered to room temperature, and the tensile stress is applied to the steel plate due to the difference in thermal expansion coefficient between the steel plate and the silicate glass coating. Is added.
  • This silicic acid glass film also functions as an insulative film essential for the grain-oriented electrical steel sheet. That is, the generation prevents local eddy currents in the steel sheet.
  • the iron loss can be greatly reduced by smoothing the surface of the grain-oriented electrical steel sheet after finish annealing by chemical polishing or electrolytic polishing and then applying a tensile stress by a coating on the steel sheet.
  • the forsterite coating between the steel plate and the silicic acid glass coating forms a diffusion layer with the steel plate. Therefore, the smoothness of the steel sheet surface inevitably deteriorates.
  • the adhesion between glass and metal is low, and a glass film cannot be formed directly on a steel sheet having a mirror-finished surface.
  • the coating structure of a conventional grain-oriented electrical steel sheet (steel sheet / forsterite film / silicic acid glass film)
  • the surface of the steel sheet cannot be smoothed.
  • Patent Document 1 a non-oxide ceramic film such as TiN is formed on the steel sheet by CVD or PVD in order to maintain the smoothness of the steel sheet surface and to apply a large tensile stress to the steel sheet. ing.
  • the tensile stress applied to the steel plate is proportional to the thickness of the non-oxide ceramic coating, at least 1 ⁇ m of the non-oxide ceramic coating is formed.
  • the CVD method and the PVD method are high in manufacturing cost, it is desired to make the film as thin as possible. In this case, the tensile stress applied to the steel sheet is reduced.
  • Patent Document 2 in order to compensate for such a decrease in tension due to thinning, or to apply a larger tension to the steel sheet, the film was thinned to a thickness of at least 0.5 ⁇ m on the surface of the steel sheet after polishing.
  • a non-oxide ceramic film is formed, and an insulating tension film mainly composed of silica glass is formed thereon.
  • Patent Document 2 a non-oxide ceramic film having a thickness of at least 0.5 ⁇ m is formed. However, even with this thickness, the manufacturing cost becomes too high, and it has not actually been adopted.
  • the inventors examined the characteristics of the grain-oriented electrical steel sheet after setting the thickness of the non-oxide ceramic coating to 0.400 ⁇ m or less. As a result, when stress relief annealing is performed on the grain-oriented electrical steel sheet by a customer or the like, the non-oxide ceramic coating may peel off from the steel sheet or the magnetic properties of the grain-oriented electrical steel sheet may be inferior. there were.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet excellent in film adhesion and magnetic properties after strain relief annealing, and a manufacturing method thereof.
  • the present inventors have intensively studied to achieve the above object.
  • the non-oxide ceramic coating having a thickness of 0.400 ⁇ m or less and the insulating tension coating thereon are excellent in both coating adhesion and magnetic properties even after strain relief annealing by a specific configuration.
  • the headline and the present invention were completed.
  • the present invention provides the following [1] to [10].
  • [1] A steel plate, a non-oxide ceramic coating containing a non-oxide disposed on the steel plate, and an insulating tension coating containing an oxide disposed on the non-oxide ceramic coating.
  • the non-oxide ceramic coating has a thickness of 0.020 ⁇ m or more and 0.400 ⁇ m or less, the insulating tension coating has a thickness of 1.0 ⁇ m or more, and the non-oxide ceramic coating has the steel plate.
  • the non-oxide ceramic coating contains at least one selected from the group consisting of a carbide containing Ti, a nitride containing Ti, and a carbonitride containing Ti as the non-oxide.
  • the non-oxide ceramic coating has a coating A disposed on the steel plate and a coating B disposed on the coating A, and the Cr content of the coating A and the coating B
  • the grain-oriented electrical steel sheet according to the above [1] or [2] which has a different Cr content.
  • the non-oxide ceramic film is formed by the PVD method, and the PVD method is an ion plating method in which a bias voltage is applied to the steel plate to accelerate ions, and the bias voltage is ⁇
  • the method for producing a grain-oriented electrical steel sheet according to the above [8] which is 50 V or less.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet excellent in coating film adhesion and magnetic properties after strain relief annealing, and a manufacturing method thereof.
  • an insulating tension coating made of silicic acid glass with a low coefficient of thermal expansion is effective in increasing the tensile stress exerted on the steel sheet by the insulating tension coating to improve the magnetic properties.
  • the oxide ceramic film and the insulating tension film (silicic acid glass) react at a high temperature to produce a reaction product.
  • the reaction product diffuses from the interface between the insulating tension coating and the non-oxide ceramic coating in the non-oxide ceramic coating toward the steel plate. When it diffuses to the interface between the non-oxide ceramic coating and the steel plate, it reacts with Fe of the steel plate to form precipitates.
  • the present inventors have studied to suppress the reaction between the non-oxide ceramic coating and the insulating tension coating (silicic acid glass) by adjusting the components of the non-oxide ceramic coating.
  • the inventors focused on the fact that the non-oxide ceramic film made of CrN has a slower oxidation rate than the non-oxide ceramic film made of TiN.
  • the inventors formed a non-oxide ceramic film made of a nitride containing Cr at a thickness of 0.400 ⁇ m or less on the steel plate from which the surface forsterite was removed by pickling.
  • the present inventors applied a coating liquid mainly composed of phosphate and colloidal silica using a coating type roll, and baked in a nitrogen atmosphere to form a silicic acid glass, and in a nitrogen atmosphere
  • the strain relief annealing was performed at 800 ° C. for 3 hours.
  • the present inventors have found that the non-oxide ceramic coating does not peel even after strain relief annealing, and excellent coating adhesion can be maintained.
  • the magnetic properties may be significantly deteriorated by strain relief annealing at 800 ° C. for 3 hours. As a result of repeated examinations by the inventors on the cause, the following idea has been reached.
  • Cr in the non-oxide ceramic film diffuses into the steel sheet, and precipitates composed of Cr and Si and precipitates composed of Cr and N (hereinafter collectively referred to as “Cr Also referred to as “system precipitate”. This Cr-based precipitate hinders the movement of the domain wall in the steel plate and degrades the magnetic properties.
  • the present inventors have studied to suppress the diffusion of Cr into the steel sheet and the generation of Cr-based precipitates by changing the configuration of the non-oxide ceramic coating.
  • the inventors then formed a non-oxide ceramic film by CVD or PVD on the steel plate from which surface forsterite had been removed by pickling after finish annealing.
  • the inventors intend to reduce the Cr content of the non-oxide ceramic coating on the steel sheet, thereby reducing the rate at which Cr diffuses into the steel sheet.
  • the Cr content on the insulating tension coating side was increased.
  • the inventors set the Cr content on the steel sheet side to be less than 25 atomic% and the Cr content on the insulating tension coating side to be 25 atomic% or more.
  • the present inventors applied and dried a coating liquid mainly composed of phosphate and colloidal silica using a coating-type roll, and then baked in a nitrogen atmosphere to form silicic acid glass. Strain relief annealing was performed in an atmosphere at 800 ° C. for 3 hours. As a result, the present inventors have found that the non-oxide ceramic film does not peel off and the magnetic properties do not deteriorate even after strain relief annealing.
  • FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the grain-oriented electrical steel sheet of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a conventional grain-oriented electrical steel sheet.
  • a conventional grain-oriented electrical steel sheet usually has a forsterite film 2 on a steel sheet 1, and an insulating tension film 3 made of silicic acid glass is formed thereon.
  • the thickness T2 of the forsterite coating 2 is about 2 ⁇ m
  • the thickness T3 of the insulating tension coating 3 is about 2 ⁇ m.
  • the conventional forsterite coating 2 see FIG.
  • the thickness T 4 of the non-oxide ceramic coating 4 is 0.400 ⁇ m or less. Therefore, even when thickness increasing the thickness T 3 of the insulating tension coating 3 than 2.0 .mu.m, it does not reduce the effective steel volume when using the grain-oriented electrical steel sheet as a transformer (space factor).
  • the inventors further increase the thickness of the insulating tension film to be formed by adjusting the rotation speed of the coating-type roll and the specific gravity of the coating liquid, thereby increasing the tension applied to the steel sheet. It has been found that the magnetic properties of the grain-oriented electrical steel sheet can be improved.
  • the present inventors first formed a film (coating A) made of non-oxide containing no Cr such as TiN and AlN on the steel sheet, and then formed Cr. It has been found that good film adhesion and magnetic properties can be obtained even when a non-oxide-containing film (coating B) containing is formed into a two-layer structure.
  • the film formation conditions of the non-oxide ceramic coating 1) When the plane orientation of the non-oxide ceramic coating is measured by an EBSD (Electron Back Scatter Diffraction) method, the area ratio of the portion where the inclination from the (111) plane or the (100) plane is 10 ° or less is 50 % Or more, or preferentially oriented so that 2) When the non-oxide ceramic coating has a two-layer structure (coating A and coating B), when the plane orientation of at least one of the coatings is measured by the EBSD method, (111) plane or (100) plane Is preferentially oriented so that the area ratio of the portion where the inclination from the angle is 10 ° or less is 50% or more.
  • EBSD Electro Back Scatter Diffraction
  • a small-angle grain boundary having a misorientation angle of 15 ° or less between the grain boundaries in the non-oxide ceramic coating becomes dominant, and between the non-oxide ceramic coating and the insulating tension coating (silicic acid glass).
  • the present inventors have found that the diffusion of phosphorus produced by the reaction is suppressed, and as a result, better film adhesion and magnetic properties can be obtained.
  • the grain-oriented electrical steel sheet of the present invention contains a steel sheet, a non-oxide ceramic film containing a non-oxide disposed on the steel sheet, and an oxide disposed on the non-oxide ceramic film.
  • An insulation tension coating wherein the non-oxide ceramic coating has a thickness of 0.020 ⁇ m or more and 0.400 ⁇ m or less, the insulation tension coating has a thickness of 1.0 ⁇ m or more, and the non-oxidation coating
  • the Cr content on the steel plate side of the ceramic ceramic coating is less than 25 atomic%, and the Cr content on the insulating tension coating side of the non-oxide ceramic coating is 25 atomic% or more. is there.
