WO2017099096A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017099096A1
WO2017099096A1 PCT/JP2016/086285 JP2016086285W WO2017099096A1 WO 2017099096 A1 WO2017099096 A1 WO 2017099096A1 JP 2016086285 W JP2016086285 W JP 2016086285W WO 2017099096 A1 WO2017099096 A1 WO 2017099096A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor substrate
trench
semiconductor device
trench portion
Prior art date
Application number
PCT/JP2016/086285
Other languages
English (en)
French (fr)
Inventor
内藤 達也
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2017555086A priority Critical patent/JP6451869B2/ja
Priority to CN201680032134.9A priority patent/CN107636836B/zh
Publication of WO2017099096A1 publication Critical patent/WO2017099096A1/ja
Priority to US15/826,666 priority patent/US10818782B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-190938
  • the trench is formed deeper than the portion of the linear gate trench.
  • a semiconductor device provided with a substrate of a first conductivity type.
  • a base region of the second conductivity type may be provided on the front surface side of the semiconductor substrate.
  • the semiconductor substrate may be provided with a first trench portion penetrating the base region from the front surface side of the semiconductor substrate.
  • a contact region of a second conductivity type provided in part of the base region and having a higher impurity concentration than the base region may be provided on the front surface side of the semiconductor substrate.
  • the first trench portion may have a branch portion on the front surface of the semiconductor substrate. The branch portion may be provided surrounded by the contact region on the front surface of the semiconductor substrate.
  • the first trench portion may be formed to surround one or more operation regions on the front surface of the semiconductor substrate.
  • the semiconductor device may further include a second trench portion formed in the operation region on the front surface of the semiconductor substrate and separated from the first trench portion.
  • the first trench portion may be a gate trench portion connected to the gate electrode, and the second trench portion may be a dummy trench portion connected to the emitter electrode.
  • An emitter region of the first conductivity type may be formed in the operation region in which the dummy trench portion is formed.
  • the semiconductor device may further include an interlayer insulating film formed above the front surface of the semiconductor substrate.
  • the interlayer insulating film may have a contact hole which exposes at least a part of the emitter region and the contact region at a position facing the active region.
  • the gate trench portion may be formed to surround each of the one or more extraction regions on the front surface of the semiconductor substrate. Emitter regions may not be formed in the respective drawn regions.
  • the extraction region may be disposed adjacent to the operation region via the gate trench portion. Two withdrawal areas may be arranged on both sides of the operating area.
  • the distance from the branch to the emitter region may be larger than the distance from the branch to the contact region.
  • the gate trench portion may have a protrusion protruding toward the dummy trench portion.
  • the gate trench portion may have an insulating film formed on the inner wall of the gate trench which is provided to penetrate the base region from the front surface of the semiconductor substrate.
  • the gate trench portion may have a gate conductive portion formed inside the gate trench whose inner wall is covered with an insulating film.
  • the gate trench portion may have a bottom-side conductive portion which is formed on the bottom side of the gate trench rather than the gate conductive portion inside the gate trench whose inner wall is covered with the insulating film and which is insulated from the gate conductive portion. .
  • the dummy trench portion may have an insulating film formed on the inner wall of the dummy trench provided through the base region from the front surface of the semiconductor substrate.
  • the dummy trench portion may have a dummy conductive portion formed inside the dummy trench whose inner wall is covered with an insulating film.
  • the bottom-side conductive portion may be connected to the dummy conductive portion inside the semiconductor substrate.
  • the bottom-side conductive portion may have a protruding conductive portion projecting downward at the branch portion.
  • the first trench portion may have an insulating film formed on the inner wall of the trench provided penetrating from the front surface of the semiconductor substrate to the base region.
  • the thickness of the insulating film at the bottom of the branch of the first trench may be thicker than the thickness of the insulating film at the bottom other than the branch of the first trench.
  • the semiconductor substrate may further include a storage region formed below the base region.
  • the first trench portion may be provided through the accumulation region.
  • the thickness in the depth direction of the storage region at a position in contact with the first trench portion surrounding the branch portion is greater than the thickness of the storage region at a position most distant in the horizontal direction from the adjacent first trench portion.
