WO2017101465A1 - 一种纳米压印光刻胶及其制备方法 - Google Patents

一种纳米压印光刻胶及其制备方法 Download PDF

Info

Publication number
WO2017101465A1
WO2017101465A1 PCT/CN2016/094453 CN2016094453W WO2017101465A1 WO 2017101465 A1 WO2017101465 A1 WO 2017101465A1 CN 2016094453 W CN2016094453 W CN 2016094453W WO 2017101465 A1 WO2017101465 A1 WO 2017101465A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
photoresist
mixture
nanoimprint
additive
Prior art date
Application number
PCT/CN2016/094453
Other languages
English (en)
French (fr)
Inventor
万春旭
张至
程鑫
孙大陟
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2017101465A1 publication Critical patent/WO2017101465A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents

Definitions

  • the invention relates to a nanoimprinting photoresist, and to a preparation method of a nanoimprinting photoresist; belonging to the field of material science and micro-nano processing.
  • nanoimprint technology As a next-generation lithography technology, nanoimprint technology has the advantages of high resolution, high yield, and low cost. Unlike traditional lithography, nanoimprint technology directly uses mechanical imprinting to transfer micro-nano patterns instead of using light to shape the photoresist. According to different materials and processes, commonly used nanoimprint technology can be divided into hot stamping (HEL) and ultraviolet imprinting (UV-NIL).
  • HEL hot stamping
  • UV-NIL ultraviolet imprinting
  • Thermoplastic nanoimprinting i.e., hot stamping
  • thermoplastic material that transfers the pattern of the template to the substrate by pressure when the thermoplastic material is heated above the glass transition temperature. Since the template is in contact with the photoresist during this process, the demolding process after cooling is an important process. Because the surface tension of the colloid during the demolding process will adhere to the template, it is easy to cause defects in the pattern, and it is easy to damage the template.
  • Ultraviolet embossing uses ultraviolet light to illuminate the stencil to cure the photoresist filling the stencil gap, thereby transferring the pattern on the stencil onto the substrate.
  • the colloid is usually a high surface energy material, there is a strong attraction between the colloid and the stencil, so during the demolding process, a part of the colloid remains on the stencil and adhesion occurs. Eventually it can cause graphic defects and even damage the template.
  • One of the objects of the present invention is to provide a low surface energy nanoimprint resist which has a low surface tension, which is advantageous for improving the demolding effect, reducing the defects of the imprint pattern, and preventing the damage of the template.
  • a second object of the present invention is to provide a method for preparing a nanoimprint photoresist.
  • the method is simple and easy to operate, and the nanoimprint photoresist prepared by the method has a low surface tension.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the weight percentage of the organic small molecule solvent is 67%, 70%, 72%, 73%, 75%, 82%, 86%, 88%, 90%, 92%, 95% or 96%; 2%, 4%, 5%, 6%, 8%, 10%, 12%, 16%, 18%, 20%, 22%, 26%, 27%, 28% or 29%; graphite fluoride and
  • the weight percentage of the derivative is 0.03%, 0.05%, 0.08%, 0.1%, 0.18%, 0.2%, 0.26%, 0.30%, 0.34%, 0.38%, 0.4%, 0.42%, 0.45%, 0.48% or 0.49.
  • the weight percentage of the surfactant is 0.03%, 0.05%, 0.08%, 0.1%, 0.18%, 0.2%, 0.26%, 0.30%, 0.34%, 0.38%, 0.4%, 0.42%, 0.45%, 0.48% Or 0.49%; the weight percentage of the additive is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8% or 0.9%.
  • Graphite fluoride is an emerging graphite derivative material with a layered structure similar to graphite.
  • Fluorinated graphite has a unique property of low surface energy (6 erg/cm 2 , only one third of polytetrafluoroethylene), excellent lubricity, high mechanical strength, and high chemical stability due to the introduction of fluorine atoms. Low surface energy and high chemical stability are the properties required for nanoimprint adhesive composite additives.
  • fluorinated graphite-derived materials such as fluorinated graphene and fluorinated fluorinated graphite have both the basic properties of fluorinated graphite and special properties obtained due to changes in structure and composition, such as fluorinated graphene as a single layer material. Structural properties, dispersion properties of oxidized fluorinated graphite, and fluorinated graphite-derived materials are also preferred materials for nanoimprintant additives.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the resin is a thermoplastic resin
  • thermoplastic resin is one or more of polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC), and silicone materials;
  • the additive is a stabilizer
  • the stabilizer is one or more selected from the group consisting of benzophenones, benzotriazoles, salicylic acid aromatic esters, and benzoate stabilizers.
  • the resin in the nanoimprint photoresist is a thermoplastic resin.
  • the additive may be 0 and contains no additive; if an additive is required, the additive is a stabilizer.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the resin is a photocurable resin
  • the photocurable resin is one or more of acrylate, methacrylate, and epoxy resin vinyl ether;
  • the additive is a photoinitiator or a mixture of a photoinitiator and a stabilizer
  • the photoinitiator is 2-phenylbenzyl-2-dimethylamine-1-(4-morpholiniumbenzyl)butanone, 2,2-diethoxyacetophenone, 1-hydroxyl Cyclohexylacetophenone, p-isopropylphenyl-2-hydroxydimethylacetone-1, benzophenone, 2-thioxanthone, 4-phenylbenzophenone, 2,4 One or more of methyl thianonanone, 9,10-phenanthrenequinone, bismethylamino-p-oxy-5-butanone;
