WO2017194283A1 - Verfahren zur fehlerdiagnose bei einer brennkraftmaschine - Google Patents

Verfahren zur fehlerdiagnose bei einer brennkraftmaschine Download PDF

Info

Publication number
WO2017194283A1
WO2017194283A1 PCT/EP2017/059352 EP2017059352W WO2017194283A1 WO 2017194283 A1 WO2017194283 A1 WO 2017194283A1 EP 2017059352 W EP2017059352 W EP 2017059352W WO 2017194283 A1 WO2017194283 A1 WO 2017194283A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
value
fuel
tat
Prior art date
Application number
PCT/EP2017/059352
Other languages
English (en)
French (fr)
Inventor
Klaus Joos
Alexander Schenck Zu Schweinsberg
Achim Hirchenhein
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US16/300,333 priority Critical patent/US10781748B2/en
Priority to CN201780028951.1A priority patent/CN109072804B/zh
Priority to JP2018559350A priority patent/JP6945556B2/ja
Priority to KR1020187035407A priority patent/KR102229549B1/ko
Publication of WO2017194283A1 publication Critical patent/WO2017194283A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/083Safety, indicating, or supervising devices relating to maintenance, e.g. diagnostic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/06Testing internal-combustion engines by monitoring positions of pistons or cranks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for error diagnosis in an internal combustion engine as well as a computing unit and a computer program for its implementation.
  • activation times of the fuel injectors in the sense of a regulation are adapted over the lifetime of a motor vehicle.
  • the control signal is detected and the open duration of the valve needle is determined in parallel from the opening and closing time.
  • the actual open duration of each injector can be calculated and readjusted if necessary.
  • DE 10 2009 002 593 A1 describes such a method for regulating an actual open duration of a valve to a desired open duration. Possible errors in the static flow rate result from tolerances of the injection hole geometry and the needle stroke. Injection hole geometry is often optimized for good emissions, but this can increase sensitivity to coking.
  • An inventive method is used for fault diagnosis in an internal combustion engine in which fuel is injected from a high-pressure accumulator into associated combustion chambers by means of a plurality of fuel injectors.
  • a first value representative of a static flow rate of fuel through one of the fuel injectors and a second value representative of smooth running of the internal combustion engine, for example a rotational speed fluctuation are determined. If at least one of the two representative values deviates from a respectively associated comparison value, an error is concluded and based on deviations of the two representative values from the respectively associated comparison value, the error is sent to the fuel injector and / or assigned to at least one further component and / or at least one operating phase of the internal combustion engine.
  • the comparison values can be updated, for example, repeatedly or continuously.
  • a deviation for example, should only be recognized as a deviation if the deviation exceeds a certain threshold, in order to avoid possible errors erroneously recognized on the basis of measurement tolerances.
  • the at least one further component of the internal combustion engine may in particular comprise an air supply system and / or an ignition device of the internal combustion engine.
  • the at least one operating phase of the internal combustion engine may include a compression of air-fuel mixture and / or an ignition process in the internal combustion engine.
  • the tolerances of the injection hole geometry and the needle lift of the fuel injectors can occur faults that can affect the operation of the internal combustion engine.
  • the invention now makes use of the fact that deviations in the fuel injectors and disturbances of the other components or operating phases have different effects on the static flow rate of individual fuel injectors and the quiet running of the internal combustion engine. In this way, a further distinction or assignment of the errors is possible, allowing a more effective troubleshooting.
  • the error is assigned to the fuel injector.
  • the error is due solely to the fuel injector, as a deviation of the static flow rate or a representative value can only be based on possible disturbances or contamination of the fuel injector. It may then be expedient to mark the fuel injector as degraded or defective and to provide for an exchange, for example during a later workshop visit.
  • the error is assigned to the at least one further component and / or the at least one operating phase of the internal combustion engine.
  • the fault is not attributable to the fuel injector, since a disturbance or contamination of the fuel injector usually also results in a deviation of the static flow rate or a value representative thereof. It may then be expedient to deposit a note or entry or the like in a fault memory in order to provide or replace an exchange or repair of the corresponding component or a check of settings of the corresponding operating phase, for example during a later workshop visit to display.
  • the error is assigned on the one hand to the fuel injector and on the other hand to the at least one further component and / or the at least one operating phase of the internal combustion engine.
  • the fault is due both to the fuel injector and to another component or an operating phase, since a disturbance or contamination of the fuel injector as a rule a deviation of the static flow rate or a value representative thereof On the other hand, but usually has no effect on the smoothness of the internal combustion engine.
  • the error may then be expedient to deposit a note or entry or the like in a fault memory in order to provide or display an exchange or a repair of the corresponding component or a check of settings of the corresponding operating phase, for example during a later workshop visit , In addition, for example, be provided to preventively clean all fuel injectors.
  • the error is assigned to the at least one further component and / or the at least one operating phase of the internal combustion engine, taking into account a lambda control, a further detailed assignment of the error is made. By means of an evaluation of a lambda value or a regulation of the lambda value, it can be detected, for example, whether less or more air than desired is supplied to a combustion or whether, for example, the ignition time is not maintained as desired. In this way, a more detailed assignment of the error is very possible.
  • the deposit of the information may include an entry in a fault memory.
  • a simple instruction for an exchange of the fuel injector or another component or a check is possible.
  • These respective first threshold values can also be used as those threshold values (already mentioned), above which a deviation of one of the values from the associated comparison value is considered to be recognized.
  • a warning is sent to a driver of a motor vehicle who has the internal combustion engine if at least one of the two values deviates from its associated comparison value by more than an associated second threshold value, which is greater than the respective first threshold value.
  • the respective second threshold value for example, 25% of the respective comparison value can be used here.
  • the warning may, for example, the flashing a warning lamp (eg Engine indicator lamp (MIL)) and / or include a message in a display in the motor vehicle. In this way, a simple avoidance of a safety-critical situation is possible.
  • MIL Engine indicator lamp
  • a course of the deviations of the first and / or second value from the respective comparison value over a mileage of the internal combustion engine is detected and stored.
  • the deposit can take place, for example, in a memory in an executing control device.
  • the data can be made very easily available for a workshop.
  • these field data can be stored and, for example, later evaluated.
  • a necessary addition of a cleaning additive can be detected, if, for example, pollution or coking of fuel! Frequently observed.
  • a first comparison value associated with the first value is determined taking into account corresponding first values of all or all of the other fuel injectors of the internal combustion engine, in particular as an average value.
  • This is a particularly effective comparison with the rest of the fuel! possible.
  • the actual flow rate need not be determined, since only the respective representative values are used, which is for a relative comparison, ie the determination if possibly the flow rate of a fuel! Njektor of which differs from the other fuel injectors, is sufficient. In particular, any systematic measurement errors are negligible in this way.
  • the conversion values for converting the representative value into the associated flow rate are known, it is also conceivable to use as representative values right to use the flow rate.
  • the conversion values include, for example, sufficiently accurate information about fuel type, in particular the ethanol content, a fuel temperature and a pressure in the high-pressure accumulator, the so-called rail pressure.
  • fuel type in particular the ethanol content
  • a fuel temperature in particular the ethanol content
  • a pressure in the high-pressure accumulator the so-called rail pressure.
  • rail pressure the so-called rail pressure
  • the first value can be determined, for example, by determining a ratio of a pressure difference occurring in the high-pressure accumulator due to the injection process and an associated duration characteristic of the injection process in at least one injection process of the fuel injector. It can be exploited that the amount of fuel delivered by a fuel injector during an injection process or the volume thereof is proportional or at least sufficiently proportional to the associated pressure difference, i. the pressure difference before and after the injection process, in the Hoch horrspei- is more. If, in addition, a characteristic duration for the injection process is known, a value can be determined from the ratio of this pressure difference and the associated duration which, except for a proportionality factor, corresponds to the static flow rate through the fuel injector. In this way, a value representative of the flow rate can be obtained very simply.
  • An arithmetic unit according to the invention for example a control unit of a motor vehicle, is, in particular programmatically, adapted to carry out a method according to the invention.
  • the implementation of the method in the form of a computer program is advantageous because this causes very low costs, especially if an executive controller is still used for other tasks and therefore already exists.