  • a thin peripheral area may be provided.
  • FIG. 7 is an enlarged view of the periphery of the branch portion 110.
  • FIG. 2 is a perspective sectional view of the semiconductor device 100.
  • FIG. 6 is a view showing an example of the xz cross section of the semiconductor device 100;
  • FIG. 6 is a diagram showing an example of a yz cross section of the semiconductor device 100.
  • FIG. 6 is a diagram showing another configuration example of the semiconductor device 100.
  • FIG. 7 is a perspective sectional view of the semiconductor device 100 shown in FIG.
  • FIG. 6 is a diagram showing another configuration example of the semiconductor device 100.
  • FIG. 9 is a perspective sectional view of the semiconductor device 100 shown in FIG. 8;
  • FIG. 18 is a perspective cross-sectional view showing another configuration example of the semiconductor device 100.
  • FIG. 18 is a perspective cross-sectional view showing another configuration example of the semiconductor device 100.
  • FIG. 6 is a diagram showing another configuration example of the semiconductor device 100. It is a figure which shows the BB cross section in FIG. It is a figure which shows the other example of an AA cross section. It is a figure which shows the other example of an AA cross section.
  • FIG. 1A is a view showing a configuration example of a semiconductor device 100 according to an embodiment of the present invention.
  • FIG. 1B shows an AA cross section in FIG. 1A.
  • the semiconductor device 100 is a semiconductor chip having semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) and FWDs (Free Wheel Diodes).
  • FIG. 1A schematically shows a part of an active region in which a semiconductor element is formed on the front surface of the semiconductor device 100. On the front face of the semiconductor device 100, the structure shown in FIG. 1A is repeatedly formed.
  • the semiconductor device 100 may have a withstand voltage structure part surrounding the active region.
  • the active region indicates a region through which current flows when the semiconductor device 100 is controlled to be in an on state.
  • the breakdown voltage structure relieves the concentration of the electric field on the front surface side of the semiconductor substrate.
  • the pressure-resistant structure has, for example, a guard ring, a field plate, a resurf, and a combination of these.
  • the semiconductor device 100 of this example includes a gate trench portion 40, a dummy trench portion 30, an emitter region 12, a contact region 15, a contact hole 54 and a contact hole 55 on the front surface side of the chip.
  • the gate trench portion 40 is an example of a first trench portion
  • the dummy trench portion 30 is an example of a second trench portion.
  • Gate trench portion 40, dummy trench portion 30, emitter region 12 and contact region 15 are formed inside the semiconductor substrate on the front surface side of the semiconductor substrate.
  • the semiconductor substrate has the first conductivity type.
  • the first conductivity type is n-type as an example.
  • a base region of the second conductivity type is formed on the front surface side of the semiconductor substrate. However, in the range shown in FIG. 1A, the base region is not exposed to the front surface of the semiconductor substrate.
  • the second conductivity type is, for example, p-type.
  • the substrates, regions and other partial conductivity types described in each example may be opposite conductivity types.
  • Emitter region 12 is formed to be exposed to the front surface of the semiconductor substrate in a part of the base region.
  • the emitter region 12 in this example is an n + -type having a higher impurity concentration than the semiconductor substrate.
  • the contact region 15 is formed to be exposed to the front surface of the semiconductor substrate in a part of the base region.
  • the contact region 15 in this example is ap + -type having a higher impurity concentration than the base region.
  • Emitter region 12 and contact region 15 are respectively formed in a band shape on the front surface of the semiconductor substrate, and are alternately formed in a predetermined arrangement direction.
  • the gate trench portion 40 and the dummy trench portion 30 are provided to penetrate the base region from the front surface side of the semiconductor substrate. Gate trench portion 40 and dummy trench portion 30 provided in a region where emitter region 12 or contact region 15 is formed also penetrate emitter region 12 or contact region 15.
  • the gate trench portion 40 has an insulating film 42 formed on the inner wall of the gate trench, and a gate conductive portion 44 formed inside the gate trench whose inner wall is covered with the insulating film 42.