  • the stabilizer is one or more selected from the group consisting of benzophenones, benzotriazoles, salicylic acid aromatic esters, and benzoate stabilizers.
  • the resin in the nanoimprint photoresist is a photocurable resin.
  • an additive a photoinitiator
  • a stabilizer may be added according to actual conditions.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the above technical solution optimizes the formulation of the nanoimprint photoresist, and the above nanoimprint lithography
  • the glue can solve the problems of pattern defects, template damage and the like existing in the prior art.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the resin is a thermoplastic resin
  • thermoplastic resin is one or more of polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC), and silicone materials;
  • the additive is a stabilizer
  • the stabilizer is one or more selected from the group consisting of benzophenones, benzotriazoles, salicylic acid aromatic esters, and benzoate stabilizers.
  • the resin in the nanoimprint photoresist is a thermoplastic resin.
  • the additive may be 0 and contains no additive; if an additive is required, the additive is a stabilizer.
  • the nanoimprint photoresist of the present invention contains the following components by weight:
  • the resin is a photocurable resin
  • the photocurable resin is one or more of acrylate, methacrylate, and epoxy resin vinyl ether;
  • the additive is a photoinitiator or a mixture of a photoinitiator and a stabilizer
  • the photoinitiator is 2-phenylbenzyl-2-dimethylamine-1-(4-morpholiniumbenzyl)butanone, 2,2-diethoxyacetophenone, 1-hydroxyl Cyclohexylacetophenone, p-isopropylphenyl-2-hydroxydimethylacetone-1, benzophenone, 2-thioxanthone, 4-phenylbenzophenone, 2,4 One or more of methyl thianonanone, 9,10-phenanthrenequinone, bismethylamino-p-oxy-5-butanone;
  • the stabilizer is one or more selected from the group consisting of benzophenones, benzotriazoles, salicylic acid aromatic esters, and benzoate stabilizers.
  • the resin in the nanoimprint photoresist is a photocurable resin.
  • an additive a photoinitiator
  • a stabilizer may be added according to actual conditions.
  • the fluorinated graphite and its derivative are one or more of fluorinated graphite, fluorinated graphene, oxyfluorinated graphite; a typical non-limiting example of the combination is fluorinated graphite and fluorine A combination of graphene, a combination of fluorinated graphite and oxidized fluorinated graphite, a combination of fluorinated graphene and oxidized fluorinated graphite, a combination of fluorinated graphite, fluorinated graphene and oxidized fluorinated graphite.
  • the fluorinated graphite has a fluorocarbon ratio of 0.5 to 1.2.
  • a fluorocarbon ratio of 0.5 to 1.2.
  • the organic small molecule solvent is ethyl acetate, ethyl lactate, methyl ethyl ketone, cyclohexanone, diacetone alcohol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monobutyl ether, toluene, N - one or more of methyl pyrrolidone; a typical non-limiting example of the combination is a combination of ethyl acetate and ethyl lactate, a choice of ethyl acetate and methyl ethyl ketone, ethyl acetate and ethylene glycol A combination of ethers, a combination of ethylene glycol ether, ethylene glycol monobutyl ether and N-methylpyrrolidone.
  • the organic small molecule solvent is a mixture, the components The ratio between the two is not limited.
  • the surfactant is an amine surfactant
  • the amine surfactant is one or more selected from the group consisting of ethanolamine, polyetheramine D230, and polyetheramine D2000.
  • Typical, non-limiting examples of such combinations are the combination of ethanolamine and polyetheramine D230, the combination of ethanolamine and polyetheramine D2000, the combination of polyetheramine D230 with polyetheramine D2000, ethanolamine, polyetheramine D230 and polyetheramine. The combination of D2000 and so on.
  • the method for preparing a nanoimprint resist according to the present invention comprises the steps of: mixing the organic small molecule solvent, resin, fluorinated graphite and derivatives thereof, surfactant, and additive according to a ratio to obtain a nano-pressure Printed photoresist.
  • the method for preparing the nanoimprint photoresist of the present invention comprises the following steps:
  • the ultrasonic time may preferably be 11 min, 12 min, 13 min, 14 min, 15 min, 16 min, 17 min, 18 min or 19 min.
  • the ultrasonic time may preferably be 31 min. 33 min, 35 min, 38 min, 40 min, 42 min, 46 min, 48 min, 50 min, 53 min, 55 min, 58 min or 59 min.
  • step (2) the mixed solution is filtered using a filter having a pore size of 0.4 ⁇ m;
  • the method for preparing the nanoimprint photoresist of the present invention comprises the following steps:
  • the ultrasonic time may preferably be 11 min, 12 min, 13 min, 14 min, 15 min, 16 min, 17 min, 18 min or 19 min.
  • the ultrasonic time may preferably be 31 min, 33 min, 35 min, 38 min, 40 min, 42 min, 46 min, 48 min, 50 min. , 53 min, 55 min, 58 min or 59 min.
  • the method for preparing the nanoimprint photoresist includes the following steps:
  • the ultrasonic time may preferably be 11 min, 12 min, 13 min, 14 min, 15 min, 16 min, 17 min, 18 min or 19 min.
  • the invention has the advantages that the nanoimprint resist of the invention is added with fluorinated graphite and its derivatives, and the graphite fluoride and its derivatives have low surface energy, thereby solving The problem of pattern defects and template damage occurred in the demoulding caused by the excessive adhesion between the conventional high surface energy photoresist and the template.