  • Suitable data carriers for the provision of the computer program are, in particular, magnetic, optical and electrical memories, such as hard disks, flash memories, EEPROMs, DVDs and the like. It is also possible to download a program via computer networks (Internet, intranet, etc.).
  • Figure 1 shows schematically an internal combustion engine with common rail system, which is suitable for carrying out a method according to the invention.
  • FIG. 2 shows a diagram of a flow volume in a fuel injector over time.
  • FIG. 3 shows a diagram of a pressure curve in a high-pressure accumulator during an injection process.
  • FIG. 4 shows in a diagram a speed curve of the internal combustion engine with speed fluctuations and an associated comparison value in a method according to the invention in a preferred embodiment.
  • FIG. 5 shows a first value representative of a static flow rate and an associated comparison value in a method according to the invention in a preferred embodiment.
  • FIG. 6 schematically shows a sequence of a method according to the invention in a preferred embodiment.
  • the internal combustion engine 100 comprises three combustion chambers or associated cylinders 105.
  • Each combustion chamber 105 is assigned a fuel injector 130, which in turn is connected to a high-pressure reservoir 120, a so-called rail, via which it is supplied with fuel.
  • a method according to the invention can also be carried out in an internal combustion engine with any other number of cylinders, for example four, six, eight or twelve cylinders.
  • the high pressure accumulator 120 is fed via a high pressure pump 1 10 with fuel from a fuel tank 140.
  • the high-pressure pump 10 is coupled to the internal combustion engine 100, for example, such that the high-pressure pump is driven via a crankshaft of the internal combustion engine or via a camshaft, which in turn is coupled to the crankshaft.
  • an air supply system 150 is shown, via which air can be supplied to the individual combustion chambers or cylinders 105.
  • a control of the fuel injectors 130 for metering fuel into the respective combustion chambers 105 takes place via a computing unit designed as an engine control unit 180.
  • a computing unit designed as an engine control unit 180.
  • each fuel injector 130 is connected to the engine control unit accordingly.
  • Each fuel injector 130 can be specifically controlled.
  • the engine control unit 130 is configured to control the fuel to detect pressure in the high-pressure accumulator 120 by means of a pressure sensor 190.
  • FIG. 2 shows in a diagram a cumulative flow volume V through a fuel injector over the time t during a long-lasting actuation of the fuel! Njektors shown.
  • the valve needle begins to lift.
  • time ti thus also starts an open duration of the fuel injector.
  • the cumulative flow volume V or by the fuel! After a short period of time during the lifting of the valve needle, the amount of fuel that has flowed increases constantly over a wide range. In this area, the valve needle is in the so-called full stroke, i. the valve needle is raised completely or up to a desired height. During this time, a constant amount of fuel per unit time flows through the valve opening of the fuel injector, i.
  • the static flow rate C tat which indicates the slope of the cumulative flow volume V, is constant.
  • the magnitude of the static flow rate is an important factor which, as already mentioned, determines the total amount of fuel injected during an injection process. Deviations or tolerances in the static flow rate therefore affect the injected fuel quantity per injection process.
  • the activation time ends and the closing time begins.
  • the valve needle begins to lower.
  • the closing time and the opening duration end at time t.3 when the valve needle completely closes the valve again.
  • FIG. 3 shows a diagram of a pressure curve in a high-pressure accumulator during an injection process over time t.
  • the pressure p in the high-pressure accumulator apart from certain fluctuations due to pump deliveries, is essentially constant.
  • the pressure p in the high pressure accumulator drops by a value ⁇ .
  • the pressure remains p, again apart from certain fluctuations, at the lower level until, by a Nachêt through the high-pressure pump, the pressure p rises again to the initial level.
  • the detection and evaluation of these pressure drops during injection processes is carried out with components which are usually present anyway, such as, for example, the pressure sensor 190 and the engine control unit 180, including the corresponding input circuit. Additional components are therefore not necessary. This evaluation is done individually for each combustion chamber 105.
  • the static flow rate C tat through the fuel injector is, as already mentioned, characterized by the injected fuel quantity or its volume per time.
  • the injected volume is proportional to the pressure drop in the rail.
  • the associated time duration corresponds to the open duration of the fuel injector, which, for example, as described above, can be determined mechatronically by means of a so-called CVO (see, for example, DE 10 2009 002 593 A1).
  • the high-pressure pump should not fall into the relevant time window. An additional promotion is therefore to be suppressed if necessary.
  • averaging can be carried out over a plurality of such injection events.
  • a deviation of a fuel injector may occur be determined with respect to the first representative value and reduced or minimized compared to the first comparison value. This can also be done for several or all fuel injectors. It is also conceivable that in calculating the first comparison value all
  • FIG. 4 shows in a diagram a speed curve of the internal combustion engine with speed fluctuations as the second value representative of the smooth running.
  • the speed n is plotted over the time t.
  • the rotational speed fluctuation ⁇ here the maximum deviation of the rotational speed n compared to a mean value n 0 , can serve as a measure for the quiet running of the internal combustion engine.
  • second comparative value can here, for example, the speed fluctuation ⁇ be used. It should be noted that, as a rule, always certain speed variations, i. Deviations of the maximum occurring value from the mean, occur and therefore can not be assumed even with a deviation of the - as defined here - speed fluctuation from the mean no.
  • a deviation of the second representative value from the associated comparison value is considered to be recognized only if the deviation from the associated comparison value ⁇ is greater than the associated first threshold value ⁇ shown here in order to take into account possible measurement tolerances.
  • FIG. 5 three representative values R s tat, i, Rstat, 2 and Rstat, 3 are shown by way of example in a diagram, as can be determined, for example, for the fuel injectors shown in FIG. 1 according to the method explained above.
  • a first comparison value R ' s tat is shown, which is obtained by way of example from the two representative values R s tat, i and R s tat, 3, for example as the arithmetic mean value.
  • the first comparison value is thus determined from all other fuel injectors except the examined fuel injector.
  • the first comparison value is determined from all three (or all existing) fuel injectors, ie including the investigated fuel injector.
  • a deviation of the second representative value, in this case R s tat, 2, from the associated comparison value R'stat can now, for example, be regarded as detected if the second representative value R s tat, 2 differs from the comparison value R'stat at all.
  • a deviation should only be regarded as recognized if the deviation is greater than a certain threshold value. This may, for example, be a first threshold value ARi belonging to the second representative value.
  • the first threshold value ARi and the second threshold value AR2 also shown and belonging to the second representative value will be discussed in more detail later.
  • FIG. 6 schematically shows a sequence of a method according to the invention in a preferred embodiment.
  • the deviations of the static flow rates and / or deviations from open durations during injection processes can be determined between different fuel injectors Internal combustion engine is reduced, in particular minimized, as was mentioned in the introduction, for example, with regard to the CVO.
  • the deviations of the fuel injectors with regard to their first representative values can be determined and reduced or minimized compared with the first comparison value, as also already mentioned, i.a. with reference to FIG. 3.
  • the first representative value R s tat, 2 can be checked for a deviation from the associated first comparison value R'stat.
  • the first representative value can be determined again after the reduction or minimization of the deviation of the first representative value.
  • the second representative value ⁇ can be checked for a deviation from the associated second comparison value ⁇ 0 .
  • a deviation can then be considered recognized if the respective representative value, for example, deviates from the respective comparison value by more than the respective first threshold value, as has been explained in greater detail, for example, with reference to FIGS. 4 and 5.
  • the error will correspond to the corresponding fuel! associated with the ejector, as indicated here by the reference numeral Fi. If only the second representative value ⁇ deviates from the associated comparison value ⁇ , then the fault is assigned to the at least one further component and / or the at least one operating phase of the internal combustion engine, as indicated here by the reference symbol F2.
  • the representative value (or, depending on the situation, both) deviates from the associated comparison value by more than the respective first threshold value but less than the respective second threshold value, as shown for example in FIG. 5 for the first representative value , so the information about the error, for example, be stored in a fault memory.
  • a warning message can be sent to a driver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine, bei der mittels mehrerer Kraftstoffinjektoren Kraftstoff aus einem Hochdruckspeicher in zugehörige Brennräume eingespritzt wird, wobei ein für eine statische Durchflussrate von Kraftstoff durch einen der Kraftstoffinjektoren repräsentativer, erster Wert (Rstat,2) ermittelt wird, wobei ein für eine Laufruhe der Brennkraftmaschine repräsentativer, zweiter Wert (Δn) ermittelt wird, wobei, wenn wenigstens einer der beiden Werte (Rstat,2, Δn) von einem jeweils zugehörigen Vergleichswert (R'stat, Δn0) abweicht, auf einen Fehler (F) geschlossen wird, und wobei auf Basis von Abweichungen der beiden repräsentativen Werte (Rstat,2, Δn) von dem jeweils zugehörigen Vergleichswert (R'stat, Δn0) der Fehler (F) dem Kraftstoffinjektor und/oder wenigstens einer weiteren Komponente und/oder wenigstens einer Betriebsphase der Brennkraftmaschine zugeordnet wird.