  • the gate conductive portion 44 functions as a gate electrode that controls the channel.
  • the dummy trench portion 30 has an insulating film 32 formed on the inner wall of the dummy trench, and a dummy conductive portion 34 formed inside the dummy trench whose inner wall is covered with the insulating film 32.
  • the gate conductive portion 44 and the dummy conductive portion 34 are formed of, for example, polysilicon.
  • the gate trench portion 40 has a branch portion 110 on the front surface of the semiconductor substrate.
  • the branch portion 110 refers to a portion of the front surface of the semiconductor substrate in which the gate trench portion 40 extends in at least three directions from one place. For example, a portion where two or more linear gate trench portions 40 intersect and a portion where one gate trench portion 40 branches off from one gate trench portion 40 may be mentioned as an example of the branch portion 110.
  • the gate trench portion 40 in the present example has a first portion extending in a direction substantially perpendicular to the arrangement direction of the emitter region 12 and the contact region 15. That is, the first portion of gate trench portion 40 is formed to intersect both of emitter region 12 and contact region 15.
  • the gate trench portion 40 has a plurality of first portions provided in parallel.
  • the gate trench portion 40 in the present example has a second portion extending in the direction perpendicular to the arrangement direction. That is, the second portion of the gate trench portion 40 extends in parallel with the emitter region 12 and the contact region 15.
  • the gate trench portion 40 has a plurality of second portions provided in parallel.
  • the second portion of the gate trench portion 40 may be formed in a region sandwiched between the two contact regions 15.
  • the contact region 15, the emitter region 12, the contact region 15 and the gate trench portion 40 are repeatedly formed in this order on the front surface of the semiconductor substrate of this example in the arrangement direction.
  • the gate trench portion 40 having the branch portion 110 can easily adjust the density of the gate trench portion 40 on the front surface of the semiconductor substrate. That is, the area occupied by the gate trench portion 40 can be easily adjusted by adjusting the branch cycle of the gate trench portion 40. Further, since the dummy trench portion 30 is arranged in a dot shape in the region surrounded by the gate trench portion 40, the density of the dummy trench portion 30 can be easily adjusted. That is, by adjusting the number of dummy trench portions 30, the area occupied by dummy trench portions 30 can be easily adjusted. Therefore, the gate capacitance can be easily adjusted to a desired value.
  • the first portion and the second portion of the gate trench portion 40 are formed to intersect. That is, the intersection of the first portion and the second portion corresponds to the branch portion 110.
  • the gate trench portion 40 has a gate trench formed by etching from the front surface side of the semiconductor substrate.
  • the etchant is more likely to enter the trench than in the gate trench in the portion other than the branch portion 110, and the gate trench is easily formed deeper.
  • An n ⁇ -type drift region 18 is formed below the gate trench.
  • the gate trench is formed deep, the electric field is likely to be concentrated at the tip of the deep gate trench portion 40, and avalanche breakdown is likely to occur at the tip.
  • the depth position at which the gate conductive portion 44 is formed also changes. Therefore, the length in the depth direction of the region where the gate conductive portion 44 and the base region face each other may change. In this case, the channel length changes and the threshold voltage of the semiconductor element fluctuates.
  • the branch portion 110 in this example is formed to be surrounded by the p + -type contact region 15 on the front surface of the semiconductor substrate. From the branch portion 110, the gate trench portion 40 extends in three or more extending directions.
  • the fact that the branch portion 110 is surrounded by the contact region 15 means that the contact region 15 is adjacent to at least each vertex 111 of the branch portion 110.
  • the predetermined distance may be, for example, one tenth, one half, or may be equal to the width of the gate trench portion 40.
  • the gate trench portion 40 branches off from one side wall of the gate trench portion 40 having a predetermined shape such as a straight line, and the other side wall does not branch from the gate trench portion 40.
  • the contact region 15 is also formed adjacent to the side where the gate trench portion 40 is not branched in the portion 110. It is preferable that the contact region 15 be formed at least over the range opposed to the branched gate trench portion 40. In addition, it is preferable that the contact region 15 be formed also in a region within the above-described predetermined distance from the end of the gate trench portion facing the branched gate trench portion 40.