  • the grain-oriented electrical steel sheet of the present invention has excellent film adhesion after strain relief annealing (hereinafter also simply referred to as “film adhesion”), and also has magnetic properties after strain relief annealing (hereinafter simply referred to as “magnetic characteristics”). Say) is excellent.
  • film adhesion film adhesion after strain relief annealing
  • magnetic characteristics magnetic properties after strain relief annealing
  • ⁇ steel sheet> Although it does not specifically limit as a steel plate, for example, the steel plate demonstrated below is mentioned.
  • Such a steel ingot is hot-rolled, and then made into a final cold-rolled sheet by cold rolling several times while sandwiching several degrees of annealing, followed by decarburization annealing and finish annealing, thereby Goss orientation To develop secondary recrystallized grains having In this way, a steel plate is obtained.
  • the number of cold rolling is preferably 2 times or less in order to balance the magnetic characteristics and cost.
  • C is removed by decarburization annealing
  • Al, N, Se, and S are purified by finish annealing, so that the steel sheet after finish annealing has a content of inevitable impurities. Become.
  • the forsterite film on the surface of the steel sheet is removed by a method such as pickling.
  • a forsterite film is formed on the surface of the steel sheet and then the forsterite film is removed by pickling.
  • the formation of the forsterite film is useful for the decarburization of the steel sheet, but when using other decarburization means, the forsterite film need not be formed.
  • the steel plate surface is smoothed by a method such as chemical polishing or electrolytic polishing.
  • a method such as chemical polishing or electrolytic polishing.
  • the rougher the surface state of the steel plate the better the film adhesion due to the anchor effect.
  • the smoother the surface state of the steel sheet the easier the magnetic domain moves, and the greater the amount of magnetic properties that are improved when tensile tension is applied.
  • the non-oxide ceramic coating does not peel after strain relief annealing, and high coating adhesion can be maintained. Therefore, it is preferable to smooth the steel plate surface as much as possible by chemical polishing or electrolytic polishing so that the arithmetic average roughness Ra is 0.4 ⁇ m or less.
  • the grain-oriented electrical steel sheet of the present invention has a non-oxide ceramic film containing a non-oxide disposed on the surface of the steel sheet described above.
  • the Cr content on the steel sheet side of the non-oxide ceramic coating is less than 25 atomic%, preferably 10 atomic% or less, from the viewpoint of suppressing the diffusion of Cr in the non-oxide ceramic coating to the steel sheet. More preferably, the steel plate side of the oxide ceramic coating does not contain Cr at an impurity level or higher.
  • the Cr content on the insulating tension coating side of the non-oxide ceramic coating is 25 atomic% or more, preferably 35 atomic% or more, and more preferably 45 atomic% or more in order to obtain good oxidation resistance.
  • an upper limit is not specifically limited, For example, it is 70 atomic% or less, and 60 atomic% or less is preferable.
  • non-oxide ceramic coating having a Cr content concentration gradient in the thickness direction examples include a single-layer non-oxide ceramic coating.
  • a CVD method or a PVD method is used to form a single-layer non-oxide ceramic film on the surface of the steel plate.
  • the Cr content on the steel plate side is less than 25 atomic%
  • the film is formed with a concentration gradient so that the Cr content on the insulating tension coating side is 25 atomic% or more.
  • the method of imparting a concentration gradient to the Cr content of the non-oxide ceramic film is not particularly limited.
  • the non-oxide ceramic film is formed by changing the nitrogen partial pressure in the atmosphere.
  • the Cr content of the coating can be changed.
  • the Cr content of the non-oxide ceramic film to be formed can be changed by adjusting the nitrogen partial pressure in the atmosphere and / or the current value flowing through each raw material. it can.
  • the non-oxide ceramic film having a Cr content concentration gradient in the thickness direction is not limited to the single layer described above, and may be a non-oxide ceramic film having a two-layer structure.
  • a non-oxide ceramic coating (coating A) is formed on the steel plate, and a non-oxide ceramic coating (coating B) having a Cr content different from that of coating A is further formed on the coating A. Is deposited. In this way, a non-oxide ceramic coating having a coating A disposed on the steel plate and a coating B disposed on the coating A is obtained.
  • the Cr content of the coating A on the steel plate side is preferably less than the Cr content of the coating B on the insulating tension coating side. More specifically, the Cr content of the coating A is preferably in accordance with the Cr content on the steel sheet side in the case of the single layer described above, and the Cr content of the coating B is the insulating tension coating in the case of the single layer described above. It is preferable to follow the Cr content on the side.
  • the Cr content of the coating A can be less than 25 atomic% and the Cr content of the coating B can be 25 atomic% or more, another non-oxide ceramic coating is disposed between the coating A and the coating B. Also good.
  • the Cr content (unit: atomic%) of the non-oxide ceramic coating is determined as follows. That is, AES (Auger Electron Spectroscopy) is performed after argon sputtering from the surface of the non-oxide ceramic coating formed on the steel plate (the surface on the side opposite to the steel plate on which the insulating tension coating is formed). ) By repeating the measurement, the Cr content (unit: atomic%) is obtained in the thickness direction of the non-oxide ceramic coating.
  • the “Cr content on the steel plate side” is the average value of the Cr content in the half on the steel plate side from the center in the thickness direction of the non-oxide ceramic coating that is a single layer. Means.
  • the Cr content on the insulating tension coating side means the average value of the Cr content on the insulating tension coating side half from the center in the thickness direction of the non-oxide ceramic coating that is a single layer.
  • the non-oxide ceramic coating contains a non-oxide and substantially consists of a non-oxide.
  • the non-oxide ceramic coating contains Cr at least on the insulating tension coating side.
  • the non-oxide on the insulating tension coating side is selected from the group consisting of carbide containing Cr, nitride containing Cr, and carbonitride containing Cr, for example. At least one is preferably exemplified.
  • non-oxide on the steel sheet side for example, at least one selected from the group consisting of carbides containing Ti, nitrides containing Ti, and carbonitrides containing Ti.
  • elements other than Ti include Al, Si, Zr, Mo, Y, Nb, W, Fe, Mn, Ta, Ge, and Hf.
  • TiN, TiC, TiCN, TiAlN, and the like are preferable. Since these have good lattice matching with the steel plate and have a lower coefficient of thermal expansion than that of the steel plate, more tensile tension can be applied. At this time, it is preferable to contain 10 atomic% or more of Ti.
  • oxidation resistance is improved by adding Ti to nitrides containing Cr. Can be increased.
  • the non-oxide containing 3 or more types of elements such as TiCrN and AlCrN, can also be used suitably as a non-oxide, for example.
  • elements other than Cr, C, and N include, for example, Ti, Al, Si, Zr, Mo, Y, Nb, W, Fe, Mn, Ta, Ge, and Hf etc. are mentioned.
  • the thickness of the non-oxide ceramic film is set to 0.400 ⁇ m or less from the viewpoint of manufacturing cost. On the other hand, if the non-oxide ceramic coating becomes too thin, the non-oxide ceramic coating tends to peel off and the magnetic properties are also poor. Therefore, the thickness of the non-oxide ceramic film is set to 0.020 ⁇ m or more.
  • the thickness of the coating A and the coating B is preferably 0.010 ⁇ m or more and 0.200 ⁇ m or less, respectively.
  • the thickness of the coating B on the insulating tension coating side is more preferably 0.100 ⁇ m or more because the coating adhesion is better.
  • a method for forming the non-oxide ceramic film As a method for forming the non-oxide ceramic film, a CVD (Chemical Vapor Deposition) method or a PVD (Physical Vapor Deposition) method is preferable.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • the CVD method is preferably a thermal CVD method.
  • the film forming temperature is preferably 900 to 1100 ° C.
  • the pressure during film formation can be formed even at atmospheric pressure, but it is preferable to reduce the pressure for uniform film formation, and more preferably from 10 to 1000 Pa for manufacturing convenience.
  • the PVD method is preferably an ion plating method.
  • the film forming temperature is preferably 300 to 600 ° C. for the convenience of production.
  • the pressure during film formation is preferably reduced, and more preferably from 0.1 to 100 Pa.
  • the CVD method is simple and preferable because it can change the Cr content simply by changing the nitrogen partial pressure in the atmosphere.
  • the PVD method is preferable, and the ion plating method is more preferable.
  • the CVD method for forming a film using a thermodynamic reaction may have difficulty in obtaining the desired composition.
  • the PVD method ionizes the alloy material to cause consistent precipitation. Can be easily obtained.
  • the non-oxide ceramic coating is preferably preferentially oriented as described above.
  • the PVD method in which the film is formed by matched deposition is used rather than the CVD method in which the film is formed by a thermodynamic chemical reaction.
  • the steel sheets of grain-oriented electrical steel sheets have a texture that is highly oriented in the Goss orientation ⁇ 110 ⁇ ⁇ 001>, and the non-oxide ceramic coating is easily oriented in a specific plane orientation by lattice matching. Because.
  • the ion plating method is particularly preferable.
  • the ion plating method is a method of accelerating ions by applying a bias voltage to the steel sheet. By simply lowering the bias voltage, the ions of the raw material can easily move on the steel sheet and easily in a specific plane orientation. This is because it can be oriented.
  • the bias voltage is preferably -50 V or less.
  • the preferential orientation to the (111) plane or the (100) plane relates to cubic crystals, but there are ceramics that take hexagonal crystals such as AlN in the non-oxide ceramic coating. Also in this case, it is considered that the film adhesion can be improved by aligning the plane orientation to a certain orientation.
  • the grain-oriented electrical steel sheet of the present invention has an insulating tension coating containing an oxide disposed on a non-oxide ceramic coating.
  • composition examples of the oxide contained in the insulating tension coating include silicic acid glass. 85 mass% or more is preferable and, as for content of the silicic acid glass in an insulation tension film, 95 mass% or more is more preferable. More preferably, the insulating tension coating is substantially made of silica glass.
  • FIG. 3 is a graph showing the relationship between the thickness of the insulating tension coating made of silicic acid glass and the tension applied to the steel plate by the insulating tension coating of that thickness. As shown in FIG. 3, as the thickness of the insulating tension coating increases, the tension (tensile stress) applied to the steel sheet increases, and it is considered that the magnetic properties of the grain-oriented electrical steel sheet are excellent.