Description

Beschreibung
Titel
Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine
Die vorliegende Erfindung betrifft ein Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung.
Stand der Technik
Bei Kraftfahrzeugen gelten hinsichtlich einzuhaltender Emissionen von Schadstoffen teilweise sehr strenge Grenzwerte. Um aktuelle und insbesondere auch zukünftige Emissions- bzw. Abgasgrenzwerte einzuhalten, ist u.a. eine genaue Kraftstoffzumessung bei der Einspritzung entscheidend.
Dabei ist jedoch zu Berücksichtigen, dass bei der Zumessung verschiedene Toleranzen auftreten. Solche Zumesstoleranzen resultieren im Allgemeinen aus exemplarabhängiger Nadeldynamik und exemplarabhängiger statischer Durchflussrate der Kraftstoff! njektoren. Ein Einfluss der Nadeldynamik kann bspw. durch einen mechatronischen Ansatz, wie bspw. einer sog. "Controlled Valve Operation" (CVO) reduziert werden.
Bei einer CVO werden Ansteuerzeiten der Kraftstoffinjektoren im Sinne einer Regelung bspw. über die Lebensdauer eines Kraftfahrzeugs hinweg angepasst. Dabei wird während der Einspritzung das Ansteuersignal erfasst und parallel aus Öffnungs- und Schließzeitpunkt die Offendauer der Ventilnadel ermittelt. Somit kann die tatsächliche Offendauer jedes Injektors errechnet und gegebenenfalls nachgeregelt werden. In der DE 10 2009 002 593 A1 wird ein solches Verfahren zum Regeln einer Ist-Offendauer eines Ventils auf eine Soll-Offendauer beschrieben. Mögliche Fehler bei der statischen Durchflussrate resultieren aus Toleranzen der Einspritzlochgeometrie und des Nadelhubs. Die Einspritzlochgeometrie wird oftmals hinsichtlich guter Emissionswerte optimiert, wodurch allerdings eine Sensi- tivität für eine Verkokung steigen kann. Solche Fehler können bisher meist nur global, d.h. hinsichtlich aller Kraftstoffinjektoren der Brennkraftmaschine gemeinsam, bspw. auf Basis einer Lambdaregelung bzw. Gemischadaption korrigiert werden. Damit kann jedoch nicht erkannt werden, ob einzelne Kraftstoffinjektoren der Brennkraftmaschine eine Abweichung hinsichtlich ihrer statischen Durchflussrate aufweisen (d.h. bei gleicher Offendauer unterschiedliche Mengen abgeben), die abgas- oder laufruherelevant sein können.
Aus der nicht vorveröffentlichten DE 10 2015 205 877 ist bspw. ein Verfahren bekannt, um eine statische Durchflussrate eines Kraftstoffinjektors oder einen dafür repräsentativen Wert zu ermitteln.
Offenbarung der Erfindung
Erfindungsgemäß werden ein Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.
Ein erfindungsgemäßes Verfahren dient zur Fehlerdiagnose bei einer Brennkraftmaschine, bei der mittels mehrerer Kraftstoffinjektoren Kraftstoff aus einem Hochdruckspeicher in zugehörige Brennräume eingespritzt wird. Dabei werden ein für eine statische Durchflussrate von Kraftstoff durch einen der Kraftstoffinjektoren repräsentativer, erster Wert und ein für eine Laufruhe der Brennkraftmaschine repräsentativer, zweiter Wert, bspw. eine Drehzahlschwankung, ermittelt. Wenn wenigstens einer der beiden repräsentativen Werte von einem jeweils zugehörigen Vergleichswert abweicht, wird auf einen Fehler geschlossen und auf Basis von Abweichungen der beiden repräsentativen Werte von dem jeweils zugehörigen Vergleichswert wird der Fehler dem Kraftstoffinjektor und/oder wenigs- tens einer weiteren Komponente und/oder wenigstens einer Betriebsphase der Brennkraftmaschine zugeordnet. Die Vergleichswerte können dabei bspw. wiederholt oder kontinuierlich aktualisiert werden. Zweckmäßig kann es dabei auch sein, dieses Verfahren für jeden der Kraftstoffinjektoren der Brennkraftmaschine durchzuführen. Zweckmäßig kann es auch sein, dass eine Abweichung bspw. nur dann als Abweichung erkannt gelten soll, wenn die Abweichung eine gewisse Schwelle überschreitet, um mögliche, aufgrund von Messtoleranzen fälschlich erkannte Fehler zu vermeiden. Durch die eingangs erwähnten Verfahren der CVO und der Ermittlung der statischen Durchflussrate eines Kraftstoffinjektors können zwar von den Kraftstoffinjektoren abhängige Zumessfehler erkannt und reduziert werden. Das vorgeschlagene Verfahren ermöglicht nunmehr jedoch darüber hinaus auch eine weitere Zuordnung eines Fehlers nicht nur den Kraftstoffinjektoren sondern auch, sofern zutreffend, weiteren Komponenten der Brennkraftmaschine und/oder Betriebsphasen der Brennkraftmaschine. Die wenigstens eine weitere Komponente der Brennkraftmaschine kann dabei insbesondere ein Luftzufuhrsystem und/oder eine Zündeinrichtung der Brennkraftmaschine umfassen. Die wenigstens eine Betriebsphase der Brennkraftmaschine kann dabei eine Kompression von Luft- Kraftstoff-Gemisch und/oder einen Zündvorgang in der Brennkraftmaschine umfassen. Bei all diesen Komponenten bzw. Betriebsphasen können, wie auch bei der Nadelhubdynamik, den Toleranzen der Einspritzlochgeometrie und des Nadelhubs der Kraftstoffinjektoren Störungen auftreten, die Auswirkungen auf den Betrieb der Brennkraftmaschine haben können. Die Erfindung macht sich nun zunutze, dass sich Abweichungen bei den Kraftstoffinjektoren und Störungen der übrigen Komponenten bzw. Betriebsphasen unterschiedlich auf die statische Durchflussrate einzelner Kraftstoffinjektoren und die Laufruhe der Brennkraftmaschine auswirken. Auf diese Weise ist eine weitere Unterscheidung bzw. Zuordnung der Fehler möglich, was eine effektivere Fehlerbehebung erlaubt.
Vorzugsweise wird, wenn nur der erste Wert von dem zugehörigen Vergleichswert abweicht, der Fehler dem Kraftstoffinjektor zugeordnet. In diesem Fall kann davon ausgegangen werden, dass der Fehler allein auf den Kraftstoffinjektor zurückzuführen ist, da eine Abweichung der statischen Durchflussrate bzw. eines hierfür repräsentativen Werts nur auf möglichen Störungen oder Verschmutzungen des Kraftstoffinjektors basieren kann. Zweckmäßig kann es dann sein, den Kraftstoffinjektor als degradiert oder defekt zu kennzeichnen und einen Tausch, bspw. im Rahmen eines späteren Werkstattbesuchs, vorzusehen.
Vorteilhafterweise wird, wenn nur der zweite Wert von dem zugehörigen Vergleichswert abweicht, der Fehler der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine zugeordnet. In diesem Fall kann davon ausgegangen werden, dass der Fehler nicht auf den Kraftstoffinjektor zurückzuführen ist, da eine Störung oder eine Verschmutzung des Kraftstoffinjektors in aller Regel auch eine Abweichung der statischen Durchflussrate bzw. eines hierfür repräsentativen Werts zur Folge hätte. Zweckmäßig kann es dann sein, einen Hinweis bzw. Eintrag oder dergleichen in einem Fehlerspeicher zu hinterlegen, um einen Tausch oder eine Reparatur der ent- sprechenden Komponente bzw. eine Überprüfung von Einstellungen der entsprechenden Betriebsphase, bspw. im Rahmen eines späteren Werkstattbesuchs, vorzusehen bzw. anzuzeigen.