  • the branch 110 Since the branch 110 is surrounded by the high concentration p + -type contact region 15, the breakdown voltage in the portion where the electric field is easily concentrated is improved as compared with the case where the branch 110 is surrounded by the low concentration p-type base region. be able to.
  • the avalanche current generated at the bottom of the branch 110 can flow from the high concentration p + -type contact region 15 formed around the branch 110 to the emitter electrode. As a result, an avalanche current does not flow toward the n + -type emitter region 12, and therefore, latch-up can be suppressed. Further, since the emitter region 12 is not formed around the branch portion 110, no channel is formed around the branch portion 110. Therefore, even when the depth position of the gate conductive portion 44 provided inside the gate trench portion 40 of the branch portion 110 changes, it is possible to suppress the change of the threshold voltage of the semiconductor element.
  • the gate trench portion 40 of this example is formed to surround one or more operation regions 120 on the front surface of the semiconductor substrate.
  • the emitter region 12 is exposed to the front surface of the semiconductor substrate.
  • a channel is formed in the base region below the emitter region 12 adjacent to the gate trench portion 40.
  • Emitter region 12 is disposed between two contact regions 15 in operation region 120.
  • An interlayer insulating film and an emitter electrode are formed above the region of the front surface of the semiconductor substrate shown in FIG. 1A.
  • the interlayer insulating film is formed to cover the front surface of the semiconductor substrate.
  • a contact hole 55 is formed in a partial region opposed to the emitter region 12 and the two contact regions 15. Each contact hole 55 is formed extending from one contact region 15 through the emitter region 12 to the other contact region 15 in the arrangement direction.
  • One or more contact holes 55 may be formed for each operation area 120.
  • the contact hole 55 is formed between the gate trench portion 40 and the dummy trench portion 30 and between two adjacent dummy trench portions 30 in a direction perpendicular to the arrangement direction.
  • one or more dummy trench portions 30 are formed in at least one operation region 120.
  • a plurality of dummy trench portions 30 are formed in each operation region 120.
  • the dummy trench portion 30 is separated from the gate trench portion 40.
  • separation means that the dummy conductive portion 34 and the gate conductive portion 44 are electrically isolated.
  • the dummy trench portion 30 is formed apart from the gate trench portion 40 on the front surface of the semiconductor substrate.
  • the dummy trench portion 30 in this example is formed extending from one of the contact regions 15 to the other contact region 15 in the operation region 120 through the emitter region 12.
  • Contact region 15 may be formed between dummy trench portion 30 and gate trench portion 40 in the arrangement direction.
  • only the insulating film may be formed on the front surface of the semiconductor substrate between the dummy trench portion 30 and the gate trench portion 40 in the arrangement direction.
  • contact region 15 and emitter region 12 inside operation region 120 are separated by dummy trench portion 30.
  • the contact holes 55 are provided in the respective regions divided by the dummy trench portion 30.
  • the dummy conductive portion 34 formed inside the dummy trench portion 30 is electrically connected to the emitter electrode through the contact hole 54.
  • the gate conductive portion 44 of the gate trench portion 40 is electrically connected to the gate electrode.
  • the gate trench portion 40 may be extended to a region not covered by the emitter electrode, and may be connected to the gate electrode in the region.
  • the dummy trench portions 30 may be provided such that the distances between the respective dummy trench portions 30 and the gate trench portions 40 are equal in each direction. In addition, the distance between the dummy trench portions 30 may be equal to the distance between the dummy trench portions 30 and the gate trench portion 40.
  • FIG. 2 is an enlarged view of the periphery of the branch portion 110.
  • the branch portion 110 is disposed so as to be surrounded by the contact region 15.
  • the distance D1 from the branch 110 to the emitter region 12 is larger than the distance from the branch 110 to the contact region 15.
  • the distance D1 from the branch portion 110 to the emitter region 12 may indicate the shortest distance from the vertex 111 of the branch portion 110 to the emitter region 12.