  • the thickness of the insulating tension coating is 1.0 ⁇ m or more. Thereby, the magnetic characteristic of a grain-oriented electrical steel sheet is excellent.
  • the thickness of the insulating tension coating is preferably 5.0 ⁇ m or less.
  • the method for forming the insulation tension coating is not particularly limited.
  • a coating solution containing a conventionally known phosphate and colloidal silica is applied on a non-oxide ceramic coating, dried, and then in a nitrogen atmosphere.
  • the method of baking with and forming a silicic acid glass is mentioned suitably.
  • an insulating tension film containing silicic acid glass is formed.
  • this method will be described as an example.
  • the coating liquid contains at least phosphate and colloidal silica.
  • the metal species of the phosphate include at least one selected from the group consisting of Mg, Al, Ca, Sr, Fe, Cu, Mn, and Zn.
  • the phosphate phosphates having a low coefficient of thermal expansion such as magnesium phosphate and aluminum phosphate are preferable. During annealing, crystal phases such as magnesium phosphate and aluminum phosphate having a low coefficient of thermal expansion are generated, the tensile tension applied to the steel sheet is increased, and the magnetic properties are further improved.
  • the phosphate primary phosphate (heavy phosphate) is preferably used from the viewpoint of availability.
  • the average particle size of the colloidal silica contained in the coating liquid is preferably 5 to 200 nm, more preferably 10 to 100 nm.
  • the content of colloidal silica is preferably 50 to 150 parts by mass in terms of solid content with respect to 100 parts by mass of phosphate.
  • the coating liquid can further contain chromic anhydride and / or dichromate, and the content thereof is in terms of solid content (dry solid content ratio) with respect to 100 parts by mass of phosphate. 10 to 50 parts by mass are preferred.
  • inorganic mineral particles such as silica powder and alumina powder can be added to the coating liquid, and the content is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of phosphate in terms of solid content. .
  • the method for applying such a coating solution on the non-oxide ceramic film is not particularly limited, but it is preferable to use a coating type roll from the viewpoint of manufacturing cost.
  • the temperature (baking temperature) and time (baking time) for baking the silica glass are preferably 700 to 900 ° C. and 10 to 30 seconds, respectively, for the following reasons.
  • the baking temperature By setting the baking temperature to 900 ° C. or less and the baking time to 30 seconds or less, the reaction between the non-oxide ceramic coating and the silica glass and the diffusion of phosphorus in the steel plate direction are suppressed, and the coating adhesion is further improved. Excellent.
  • Formation of silicic acid glass utilizes dehydration condensation of phosphoric acid. That is, a dehydration reaction in which a phosphate existing as a primary phosphate in the coating liquid becomes pyrophosphoric acid by baking and finally becomes metaphosphoric acid is utilized.
  • the atmosphere (baking atmosphere) for baking the silica glass is preferably a nitrogen atmosphere. If the baking atmosphere is air, oxidation of the non-oxide ceramic film is likely to occur due to moisture, oxygen, etc. contained in the air. More excellent.
  • strain relief annealing The grain-oriented electrical steel sheet of the present invention may be subjected to strain relief annealing by, for example, a customer.
  • the conditions for strain relief annealing are not particularly limited. For example, annealing is performed at 700 to 900 ° C. for 2 to 4 hours in an atmosphere such as a nitrogen atmosphere.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with A steel plate was thus obtained. Thereafter, the forsterite film on the steel sheet surface was removed by pickling, and then the steel sheet surface was smoothed by chemical polishing using hydrofluoric acid. The plate thickness after chemical polishing was 0.20 mm.
  • a single-layer non-oxide ceramic film having a thickness of 0.200 ⁇ m was formed on the steel plate by CVD or PVD. Details of the non-oxide ceramics are shown in Table 1 below.
  • CVD method a thermal CVD method was used to form a film under the conditions of 1050 ° C. and 1000 Pa.
  • PVD method film formation was performed using an ion plating method under the conditions of 450 ° C., 3 Pa, and a bias voltage of ⁇ 20V.
  • the coating liquid was applied onto the non-oxide ceramic film using an application roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere. Thus, a 2.0 ⁇ m-thick insulating tension film made of silica glass was formed.
  • the coating solution 100 parts by mass of magnesium phosphate (primary magnesium phosphate), 80 parts by mass of colloidal silica (AT-30 manufactured by ADEKA, average particle size: 10 nm), and 20 parts by mass of chromic anhydride The coating liquid contained was used (the same applies to Test Examples 2 to 4 described later).
  • Iron loss W 17/50 was measured for the grain- oriented electrical steel sheet after strain relief annealing. The results are shown in Table 1 below. When the iron loss W 17/50 was not measured, “-” is shown in Table 1 below. If the value of iron loss W 17/50 (unit: W / kg) is less than 0.80, it can be evaluated that the magnetic properties after strain relief annealing are excellent.
  • the examples (Nos. 12 to 13) in which the nitride containing Cr was not used as the non-oxide constituting the non-oxide ceramic film were the non-oxides immediately after the strain relief annealing. The ceramic film peeled off.
  • examples (No. 1 to 11) in which a nitride containing Cr is used as a non-oxide constituting the non-oxide ceramic film all have a small non-peeling diameter of 5 to 10 mm ⁇ , The film adhesion was good.
  • examples (Nos. 6 and 9) in which the steel plate side is less than 25 atomic% and the insulating tension film side is 25 atomic% or more with respect to the Cr content of the non-oxide ceramic coating are iron loss W 17. / 50 was less than 0.80, and the magnetic properties after strain relief annealing were also good.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with A steel plate was thus obtained. Thereafter, the forsterite film on the steel sheet surface was removed by pickling, and then the steel sheet surface was smoothed by chemical polishing using hydrofluoric acid. The plate thickness after chemical polishing was 0.20 mm.
  • Non-oxide ceramic coatings (coating A) are formed on the steel sheet with a thickness of 0.005 ⁇ m or more and 0.150 ⁇ m or less by a CVD method or a PVD method.
  • An oxide ceramic coating (coating B) was formed with a thickness of 0.005 ⁇ m to 0.150 ⁇ m. Details of the non-oxide ceramic coating are shown in Table 2 below. Since the coating A does not contain Cr, the Cr content is regarded as 0 atomic%. The Cr content of the coating B was 50 atomic% when the composition was CrN, and 25 atomic% when the composition was other than that.
  • As the CVD method a thermal CVD method was used to form a film under the conditions of 1050 ° C. and 1000 Pa.
  • PVD method film formation was performed using an ion plating method under the conditions of 450 ° C., 3 Pa, and a bias voltage of ⁇ 20V.
  • the coating liquid was applied onto the non-oxide ceramic film using an application roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere.
  • a 2.0 ⁇ m-thick insulating tension film made of silica glass was formed.
  • examples in which the thickness of the non-oxide ceramic coating (the total of the thickness of coating A and the thickness of coating B) is 0.020 ⁇ m or more (No. 1 to 4, 6 to 36 and 38) -39) had a small non-peeling diameter and excellent film adhesion after strain relief annealing compared to the examples (Nos. 5 and 37) having the same thickness of 0.010 ⁇ m.
  • examples in which the thickness of the non-oxide ceramic film is 0.020 ⁇ m or more (No. 1 to 4, 6 to 36 and 38 to 39) have an iron loss W 17/50 of less than 0.80, The magnetic properties after annealing were also good.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with A steel plate was thus obtained. Thereafter, the forsterite film on the steel sheet surface was removed by pickling, and then the steel sheet surface was smoothed by chemical polishing using hydrofluoric acid. The plate thickness after chemical polishing was 0.20 mm.
  • a non-oxide ceramic film (coating A) made of TiN is formed to a thickness of 0.100 ⁇ m on the steel sheet by the PVD method, and a non-oxide ceramic film made of CrN having a Cr content of 50 atomic% is formed thereon.
  • An oxide ceramic coating (coating B) was formed to a thickness of 0.100 ⁇ m.
  • film formation was performed under the conditions of 450 ° C. and 3 Pa using an ion plating method. At this time, the bias voltage was changed in the range of ⁇ 20 to ⁇ 100V.
  • the coating A and the coating B were preferentially oriented in the (111) plane or the (100) plane, respectively.
  • the area ratio (unit:%) of the portion where the inclination from the (111) plane or the (100) plane is 10 ° or less was measured by the EBSD method and listed in Table 3 below.
  • the area ratio of the portion where the inclination from the (111) plane is 10 ° or less is 50%, in the following Table 3, “(111) 50%” is described.
  • the coating liquid was applied onto the non-oxide ceramic film using an application roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere.
  • a 2.0 ⁇ m-thick insulating tension film made of silica glass was formed.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with A steel plate was thus obtained. Thereafter, the forsterite film on the steel sheet surface was removed by pickling, and then the steel sheet surface was smoothed by chemical polishing using hydrofluoric acid. The plate thickness after chemical polishing was 0.20 mm.
  • a non-oxide ceramic film (coating A) made of TiN is formed on the steel sheet with a thickness of 0.100 ⁇ m by the PVD method, and the Cr content is 50 atomic% by the PVD method.
  • a non-oxide ceramic coating (coating B) made of CrN was formed to a thickness of 0.100 ⁇ m.
  • the CVD method a thermal CVD method was used to form a film under the conditions of 1050 ° C. and 1000 Pa.
  • an ion plating method was used to form a film at 450 ° C., 3 Pa, and a bias voltage of ⁇ 20V.
  • the coating liquid was applied onto the non-oxide ceramic film using an application roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere.
  • an insulating tension film made of silicic acid glass was formed.