Vorzugsweise wird, wenn beide Werte von ihren zugehörigen Vergleichswerten abweichen, der Fehler einerseits dem Kraftstoffinjektor und andererseits der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine zugeordnet. In diesem Fall kann davon ausgegangen werden, dass der Fehler sowohl auf den Kraftstoffinjektor als auch auf eine weitere Komponente bzw. eine Betriebsphase zurückzuführen ist, da eine Störung oder eine Verschmutzung des Kraftstoffinjektors in aller Regel eine Abweichung der statischen Durchflussrate bzw. eines hierfür repräsentativen Werts zur Folge hat, andererseits aber in der Regel keinen Einfluss auf die Laufruhe der Brennkraftmaschine hat. Zweckmäßig kann es dann sein, einen Hinweis bzw. Eintrag oder dergleichen in einem Fehlerspeicher zu hinterlegen, um einen Tausch oder ein Reparatur der entsprechenden Komponente bzw. eine Überprüfung von Einstellungen der entsprechenden Betriebsphase, bspw. im Rahmen eines späteren Werkstattbesuchs, vorzusehen bzw. anzuzeigen. Zudem kann bspw. vorgesehen werden, präventiv alle Kraftstoffinjektoren zu reinigen. Vorteilhafterweise wird, wenn der Fehler der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine zugeordnet wird, unter Berücksichtigung einer Lambda-Regelung eine weiter detailliertere Zuordnung des Fehlers vorgenommen. Mittels einer Auswertung eines Lambda-Wertes bzw. einer Regelung des Lambda-Wertes kann bspw. erkannt werden, ob einer Verbrennung weniger oder mehr Luft als gewünscht zugeführt wird oder ob bspw. der Zündzeitpunkt nicht wie gewünscht eingehalten wird. Auf diese Weise ist also sehr einfach eine weiter detailliertere Zuordnung des Fehlers möglich.
Es ist von Vorteil, wenn eine Information über den Fehler in einem Fehlerspeicher hinterlegt wird, wenn wenigstens einer der beiden Werte um mehr als einen zugehörigen ersten Schwellwert von seinem zugehörigen Vergleichswert abweicht. Als jeweiliger erster Schwellwert können hier bspw. 10% des zugehörigen Vergleichswertes verwendet werden. Bei einer solchen Abweichung ist eine
Funktionseinschränkung der Brennkraftmaschine in der Regel noch nicht sicherheitskritisch, sollte jedoch beim nächsten Werkstattbesuch behoben werden. Insofern kann die Hinterlegung der Information einen Eintrag in einem Fehlerspeicher umfassen. Auf diese Weise ist eine einfache Anweisung für einen Aus- tausch des Kraftstoffinjektors oder einer weiteren Komponente oder eine Überprüfung möglich. Diese jeweiligen ersten Schwellwerte können dabei auch als diejenigen (bereits erwähnten) Schwellwerte verwendet werden, bei deren Überschreiten jeweils eine Abweichung eines der Werte vom zugehörigen Vergleichswert als erkannt gilt.
Zweckmäßigerweise erfolgt eine Warnung an einen Fahrer eines Kraftfahrzeugs, das die Brennkraftmaschine aufweist, wenn wenigstens einer der beiden Werte um mehr als einen zugehörigen zweiten Schwellwert, der größer als der jeweilige erste Schwellwert ist, von seinem zugehörigen Vergleichswert abweicht. Als je- weiliger zweiter Schwellwert können hier bspw. 25% des jeweiligen Vergleichswerts verwendet werden. Bei einer solchen Abweichung ist eine Funktionseinschränkung möglicherweise schon sicherheitskritisch und es sollte schnellstmöglich ein Werkstattbesuch oder zumindest eine belastungsarme Fahrweise erfolgen. Insofern kann die Warnung bspw. das Aufleuchten eine Warnlampe (z.B. Motorkontrollleuchte (MIL)) und/oder eine Meldung in einem Display im Kraftfahrzeug umfassen. Auf diese Weise ist eine einfache Vermeidung einer sicherheitskritischen Situation möglich. Es ist auch von Vorteil, wenn ein Verlauf der Abweichungen des ersten und/oder zweiten Wertes von dem jeweiligen Vergleichswert über eine Laufleistung der Brennkraftmaschine erfasst und hinterlegt wird. Die Hinterlegung kann bspw. in einem Speicher in einem ausführenden Steuergerät erfolgen. Auf diese Weise können die Daten sehr einfach für eine Werkstatt zur Verfügung gestellt werden. Insbesondere ist damit bspw. ein gezielter Austausch eines defekten Kraftstoffinjektors möglich. Zudem können diese Felddaten gespeichert und bspw. später ausgewertet werden. Auf diese Weise kann bspw. auch ein nötiger Zusatz eines Reinigungsadditivs erkannt werden, wenn bspw. eine Verschmutzung bzw. eine Verkokung von Kraftstoff! njektor häufig beobachtet wird. Weiterhin kann bspw. auf ein allgemeines Fertigungsproblem, eine Eigenschaft der Kraftstoffinjektor-
Auslegung, bedingt durch kritische Einsatzbedingungen (Temperatur, Medium oder dergleichen) oder einen Einbaupositionseffekt (bspw. am Zylinderkopf) geschlossen und frühzeitig darauf reagiert werden. Gleiches gilt für das Luftzufuhrsystem, z.B. hinsichtlich eines Verdachts auf einen verstopften Luftfilter wegen Schmutz in der angesaugten Luft (Sand, Staub oder dergleichen) oder einer Undichtigkeit, z.B. auf Grund eines porösen Luftschlauchs.
Vorzugsweise wird ein dem ersten Wert zugehöriger erster Vergleichswert unter Berücksichtigung von entsprechenden ersten Werten aller oder aller übrigen Kraftstoffinjektoren der Brennkraftmaschine, insbesondere als Mittelwert, ermittelt. Damit ist ein besonders effektiver Vergleich mit den übrigen Kraftstoff! njekto- ren möglich. Insbesondere braucht bei dieser Vorgehensweise die tatsächliche Durchflussrate nicht ermittelt werden, da nur die jeweiligen repräsentativen Werte herangezogen werden, was für einen relativen Vergleich, d.h. der Ermittlung ob ggf. die Durchflussrate bei einem Kraftstoff! njektor von denen der anderen Kraftstoffinjektoren abweicht, ausreichend ist. Insbesondere sind auf diese Weise eventuelle systematische Messfehler vernachlässigbar. Wenn die Umrech- nungswerte zum Umrechnen des repräsentativen Werts in die zugehörige Durchflussrate bekannt sind, ist es jedoch auch denkbar, als repräsentative Werte di- rekt die Durchflussrate zu verwenden. Die Umrechnungswerte umfassen dabei bspw. ausreichend genaue Informationen über Kraftstoffart, insbesondere den Ethanolgehalt, eine Kraftstofftemperatur und einen Druck im Hochdruckspeicher, den sog. Raildruck. Insbesondere kann sich hierbei zunutze gemacht werden, dass eine Abweichung der Durchflussrate bzw. des repräsentativen Werts für jeden Kraftstoff! njektor in der Regel unterschiedlich ist.
Zweckmäßigerweise werden vor Ermittlung der beiden Werte Abweichungen der statischen Durchflussraten und/oder Abweichungen von Offendauern bei Ein- spritzvorgängen jeweils zwischen verschiedenen Kraftstoff! njektoren der Brennkraftmaschine reduziert, insbesondere minimiert. Dies kann bspw. gemäß den eingangs erwähnten Verfahren der CVO und der Ermittlung der statischen Durchflussrate eines Kraftstoff! njektors erfolgen. Auf diese Weise kann die in dem vorgeschlagenen Verfahren vorgenommene Zuordnung des Fehlers noch genauer erfolgen.
Der erste Wert kann bspw. ermittelt werden, indem bei wenigstens einem Einspritzvorgang des Kraftstoffinjektors ein Verhältnis einer im Hochdruckspeicher aufgrund des Einspritzvorgangs auftretenden Druckdifferenz und einer zugehöri- gen, für den Einspritzvorgang charakteristischen Dauer ermittelt wird. Dabei kann ausgenutzt werden, dass die von einem Kraftstoffinjektor während eines Einspritzvorgangs abgegebene Kraftstoffmenge bzw. dessen Volumen proportional oder zumindest hinreichend proportional zu der zugehörigen Druckdifferenz, d.h. dem Druckunterschied vor und nach dem Einspritzvorgang, im Hochdruckspei- eher ist. Wenn nun zudem eine für den Einspritzvorgang charakteristische Dauer bekannt ist, kann aus dem Verhältnis dieser Druckdifferenz und der zugehörigen Dauer ein Wert ermittelt werden, der bis auf einen Proportionalitätsfaktor der statischen Durchflussrate durch den Kraftstoffinjektor entspricht. Auf diese Weise kann sehr einfach ein für die Durchflussrate repräsentativer Wert erhalten wer- den.