  • the distance from the branch 110 to the contact region 15 indicates the shortest distance from the vertex 111 to the contact region 15. Since the contact region 15 is formed in contact with the vertex 111, the distance is zero.
  • FIG. 3 is a perspective sectional view of the semiconductor device 100.
  • the semiconductor substrate 10 and the collector electrode 24 are shown.
  • the arrangement direction of the emitter region 12 and the contact region 15 is the y direction
  • the direction orthogonal to the y direction in the front surface of the semiconductor substrate 10 is the x direction
  • the depth direction of the semiconductor substrate 10 is the z direction.
  • the depth direction of the semiconductor substrate 10 is a direction perpendicular to the front surface and the back surface of the semiconductor substrate 10.
  • an xz cross section passing through the emitter region 12 and a yz cross section passing through the dummy trench portion 30 are shown.
  • the front surface of the semiconductor substrate 10 is an xy surface.
  • the semiconductor substrate 10 may be a silicon substrate, and may be a silicon carbide substrate, a nitride semiconductor substrate, or the like.
  • a p ⁇ -type base region 14 is formed on the front surface side of the semiconductor substrate 10.
  • the n + -type emitter region 12 is selectively formed in a partial region on the front surface side of the base region 14.
  • the p + -type contact region 15 is selectively formed in a partial region on the front surface side of the base region 14.
  • the semiconductor substrate 10 further includes an n + -type storage region 16, an n ⁇ -type drift region 18, an n ⁇ -type buffer region 20, and a p + -type collector region 22.
  • the accumulation region 16 is formed on the back side of the base region 14.
  • the impurity concentration of the accumulation region 16 is higher than the impurity concentration of the drift region 18.
  • Storage regions 16 are formed between adjacent trenches.
  • the storage region 16 is formed between the dummy trench portion 30 and the gate trench portion 40 and between the adjacent dummy trench portions 30.
  • the dummy trench portion 30 has a dummy trench 36
  • the gate trench portion 40 has a gate trench 46.
  • the storage region 16 may be provided to cover the entire region between the trench portions. By providing the storage region 16, the IE effect can be enhanced and the on-voltage can be reduced.
  • Drift region 18 is formed on the back side of storage region 16.
  • the buffer region 20 is formed on the back surface side of the drift region 18.
  • the impurity concentration of the buffer region 20 is higher than the impurity concentration of the drift region 18.
  • Buffer region 20 may function as a field stop layer that prevents the depletion layer extending from the back surface side of base region 14 from reaching collector region 22.
  • Collector region 22 is formed on the back side of buffer region 20. Further, a collector electrode 24 is provided on the back surface of the collector region 22.
  • the cross-sectional structure of the semiconductor substrate 10 in the periphery of the branch portion 110 is the same as the structure in the yz cross section. That is, in the periphery of the branch portion 110, the contact region 15, the base region 14, the accumulation region 16, the drift region 18, the buffer region 20, and the collector region 22 are formed from the front surface side of the semiconductor substrate 10. That is, a channel is not formed around the branch portion 110. Therefore, even if the gate trench portion 40 in the branch portion 110 is formed deep, the influence on the threshold voltage of the semiconductor element is small.
  • FIG. 4 is a view showing an example of the xz cross section of the semiconductor device 100. As shown in FIG. FIG. 4 shows an xz cross section passing through the emitter region 12. The xz cross section in the semiconductor substrate 10 is the same as the xz cross section shown in FIG. An interlayer insulating film 26 and an emitter electrode 52 are formed above the front surface of the semiconductor substrate 10.
  • the interlayer insulating film 26 is formed to cover the front surface of the semiconductor substrate 10.
  • Emitter electrode 52 is formed above interlayer insulating film 26.
  • a contact hole is formed in the interlayer insulating film 26 at a position facing the operating region 120. Specifically, a contact hole 55 is formed in a region facing emitter region 12, and a contact hole 54 is formed in a region facing dummy trench portion 30.
  • Emitter electrode 52 is also formed in contact hole 54 and contact hole 55, and is electrically connected to dummy conductive portion 34 and emitter region 12.
  • Emitter electrode 52 may be formed of a metal containing aluminum.