  • the thickness of the insulating tension film to be formed was changed in the range of 0.5 ⁇ m to 5.0 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供する。上記方向性電磁鋼板は、鋼板と、上記鋼板上に配置された、非酸化物を含有する非酸化物セラミックス被膜と、上記非酸化物セラミックス被膜上に配置された、酸化物を含有する絶縁張力被膜と、を有し、上記非酸化物セラミックス被膜の厚さが、0.020μm以上0.400μm以下であり、上記絶縁張力被膜の厚さが、1.0μm以上であり、上記非酸化物セラミックス被膜の上記鋼板側のCr含有量が、25原子%未満であり、上記非酸化物セラミックス被膜の上記絶縁張力被膜側のCr含有量が、25原子%以上である。

Description

方向性電磁鋼板および方向性電磁鋼板の製造方法
 本発明は、方向性電磁鋼板および方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板は、変圧器および発電機等の鉄心材料として用いられる軟磁性材料である。方向性電磁鋼板は、鉄の磁化容易軸である〈001〉方位が、鋼板の圧延方向に高度に揃った結晶組織を有することが特徴である。このような集合組織は、方向性電磁鋼板の製造工程の仕上げ焼鈍において、いわゆるGoss方位と称される{110}〈001〉方位の結晶粒を優先的に巨大成長させる、仕上げ焼鈍を通じて形成される。方向性電磁鋼板の製品の磁気特性としては、磁束密度が高く、鉄損が低いことが要求される。
 方向性電磁鋼板の磁気特性は、鋼板表面に引張応力(張力)を印加することによって良好になる。鋼板に引張応力を印加する従来の公知公用の技術としては、鋼板表面に厚さ2μm程度のフォルステライト被膜を形成し、その上に厚さ2μm程度の珪リン酸ガラスを主体とする被膜を形成する技術が一般的である。
 すなわち、鋼板と比べて低い熱膨張率を有する珪リン酸ガラス被膜を高温で形成し、それを室温まで低下させ、鋼板と珪リン酸ガラス被膜との熱膨張率の差によって、鋼板に引張応力を付加する。
 この珪リン酸ガラス被膜は、方向性電磁鋼板に必須の絶縁被膜としても機能する。すなわち、絶縁によって、鋼板中の局部的な渦電流の発生が防止される。
 仕上げ焼鈍後の方向性電磁鋼板の表面を化学研磨または電解研磨により平滑化し、その後、鋼板上の被膜により引張応力を印加することにより、鉄損を大きく低下できる。
 しかし、鋼板と珪リン酸ガラス被膜(絶縁張力被膜)との間にあるフォルステライト被膜は、鋼板と拡散層を形成する。そのため、必然的に鋼板表面の平滑度は劣化する。また、ガラスと金属との密着性は低く、表面を鏡面化した鋼板に直接ガラス被膜を成膜することはできない。このように、従来の方向性電磁鋼板の被膜構造(鋼板/フォルステライト被膜/珪リン酸ガラス被膜)においては、鋼板の表面を平滑化できない。
 そこで、特許文献1においては、鋼板表面の平滑度を維持し、更に鋼板に大きな引張応力を印加するために、鋼板上にCVD法またはPVD法によってTiNなどの非酸化物セラミックス被膜を成膜している。この際、鋼板に印加される引張応力は、非酸化物セラミックス被膜の厚さに比例するため、非酸化物セラミックス被膜を少なくとも1μm成膜している。
 しかし、CVD法およびPVD法は、製造コストが高いために極力の薄膜化が望まれており、その場合、鋼板に印加される引張応力が低下する。
 特許文献2においては、このような薄膜化による張力低下を補償するために、または、更に大きな張力を鋼板に印加するために、研磨後の鋼板表面上に、少なくとも0.5μm厚まで薄膜化した非酸化物セラミックス被膜を成膜し、その上に、珪リン酸ガラスを主体とする絶縁張力被膜を成膜している。
特開平01-176034号公報 特開昭64-068425号公報
 上述したように、特許文献2においては、少なくとも0.5μm厚まで薄膜化した非酸化物セラミックス被膜を成膜している。しかし、この厚さであっても、製造上のコストが高くなりすぎてしまい、実際に採用されるに至っていない。
 そこで、本発明者らは、非酸化物セラミックス被膜の厚さを0.400μm以下にしたうえで、方向性電磁鋼板の特性について検討を行なった。その結果、需要家等によって、方向性電磁鋼板に対して歪取焼鈍が行なわれた場合に、非酸化物セラミックス被膜が鋼板から剥離したり、方向性電磁鋼板の磁気特性が劣ったりすることがあった。
 そこで、本発明は、歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行なった。その結果、厚さが0.400μm以下である非酸化物セラミックス被膜およびその上の絶縁張力被膜を特定の構成によることによって、歪取焼鈍後においても、被膜密着性および磁気特性が共に優れることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[10]を提供する。
 [1]鋼板と、上記鋼板上に配置された、非酸化物を含有する非酸化物セラミックス被膜と、上記非酸化物セラミックス被膜上に配置された、酸化物を含有する絶縁張力被膜と、を有し、上記非酸化物セラミックス被膜の厚さが、0.020μm以上0.400μm以下であり、上記絶縁張力被膜の厚さが、1.0μm以上であり、上記非酸化物セラミックス被膜の上記鋼板側のCr含有量が、25原子%未満であり、上記非酸化物セラミックス被膜の上記絶縁張力被膜側のCr含有量が、25原子%以上である、方向性電磁鋼板。
 [2]上記非酸化物セラミックス被膜が、上記非酸化物として、Tiを含有する炭化物、Tiを含有する窒化物およびTiを含有する炭窒化物からなる群から選ばれる少なくとも1種を含有する、上記[1]に記載の方向性電磁鋼板。
 [3]上記非酸化物セラミックス被膜が、上記鋼板上に配置された被膜Aと、上記被膜A上に配置された被膜Bとを有し、上記被膜AのCr含有量と、上記被膜BのCr含有量とが異なる、上記[1]または[2]に記載の方向性電磁鋼板。
 [4]上記被膜AのCr含有量が、上記被膜BのCr含有量より少ない、上記[3]に記載の方向性電磁鋼板。
 [5]上記被膜AのCr含有量が25原子%未満であり、上記被膜BのCr含有量が25原子%以上である、上記[3]または[4]に記載の方向性電磁鋼板。
 [6]上記絶縁張力被膜が、上記酸化物として、珪リン酸ガラスを含有する、上記[1]~[5]のいずれかに記載の方向性電磁鋼板。
 [7]上記絶縁張力被膜の厚さが、5.0μm以下である、上記[1]~[6]のいずれかに記載の方向性電磁鋼板。
 [8]上記[1]~[7]のいずれかに記載の方向性電磁鋼板を製造する、方向性電磁鋼板の製造方法であって、上記非酸化物セラミックス被膜を、CVD法またはPVD法によって成膜する、方向性電磁鋼板の製造方法。
 [9]上記非酸化物セラミックス被膜を、上記PVD法によって成膜し、上記PVD法が、上記鋼板にバイアス電圧を印加してイオンを加速するイオンプレーティング法であり、上記バイアス電圧が、-50V以下である、上記[8]に記載の方向性電磁鋼板の製造方法。
 [10]上記絶縁張力被膜を成膜する際に、塗布型ロールを用いる、上記[8]または[9]に記載に方向性電磁鋼板の製造方法。
 本発明によれば、歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供できる。
本発明の方向性電磁鋼板の好適な一態様を模式的に示す断面図である。 従来の方向性電磁鋼板を模式的に示す断面図である。 珪リン酸ガラスからなる絶縁張力被膜の厚さと、その厚さの絶縁張力被膜が鋼板に印加する張力との関係を示すグラフである。
[本発明者らが得た知見]
 鋼板上に、厚さ0.400μm以下の非酸化物セラミックス被膜を成膜し、その上に、珪リン酸ガラスからなる絶縁張力被膜を成膜して歪取焼鈍した場合、非酸化物セラミックス被膜と鋼板とが剥離することがあった。その原因について、本発明者らが、多くの実験を重ねて検討した結果、以下のような考えに至った。
 低熱膨張率の珪リン酸ガラスからなる絶縁張力被膜を使用することは、絶縁張力被膜が鋼板に及ぼす引張応力を増大させて磁気特性を良好にするのに有効であるが、その一方で、非酸化物セラミックス被膜と絶縁張力被膜(珪リン酸ガラス)とが高温で反応して、反応生成物が生成する。
 この反応に引き続き、800℃で3時間の歪取焼鈍中に、反応生成物が、絶縁張力被膜と非酸化物セラミックス被膜との界面から、非酸化物セラミックス被膜中を、鋼板の方向に拡散し、非酸化物セラミックス被膜と鋼板との界面まで拡散した際に、鋼板のFeと反応して、析出物を形成する。その結果、歪取焼鈍の冷却のとき、つまり、熱膨張率差により鋼板と非酸化物セラミックス被膜との界面にかかる応力が印加され始めるときに、析出物がその応力に耐え切れず鋼板から剥離する。このようにして、非酸化物セラミックス被膜と鋼板とが剥離する。つまり、被膜密着性が劣化する。
 そこで、本発明者らは、非酸化物セラミックス被膜の成分を調整することによって、非酸化物セラミックス被膜と絶縁張力被膜(珪リン酸ガラス)との反応を抑制することを検討した。
 このとき、本発明者らは、CrNからなる非酸化物セラミックス被膜は、TiNからなる非酸化物セラミックス被膜に比べて、酸化速度が遅いことに着目した。
 そして、本発明者らは、仕上げ焼鈍後、表面のフォルステライトを酸洗によって除去した鋼板の上に、Crを含有する窒化物からなる非酸化物セラミックス被膜を0.400μm以下で成膜した。その後、本発明者らは、塗布型ロールを用いて、リン酸塩およびコロイダルシリカを主体とするコーティング液を塗布し、窒素雰囲気で焼付けして珪リン酸ガラスを形成し、窒素雰囲気中にて800℃で3時間の歪取焼鈍を行なった。
 その結果、本発明者らは、歪取焼鈍後においても、非酸化物セラミックス被膜が剥離せず、優れた被膜密着性を維持できることを見出した。
 しかし、非酸化物セラミックス被膜としてCrを含有する窒化物を用いた場合、800℃で3時間の歪取焼鈍により磁気特性が大幅に劣化することがあった。その原因について、本発明者らが、多くの実験を重ねて検討した結果、以下のような考えに至った。
 800℃で3時間の歪取焼鈍により、非酸化物セラミックス被膜中のCrが鋼板中に拡散し、CrとSiとからなる析出物およびCrとNとからなる析出物(以下、まとめて「Cr系析出物」ともいう)を生成する。このCr系析出物が鋼板中で磁壁の移動を妨げ、磁気特性を劣化させる。
 そこで、本発明者らは、非酸化物セラミックス被膜の構成を変更することによって、鋼板中へのCrの拡散およびCr系析出物の生成を抑制することを検討した。
 そして、本発明者らは、仕上げ焼鈍後、表面のフォルステライトを酸洗によって除去した鋼板の上に、CVD法またはPVD法によって、非酸化物セラミックス被膜を成膜した。このとき、本発明者らは、鋼板上の非酸化物セラミックス被膜のCr含有量を減少させることによってCrが鋼板中に拡散する速度を遅くすることを意図して、鋼板側のCr含有量よりも絶縁張力被膜側のCr含有量の方を多くした。具体的には、本発明者らは、鋼板側のCr含有量を25原子%未満、絶縁張力被膜側のCr含有量を25原子%以上となるようにした。
 その後、本発明者らは、塗布型ロールを用いて、リン酸塩およびコロイダルシリカを主体とするコーティング液を塗布し乾燥させた後、窒素雰囲気で焼付けして珪リン酸ガラスを形成し、窒素雰囲気中にて800℃で3時間の歪取焼鈍を行なった。
 その結果、本発明者らは、歪取焼鈍後においても、非酸化物セラミックス被膜が剥離せず、かつ、磁気特性が劣化しないようにできることを見出した。