Eine erfindungsgemäße Recheneinheit, z.B. ein Steuergerät eines Kraftfahrzeugs, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen. Auch die Implementierung des Verfahrens in Form eines Computerprogramms ist vorteilhaft, da dies besonders geringe Kosten verursacht, insbesondere wenn ein ausführendes Steuergerät noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Geeignete Datenträger zur Bereitstellung des Computerprogramms sind insbesondere magnetische, optische und elektrische Speicher, wie z.B. Festplatten, Flash-Speicher, EEPROMs, DVDs u.a.m. Auch ein Download eines Programms über Computernetze (Internet, Intranet usw.) ist möglich.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Die Erfindung ist anhand eines Ausführungsbeispiels der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung beschrieben.
Kurze Beschreibung der Zeichnungen
Figur 1 zeigt schematisch eine Brennkraftmaschine mit Common-Rail-System, die zur Durchführung eines erfindungsgemäßen Verfahrens geeignet ist.
Figur 2 zeigt in einem Diagramm ein Durchflussvolumen bei einem Kraftstoffinjektor über die Zeit.
Figur 3 zeigt in einem Diagramm einen Druckverlauf in einem Hochdruckspeicher während eines Einspritzvorgangs.
Figur 4 zeigt in einem Diagramm einen Drehzahlverlauf der Brennkraftmaschine mit Drehzahlschwankungen und einem zugehörigen Vergleichswert bei einem erfindungsgemäßen Verfahren in einer bevorzugten Ausführungsform. Figur 5 zeigt einen für eine statische Durchflussrate repräsentativen ersten Wert und einen zugehörigen Vergleichswert bei einem erfindungsgemäßen Verfahren in einer bevorzugten Ausführungsform.
Figur 6 zeigt schematisch einen Ablauf eines erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform.
Ausführungsform(en) der Erfindung
In Figur 1 ist schematisch eine Brennkraftmaschine 100 gezeigt, die zur Durchführung eines erfindungsgemäßen Verfahrens geeignet ist. Beispielhaft umfasst die Brennkraftmaschine 100 drei Brennräume bzw. zugehörige Zylinder 105. Jedem Brennraum 105 ist ein Kraftstoffinjektor 130 zugeordnet, welcher wiederum jeweils an einen Hochdruckspeicher 120, ein sog. Rail, angeschlossen ist, über welchen er mit Kraftstoff versorgt wird. Es versteht sich, dass ein erfindungsgemäßes Verfahren auch bei einer Brennkraftmaschine mit einer beliebigen anderen Anzahl an Zylindern, bspw. vier, sechs, acht oder zwölf Zylinder, durchgeführt werden kann.
Weiter wird der Hochdruckspeicher 120 über eine Hochdruckpumpe 1 10 mit Kraftstoff aus einem Kraftstofftank 140 gespeist. Die Hochdruckpumpe 1 10 ist mit der Brennkraftmaschine 100 gekoppelt, und zwar bspw. derart, dass die Hochdruckpumpe über eine Kurbelwelle der Brennkraftmaschine bzw. über eine Nockenwelle, welche wiederum mit der Kurbelwelle gekoppelt ist, angetrieben wird. Weiterhin ist ein Luftzufuhrsystem 150 gezeigt, über welches Luft den einzelnen Brennräumen bzw. Zylindern 105 zugeführt werden kann.
Eine Ansteuerung der Kraftstoffinjektoren 130 zum Zumessen von Kraftstoff in die jeweiligen Brennräume 105 erfolgt über eine als Motorsteuergerät 180 ausgebildete Recheneinheit. Der Übersichtlichkeit halber ist nur die Verbindung vom Motorsteuergerät 180 zu einem Kraftstoff! njektor 130 dargestellt, es versteht sich jedoch, dass jeder Kraftstoffinjektor 130 an das Motorsteuergerät entsprechend angeschlossen ist. Jeder Kraftstoffinjektor 130 kann dabei spezifisch angesteuert werden. Ferner ist das Motorsteuergerät 130 dazu eingerichtet, den Kraftstoff- druck in dem Hochdruckspeicher 120 mittels eines Drucksensors 190 zu erfassen.
In Figur 2 ist in einem Diagramm ein kumuliertes Durchflussvolumen V durch ei- nen Kraftstoffinjektor über die Zeit t bei einer lange andauernden Ansteuerung des Kraftstoff! njektors dargestellt. Zum Zeitpunkt to beginnt dabei eine Ansteuerzeit und zum Zeitpunkt ti beginnt sich die Ventilnadel zu heben. Zum Zeitpunkt ti beginnt somit auch eine Offendauer des Kraftstoffinjektors. Dabei ist zu sehen, dass das kumulierte Durchflussvolumen V bzw. die durch den Kraftstoff! njektor geflossene Kraftstoffmenge nach einer kurzen Zeitdauer während des Anhebens der Ventilnadel über einen weiten Bereich konstant ansteigt. In diesem Bereich befindet sich die Ventilnadel im sog. Vollhub, d.h. die Ventilnadel ist vollständig bzw. bis zu einer Soll-Höhe angehoben. Während dieser Zeit fließt eine konstante Kraftstoff menge pro Zeiteinheit durch die Ventilöffnung des Kraftstoffinjektors, d.h. die statische Durchflussrate C tat, die die Steigung des kumulierten Durchflussvolumens V angibt, ist konstant. Die Größe der statischen Durchflussrate ist dabei ein wesentlicher Faktor, der, wie eingangs bereits erwähnt, die insgesamt während eines Einspritzvorgangs ein- gespritzte Kraftstoffmenge bestimmt. Abweichungen bzw. Toleranzen in der statischen Durchflussrate wirken sich daher auf die eingespritzte Kraftstoffmenge pro Einspritzvorgang aus.
Zum Zeitpunkt t.2 endet die Ansteuerzeit und es beginnt die Schließzeit. Dabei beginnt die Ventilnadel, sich zu senken. Die Schließzeit und die Offendauer enden zum Zeitpunkt t.3, wenn die Ventilnadel wieder vollständig das Ventil verschließt.
In Figur 3 ist in einem Diagramm ein Druckverlauf in einem Hochdruckspeicher während eines Einspritzvorgangs über die Zeit t dargestellt. Hierbei ist zu sehen, dass der Druck p im Hochdruckspeicher, von gewissen Schwankungen aufgrund von Pumpenförderungen abgesehen, im Wesentlichen konstant ist. Während des Einspritzvorgangs, der eine Zeitdauer At andauert, sinkt der Druck p im Hochdruckspeicher um einen Wert Δρ. Anschließend bleibt der Druck p, wieder von gewissen Schwankungen abgesehen, auf dem niedrigeren Niveau, bis durch eine Nachförderung durch die Hochdruckpumpe der Druck p wieder auf das Ausgangsniveau ansteigt.
Die Erfassung und Auswertung dieser Druckeinbrüche bei Einspritzvorgängen erfolgt dabei mit üblicherweise ohnehin vorhandenen Komponenten, wie bspw. dem Drucksensor 190 und dem Motorsteuergerät 180 inkl. entsprechender Ein- gangsbeschaltung. Zusätzliche Komponenten sind daher nicht nötig. Diese Auswertung erfolgt individuell für jeden Brennraum 105.
Die statische Durchflussrate C tat durch den Kraftstoffinjektor ist, wie bereits erwähnt, charakterisiert durch die eingespritzte Kraftstoffmenge bzw. dessen Volumen pro Zeit. In einem auf Systemdruck aufgepumpten Hochdruckspeicher bzw. Rail ist das eingespritzte Volumen proportional zum Druckeinbruch im Rail. Die zugehörige Zeitdauer entspricht dabei der Offendauer des Kraftstoffinjektors, die bspw., wie eingangs erwähnt, mechatronisch mittels einer sog. CVO (siehe z.B. DE 10 2009 002 593 A1 ) bestimmt werden kann.
Durch eine Quotientenbildung zwischen Druckeinbruch bzw. Druckdifferenz Δρ und Offendauer bzw. Zeitdauer der Einspritzung At erhält man eine Druckrate als
Ersatzwert bzw. ersten repräsentativen Wert Rstat = Δρ/At für die statische Durch-
Ap
flussrate Qstat, d.h. für einen Messvorgang gilt Q □—— . Eine Nachförderung
At
durch die Hochdruckpumpe sollte hierbei nicht in das relevante Zeitfenster fallen. Eine Nachförderung ist daher ggf. zu unterdrücken.