  • emitter electrode 52 inside contact hole 54 and contact hole 55 may be formed of a metal containing tungsten. Even if the contact hole 54 and the contact hole 55 are miniaturized by forming a part of the emitter electrode 52 with a metal containing tungsten, the reliability of the electrical connection between the emitter electrode 52 and the emitter region 12 and the dummy conductive portion 34 Can be improved.
  • the gate trench portion 40 and the dummy trench portion 30 may be formed at the same depth. In this case, the gate trench portion 40 and the dummy trench portion 30 are formed to have the same width. Also, one of the gate trench portion 40 and the dummy trench portion 30 may be formed deeper than the other. In this case, the width of the deeply formed trench portion is smaller than the width of the shallowly formed trench portion.
  • FIG. 5 is a view showing an example of the yz cross section of the semiconductor device 100. As shown in FIG. FIG. 5 shows a yz cross section passing through the contact hole 55. In the cross section, a plurality of gate trench portions 40 are formed on the front surface side of the semiconductor substrate 10. The contact region 15, the emitter region 12, and the contact region 15 are exposed in this order on the front surface of the semiconductor substrate 10 between the two gate trench portions 40.
  • the front surface of the semiconductor substrate 10 is covered with an interlayer insulating film 26.
  • Contact hole 55 exposes at least a portion of each of emitter region 12 and contact region 15.
  • Emitter electrode 52 passes through contact hole 55 and is connected to emitter region 12 and contact region 15.
  • FIG. 6 is a diagram showing another configuration example of the semiconductor device 100. As shown in FIG.
  • the semiconductor device 100 of the present example further includes a drawing region 130 on the front surface of the semiconductor substrate 10 in addition to the semiconductor device 100 described in FIGS. 1A to 5.
  • FIG. 7 is a perspective sectional view of the semiconductor device 100 shown in FIG.
  • the gate trench portion 40 is formed on the front surface of the semiconductor substrate 10 so as to surround the one or more extraction regions 130.
  • the emitter region 12 is not formed in each of the drawn regions 130.
  • the contact region 15 is formed on the entire front surface of the drawing region 130.
  • the withdrawal regions 130 may be located on both sides of the active region 120.
  • the two sides of the operating area 120 refer to positions sandwiching the operating area 120.
  • the semiconductor device 100 of this example has a plurality of extraction regions 130 so as to surround each of the operation regions 120.
  • the withdrawal region 130 may be discretely disposed in the region surrounding the operation region 120.
  • Each extraction region 130 is disposed adjacent to the operation region 120 via the gate trench portion 40. That is, each drawing region 130 is disposed so that it can be connected to gate trench portion 40 in a straight line passing only over gate trench portion 40.
  • Each withdrawal region 130 may have the same shape and size, and may have different shapes and sizes.
  • the width of the gate trench portion 40 between the drawn regions 130 may be the same as the width of the gate trench portion 40 around the operating region 120.
  • FIG. 8 is a diagram showing another configuration example of the semiconductor device 100.
  • the semiconductor device 100 of the present example has a protrusion 60 in the gate trench portion 40 with respect to any of the semiconductor devices 100 described in FIGS. 1A to 7.
  • FIG. 8 shows an example in which the protruding portion 60 is further provided to the semiconductor device 100 having the drawing region 130 shown in FIG. 6, the semiconductor device 100 not having the drawing region 130 shown in FIG. 1A is also shown.
  • a protrusion 60 may be further provided.
  • the protrusion 60 protrudes from the gate trench portion 40 around the operation region 120 toward the dummy trench portion 30 provided inside the operation region 120.
  • the protruding portion 60 in this example is directed from the portion extending in the direction perpendicular to the arrangement direction of the contact region 15 and the emitter region 12 in the gate trench portion 40 provided around the operation region 120 toward the dummy trench portion 30. It is formed.
  • the protrusions 60 may be formed on both sides of the dummy trench portion 30. That is, the protrusion 60 may be formed on each of the two opposing sides of the operation area 120.
  • the protrusion 60 in this example is formed to have the same width as the dummy trench 30.