 図1は、本発明の方向性電磁鋼板の好適な一態様を模式的に示す断面図である。図2は、従来の方向性電磁鋼板を模式的に示す断面図である。
 従来の方向性電磁鋼板は、図2に示すように、通常、鋼板1上に、フォルステライト被膜2があり、その上に、珪リン酸ガラスからなる絶縁張力被膜3が成膜されている。図2において、フォルステライト被膜2の厚さTは2μm程度であり、絶縁張力被膜3の厚さTは2μm程度である。
 これに対して、本発明の方向性電磁鋼板においては、図1に示すように、従来のフォルステライト被膜2(図2参照)の部分が、非酸化物セラミックス被膜4に置換されている。図1において、非酸化物セラミックス被膜4の厚さTは、0.400μm以下である。このため、絶縁張力被膜3の厚さTを2.0μm以上に増厚しても、方向性電磁鋼板を変圧器として使用した際の実効鋼板体積(占積率)を減少させない。
 被膜により鋼板に印加される張力は被膜の厚さに比例することから、絶縁張力被膜を増厚することは、方向性電磁鋼板の磁気特性を向上させるのに非常に有用であると考えられる。
 そこで、本発明者らは、更に、塗布型ロールの回転速度およびコーティング液の比重などを調整することによって、成膜される絶縁張力被膜の厚さを増すことによって、鋼板に印加される張力が増大し、方向性電磁鋼板の磁気特性を良好にできることを見出した。
 また、本発明者らは、鋼板上に、非酸化物セラミックス被膜として、まず、TiNおよびAlNなどのCrを含有しない非酸化物からなる被膜(被膜A)を成膜し、その上に、Crを含有する非酸化物からなる被膜(被膜B)を成膜して2層構造とした場合にも、良好な被膜密着性および磁気特性が得られることを見出した。
 また、本発明者らは、鋼板上の非酸化物セラミックス被膜が含有する非酸化物として、Tiを含有する、炭化物、窒化物または炭窒化物を用いた場合、鋼板とTiNまたはTiC等との格子間隔の整合性が良いために、より良好な被膜密着性および磁気特性が得られることを見出した。
 また、非酸化物セラミックス被膜の成膜条件を調整することによって、
 1)非酸化物セラミックス被膜の面方位を、EBSD(Electron Back Scatter Diffraction)法によって測定した際に、(111)面または(100)面からの傾きが10°以下となる部分の面積率が50%以上になるように優先配向させる、または、
 2)非酸化物セラミックス被膜を2層構造(被膜Aおよび被膜B)にする場合、少なくともどちらか片方の被膜の面方位を、EBSD法によって測定した際に、(111)面または(100)面からの傾きが10°以下となる部分の面積率が50%以上になるよう優先配向させる。
 これにより、非酸化物セラミックス被膜内の粒界間の方位差角が15°以下の小傾角粒界が支配的となり、非酸化物セラミックス被膜と絶縁張力被膜(珪リン酸ガラス)との間の反応によって生成するリンの拡散が抑えられ、その結果、より良好な被膜密着性および磁気特性が得られることを本発明者らは見出した。
[方向性電磁鋼板およびその製造方法]
 以下、改めて、本発明の方向性電磁鋼板を説明する。
 本発明の方向性電磁鋼板は、鋼板と、上記鋼板上に配置された、非酸化物を含有する非酸化物セラミックス被膜と、上記非酸化物セラミックス被膜上に配置された、酸化物を含有する絶縁張力被膜と、を有し、上記非酸化物セラミックス被膜の厚さが、0.020μm以上0.400μm以下であり、上記絶縁張力被膜の厚さが、1.0μm以上であり、上記非酸化物セラミックス被膜の上記鋼板側のCr含有量が、25原子%未満であり、上記非酸化物セラミックス被膜の上記絶縁張力被膜側のCr含有量が、25原子%以上である、方向性電磁鋼板である。
 本発明の方向性電磁鋼板は、歪取焼鈍後の被膜密着性(以下、単に「被膜密着性」ともいう)が優れ、かつ、歪取焼鈍後の磁気特性(以下、単に「磁気特性」ともいう)が優れる。
 以下、本発明の方向性電磁鋼板を、より詳細に説明する。以下の説明は、本発明の方向性電磁鋼板の製造方法の説明も兼ねる。
 〈鋼板〉
 鋼板としては、特に限定されないが、例えば、以下に説明する鋼板が挙げられる。
 まず、鋼板となる鋼塊としては、鋼中成分として、質量%で、C:0.002~0.10%、Si:2.5~4.0%、および、Mn:0.005~0.50%を含有し、かつ、Al:0.010~0.050%、および、N:0.003~0.020%を含有し、または、Al:0.010~0.050%、N:0.003~0.020%、Se:0.003~0.030%、および/または、S:0.002~0.03%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いることが、磁気特性の観点から好ましい。もっとも、これに限定されない。
 このような鋼塊を、熱間圧延し、その後、数度の焼鈍を挟みつつ、数回の冷間圧延により最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍を行なうことにより、Goss方位を有する二次再結晶粒を発達させる。こうして、鋼板が得られる。この際、冷間圧延の回数は、磁気特性とコストとのバランスをとるため、2回以下が好ましい。
 上記鋼中成分のうち、Cは脱炭焼鈍で除去され、Al、N、SeおよびSは仕上げ焼鈍で純化されることにより、仕上げ焼鈍後の鋼板においてはいずれも不可避的不純物程度の含有量となる。
 その後、鋼板表面のフォルステライト被膜を酸洗等の方法によって除去する。
 このように、従来どおり、鋼板表面にフォルステライト被膜を形成させ、その後、酸洗によって、フォルステライト被膜を除去することが、製造上、好ましい。フォルステライト被膜の成膜は、鋼板の脱炭に有用であるが、他の脱炭手段を用いる場合は、フォルステライト被膜を成膜しなくてもよい。
 鋼板表面のフォルステライト被膜を除去した後、化学研磨または電解研磨などの方法によって鋼板表面を平滑化する。
 鋼板の表面状態は、一般的に、粗いほどアンカー効果によって、被膜密着性がより良好になる。反対に、鋼板の表面状態が平滑であるほど、磁区が移動しやすくなり、引張張力を印加したときに磁気特性が良化する量が大きくなる。
 本発明においては、最も鋼板表面を平滑にできる化学研磨後の鋼板を用いても、歪取焼鈍後に非酸化物セラミックス被膜が剥離せず高い被膜密着性を維持できる。そのため、化学研磨または電解研磨によって、鋼板表面をなるべく平滑化し、算術平均粗さRaを0.4μm以下にすることが好ましい。
 〈非酸化物セラミックス被膜〉
 本発明の方向性電磁鋼板は、上述した鋼板の表面上に配置された、非酸化物を含有する非酸化物セラミックス被膜を有する。
 《Cr含有量》
 非酸化物セラミックス被膜の鋼板側のCr含有量は、非酸化物セラミックス被膜中のCrが鋼板に拡散することを抑制するという観点から、25原子%未満であり、10原子%以下が好ましく、非酸化物セラミックス被膜の鋼板側はCrを不純物レベル以上に含有しないことがより好ましい。
 一方、非酸化物セラミックス被膜の絶縁張力被膜側のCr含有量は、良好な耐酸化性を得るために、25原子%以上であり、35原子%以上が好ましく、45原子%以上がより好ましい。上限は特に限定されないが、例えば、70原子%以下であり、60原子%以下が好ましい。
 厚さ方向にCr含有量の濃度勾配を有する非酸化物セラミックス被膜としては、例えば、単層の非酸化物セラミックス被膜が挙げられる。
 単層の場合、例えば、鋼板表面上に、CVD法またはPVD法を用いて、単層の非酸化物セラミックス被膜を成膜するが、その際、鋼板側のCr含有量が25原子%未満、絶縁張力被膜側のCr含有量が25原子%以上となるように濃度勾配を付けて成膜する。
 非酸化物セラミックス被膜のCr含有量に濃度勾配を付ける方法としては、特に限定されないが、例えば、CVD法の場合、雰囲気中の窒素分圧を変更することにより、成膜される非酸化物セラミックス被膜のCr含有量を変えることができる。
 一方、PVD法の場合には、例えば、雰囲気中の窒素分圧および/または各原料に流れる電流値などを調整することにより、成膜される非酸化物セラミックス被膜のCr含有量を変えることができる。
 厚さ方向にCr含有量の濃度勾配を有する非酸化物セラミックス被膜としては、上述した単層に限定されず、2層構造の非酸化物セラミックス被膜であってもよい。
 この場合、まず、鋼板上に、非酸化物セラミックス被膜(被膜A)を成膜し、この被膜Aの上に、更に、被膜AとはCr含有量が異なる非酸化物セラミックス被膜(被膜B)を成膜する。こうして、鋼板上に配置された被膜Aと、被膜A上に配置された被膜Bとを有する非酸化物セラミックス被膜が得られる。
 鋼板側の被膜AのCr含有量は、絶縁張力被膜側の被膜BのCr含有量より少ないことが好ましい。
 より詳細には、被膜AのCr含有量は、上述した単層の場合における鋼板側のCr含有量に準ずることが好ましく、被膜BのCr含有量は、上述した単層の場合における絶縁張力被膜側のCr含有量に準ずることが好ましい。
 被膜AのCr含有量を25原子%未満、被膜BのCr含有量を25原子%以上にすることができれば、被膜Aと被膜Bとの間に、別の非酸化物セラミックス被膜を配置してもよい。
 非酸化物セラミックス被膜のCr含有量(単位:原子%)は、次のように求める。
 すなわち、鋼板上に形成された非酸化物セラミックス被膜の表面(鋼板側とは反対側の面であって、絶縁張力被膜が形成される側の面)から、アルゴンスパッタリングした後にAES(Auger Electron Spectroscopy)測定を行なうことを繰り返すことによって、非酸化物セラミックス被膜の厚さ方向に、Cr含有量(単位:原子%)を求める。
 非酸化物セラミックス被膜が単層である場合、「鋼板側のCr含有量」とは、単層である非酸化物セラミックス被膜の厚さ方向の中心から、鋼板側半分のCr含有量の平均値を意味する。一方、「絶縁張力被膜側のCr含有量」とは、単層である非酸化物セラミックス被膜の厚さ方向の中心から、絶縁張力被膜側半分のCr含有量の平均値を意味する。
 非酸化物セラミックス被膜が被膜Aおよび被膜Bを有する場合(2層構造である場合)には、被膜AのCr含有量が「鋼板側のCr含有量」を意味し、被膜Bの含有量が「絶縁張力被膜側のCr含有量」を意味する。
 《組成》
 非酸化物セラミックス被膜は、非酸化物を含有し、実質的に、非酸化物からなる。
 非酸化物セラミックス被膜は、上述したように、絶縁張力被膜側のCr含有量が25原子%以上であるから、少なくとも、絶縁張力被膜側においては、Crを含有する。この場合、絶縁張力被膜側の非酸化物(被膜Bの非酸化物)としては、例えば、Crを含有する炭化物、Crを含有する窒化物およびCrを含有する炭窒化物からなる群から選ばれる少なくとも1種が好適に挙げられる。
 一方、鋼板側の非酸化物(被膜Aの非酸化物)としては、例えば、Tiを含有する炭化物、Tiを含有する窒化物およびTiを含有する炭窒化物からなる群から選ばれる少なくとも1種が挙げられる。Ti以外の元素としては、例えば、Al、Si、Zr、Mo、Y、Nb、W、Fe、Mn、Ta、GeおよびHfなどが挙げられる。具体的には、例えば、TiN、TiC、TiCNおよびTiAlNなどが好適に挙げられる。これらは、鋼板との格子整合性が良いうえに、鋼板と比べて低熱膨張率であるため、引張張力をより印加できる。このとき、Tiを10原子%以上含むことが好ましい。
 P. Panjanらによって作成されたアレニウスプロット(P. Panjan et al., Thin Solid Films 281-282 (1996) 298.)によれば、Crを含有する窒化物にTiなどを加えることによって、耐酸化性を増すことができる。このため、非酸化物として、例えば、TiCrNおよびAlCrNなどの3種以上の元素を含む非酸化物も、好適に使用できる。