Um die Genauigkeit des ersten repräsentativen Werts Rstat zu erhöhen, kann bspw. eine Mittelwertbildung über mehrere solche Einspritzvorgänge hinweg vorgenommen werden.
Wenn als erster, dem ersten repräsentativen Wert zugehöriger, Vergleichswert bspw. ein Mittelwert der einzelnen ersten repräsentativen Werten aller Kraftstoffinjektoren verwendet wird, so kann eine Abweichung eines Kraftstoffinjektors hinsichtlich dessen ersten repräsentativen Werts ermittelt und gegenüber dem ersten Vergleichswert reduziert bzw. minimiert werden. Dies kann auch für mehrere oder alle Kraftstoffinjektoren durchgeführt werden. Denkbar ist es auch, dass bei der Berechnung des ersten Vergleichswertes alle
Kraftstoffinjektoren außer demjenigen, welcher gerade überprüft werden soll, herangezogen werden.
In Figur 4 ist in einem Diagramm ein Drehzahlverlauf der Brennkraftmaschine mit Drehzahlschwankungen als für die Laufruhe repräsentativen, zweiten Wert dargestellt. Hierzu ist die Drehzahl n über die Zeit t aufgetragen. Die Drehzahlschwankung Δη, hier die maximale Abweichung der Drehzahl n gegenüber einem Mittelwert n0, kann dabei als Maß für die Laufruhe der Brennkraftmaschine dienen.
Als zugehöriger, zweiter Vergleichswert kann hier bspw. die Drehzahlschwankung Δηο herangezogen werden. Dabei sollte berücksichtigt werden, dass in der Regel immer gewisse Drehzahlschwankungen, d.h. Abweichungen des maximal auftretenden Werts vom Mittelwert, auftreten und daher nicht bereits bei einer Abweichung der - wie hier definierten - Drehzahlschwankung vom Mittelwert no ausgegangen werden kann.
Es ist jedoch zweckmäßig, dass nur dann eine Abweichung des zweiten repräsentativen Werts vom zugehörigen Vergleichswert als erkannt gilt, wenn die Ab- weichung vom zugehörigen Vergleichswert Δηο größer als der hier gezeigte, zugehörige erste Schwellwert Δηι ist, um eventuelle Messtoleranzen zu berücksichtigen.
Es ist jedoch auch denkbar als zweiten repräsentativen Wert eine mittlere Dreh- zahl, gemittelt über eine bestimmte Anzahl, bspw. ein, zwei oder drei, Umdrehungen der Brennkraftmaschine, zu verwenden. In diesem Fall könnte als zugehöriger zweiter Vergleichswert auch der Mittelwert no, der dann über eine deutlich höhere Anzahl an Umdrehungen, bspw. 20 oder 30, ermittelt werden sollte, verwendet werden. Auf den ersten Schwellwert Δηι sowie den ebenfalls gezeigten und zur Drehzahlschwankung gehörigen zweiten Schwellwert Δη2 soll später noch genauer eingegangen werden.
In Figur 5 sind in einem Diagramm beispielhaft drei repräsentative Werte Rstat,i , Rstat,2 und Rstat,3 gezeigt, wie sie bspw. für die in Figur 1 gezeigten Kraftstoffinjektoren gemäß dem oben erläuterten Verfahren ermittelt werden können.
Weiterhin ist ein erster Vergleichswert R'stat gezeigt, der beispielhaft aus den beiden repräsentativen Werten Rstat,i und Rstat,3 gewonnen wird, bspw. als arithmetischer Mittelwert. Der erste Vergleichswert wird somit aus allen übrigen Kraftstoffinjektoren außer dem untersuchten Kraftstoffinjektor ermittelt. Es ist jedoch auch denkbar, dass der erste Vergleichswert aus allen drei (bzw. allen vorhandenen) Kraftstoffinjektoren, d.h. inklusive dem untersuchten Kraftstoffinjektor, ermittelt wird.
Eine Abweichung des zweiten repräsentativen Werts, hier Rstat,2, vom zugehörigen Vergleichswert R'stat kann nun bspw. dann als erkannt gelten, wenn der zweite repräsentative Wert Rstat,2 vom Vergleichswert R'stat überhaupt abweicht. Vorzugsweise, insbesondere auch zur Berücksichtigung eventueller Messtoleranzen, sollte jedoch eine Abweichung nur als erkannt gelten, wenn die Abweichung größer als ein gewisser Schwellwert ist. Hierbei kann es sich bspw. um einen zum zweiten repräsentativen Wert gehörigen ersten Schwellwert ARi handeln.
Auf den ersten Schwellwert ARi sowie den ebenfalls gezeigten und zum zweiten repräsentativen Wert gehörigen zweiten Schwellwert AR2 soll später noch genauer eingegangen werden.
In Figur 6 ist schematisch ein Ablauf eines erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform dargestellt. Zunächst können die Abweichungen der statischen Durchflussraten und/oder Abweichungen von Offendauern bei Einspritzvorgängen jeweils zwischen verschiedenen Kraftstoffinjektoren der Brennkraftmaschine reduziert, insbesondere minimiert, werden, wie dies eingangs bspw. hinsichtlich der CVO erwähnt wurde.
Weiterhin können die Abweichungen der Kraftstoffinjektoren hinsichtlich deren ersten repräsentativen Werte ermittelt und gegenüber dem ersten Vergleichswert reduziert bzw. minimiert werden, wie dies ebenfalls bereits, u.a. in Bezug auf Figur 3, erwähnt wurde.
Weiterhin kann nun, wie gezeigt, der erste repräsentative Wert Rstat,2 hinsichtlich einer Abweichung von dem zugehörigen, ersten Vergleichswert R'stat überprüft werden. Der erste repräsentative Wert kann hierzu nach der Reduzierung bzw. Minimierung der Abweichung des ersten repräsentativen Werts erneut ermittelt werden. Weiterhin kann der zweite repräsentative Wert Δη hinsichtlich einer Abweichung von dem zugehörigen zweiten Vergleichswert Δη0 überprüft werden.
Eine Abweichung kann dann als erkannt gelten, wenn der jeweilige repräsentative Wert bspw. um mehr als den jeweiligen ersten Schwellwert von dem jeweiligen Vergleichswert abweicht, wie dies bspw. in Bezug auf die Figuren 4 und 5 näher erläutert wurde.
Sofern nun wenigstens einer der beiden repräsentativen Werte Rstat,2 bzw. Δη von dem zugehörigen Vergleichswert Rstat bzw. Δηο abweicht, so kann auf einen Fehler F geschlossen werden.
In Abhängigkeit davon, ob nur einer der beiden repräsentativen Werte von dem zugehörigen Vergleichswert abweicht oder ob beide repräsentativen Werte von den zugehörigen Vergleichswerten abweichen, kann nun der Fehler unterschiedlich zugeordnet werden.
Wenn nur der erste repräsentative Wert Rstat,2 von dem zugehörigen Vergleichswert Rstat abweicht, so wird der Fehler dem entsprechenden Kraftstoff! njektor zugeordnet, wie dies hier mittels des Bezugszeichens Fi gekennzeichnet ist. Wenn nur der zweite repräsentative Wert Δη von dem zugehörigen Vergleichswert Δηο abweicht, so wird der Fehler der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine zugeordnet, wie dies hier mittels des Bezugszeichens F2 gekennzeichnet ist.
Wenn beide repräsentativen Werte Rstat,2 und Δη von den zugehörigen Vergleichswerten R'stat bzw. Δηο abweichen, so wird der Fehler dem Kraftstoffinjektor und der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine zugeordnet, wie dies hier mittels des Bezugszeichens F3 gekennzeichnet ist.
Bzgl. näherer Erläuterungen hinsichtlich der Zuordnung des Fehlers sei zur Vermeidung von Wiederholungen auf obige Ausführungen verwiesen.
Wenn der repräsentative Wert (oder, je nach Situation, beide) zwar um mehr als den jeweiligen ersten Schwellwert, jedoch weniger als den jeweiligen zweiten Schwellwert von dem zugehörigen Vergleichswert abweicht, so wie dies bspw. in Figur 5 für den ersten repräsentativen Wert gezeigt ist, so kann die Information über den Fehler bspw. in einem Fehlerspeicher hinterlegt werden.
Sollte bspw. bei einer späteren Überprüfung einer der der repräsentative Werte um mehr als den jeweiligen zweiten Schwellwert vom zugehörigen Vergleichswert abweichen, so kann bspw. eine Warnmeldung an einen Fahrer abgesetzt werden.