  • An insulating film of the gate insulating film 42 or the dummy insulating film 32 is formed between the projecting portion 60 and the dummy trench portion 30.
  • neither the contact region 15 nor the emitter region 12 is exposed on the front surface of the semiconductor substrate 10 between the protrusion 60 and the dummy trench portion 30.
  • the contact region 15 may be exposed on the front surface of the semiconductor substrate 10 between the protrusion 60 and the dummy trench portion 30.
  • Such a configuration can also suppress the dielectric breakdown in the branch portion 110.
  • fluctuations in threshold voltage of the semiconductor element can be suppressed.
  • holes can be efficiently extracted at turn-off.
  • FIG. 9 is a perspective sectional view of the semiconductor device 100 shown in FIG.
  • the contact region 15, the base region 14 and the storage region 16 are provided between the protrusion 60 and the dummy trench portion 30 in the arrangement direction.
  • an insulating film may be formed between the protrusion 60 and the dummy trench portion 30 instead of the contact region 15, the base region 14 and the storage region 16.
  • FIG. 10 is a perspective sectional view showing another configuration example of the semiconductor device 100.
  • the semiconductor device 100 of this example further includes a bottom-side conductive portion 48 in addition to any of the semiconductor devices 100 shown in FIGS. 1A to 9.
  • the other configuration is the same as any of the semiconductor devices 100 shown in FIGS. 1A to 9.
  • FIG. 10 shows a configuration in which the bottom-side conductive portion 48 is added to the semiconductor device 100 shown in FIG.
  • the bottom-side conductive portion 48 may be formed of the same material as the gate conductive portion 44 and the dummy conductive portion 34.
  • Bottom-side conductive portion 48 is provided inside gate trench portion 40. More specifically, the bottom-side conductive portion 48 is formed closer to the bottom of the gate trench than the gate conductive portion 44 inside the gate trench whose inner wall is covered with an insulating film. Bottom-side conductive portion 48 is electrically isolated from gate conductive portion 44. In the present example, an insulating film is formed between the bottom-side conductive portion 48 and the gate conductive portion 44.
  • the gate conductive portion 44 is formed over at least a region facing the base region 14 in the depth direction.
  • the bottom of the gate conductive portion 44 may be disposed to face the storage region 16.
  • the bottom-side conductive portion 48 is provided at least in part below the storage region 16.
  • the bottom-side conductive portion 48 may be provided entirely below the storage region 16.
  • the bottom-side conductive portion 48 may be electrically connected to the emitter electrode 52 and may be electrically floating. By providing the bottom-side conductive portion 48 at the bottom of the gate trench portion 40, the mirror capacitance between the gate and the collector can be reduced.
  • the bottom-side conductive portion 48 is not formed in the dummy trench portion 30.
  • the gate trench portion 40 having the bottom-side conductive portion 48 may have the same depth as the dummy trench portion 30, and may be formed deeper than the dummy trench portion 30.
  • the gate trench portion 40 may be longer than the dummy trench portion 30 by at least the bottom-side conductive portion 48. In this case, the gate trench portion 40 may be wider than the dummy trench portion 30.
  • FIG. 11 is a perspective sectional view showing another configuration example of the semiconductor device 100.
  • the semiconductor device 100 of this example further includes a bottom-side conductive portion 48 in addition to any of the semiconductor devices 100 shown in FIGS. 1A to 9.
  • the other configuration is the same as any of the semiconductor devices 100 shown in FIGS. 1A to 9.
  • FIG. 11 shows a configuration in which the bottom-side conductive portion 48 is added to the semiconductor device 100 shown in FIG.
  • the structure of the bottom-side conductive portion 48 is the same as that of the bottom-side conductive portion 48 shown in FIG. However, the bottom-side conductive portion 48 in this example is connected to the dummy conductive portion 34 inside the semiconductor substrate 10. More specifically, the bottom-side conductive portion 48 extends from the portion provided below the gate conductive portion 44 toward the dummy conductive portion 34 and is connected to the dummy conductive portion 34. In the present example, the bottom-side conductive portion 48 extends in the y direction and is connected to the dummy conductive portion 34. With such a configuration, the bottom-side conductive portion 48 can be set to the emitter potential.