  • the nanoimprint resist of the present invention has the following beneficial effects: (1) the nanoimprint resist improves the demolding effect, reduces the imprint defects, and improves the life of the template; (2) The content of fluorinated graphite and its derivatives as a modifying component in the nanoimprinting photoresist is small, and does not change the properties of the photoresist itself; (3) based on the design of the present invention, many properties are excellent but the surface energy is relatively high. High resin materials can also be used in the design of nanoimprint photoresists; (4) The invention is suitable for hot stamping and UV imprinting, and can be used as thermoplastic photoresist, thermosetting photoresist or ultraviolet depending on the composition. The curing glue can be used to achieve a good modification effect.
  • the preparation method of the nanoimprint photoresist is simple and easy to implement.
  • the modified photoresist prepared by the preparation method is a colorless transparent or light black transparent liquid, and the obtained nanoimprint photoresist has much lower surface energy than the conventional photoresist.
  • Example 1 is a photograph of a nanoimprint photoresist prepared separately in Example 1, Example 2, and Example 3;
  • Figure 2 is a photo of a thermoplastic nanoimprint adhesive (PMMA) film-water contact angle test
  • Figure 3 is a photo of a modified thermoplastic nano-imprinted adhesive (PMMA) film-water contact angle test of fluorinated graphite;
  • Figure 4 is a scanning electron microscope (SEM) photograph of a modified PMMA thermoplastic nanoimprintant containing fluorinated graphite
  • Figure 5 is an optical micrograph of a modified PMMA thermoplastic nanoimprinted adhesive of fluorinated graphite.
  • Example 1 Modified PMMA Thermoplastic Nanoimprinted Photoresist for Fluorinated Graphite
  • the nanoimprint photoresist of the present embodiment comprises the following components: 9.5 g of an organic small molecule solvent, 0.5 g of a thermoplastic resin, 0.0025 g of fluorinated graphite, and 0.002 g of a surfactant.
  • the preparation process of the nanoimprint photoresist of the present embodiment is as follows: 0.5 g of PMMA is added to 9.5 g of toluene, and after mixing, the solution is sonicated for 10 to 20 minutes to obtain a stable solution. Add 0.0025g of fluorinated graphite and 0.002g of polyetheramine D230 dispersant to the solution filtered through the 0.45 ⁇ m pore size filter. After mixing and sonicating for 0.5h ⁇ 1h, the stable fluoride-containing graphite can be prepared. PMMA nanoimprinted photoresist.
  • the substance in the reagent bottle indicated by the reference numeral in Fig. 1 is a photograph of the modified PMMA thermoplastic nanoimprint resist of the fluorine-containing graphite prepared in the present embodiment.
  • Example 2 Modified ultraviolet curable nanoimprinted photoresist containing fluorine-containing graphite
  • the nanoimprint resist of the present embodiment comprises the following components: 8.5 g of an organic small molecule solvent, 1.5 g of a photocurable resin, 0.1 g of a photoinitiator, 0.0025 g of fluorinated graphite, and 0.002 g of a surfactant.
  • the material in the reagent bottle indicated by the reference c in Fig. 1 is a photograph of the modified ultraviolet curable nanoimprint resist of the fluorine-containing graphite prepared in the present example.
  • the nanoimprint resist of the present embodiment comprises the following components: an organic small molecule solvent of 9.5 g, a thermoplastic resin of 1.5 g, an oxidized fluorinated graphite of 0.0025 g, and a surfactant of 0.002 g.
  • the substance in the reagent bottle indicated by the reference b in Fig. 1 is a photograph of the modified PMMA thermoplastic nanoimprint resist containing oxidized fluorinated graphite prepared in the present example.
  • composition formula of the nanoimprint resist of the present embodiment was different from that of Example 1 in that no graphite fluoride was added, and other components were added in the same amount as in Example 1.
  • the preparation method of the nanoimprint photoresist of this embodiment is the same as that of the embodiment 1.
  • the modified PMMA thermoplastic nanoimprint resist of the fluorine-containing graphite prepared in Example 1 and the thermoplastic nanoimprint resist prepared by the comparative example were spin-coated on the silicon wafer by spin coating. Film I and film II were separately produced.
  • the preparation of the film I was specifically as follows: a few drops of the modified PMMA thermoplastic nanoimprint resist of the fluorine-containing graphite prepared in Example 1 was dropped on the silicon wafer, and rotated at 1000 r/min for 1 min. Then, it is soft baked at a temperature of 85 ° C for 0.5 h to dry the solvent to obtain a film of the modified PMMA thermoplastic nanoimprinting adhesive of the film I-containing graphite.
  • the preparation of the film II was specifically as follows: a few drops of the thermoplastic nanoimprint resist prepared in the comparative example were dropped on the silicon wafer, and rotated at 1000 r/min for 1 min. Then, the solvent is dried by soft drying at a temperature of 85 ° C for 0.5 h to obtain a film II - a film containing a thermoplastic nano-imprint adhesive.
  • FIG. 2 is a film II-water contact angle test photograph
  • FIG. 3 is a film I-water contact angle test photograph.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the modified PMMA thermoplastic nanoimprinting adhesive of the fluorine-containing graphite prepared in Example 1
  • FIG. 5 is a modified PMMA thermoplastic of the fluorine-containing graphite prepared in Example 1. Optical micrograph of nanoimprinted adhesive after imprinting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种纳米压印光刻胶及其制备方法;其中,纳米压印光刻胶含有如下重量百分比的组分:有机小分子溶剂65~97%,树脂1~30%,氟化石墨及其衍生物0.01~5%,表面活性剂0.01~5%和添加剂0~1%。所述的纳米压印光刻胶中添加了氟化石墨及其衍生物,因氟化石墨及其衍生物具有低表面能,从而解决了传统高表面能光刻胶与模板之间粘结力过大而导致的脱模中发生的图形缺陷,模板损坏等问题。