 3種以上の元素を含む非酸化物の場合、Cr、CおよびN以外の元素としては、例えば、Ti、Al、Si、Zr、Mo、Y、Nb、W、Fe、Mn、Ta、GeおよびHfなどが挙げられる。
 《厚さ》
 非酸化物セラミックス被膜の厚さは、製造コスト上の観点から0.400μm以下にする。
 一方、非酸化物セラミックス被膜が薄くなりすぎると、非酸化物セラミックス被膜が剥離しやすくなり、磁気特性も劣る。そのため、非酸化物セラミックス被膜の厚さは、0.020μm以上とする。
 非酸化物セラミックス被膜を2層構造にする場合、例えば、被膜Aおよび被膜Bの厚さを、それぞれ、0.010μm以上0.200μm以下にすることが好ましい。
 2層構造の場合、絶縁張力被膜側の被膜Bの厚さは、被膜密着性がより良好になるという理由から、0.100μm以上であることがより好ましい。
 《成膜法》
 非酸化物セラミックス被膜の成膜法としては、CVD(Chemical Vapor Deposition)法またはPVD(Physical Vapor Deposition)法が好ましい。
 CVD法としては、熱CVD法が好ましい。成膜温度は、900~1100℃が好ましい。成膜の際の圧力は、大気圧でも成膜可能ではあるが、一様に成膜するためには減圧することが好ましく、製造上の都合から、10~1000Paがより好ましい。
 PVD法は、イオンプレーティング法が好ましい。成膜温度は、製造の都合上、300~600℃が好ましい。成膜の際の圧力は、減圧することが好ましく、0.1~100Paがより好ましい。成膜に際しては、鋼板を陰極として-10~-100Vのバイアス電圧を印加することが好ましい。成膜速度を上げることができるという理由から、原料のイオン化にプラズマを用いることが好ましい。
 非酸化物セラミックス被膜のCr含有量に濃度勾配を付ける観点からは、CVD法は、雰囲気中の窒素分圧を変更するだけでCr含有量を変えることができるため、簡便で好ましい。
 非酸化物セラミックス被膜として、TiAlNまたはTiCrNなどの3種類以上の元素を含む非酸化物セラミックス被膜を成膜する場合、成膜法としては、PVD法が好ましく、イオンプレーティング法がより好ましい。熱力学的な反応を用いて成膜を行なうCVD法は、狙い通りの組成を得ることが難しい場合があるが、PVD法は、合金材料をイオン化させて整合析出させるため、狙い通りの組成を容易に得ることができる。
 《配向》
 非酸化物セラミックス被膜は、上述したように優先配向させることが好ましいが、そのためには、熱力学的な化学反応により成膜を行なうCVD法よりも、整合析出により成膜を行なうPVD法の方が好適である。
 これは、方向性電磁鋼板の鋼板がGoss方位{110}〈001〉に高度に配向した集合組織を持ち、格子整合により非酸化物セラミックス被膜が特定の面方位に配向しやすい状態になっているためである。
 PVD法のなかでも、特にイオンプレーティング法が好ましい。イオンプレーティング法は、鋼板にバイアス電圧を印加してイオンを加速する方法であるが、このバイアス電圧を低下させるだけで、原料のイオンが鋼板上を動きやすくなり、特定の面方位に容易に配向させることができるからである。この際、バイアス電圧は-50V以下にすることが好ましい。
 (111)面や(100)面への優先配向は立方晶に関するものであるが、非酸化物セラミックス被膜中にはAlNなどの六方晶をとるセラミックスがある。この場合も、面方位をある方位に揃えることによって、被膜密着性を良好にできると考えられる。
 〈絶縁張力被膜〉
 本発明の方向性電磁鋼板は、非酸化物セラミックス被膜上に配置された、酸化物を含有する絶縁張力被膜を有する。
 《組成》
 絶縁張力被膜が含有する酸化物としては、例えば、珪リン酸ガラスが挙げられる。
 絶縁張力被膜における珪リン酸ガラスの含有量は、85質量%以上が好ましく、95質量%以上がより好ましい。絶縁張力被膜は、実質的に、珪リン酸ガラスからなることが更に好ましい。
 《厚さ》
 図3は、珪リン酸ガラスからなる絶縁張力被膜の厚さと、その厚さの絶縁張力被膜が鋼板に印加する張力との関係を示すグラフである。図3に示すように、絶縁張力被膜の厚さが増すに従い、鋼板に印加される張力(引張応力)が増大し、これにより、方向性電磁鋼板の磁気特性が優れると考えられる。
 絶縁張力被膜の厚さは、1.0μm以上である。これにより、方向性電磁鋼板の磁気特性が優れる。
 一方、絶縁張力被膜を厚くしすぎると、方向性電磁鋼板を変圧器として使用した際の実効鋼板体積の減少に繋がり、引張応力による鉄損の低減効果も飽和してくるため、変圧器特性はむしろ劣化する場合も考えられる。このため、絶縁張力被膜の厚さは、5.0μm以下が好ましい。
 《成膜法》
 絶縁張力被膜の成膜法は、特に限定されないが、例えば、非酸化物セラミックス被膜上に、従来公知のリン酸塩およびコロイダルシリカを含有するコーティング液を塗布し、乾燥させた後、窒素雰囲気中で焼付けして、珪リン酸ガラスを形成する方法が好適に挙げられる。この方法により、珪リン酸ガラスを含有する絶縁張力被膜が形成される。
 以下、この方法を例に説明する。
 コーティング液は、少なくとも、リン酸塩およびコロイダルシリカを含有する。
 リン酸塩の金属種としては、Mg、Al、Ca、Sr、Fe、Cu、MnおよびZnからなる群から選ばれる少なくとも1種が挙げられる。
 リン酸塩としては、リン酸マグネシウムおよびリン酸アルミニウムなどの熱膨張率の低いリン酸塩が好ましい。焼鈍中に、熱膨張率の低いリン酸マグネシウムおよびリン酸アルミニウムなどの結晶相が生成し、鋼板に印加される引張張力が増大して、磁気特性がより優れる。
 リン酸塩としては、入手容易性の観点からは、第一リン酸塩(重リン酸塩)が好適に用いられる。
 コーティング液に含まれるコロイダルシリカの平均粒子径は、5~200nmが好ましく、10~100nmがより好ましい。コロイダルシリカの含有量は、固形分換算で、リン酸塩100質量部に対して、50~150質量部が好ましい。
 コーティング液には、更に、無水クロム酸および/または重クロム酸塩を含有させることができ、その含有量は、固形分換算(乾固分比率)で、リン酸塩100質量部に対して、10~50質量部が好ましい。
 コーティング液には、更に、シリカ粉末およびアルミナ粉末などの無機鉱物粒子を添加でき、その含有量は、固形分換算で、リン酸塩100質量部に対して、0.1~10質量部が好ましい。
 このようなコーティング液を、非酸化物セラミックス被膜上に塗布する方法としては、特に限定されないが、製造コストの都合上の観点から、塗布型ロールを用いて行なうことが好ましい。
 珪リン酸ガラスを焼き付ける温度(焼付温度)および時間(焼付時間)は、以下の理由から、それぞれ、700~900℃および10~30秒間が好ましい。
 焼付温度を900℃以下、焼付時間を30秒以下にすることによって、非酸化物セラミックス被膜と珪リン酸ガラスとの反応、および、リンの鋼板方向への拡散が抑制され、被膜密着性がより優れる。
 珪リン酸ガラスの形成は、リン酸の脱水縮合を利用している。すなわち、コーティング液中に第一リン酸塩として存在するリン酸塩が、焼付けによってピロリン酸となり、最終的にメタリン酸となる脱水反応を利用している。このため、焼付温度を700℃以上、焼付時間を10秒以上にすることによって、この脱水反応が十分に進行し、コーティング液に含まれる水分を十分に除くことができ、その結果、珪リン酸ガラスが鋼板に印加する引張応力をより向上できる。加えて、歪取焼鈍中において、水分による非酸化物セラミックス被膜の酸化を抑制できる。
 珪リン酸ガラスを焼き付ける雰囲気(焼付雰囲気)は、窒素雰囲気が好ましい。焼付雰囲気が大気であると、大気に含まれる水分および酸素などによって、非酸化物セラミックス被膜の酸化が起こりやすくなるが、窒素雰囲気であれば、非酸化物セラミックス被膜の酸化が抑制され、被膜密着性がより優れる。
 〈歪取焼鈍〉
 本発明の方向性電磁鋼板は、例えば需要家などによって、歪取焼鈍が施される場合がある。歪取焼鈍の条件は、特に限定されないが、例えば、窒素雰囲気などの雰囲気中で、700~900℃で、2~4時間の焼鈍が行なわれる。
 〈その他の事項〉
 本発明の方向性電磁鋼板の磁気特性をより良好にするために、方向性電磁鋼板の圧延方向を横切るように鋼板表面付近に、溝を形成する、または、レーザー照射もしくは電子ビーム照射などによりひずみを導入することによって、方向性電磁鋼板の磁区を細分化する技術も利用できる。
 溝形成による磁区細分化の効果は焼鈍後においても残るが、レーザー照射または電子ビーム照射によるひずみは、需要家等が行なう歪取焼鈍によって緩和してしまう。
 しかし、本発明の方向性電磁鋼板は、歪取焼鈍を行なわない場合においても、被膜密着性および磁気特性に優れる。したがって、本発明においては、歪取焼鈍を行なわない場合には、ひずみ導入による磁区細分化の技術を用いて磁気特性をより良好にできる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
[試験例1]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、非酸化物セラミックス被膜および絶縁張力被膜をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして鋼板を得た。
 その後、鋼板表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により鋼板表面を平滑化した。化学研磨後の板厚は0.20mmであった。
 《非酸化物セラミックス被膜》
 次に、CVD法またはPVD法によって、鋼板上に、単層の非酸化物セラミックス被膜を厚さ0.200μmで成膜した。非酸化物セラミックスの詳細を下記表1に示す。
 CVD法は、熱CVD法を用いて、1050℃および1000Paの条件で成膜を行なった。PVD法は、イオンプレーティング法を用いて、450℃、3Paおよびバイアス電圧-20Vの条件で成膜を行なった。
 CVD法の場合は雰囲気中の窒素分圧を変更することによって、PVD法の場合は雰囲気中の窒素分圧および/または各原料に流れる電流値を調整することによって、非酸化物セラミックス被膜のCr含有量を変えた(以下、同様)。
 《絶縁張力被膜》
 次に、非酸化物セラミックス被膜上に、コーティング液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、珪リン酸ガラスからなる厚さ2.0μmの絶縁張力被膜を成膜した。
 コーティング液としては、リン酸マグネシウム(第一リン酸マグネシウム)を100質量部、コロイダルシリカ(ADEKA社製AT-30、平均粒子径:10nm)を80質量部、および、無水クロム酸を20質量部含有するコーティング液を用いた(後述する試験例2~4においても、同様)。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行なった。その後、以下の評価を行なった。
 《被膜密着性》
 歪取焼鈍後の方向性電磁鋼板を、1mm単位で径が異なる丸棒に巻き付けていき、非酸化物セラミックス被膜が剥離しない最小径(単位:mmφ)を求めた。結果を下記表1に示す。被膜が剥離しない最小径(非剥離径)が小さいほど、歪取焼鈍後の被膜密着性に優れると評価できる。
 《鉄損W17/50