Claims

Ansprüche
1 . Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine (100), bei der mittels mehrerer Kraftstoffinjektoren (130) Kraftstoff aus einem Hochdruckspeicher (120) in zugehörige Brennräume (105) eingespritzt wird,
wobei ein für eine statische Durchflussrate (Qstat) von Kraftstoff durch einen der Kraftstoffinjektoren (130) repräsentativer, erster Wert (Rstat,2) ermittelt wird,
wobei ein für eine Laufruhe der Brennkraftmaschine (100) repräsentativer, zweiter Wert (Δη) ermittelt wird,
wobei, wenn wenigstens einer der beiden Werte (Rstat,2, Δη) von einem jeweils zugehörigen Vergleichswert (R'stat, Δηο) abweicht, auf einen Fehler (F) geschlossen wird, und
wobei auf Basis von Abweichungen der beiden Werte (Rstat,2, Δη) von dem jeweils zugehörigen Vergleichswert (R'stat, Δηο) der Fehler (F) dem Kraftstoffinjektor (130) und/oder wenigstens einer weiteren Komponente und/oder wenigstens einer Betriebsphase der Brennkraftmaschine (100) zugeordnet wird.
2. Verfahren nach Anspruch 1 , wobei die wenigstens eine weitere Komponente der Brennkraftmaschine (100) ein Luftzufuhrsystem (150) und/oder eine Zündeinrichtung der Brennkraftmaschine (100) umfasst, und/oder wobei die wenigstens eine Betriebsphase der Brennkraftmaschine (100) eine Kompression von Luft-Kraftstoff-Gemisch und/oder einen Zündvorgang in der Brennkraftmaschine (100) umfasst.
3. Verfahren nach Anspruch 1 oder 2, wobei, wenn nur der erste Wert (Rstat,2) von dem zugehörigen Vergleichswert (R'stat) abweicht, der Fehler (F) dem Kraftstoff! njektor (130) zugeordnet wird. Verfahren nach einem der vorstehenden Ansprüche, wobei, wenn nur der zweite Wert (Δη) von dem zugehörigen Vergleichswert (Δη0) abweicht, der Fehler (F) der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine (100) zugeordnet wird.
Verfahren nach einem der vorstehenden Ansprüche, wobei, wenn beide Werte (Rstat,2, Δη) von den zugehörigen Vergleichswerten (R'stat, Δηο) abweichen, der Fehler (F) dem Kraftstoff! njektor (130) und der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine (100) zugeordnet wird.
Verfahren nach einem der vorstehenden Ansprüche, wobei, wenn der Fehler (F) der wenigstens einen weiteren Komponente und/oder der wenigstens einen Betriebsphase der Brennkraftmaschine (100) zugeordnet wird, unter Berücksichtigung einer Lambda-Regelung eine weiter detailliertere Zuordnung des Fehlers (F) vorgenommen wird.
Verfahren nach einem der vorstehenden Ansprüche, wobei eine Information über den Fehler (F) in einem Fehlerspeicher hinterlegt wird, wenn wenigstens einer der Werte (Rstat,2, Δη) um mehr als einen zugehörigen ersten Schwellwert (ARi , Δη-ι ) von dem zugehörigen Vergleichswert (R'stat, Δηο) abweicht.
Verfahren nach Anspruch 7, wobei eine Warnung an einen Fahrer eines Kraftfahrzeugs, das die Brennkraftmaschine (100) aufweist, erfolgt, wenn wenigstens einer der Werte (Rstat,2, Δηο) um mehr als einen zugehörigen zweiten Schwellwert (AR2, Δη2), der größer als der zugehörige erste
Schwellwert (ARi , Δη-ι ) ist, von dem zugehörigen Vergleichswert (R'stat, Δηο) abweicht.
Verfahren nach einem der vorstehenden Ansprüche, wobei ein Verlauf der Abweichung des ersten und/oder zweiten Werts (Rstat,2, Δηο) von dem zugehörigen Vergleichswert (R'stat, Δηο) über einer Laufleistung der Brennkraftmaschine (100) erfasst und gespeichert wird.
10. Verfahren nach einem der vorstehenden Ansprüche, wobei ein dem ersten Wert (Rstat,2) zugehöriger erster Vergleichswert (R'stat) unter Berücksichtigung von entsprechenden ersten Werten (Rstat,i , Rstat,2, Rstat,3) aller oder aller übrigen Kraftstoff! njektoren (130) der Brennkraftmaschine (100), insbesondere als Mittelwert, ermittelt (100) wird.
1 1 . Verfahren nach einem der vorstehenden Ansprüche, wobei vor Ermittlung der beiden Werte (Rstat,2, Δη0) Abweichungen der statischen Durchflussraten (Qstat) und/oder Abweichungen von Offendauern bei Einspritzvorgängen jeweils zwischen verschiedenen Kraftstoffinjektoren (130) der Brennkraftmaschine (100) reduziert, insbesondere minimiert, werden.
12. Verfahren nach einem der vorstehenden Ansprüche, wobei der zweite Wert (Δηο) eine Drehzahlschwankung der Brennkraftmaschine (100) umfasst.
13. Recheneinheit (180), die dazu eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche durchzuführen.
14. Computerprogramm, das eine Recheneinheit (180) dazu veranlasst, ein Verfahren nach einem der Ansprüche 1 bis 12 durchzuführen, wenn es auf der Recheneinheit (180) ausgeführt wird.
15. Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerprogramm nach Anspruch 14.
PCT/EP2017/059352 2016-05-12 2017-04-20 Verfahren zur fehlerdiagnose bei einer brennkraftmaschine WO2017194283A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/300,333 US10781748B2 (en) 2016-05-12 2017-04-20 Method for diagnosing errors in an internal combustion engine
CN201780028951.1A CN109072804B (zh) 2016-05-12 2017-04-20 用于在内燃机中误差诊断的方法
JP2018559350A JP6945556B2 (ja) 2016-05-12 2017-04-20 内燃機関における欠陥診断方法
KR1020187035407A KR102229549B1 (ko) 2016-05-12 2017-04-20 내연 기관에서 오류를 진단하기 위한 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016208195.0 2016-05-12
DE102016208195.0A DE102016208195A1 (de) 2016-05-12 2016-05-12 Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2017194283A1 true WO2017194283A1 (de) 2017-11-16