Description

一种纳米压印光刻胶及其制备方法 技术领域
本发明涉及一种纳米压印光刻胶,本发明还涉及一种纳米压印光刻胶的制备方法;属于材料科学及微纳米加工领域。
背景技术
纳米压印技术作为一种下一代光刻技术,具有高分辨率、高产率、低成本等优点。与传统光刻技术不同的是,纳米压印技术直接采用机械压印的方法来转移微纳图形而不是采用光照使光刻胶成型。根据材料和工艺不同,常用的纳米压印技术可分为热压印(HEL)和紫外压印(UV-NIL)两种。
热塑型纳米压印(即热压印)具体使用热塑性材料,将热塑性材料加热至玻璃化转变温度以上时,通过压力将模板的图案转移到衬底上。由于在此过程中模板与光刻胶发生接触,因此在降温之后的脱模过程是一个很重要的过程。因为在脱模过程中由于胶体的表面张力,会与模板发生粘连,容易造成图形的缺陷,而且容易破坏模板。
紫外压印采用紫外光照射模板,使充满模板空隙的光刻胶固化,从而将模板上的图案转移到衬底上。
在压印的过程中,将图案从模板上转移到衬底上是通过模板与胶体接触实现的。因此在图案转移之后需要一个脱模的过程。由于胶体通常都是高表面能的材料,胶体与模板之间会有很强的吸引力,所以在脱模过程中,会有一部分胶体残留在模板上,发生粘连。最终会造成图形缺陷,甚至损坏模板。
因此,需要寻求一种低表面能的纳米压印光刻胶,以克服现有技术高表面能的光刻胶导致图形缺陷,甚至模板损坏的缺陷。
发明内容
本发明的目的之一是提供一种低表面能的纳米压印光刻胶,其具有较低的表面张力,有利于提高脱模效果,减少压印图形缺陷,同时防止模板损坏。
本发明的目的之二是提供一种纳米压印光刻胶的制备方法,本方法操作简单、易操作,而且本方法制备的纳米压印光刻胶具有较低的表面张力。
本发明所述的纳米压印光刻胶,其含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000001
例如,有机小分子溶剂的重量百分比为67%、70%、72%、73%、75%、82%、86%、88%、90%、92%、95%或96%;树脂的重量百分比为2%、4%、5%、6%、8%、10%、12%、16%、18%、20%、22%、26%、27%、28%或29%;氟化石墨及其衍生物的重量百分比为0.03%、0.05%、0.08%、0.1%、0.18%、0.2%、0.26%、0.30%、0.34%、0.38%、0.4%、0.42%、0.45%、0.48%或0.49%;表面活性剂的重量百分比为0.03%、0.05%、0.08%、0.1%、0.18%、0.2%、0.26%、0.30%、0.34%、0.38%、0.4%、0.42%、0.45%、0.48%或0.49%;添加剂的重量百分比为0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%或0.9%。
在上述技术方案中,当添加剂的重量百分比为0时,意味着纳米压印光刻胶中不含有添加剂。
因氟化石墨(Graphite fluoride)是一种新兴的石墨衍生物材料,具有与石墨相似的层状结构。由于引入了氟原子,氟化石墨具有低表面能(6erg/cm2,仅为聚四氟乙烯的三分之一)、优良润滑性、高机械强度、高化学稳定性等独特性质。 而低表面能及高化学稳定性正是作为纳米压印胶复合材料添加剂所需的性能。另外,由于氟化石墨烯、氧化氟化石墨等氟化石墨衍生材料既具备氟化石墨的基本性质,又具备由于结构、构成改变而获得的特殊性质,例如氟化石墨烯作为单层材料的结构特性、氧化氟化石墨的分散性质,氟化石墨衍生材料也是作为纳米压印胶添加剂的优选材料。
优选地,本发明所述的纳米压印光刻胶含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000002
其中,所述树脂为热塑性树脂;
优选地,所述热塑性树脂为聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚碳酸酯(PC)、有机硅材料中的一种或两种以上;
优选地,所述添加剂为稳定剂;
优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类、苯甲酸酯类稳定剂的一种或两种以上。
上述技术方案限定了纳米压印光刻胶中的树脂为热塑性树脂,当树脂为热塑性树脂时,添加剂可以为0,既不含有添加剂;若需要添加剂,则添加剂为稳定剂。
优选地,本发明所述的纳米压印光刻胶含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000003
Figure PCTCN2016094453-appb-000004
其中,所述树脂为光固化树脂;
优选地,所述光固化树脂为丙烯酸酯、甲基丙烯酸酯、环氧树脂乙烯基醚中的一种或两种以上;
优选地,所述添加剂为光引发剂,或者为光引发剂与稳定剂的混合物;
优选地,所述光引发剂为2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮、2,2-二乙氧苯乙酮、1-羟基环己基苯乙酮、对异丙基苯基-2-羟基二甲基丙酮-1、二苯甲酮、2-氯化硫杂蒽酮、4-苯基二苯甲酮、2,4二甲基硫杂蒽酮、9,10-菲醌、双甲基氨-对氧氮环丁酮中的一种或两种以上;
优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类、苯甲酸酯类稳定剂的一种或两种以上。
上述技术方案限定了纳米压印光刻胶中的树脂为光固化树脂,当树脂为光固化树脂时,必须添加添加剂——光引发剂,除了光引发剂,还可以根据实际情况添加稳定剂。
优选地,本发明所述的纳米压印光刻胶含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000005