 歪取焼鈍後の方向性電磁鋼板について、鉄損W17/50を測定した。結果を下記表1に示す。鉄損W17/50を測定しなかった場合は、下記表1に「-」を記載した。鉄損W17/50の値(単位:W/kg)が0.80未満であれば、歪取焼鈍後の磁気特性に優れると評価できる。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、非酸化物セラミックス被膜を構成する非酸化物として、Crを含む窒化物を用いなかった例(No.12~13)は、歪取焼鈍の直後に、非酸化物セラミックス被膜が剥離した。
 一方、非酸化物セラミックス被膜を構成する非酸化物として、Crを含む窒化物を用いた例(No.1~11)は、いずれも非剥離径が5~10mmφと小さく、歪取焼鈍後の被膜密着性が良好であった。
 このうち、非酸化物セラミックス被膜のCr含有量について、鋼板側が25原子%未満であって、かつ、絶縁張力被膜側が25原子%以上である例(No.6および9)は、鉄損W17/50が0.80未満であり、歪取焼鈍後の磁気特性も良好であった。
[試験例2]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、非酸化物セラミックス被膜および絶縁張力被膜をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして鋼板を得た。
 その後、鋼板表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により鋼板表面を平滑化した。化学研磨後の板厚は0.20mmであった。
 《非酸化物セラミックス被膜》
 次に、CVD法またはPVD法によって、鋼板上に、様々な非酸化物セラミックス被膜(被膜A)を厚さ0.005μm以上0.150μm以下で成膜し、その上に、Crを含有する非酸化物セラミックス被膜(被膜B)を厚さ0.005μm以上0.150μm以下で成膜した。非酸化物セラミックス被膜の詳細を下記表2に示す。被膜Aは、Crを含んでいないため、Cr含有量は0原子%とみなされる。被膜BのCr含有量は、組成がCrNの場合は50原子%、それ以外の組成の場合は25原子%とした。
 CVD法は、熱CVD法を用いて、1050℃および1000Paの条件で成膜を行なった。PVD法は、イオンプレーティング法を用いて、450℃、3Paおよびバイアス電圧-20Vの条件で成膜を行なった。
 《絶縁張力被膜》
 次に、非酸化物セラミックス被膜上に、コーティング液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、珪リン酸ガラスからなる厚さ2.0μmの絶縁張力被膜を成膜した。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行ない、その後、試験例1と同様にして、歪取焼鈍後の被膜密着性および磁気特性の評価を行なった。いずれの例も歪取焼鈍の直後に、非酸化物セラミックス被膜が剥離しなかった。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、非酸化物セラミックス被膜の厚さ(被膜Aの厚さと被膜Bの厚さとの合計)が0.020μm以上である例(No.1~4、6~36および38~39)は、同厚さが0.010μmである例(No.5および37)と比べて、非剥離径が小さく歪取焼鈍後の被膜密着性が優れていた。また、非酸化物セラミックス被膜の厚さが0.020μm以上である例(No.1~4、6~36および38~39)は、鉄損W17/50が0.80未満であり、歪取焼鈍後の磁気特性も良好であった。
 TiNからなる被膜AとCrNからなる被膜Bとの2層構造である例(No.1~5)を対比すると、被膜Bの厚さが増すほど、歪取焼鈍後の樹脂密着性および磁気特性が優れる傾向にあることが分かった。
 これは、AlNからなる被膜AとCrNからなる被膜Bとの2層構造である例(No.33~37)においても同様の傾向が見られた。
 これらの例(No.1~5および33~37)を対比すると、TiNからなる被膜Aを用いた例(No.1~5)の方が、AlNからなる被膜Aを用いた例(No.33~37)よりも、歪取焼鈍後の樹脂密着性および磁気特性がより優れる傾向にあることが分かった。
[試験例3]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、非酸化物セラミックス被膜および絶縁張力被膜をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして鋼板を得た。
 その後、鋼板表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により鋼板表面を平滑化した。化学研磨後の板厚は0.20mmであった。
 《非酸化物セラミックス被膜》
 次に、PVD法によって、鋼板上に、TiNからなる非酸化物セラミックス被膜(被膜A)を厚さ0.100μmで成膜し、その上に、Cr含有量が50原子%のCrNからなる非酸化物セラミックス被膜(被膜B)を厚さ0.100μmで成膜した。
 PVD法は、イオンプレーティング法を用いて、450℃および3Paの条件で成膜を行なった。このとき、バイアス電圧を-20~-100Vの範囲で変化させた。バイアス電圧を-50~-100Vにした際、被膜Aおよび被膜Bは、それぞれ、(111)面または(100)面に優先配向した。
 (111)面または(100)面からの傾きが10°以下となる部分の面積率(単位:%)を、EBSD法によって測定し、下記表3に記載した。例えば、(111)面からの傾きが10°以下となる部分の面積率が50%である場合、下記表3には「(111)に50%」と記載した。
 《絶縁張力被膜》
 次に、非酸化物セラミックス被膜上に、コーティング液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、珪リン酸ガラスからなる厚さ2.0μmの絶縁張力被膜を成膜した。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行ない、その後、試験例1と同様にして、歪取焼鈍後の被膜密着性および磁気特性の評価を行なった。いずれの例も歪取焼鈍の直後に、非酸化物セラミックス被膜が剥離しなかった。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、バイアス電圧を-50V以下にした例(No.2~5)は、バイアス電圧を-50V以下にしなかった例(No.1)と比べて、被膜密着性がより良好であった。
[試験例4]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、非酸化物セラミックス被膜および絶縁張力被膜をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして鋼板を得た。
 その後、鋼板表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により鋼板表面を平滑化した。化学研磨後の板厚は0.20mmであった。
 《非酸化物セラミックス被膜》
 次に、PVD法によって、鋼板上に、TiNからなる非酸化物セラミックス被膜(被膜A)を厚さ0.100μmで成膜し、その上に、PVD法によって、Cr含有量が50原子%のCrNからなる非酸化物セラミックス被膜(被膜B)を厚さ0.100μmで成膜した。
 CVD法は、熱CVD法を用いて、1050℃および1000Paの条件で成膜を行なった。PVD法は、イオンプレーティング法を用いて、450℃、3Paおよびバイアス電圧-20Vで成膜を行なった。
 次に、非酸化物セラミックス被膜上に、コーティング液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、珪リン酸ガラスからなる絶縁張力被膜を成膜した。
 このとき、塗布型ロールの回転速度および/またはロールギャップの大きさを変えることによって、成膜される絶縁張力被膜の厚さを、0.5μm以上5.0μm以下の範囲で変更した。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行ない、その後、試験例1と同様にして、歪取焼鈍後の被膜密着性および磁気特性の評価を行なった。いずれの例も歪取焼鈍の直後に、非酸化物セラミックス被膜が剥離しなかった。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示すように、絶縁張力被膜の厚さが増すに従って、鉄損W17/50の値が小さくなり、歪取焼鈍後の磁気特性がより良好になることが分かった。
 1:鋼板
 2:フォルステライト被膜
 3:絶縁張力被膜
 4:非酸化物セラミックス被膜
 T:フォルステライト被膜の厚さ
 T:絶縁張力被膜の厚さ
 T:非酸化物セラミックス被膜の厚さ

Claims (10)

  1.  鋼板と、
     前記鋼板上に配置された、非酸化物を含有する非酸化物セラミックス被膜と、
     前記非酸化物セラミックス被膜上に配置された、酸化物を含有する絶縁張力被膜と、
    を有し、
     前記非酸化物セラミックス被膜の厚さが、0.020μm以上0.400μm以下であり、
     前記絶縁張力被膜の厚さが、1.0μm以上であり、
     前記非酸化物セラミックス被膜の前記鋼板側のCr含有量が、25原子%未満であり、
     前記非酸化物セラミックス被膜の前記絶縁張力被膜側のCr含有量が、25原子%以上である、方向性電磁鋼板。
  2.  前記非酸化物セラミックス被膜が、前記非酸化物として、Tiを含有する炭化物、Tiを含有する窒化物およびTiを含有する炭窒化物からなる群から選ばれる少なくとも1種を含有する、請求項1に記載の方向性電磁鋼板。
  3.  前記非酸化物セラミックス被膜が、前記鋼板上に配置された被膜Aと、前記被膜A上に配置された被膜Bとを有し、
     前記被膜AのCr含有量と、前記被膜BのCr含有量とが異なる、請求項1または2に記載の方向性電磁鋼板。
  4.  前記被膜AのCr含有量が、前記被膜BのCr含有量より少ない、請求項3に記載の方向性電磁鋼板。
  5.  前記被膜AのCr含有量が25原子%未満であり、前記被膜BのCr含有量が25原子%以上である、請求項3または4に記載の方向性電磁鋼板。
  6.  前記絶縁張力被膜が、前記酸化物として、珪リン酸ガラスを含有する、請求項1~5のいずれか1項に記載の方向性電磁鋼板。
  7.  前記絶縁張力被膜の厚さが、5.0μm以下である、請求項1~6のいずれか1項に記載の方向性電磁鋼板。
  8.  請求項1~7のいずれか1項に記載の方向性電磁鋼板を製造する、方向性電磁鋼板の製造方法であって、
     前記非酸化物セラミックス被膜を、CVD法またはPVD法によって成膜する、方向性電磁鋼板の製造方法。
  9.  前記非酸化物セラミックス被膜を、前記PVD法によって成膜し、
     前記PVD法が、前記鋼板にバイアス電圧を印加してイオンを加速するイオンプレーティング法であり、前記バイアス電圧が、-50V以下である、請求項8に記載の方向性電磁鋼板の製造方法。
  10.  前記絶縁張力被膜を成膜する際に、塗布型ロールを用いる、請求項8または9に記載に方向性電磁鋼板の製造方法。
PCT/JP2017/037506 2016-10-18 2017-10-17 方向性電磁鋼板および方向性電磁鋼板の製造方法 WO2018074462A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018503684A JP6350773B1 (ja) 2016-10-18 2017-10-17 方向性電磁鋼板および方向性電磁鋼板の製造方法