Family

ID=58640846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/059352 WO2017194283A1 (de) 2016-05-12 2017-04-20 Verfahren zur fehlerdiagnose bei einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US10781748B2 (de)
JP (1) JP6945556B2 (de)
KR (1) KR102229549B1 (de)
CN (1) CN109072804B (de)
DE (1) DE102016208195A1 (de)
WO (1) WO2017194283A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211551A1 (de) * 2016-06-28 2017-12-28 Robert Bosch Gmbh Verfahren zum Ermitteln eines Korrekturwertes für eine Kraftstoffzumessung eines Kraftstoffinjektors
DE102018101773B4 (de) * 2018-01-26 2019-11-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Wassereinspritzung
DE102018214409A1 (de) * 2018-08-27 2020-02-27 Robert Bosch Gmbh Verfahren zur Fehlererkennung beim Betreiben einer Kraftstoffeinspritzanlage eines Verbrennungsmotors, Computerprogramm
PL239750B1 (pl) * 2018-11-05 2022-01-03 Akademia Morska W Szczecinie Metoda oceny obciazenia mechanicznego maszyn energetycznych, zwlaszcza tlokowych silnikow spalinowych
FR3089565B1 (fr) * 2018-12-10 2021-02-19 Continental Automotive France Procédé de commande d’un injecteur dans un système à rail commun
US11361597B2 (en) * 2019-02-28 2022-06-14 Continental Automotive Systems, Inc. Method and system for monitoring integrity of pedestrian protection system in a vehicle
CN110005524B (zh) * 2019-06-06 2019-09-20 潍柴动力股份有限公司 一种喷气阀积碳的检测方法、装置及电子设备
DE102020110396A1 (de) 2020-04-16 2021-10-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung von defekten Einspritzdüsen eines Verbrennungsmotors
DE102020215580A1 (de) 2020-12-09 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Pumpe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035958A1 (de) * 1990-11-09 1992-05-14 Bosch Gmbh Robert Zuend- und/oder einspritzanlage fuer brennkraftmaschinen
US5445019A (en) * 1993-04-19 1995-08-29 Ford Motor Company Internal combustion engine with on-board diagnostic system for detecting impaired fuel injectors
DE10339251A1 (de) * 2003-08-26 2005-03-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US20070250288A1 (en) * 2006-04-24 2007-10-25 Rolf Maier-Landgrebe Method for operating an internal combustion engine, and a control device therefor
DE102009002593A1 (de) 2009-04-23 2010-10-28 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines aktorbetätigten Ventils
EP2284378A2 (de) * 2009-07-28 2011-02-16 Hitachi Automotive Systems, Ltd. Motorsteuerungsvorrichtung
US20110302999A1 (en) * 2009-01-09 2011-12-15 Guido Porten Device and method for cylinder-torque equalization of an internal combustion engine, computer program, computer program product
DE102010051035A1 (de) * 2010-11-11 2012-05-16 Daimler Ag Verfahren zur Korrektur eines Luft-Kraftstoff-Gemisch-Fehlers
US20120150417A1 (en) * 2010-12-13 2012-06-14 GM Global Technology Operations LLC Method for diagnosing a clogging of an injector in an internal combustion engine
DE102014007963A1 (de) * 2014-06-04 2015-12-17 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine und Motorsteuergerät
DE102015205877A1 (de) 2015-04-01 2016-10-06 Robert Bosch Gmbh Verfahren zum Ermitteln eines Korrekturwertes für eine Kraftstoffzumessung eines Kraftstoffinjektors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915644A (ja) * 1982-07-19 1984-01-26 Nissan Motor Co Ltd 燃料噴射式内燃機関の燃料噴射量検出装置および電子燃料噴射量制御装置
JPH05280395A (ja) * 1992-03-30 1993-10-26 Fuji Heavy Ind Ltd 空燃比制御系の異常検出方法
JP2005201133A (ja) * 2004-01-15 2005-07-28 Hitachi Constr Mach Co Ltd 建設機械のエンジン状態量検出装置及び検出方法
JP2006214361A (ja) * 2005-02-04 2006-08-17 Denso Corp エンジンの異常検出装置
JP4349339B2 (ja) * 2005-07-21 2009-10-21 株式会社デンソー 内燃機関の噴射量制御装置
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4600369B2 (ja) * 2006-09-05 2010-12-15 株式会社デンソー 減圧弁遅延補償装置、及びプログラム
US8539934B2 (en) * 2008-04-10 2013-09-24 Bosch Corporation Injection abnormality detection method and common rail fuel injection control system
JP4623157B2 (ja) * 2008-07-28 2011-02-02 株式会社デンソー 異常検出装置
JP5459302B2 (ja) * 2011-12-26 2014-04-02 株式会社デンソー 内燃機関制御システムの異常診断装置
GB2526322A (en) * 2014-05-20 2015-11-25 Gm Global Tech Operations Inc Method of diagnosing clogged fuel injectors
DE102015214817A1 (de) * 2015-08-04 2017-02-09 Robert Bosch Gmbh Verfahren zum Erkennen einer Zustandsänderung eines Kraftstoffinjektors

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035958A1 (de) * 1990-11-09 1992-05-14 Bosch Gmbh Robert Zuend- und/oder einspritzanlage fuer brennkraftmaschinen
US5445019A (en) * 1993-04-19 1995-08-29 Ford Motor Company Internal combustion engine with on-board diagnostic system for detecting impaired fuel injectors
DE10339251A1 (de) * 2003-08-26 2005-03-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US20070250288A1 (en) * 2006-04-24 2007-10-25 Rolf Maier-Landgrebe Method for operating an internal combustion engine, and a control device therefor
US20110302999A1 (en) * 2009-01-09 2011-12-15 Guido Porten Device and method for cylinder-torque equalization of an internal combustion engine, computer program, computer program product
DE102009002593A1 (de) 2009-04-23 2010-10-28 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines aktorbetätigten Ventils
EP2284378A2 (de) * 2009-07-28 2011-02-16 Hitachi Automotive Systems, Ltd. Motorsteuerungsvorrichtung
DE102010051035A1 (de) * 2010-11-11 2012-05-16 Daimler Ag Verfahren zur Korrektur eines Luft-Kraftstoff-Gemisch-Fehlers
US20120150417A1 (en) * 2010-12-13 2012-06-14 GM Global Technology Operations LLC Method for diagnosing a clogging of an injector in an internal combustion engine
DE102014007963A1 (de) * 2014-06-04 2015-12-17 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine und Motorsteuergerät
DE102015205877A1 (de) 2015-04-01 2016-10-06 Robert Bosch Gmbh Verfahren zum Ermitteln eines Korrekturwertes für eine Kraftstoffzumessung eines Kraftstoffinjektors

Also Published As

Publication number Publication date
JP2019515187A (ja) 2019-06-06
DE102016208195A1 (de) 2017-11-16
US10781748B2 (en) 2020-09-22
KR102229549B1 (ko) 2021-03-18
KR20190007443A (ko) 2019-01-22
JP6945556B2 (ja) 2021-10-06
CN109072804B (zh) 2022-05-24
US20190145313A1 (en) 2019-05-16
CN109072804A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017194283A1 (de) Verfahren zur fehlerdiagnose bei einer brennkraftmaschine
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
WO2016155986A1 (de) Verfahren und vorrichtung zum ermitteln eines korrekturwertes für eine kraftstoffeinspirtzmenge
DE102015214817A1 (de) Verfahren zum Erkennen einer Zustandsänderung eines Kraftstoffinjektors
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
WO2018001675A1 (de) Verfahren zum ermitteln eines korrekturwertes für eine kraftstoffzumessung eines kraftstoffinjektors
DE10232356A1 (de) Verfahren zur Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102009045563B4 (de) Verfahren zum Bestimmen wenigstens eines Raildruck-Schließstrom-Wertepaares für ein Druckregelventil eines Common-Rail-Einspritzsystems
DE102009009270A1 (de) Kalibrierverfahren eines Injektors einer Brennkraftmaschine
EP3143270A1 (de) Verfahren und vorrichtung zur kalibrierung von nacheinspritzungen einer brennkraftmaschine
DE102012217741A1 (de) Verfahren zur Plausibilisierung des Ausgangssignals eines Raildrucksensors
DE102010036485B3 (de) Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
DE102010043150A1 (de) Verfahren zur Überwachung des Zustands eines Piezoinjektors eines Kraftstoffeinspritzsystems
WO2009095333A1 (de) Verfahren zur steuerung einer brennkraftmaschine
WO2017021063A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP2984321B1 (de) Verfahren zur identifikation von kraftstoffgemischen
DE102016214464A1 (de) Verfahren zum Ermitteln eines Korrekturwertes für eine Kraftstoffzumessung eines Kraftstoffinjektors
DE102014016799A1 (de) Verfahren und Vorrichtung zur Prüfung eines einen Kraftstoffdrucksensor aufweisenden Kraftstoffdrucksystems einer verbrennungsgeregelten Brennkraftmaschine eines Kraftfahrzeugs
DE10309720B4 (de) Verfahren und Vorrichtung zur mengendriftkompensierenden Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102016221826A1 (de) Verfahren zur Erkennung einer Leckage in einem Kraftstoffzumesssystem
DE102012209030A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine und System mit einer Brennkraftmaschine, einem Kraftstoffspeicher und einem Steuergerät
DE102015225504A1 (de) Verfahren zur Fehlerkompensation einer Kraftstoffeinspritzmenge beim Betrieb einer Brennkraftmaschine
DE102011005981B4 (de) Verfahren zum Bestimmen einer Veränderung einer Steuermenge eines Injektors einer Brennkraftmaschine
EP3810916B1 (de) Verfahren zur ermittlung und/oder zur erkennung einer versottung einer luft-ansaugstrecke zu einer brennkammer eines verbrennungsmotors
DE102009045314A1 (de) Verfahren zur Überwachung eines Betriebs eines Verbrennungsmotors

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17720043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035407

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17720043

Country of ref document: EP

Kind code of ref document: A1