上述技术方案对纳米压印光刻胶的配方进行了优化,上述的纳米压印光刻 胶更能解决现有技术中存在的图形缺陷、模板损坏等问题。
本发明所述的纳米压印光刻胶含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000006
其中,所述树脂为热塑性树脂;
优选地,所述热塑性树脂为聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚碳酸酯(PC)、有机硅材料中的一种或两种以上;
优选地,所述添加剂为稳定剂;
优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类、苯甲酸酯类稳定剂的一种或两种以上。
上述技术方案限定了纳米压印光刻胶中的树脂为热塑性树脂,当树脂为热塑性树脂时,添加剂可以为0,既不含有添加剂;若需要添加剂,则添加剂为稳定剂。
本发明所述的纳米压印光刻胶含有如下重量百分比的组分:
Figure PCTCN2016094453-appb-000007
其中,所述树脂为光固化树脂;
优选地,所述光固化树脂为丙烯酸酯、甲基丙烯酸酯、环氧树脂乙烯基醚中的一种或两种以上;
优选地,所述添加剂为光引发剂,或者为光引发剂与稳定剂的混合物;
优选地,所述光引发剂为2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮、2,2-二乙氧苯乙酮、1-羟基环己基苯乙酮、对异丙基苯基-2-羟基二甲基丙酮-1、二苯甲酮、2-氯化硫杂蒽酮、4-苯基二苯甲酮、2,4二甲基硫杂蒽酮、9,10-菲醌、双甲基氨-对氧氮环丁酮中的一种或两种以上;
优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类、苯甲酸酯类稳定剂的一种或两种以上。
上述技术方案限定了纳米压印光刻胶中的树脂为光固化树脂,当树脂为光固化树脂时,必须添加添加剂——光引发剂,除了光引发剂,还可以根据实际情况添加稳定剂。
优选地,所述氟化石墨及其衍生物为氟化石墨、氟化石墨烯、氧化氟化石墨中的一种或两种以上;所述组合典型非限制性的实例为氟化石墨与氟化石墨烯的组合,氟化石墨与氧化氟化石墨的组合,氟化石墨烯与氧化氟化石墨的组合,氟化石墨、氟化石墨烯与氧化氟化石墨的组合等。
优选地,所述氟化石墨的氟碳比0.5~1.2。例如0.6、0.7、0.8、0.9、1.0或1.1。
优选地,所述有机小分子溶剂为乙酸乙酯、乳酸乙酯、丁酮、环己酮、二丙酮醇、乙二醇甲醚、乙二醇***、乙二醇单丁醚、甲苯、N-甲基吡咯烷酮中的一种或两种以上;所述组合典型非限制性的实例为乙酸乙酯与乳酸乙酯的组合,乙酸乙酯与丁酮的选择,乙酸乙酯与乙二醇甲醚的组合,乙二醇***、乙二醇单丁醚与N-甲基吡咯烷酮的组合等。当有机小分子溶剂为混合物时,组分 间的配比不做限定。
优选地,所述表面活性剂为胺类表面活性剂;
优选地,所述胺类表面活性剂为乙醇胺、聚醚胺D230、聚醚胺D2000中的一种或两种以上。所述组合典型非限制性的实例为乙醇胺与聚醚胺D230的组合,乙醇胺与聚醚胺D2000的组合,聚醚胺D230与聚醚胺D2000的组合,乙醇胺、聚醚胺D230与聚醚胺D2000的组合等。
本发明所述的纳米压印光刻胶的制备方法,包括如下步骤:将所述有机小分子溶剂、树脂、氟化石墨及其衍生物、表面活性剂、添加剂按配比混合,制得纳米压印光刻胶。
或者,本发明所述的纳米压印光刻胶的制备方法包括如下步骤:
(1)按配比向有机小分子溶剂中加入树脂,搅拌,加热,超声10~20min;然后按配比加入添加剂,混和均匀,制得混合溶液;超声时间可优选为11min、12min、13min、14min、15min、16min、17min、18min或19min。
(2)对所述混和溶液进行过滤,向滤液中按配比加入氟化石墨及其衍生物、表面活性剂,超声30~60min,制得纳米压印光刻胶;超声时间可优选为31min、33min、35min、38min、40min、42min、46min、48min、50min、53min、55min、58min或59min。
优选地,步骤(2)中,采用孔径为0.4μm的过滤器对所述混合溶液进行过滤;
或者,本发明所述的纳米压印光刻胶的制备方法包括如下步骤:
(1)按配比向有机小分子溶剂中加入树脂,搅拌,加热并超声10~20min;然后按配比加入添加剂,混和均匀,制得混合溶液;超声时间可优选为11min、12min、13min、14min、15min、16min、17min、18min或19min。
(2)将氟化石墨及其衍生物、表面活性剂按配比混和,制得稳定溶液;
(3)将所述稳定溶液加至混合溶液中,超声30~60min,制得纳米压印光刻胶;超声时间可优选为31min、33min、35min、38min、40min、42min、46min、48min、50min、53min、55min、58min或59min。
或者,所述纳米压印光刻胶的制备方法包括如下步骤:
(1)按配比将有机小分子溶剂、氟化石墨及其衍生物、表面活性剂混和,超声,制得稳定溶液;
(2)向所述稳定溶液中按配比加入树脂和添加剂,搅拌,加热并超声10~20min;制得纳米压印光刻胶。超声时间可优选为11min、12min、13min、14min、15min、16min、17min、18min或19min。
与现有技术相比,本发明的优点在于:本发明所述的纳米压印光刻胶中添加了氟化石墨及其衍生物,因氟化石墨及其衍生物具有低表面能,从而解决了传统高表面能光刻胶与模板之间粘结力过大而导致的脱模中发生的图形缺陷,模板损坏等问题。
总的来说,本发明所述的纳米压印光刻胶具有如下有益效果:(1)本纳米压印光刻胶改善了脱模效果,能降低压印缺陷,提高模板寿命;(2)本纳米压印光刻胶中作为改性成分的氟化石墨及其衍生物含量很少,不会改变光刻胶自身的性质;(3)基于本发明的设计,许多性质优良但表面能较高的树脂材料也可用于纳米压印光刻胶的设计中;(4)本发明适用于热压印与紫外压印,根据成分不同可作为热塑型光刻胶,热固性光刻胶或紫外固化胶使用,均可起到很好的改性效果。