CN201780062746.7A CN109844179B (zh) 2016-10-18 2017-10-17 方向性电磁钢板及方向性电磁钢板的制造方法
EP17861461.6A EP3514261B1 (en) 2016-10-18 2017-10-17 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
US16/342,829 US11091842B2 (en) 2016-10-18 2017-10-17 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
RU2019111597A RU2706941C1 (ru) 2016-10-18 2017-10-17 Текстурированная электромагнитная листовая сталь и способ изготовления текстурированной электромагнитной листовой стали
KR1020197007875A KR102230629B1 (ko) 2016-10-18 2017-10-17 방향성 전기 강판 및 방향성 전기 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204163 2016-10-18
JP2016-204163 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074462A1 true WO2018074462A1 (ja) 2018-04-26

Family

ID=62019378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037506 WO2018074462A1 (ja) 2016-10-18 2017-10-17 方向性電磁鋼板および方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US11091842B2 (ja)
EP (1) EP3514261B1 (ja)
JP (1) JP6350773B1 (ja)
KR (1) KR102230629B1 (ja)
CN (1) CN109844179B (ja)
RU (1) RU2706941C1 (ja)
WO (1) WO2018074462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064632A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388799B (zh) * 2021-05-14 2022-07-26 中山市明焱诚铝业有限公司 一种耐腐蚀铝合金的制备方法
CN113388798B (zh) * 2021-05-14 2022-10-11 陕西虹瑞化工科技有限公司 一种耐腐蚀铝合金涂层材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468425A (en) 1987-09-10 1989-03-14 Kawasaki Steel Co Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH01176034A (ja) 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0754155A (ja) * 1993-06-07 1995-02-28 Nippon Steel Corp 超低鉄損方向性電磁鋼板の製造法
JP2006261602A (ja) * 2005-03-18 2006-09-28 Jfe Steel Kk 被膜密着性に優れた超低鉄損方向性電磁鋼板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69838419T2 (de) * 1997-12-24 2008-06-05 Jfe Steel Corp. Kornorientiertes siliziumstahlblech mit sehr geringem eisenverlust und herstellungsverfahren desselben
JP2001032055A (ja) * 1999-07-19 2001-02-06 Kawasaki Steel Corp 鉄損特性の優れた一方向性珪素鋼板およびその製造方法
JP2003129196A (ja) * 2001-10-19 2003-05-08 Kawasaki Steel Corp 超低鉄損一方向性珪素鋼板およびその製造方法
JP5419459B2 (ja) * 2006-11-22 2014-02-19 新日鐵住金株式会社 被膜密着性に優れた一方向性電磁鋼板およびその製造法
US9011585B2 (en) * 2007-08-09 2015-04-21 Jfe Steel Corporation Treatment solution for insulation coating for grain-oriented electrical steel sheets
KR101263139B1 (ko) 2010-02-18 2013-05-15 신닛테츠스미킨 카부시키카이샤 무방향성 전자기 강판 및 그 제조 방법
JP5853352B2 (ja) 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5729014B2 (ja) 2011-02-25 2015-06-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
IN2015DN00611A (ja) * 2012-08-30 2015-06-26 Jfe Steel Corp
JP5780379B1 (ja) 2013-11-28 2015-09-16 Jfeスチール株式会社 絶縁被膜付き電磁鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468425A (en) 1987-09-10 1989-03-14 Kawasaki Steel Co Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH01176034A (ja) 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0754155A (ja) * 1993-06-07 1995-02-28 Nippon Steel Corp 超低鉄損方向性電磁鋼板の製造法
JP2006261602A (ja) * 2005-03-18 2006-09-28 Jfe Steel Kk 被膜密着性に優れた超低鉄損方向性電磁鋼板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. PANJAN ET AL., THIN SOLID FILMS, vol. 281-282, 1996, pages 298
See also references of EP3514261A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064632A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband

Also Published As

Publication number Publication date
RU2706941C1 (ru) 2019-11-21
EP3514261A4 (en) 2019-07-24
CN109844179A (zh) 2019-06-04
US20190256985A1 (en) 2019-08-22
CN109844179B (zh) 2021-08-06
EP3514261B1 (en) 2020-06-17
KR102230629B1 (ko) 2021-03-22
US11091842B2 (en) 2021-08-17
EP3514261A1 (en) 2019-07-24
JP6350773B1 (ja) 2018-07-04
JPWO2018074462A1 (ja) 2018-10-18
KR20190044078A (ko) 2019-04-29

Similar Documents

Publication Publication Date Title
US7169479B2 (en) Grain-oriented magnetic steel sheet comprising an electrically insulating coating
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
WO2013099455A1 (ja) コーティング付き方向性電磁鋼板およびその製造方法
JP6394837B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6350773B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
CN109804105B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
WO2019013351A1 (ja) 方向性電磁鋼板及びその製造方法
JP6410002B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
KR101216656B1 (ko) 자기 특성이 우수한 방향성 전자 강판
JP6624246B2 (ja) 方向性電磁鋼板およびその製造方法
JP6856080B2 (ja) 方向性電磁鋼板の製造方法
JP4206942B2 (ja) 鉄損が極めて低くかつ被膜密着性に優れた方向性電磁鋼板およびその製造方法
JP6579260B2 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JPH11343579A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPS621820A (ja) 熱安定性、超低鉄損一方向性けい素鋼板の製造方法
JP4042202B2 (ja) 一方向性珪素鋼板
JPH11329819A (ja) 超低鉄損一方向性珪素鋼板
JP2005264233A (ja) 剪断作業性に優れた低鉄損方向性電磁鋼板
JP2001200377A (ja) 超低鉄損一方向性珪素鋼板の製造方法およびドライプレーティング装置
JPH11131252A (ja) 超低鉄損一方向性けい素鋼板
JPH11209880A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPS63216944A (ja) 一方向性珪素鋼単結晶板または粗大結晶粒板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503684

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007875

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861461

Country of ref document: EP

Effective date: 20190417