另外,本纳米压印光刻胶的制备方法操作简单,易于实现。由本制备方法制得的改性光刻胶为无色透明或者浅黑色透明液体,制得的纳米压印光刻胶与传统的光刻胶相比表面能低得多。
附图说明
图1为实施例1、实例例2、实施例3分别制备的纳米压印光刻胶照片;
图2为热塑型纳米压印胶(PMMA)薄膜-水接触角测试照片;
图3为含氟化石墨的改性热塑型纳米压印胶(PMMA)薄膜-水接触角测试照片;
图4为含氟化石墨的改性PMMA热塑型纳米压印胶压印后扫描电子显微镜(SEM)照片;
图5为含氟化石墨的改性PMMA热塑型纳米压印胶压印后光学显微镜照片。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1:含氟化石墨的改性PMMA热塑型纳米压印光刻胶
本实施例纳米压印光刻胶包含如下组分:有机小分子溶剂9.5g、热塑性树脂0.5g、氟化石墨0.0025g和表面活性剂0.002g。
本实施例纳米压印光刻胶的制备过程如下:向9.5g甲苯中加入0.5gPMMA,混合均匀之后超声处理10~20min得到稳定的溶液。向经0.45μm的孔径过滤器过滤后的溶液中加入0.0025g氟化石墨,0.002g聚醚胺D230分散剂,混合均匀后超声处理0.5h~1h即可制得稳定的含氟化石墨的改性PMMA纳米压印光刻胶。
图1中标号a所指试剂瓶中的物质为本实施制备的含氟化石墨的改性PMMA热塑型纳米压印光刻胶照片。
实施例2:含氟化石墨的改性紫外光固化型纳米压印光刻胶
本实施例的纳米压印光刻胶包含如下组分:有机小分子溶剂8.5g、光固化树脂1.5g、光引发剂0.1g、氟化石墨0.0025g和表面活性剂0.002g。
本实施例纳米压印光刻胶的制备过程如下:
称取二丙酮醇8.5g,丙烯酸酯1.5g混合均匀,在35℃条件下搅拌30min得到透明溶液,向溶液中加入0.1g 2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮搅拌至溶解。用0.2μm的孔径过滤器过滤溶液后加入0.0025g氟化石墨,0.002gD230混合均匀,超声处理0.5~1h即可制得稳定的含氟化石墨的改性紫外光固化纳米压印胶。
图1中标号c所指试剂瓶中的物质为本实施例制备的含氟化石墨的改性紫外光固化型纳米压印光刻胶照片。
实施例3含氧化氟化石墨的改性PMMA热塑型纳米压印光刻胶
本实施例的纳米压印光刻胶包含如下组分:有机小分子溶剂9.5g、热塑性树脂1.5g、氧化氟化石墨0.0025g和表面活性剂0.002g。
本实施例纳米压印光刻胶的制备过程如下:
向9.5g甲苯中加入0.5gPMMA,混合均匀之后超声处理10~20min得到稳定的溶液。向经0.45μm的孔径过滤器过滤后的溶液中加入0.0025g氧化氟化石墨,0.002g聚醚胺D230分散剂,混合均匀后超声处理0.5~1h即可制得稳定的含氧化氟化石墨的改性PMMA纳米压印光刻胶。
图1中标号b所指试剂瓶中的物质为本实施例制备的含氧化氟化石墨的改性PMMA热塑型纳米压印光刻胶照片。
对比例:热塑型纳米压印光刻胶
本实施例的纳米压印光刻胶的组分配方与实施例1不同之处在于:没有添加氟化石墨,其他组分添加量如同实施例1。
本实施例纳米压印光刻胶的制备方法如同实施例1。
结果表征:
使用旋涂的方法,在硅片上分别旋涂实施例1制备的含氟化石墨的改性PMMA热塑型纳米压印光刻胶和对比例制备的热塑型纳米压印光刻胶,分别制得薄膜I和薄膜II。
薄膜I的制备具体如下:在硅片上滴加几滴实施例1制备的含氟化石墨的改性PMMA热塑型纳米压印光刻胶,在1000r/min的条件下旋转1min。然后在85℃的温度下软烘0.5h,以将溶剂烘干,即可获得薄膜I——含氟化石墨的改性PMMA热塑性纳米压印胶的薄膜。
薄膜II的制备具体如下:在硅片上滴加几滴对比例制备的热塑型纳米压印光刻胶,在1000r/min的条件下旋转1min。然后在85℃的温度下软烘0.5h将溶剂烘干,即可或得薄膜II——含热塑型纳米压印胶的薄膜。
使用接触角测量仪分别对薄膜I、薄膜II的接触角进行测量,图2为薄膜II-水接触角测试照片;图3为薄膜I-水接触角测试照片。
接触角测量仪对薄膜的接触角进行测量之后,使用热压型纳米压印机,在175℃~180℃的条件下保持0.02MPa压力十分钟,降温至75℃时卸载压力取出样品,即可在薄膜上得到压印图案。图4为实施例1制备的含氟化石墨的改性PMMA热塑性纳米压印胶压印后的扫描电子显微镜(SEM)照片,图5为实施例1制备的含氟化石墨的改性PMMA热塑性纳米压印胶压印后的光学显微镜照片。
在接触角的表征图中,液滴-薄膜的接触角越大,说明薄膜的表面张力越小。根据图2和图3可以看出,含氟化石墨的PMMA改性纳米压印光刻胶的表面张力比不含氟化石墨的PMMA纳米压印光刻胶小。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种纳米压印光刻胶,其特征在于,其含有如下重量百分比的组分:
    Figure PCTCN2016094453-appb-100001
  2. 根据权利要求1所述的纳米压印光刻胶,其特征在于,其含有如下重量百分比的组分:
    Figure PCTCN2016094453-appb-100002
    其中,所述树脂为热塑性树脂。
  3. 根据权利要求2所述的纳米压印光刻胶,其特征在于,所述热塑性树脂为聚甲基丙烯酸甲酯、聚苯乙烯、聚碳酸酯或有机硅材料中的一种或两种以上的混合物。
  4. 根据权利要求1或2所述的纳米压印光刻胶,其特征在于,所述添加剂为稳定剂;
    优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类或苯甲酸酯类稳定剂的一种或两种以上的混合物。
  5. 根据权利要求1所述的纳米压印光刻胶,其特征在于,其含有如下重量百分比的组分:
    Figure PCTCN2016094453-appb-100003
    其中,所述树脂为光固化树脂;
    优选地,所述光固化树脂为丙烯酸酯、甲基丙烯酸酯或环氧树脂乙烯基醚中的一种或两种以上的混合物;
    优选地,所述添加剂为光引发剂,或者为光引发剂与稳定剂的混合物;
    优选地,所述光引发剂为2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮、2,2-二乙氧苯乙酮、1-羟基环己基苯乙酮、对异丙基苯基-2-羟基二甲基丙酮-1、二苯甲酮、2-氯化硫杂蒽酮、4-苯基二苯甲酮、2,4二甲基硫杂蒽酮、9,10-菲醌或双甲基氨-对氧氮环丁酮中的一种或两种以上的混合物;
    优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类或苯甲酸酯类稳定剂的一种或两种以上的混合物。
  6. 根据权利要求1所述的纳米压印光刻胶,其特征在于,其含有如下重量百分比的组分:
    Figure PCTCN2016094453-appb-100004
  7. 根据权利要求6所述的纳米压印光刻胶,其特征在于,其含有如下重量 百分比的组分:
    Figure PCTCN2016094453-appb-100005
    其中,所述树脂为热塑性树脂;
    优选地,所述热塑性树脂为聚甲基丙烯酸甲酯、聚苯乙烯、聚碳酸酯或有机硅材料中的一种或两种以上的混合物;
    优选地,所述添加剂为稳定剂;
    优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类或苯甲酸酯类稳定剂的一种或两种以上的混合物。
  8. 根据权利要求6所述的纳米压印光刻胶,其特征在于,其含有如下重量百分比的组分:
    Figure PCTCN2016094453-appb-100006
    其中,所述树脂为光固化树脂;
    优选地,所述光固化树脂为丙烯酸酯、甲基丙烯酸酯或环氧树脂乙烯基醚中的一种或两种以上的混合物;
    优选地,所述添加剂为光引发剂,或者为光引发剂与稳定剂的混合物;
    优选地,所述光引发剂为2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮、2,2-二乙氧苯乙酮、1-羟基环己基苯乙酮、对异丙基苯基-2-羟基二甲基丙酮-1、二苯甲酮、2-氯化硫杂蒽酮、4-苯基二苯甲酮、2,4二甲基硫杂蒽酮、9,10-菲醌或双甲基氨-对氧氮环丁酮中的一种或两种以上的混合物;
    优选地,所述稳定剂为二苯甲酮类、苯并***类、水杨酸芳香酯类或苯甲酸酯类稳定剂的一种或两种以上的混合物。
  9. 根据权利要求1~8任一项所述的纳米压印光刻胶,其特征在于:所述氟化石墨及其衍生物为氟化石墨、氟化石墨烯或氧化氟化石墨中的一种或两种以上的混合物;
    优选地,所述氟化石墨的氟碳比0.5~1.2;
    优选地,所述有机小分子溶剂为乙酸乙酯、乳酸乙酯、丁酮、环己酮、二丙酮醇、乙二醇甲醚、乙二醇***、乙二醇单丁醚、甲苯或N-甲基吡咯烷酮中的一种或两种以上的混合物;
    优选地,所述表面活性剂为胺类表面活性剂;
    优选地,所述胺类表面活性剂为乙醇胺、聚醚胺D230或聚醚胺D2000中的一种或两种以上的混合物。
  10. 一种权利要求1~9任一项所述的纳米压印光刻胶的制备方法,其特征在于,包括如下步骤:将所述有机小分子溶剂、树脂、氟化石墨及其衍生物、表面活性剂、添加剂按配比混合,制得纳米压印光刻胶。
  11. 一种权利要求1~9任一项所述的纳米压印光刻胶的制备方法,其特征在于,包括如下步骤:
    (1)按配比向有机小分子溶剂中加入树脂,搅拌,加热,超声10~20min;然后按配比加入添加剂,混和均匀,制得混合溶液;
    (2)对所述混和溶液进行过滤,向滤液中按配比加入氟化石墨及其衍生物、表面活性剂,超声30~60min,制得纳米压印光刻胶;
    优选地,步骤(2)中,采用孔径为0.4μm的过滤器对所述混合溶液进行过滤。
  12. 一种权利要求1~9任一项所述的纳米压印光刻胶的制备方法,其特征在于,包括如下步骤:
    (1)按配比向有机小分子溶剂中加入树脂,搅拌,加热并超声10~20min;然后按配比加入添加剂,混和均匀,制得混合溶液;
    (2)将氟化石墨及其衍生物、表面活性剂按配比混和,制得稳定溶液;
    (3)将所述稳定溶液加至混合溶液中,超声30~60min,制得纳米压印光刻胶;
    或者,所述纳米压印光刻胶的制备方法包括如下步骤:
    (1)按配比将有机小分子溶剂、氟化石墨及其衍生物、表面活性剂混和,超声,制得稳定溶液;
    (2)向所述稳定溶液中按配比加入树脂和添加剂,搅拌,加热并超声10~20min;制得纳米压印光刻胶。
PCT/CN2016/094453 2015-12-15 2016-08-10 一种纳米压印光刻胶及其制备方法 WO2017101465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510930089.6A CN105353587B (zh) 2015-12-15 2015-12-15 一种纳米压印光刻胶及其制备方法
CN201510930089.6 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017101465A1 true WO2017101465A1 (zh) 2017-06-22

Family

ID=55329578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094453 WO2017101465A1 (zh) 2015-12-15 2016-08-10 一种纳米压印光刻胶及其制备方法

Country Status (2)

Country Link
CN (1) CN105353587B (zh)
WO (1) WO2017101465A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545745A (zh) * 2022-03-01 2022-05-27 重庆邮电大学 一种曝光抗蚀剂改性工艺及液相微纳加工设备
CN117471852A (zh) * 2023-11-02 2024-01-30 璞璘材料科技(绍兴)有限公司 一种面向半导体制造的喷墨型纳米压印胶及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353587B (zh) * 2015-12-15 2019-12-20 南方科技大学 一种纳米压印光刻胶及其制备方法
CN106365635B (zh) * 2016-08-17 2019-04-26 南方科技大学 一种功能陶瓷材料表面图形化的方法
CN107312162A (zh) * 2017-07-31 2017-11-03 南方科技大学 一种环氧树脂固化剂、一种环氧树脂材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042424A (ko) * 2008-10-16 2010-04-26 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
CN101750895A (zh) * 2008-12-16 2010-06-23 华东理工大学 紫外纳米压印用含硅(甲基)丙烯酸酯型光固化压印胶及其应用
CN102604454A (zh) * 2011-12-20 2012-07-25 上海大学 一种纳米压印光刻胶表面改性剂
CN103926789A (zh) * 2014-02-07 2014-07-16 南方科技大学 纳米压印模板、***以及压印方法
CN104212334A (zh) * 2014-09-12 2014-12-17 江南大学 一种基于先进碳材料制备的uv固化低折射抗静电疏水涂层
CN105353587A (zh) * 2015-12-15 2016-02-24 南方科技大学 一种纳米压印光刻胶及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200350A (ja) * 1988-02-05 1989-08-11 Canon Inc X線用レジスト構成体
JPH01202748A (ja) * 1988-02-09 1989-08-15 Canon Inc X線用レジスト組成物
JP2570803B2 (ja) * 1988-04-13 1997-01-16 キヤノン株式会社 パターン形成法
CN104562023A (zh) * 2013-10-18 2015-04-29 富泰华工业(深圳)有限公司 树脂与异质材料的复合体的制造方法
CN104830159A (zh) * 2014-12-17 2015-08-12 青岛科技大学 一种含石墨烯的光固化色浆的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042424A (ko) * 2008-10-16 2010-04-26 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
CN101750895A (zh) * 2008-12-16 2010-06-23 华东理工大学 紫外纳米压印用含硅(甲基)丙烯酸酯型光固化压印胶及其应用
CN102604454A (zh) * 2011-12-20 2012-07-25 上海大学 一种纳米压印光刻胶表面改性剂
CN103926789A (zh) * 2014-02-07 2014-07-16 南方科技大学 纳米压印模板、***以及压印方法
CN104212334A (zh) * 2014-09-12 2014-12-17 江南大学 一种基于先进碳材料制备的uv固化低折射抗静电疏水涂层
CN105353587A (zh) * 2015-12-15 2016-02-24 南方科技大学 一种纳米压印光刻胶及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545745A (zh) * 2022-03-01 2022-05-27 重庆邮电大学 一种曝光抗蚀剂改性工艺及液相微纳加工设备
CN117471852A (zh) * 2023-11-02 2024-01-30 璞璘材料科技(绍兴)有限公司 一种面向半导体制造的喷墨型纳米压印胶及其制备方法
CN117471852B (zh) * 2023-11-02 2024-05-14 璞璘材料科技(绍兴)有限公司 一种面向半导体制造的喷墨型纳米压印胶及其制备方法

Also Published As

Publication number Publication date
CN105353587B (zh) 2019-12-20
CN105353587A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2017101465A1 (zh) 一种纳米压印光刻胶及其制备方法
CN102027026B (zh) 光固化性组合物及表面具有精细图案的成形体的制造方法
TWI500638B (zh) 奈米壓印用硬化性組成物及硬化物
WO2014206023A1 (zh) 颜料分散剂、颜料分散液、彩色光刻胶及其制备和应用
TW201533529A (zh) 負型感光性樹脂組成物、由其硬化而成的硬化膜與其製造方法及具備其的光學元件以及背面照射型cmos影像感測器
KR102298243B1 (ko) 키트, 적층체, 적층체의 제조 방법, 경화물 패턴의 제조 방법 및 회로 기판의 제조 방법
KR20100014377A (ko) 레지스트 하층막 형성 조성물
TW201525050A (zh) 含有脂肪族多環結構之自行組織化膜之下層膜形成組成物
TW201635038A (zh) 底層膜形成用樹脂組成物、積層體、圖案形成方法、壓印形成用套組、及元件的製造方法
WO2013060087A1 (zh) 含巯基多官能团的低倍多聚硅氧烷化合物及其组合物和压印的软模板
TW200808925A (en) Low volatility polymers for two-stage deposition processes
WO2016035823A1 (ja) 低抵抗クラッド材料及び電気光学ポリマー光導波路
CN102597874B (zh) 用于压印光刻的乙烯基醚抗蚀剂制剂的稳定剂
TWI660240B (zh) 彩色濾光片用紅色顏料分散抗蝕劑組成物
CN102799066B (zh) 一种在二氧化钛有机无机光敏复合薄膜上制备凹透镜阵列结构的方法
WO2014142296A1 (ja) 上層膜形成用組成物およびそれを用いたレジストパターン形成方法
JP6982623B2 (ja) インプリント用下層膜形成用組成物、キット、インプリント用硬化性組成物、積層体、積層体の製造方法、硬化物パターンの製造方法および回路基板の製造方法
TWI788527B (zh) 著色樹脂組成物、硬化膜、彩色濾光片
TW201430073A (zh) 壓印用硬化性組成物、圖案形成方法及圖案
TWI525113B (zh) Hardened resin composition
US10752718B2 (en) Photocurable resin composition and method of forming patterns using the same
CN108445717A (zh) 一种光固化含钛纳米压印胶、制备方法及其在未防粘模板直接压印中的应用
KR102420767B1 (ko) 키트, 임프린트용 하층막 형성 조성물, 패턴 형성 방법, 반도체 디바이스의 제조 방법
JP6754344B2 (ja) インプリント用下層膜形成用組成物、キット、積層体、積層体の製造方法、硬化物パターンの製造方法、回路基板の製造方法
CN105301904A (zh) 一种光刻胶组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874525

Country of ref document: EP

Kind code of ref document: A1