  • both a portion provided below the gate conductive portion 44 and a portion extending toward the dummy conductive portion 34 are surrounded by the insulating film.
  • no semiconductor region such as the contact region 15 is disposed between the gate conductive portion 44 and the dummy conductive portion 34.
  • an insulating film 42 is provided between the gate conductive portion 44 and the dummy conductive portion 34.
  • polysilicon is formed at the bottom of the trench to form bottom side conductive portions 48 and bottom portions of dummy conductive portions 34.
  • an insulating film is formed on top of the formed polysilicon.
  • the insulating film in the region where the dummy conductive portion 34 is to be formed is removed to form polysilicon in the trench.
  • the polysilicon is removed except for the region to be the gate conductive portion 44 and the dummy conductive portion 34. That is, an insulating trench is formed between the gate conductive portion 44 and the dummy conductive portion 34. The trench is formed up to the insulating film on the top of the bottom-side conductive portion 48. Then, the insulating film 42 is formed inside the trench. Thereby, the structure shown in the yz cross section of FIG. 11 can be formed.
  • Bottom-side conductive portion 48 may extend to a region where gate trench portion 40 and dummy trench portion 30 are not formed.
  • the bottom side conductive portion 48 may extend to the outside of the active region.
  • Bottom-side conductive portion 48 may be electrically connected to emitter electrode 52 in a region where gate trench portion 40 and dummy trench portion 30 are not formed. In this case, the contact hole 54 may not be provided in the operation region 120. Therefore, miniaturization of the semiconductor device 100 is facilitated.
  • FIG. 12 is a view showing another configuration example of the semiconductor device 100.
  • the semiconductor device 100 of this example further includes a peripheral region 70 in addition to the semiconductor device 100 described in FIGS. 1A to 11.
  • the other structure is the same as any of the semiconductor devices 100 described in FIGS. 1A to 11.
  • the peripheral region 70 refers to a region in the accumulation region 16 where the thickness in the depth direction is thinner than the position farthest from the gate trench portion 40 in the X direction.
  • the peripheral region 70 is disposed around the branch 110.
  • peripheral region 70 is arranged to surround each branch 110 in a plane parallel to the front surface of semiconductor substrate 10. A portion of the peripheral region 70 may be formed at a position overlapping the contact hole 55, and the entire peripheral region 70 may be formed at a position not overlapping the contact hole 55.
  • the gate trench portion 40 in the branch portion 110 may be formed deeper than the gate trench portion 40 in the other region. For this reason, in the gate trench portion 40 in the branch portion 110, an electric field is concentrated and avalanche breakdown is likely to occur.
  • FIG. 13 is a view showing a cross section taken along the line BB in FIG.
  • the BB cross section corresponds to the xz cross section including the peripheral region 70.
  • the peripheral region 70 in the present example is a region of the accumulation region 16 adjacent to the gate trench portion 40.
  • the total width in the x-axis direction of the peripheral region 70 provided between the two gate trench portions 40 may be smaller or larger than the width of the other regions of the storage region 16 in the x-axis direction.
  • the width of the peripheral region 70 in the x-axis direction may be larger as it approaches the branch 110 in the y-axis direction.
  • the accumulation region 16 may have a convex shape that protrudes in the ⁇ Z direction more than the peripheral region 70 at the central portion.
  • the peripheral region 70 may be formed thinner as it approaches the gate trench portion 40.
  • the thickness of the peripheral region 70 in contact with the gate trench portion 40 may be 80% or less or 50% or less of the thickness of the central portion of the accumulation region 16 in the X
  • peripheral region 70 By providing the peripheral region 70 in the vicinity of the branch portion 110, carriers can be easily extracted in the vicinity of the branch portion 110. Therefore, avalanche breakdown in the gate trench portion 40 of the branch portion 110 can be suppressed.
  • FIG. 14 is a view showing another example of the AA cross section.
  • the semiconductor device 100 of this example has a bottom-side conductive portion 48 in the gate trench portion 40, as in the semiconductor device 100 shown in FIG. 10 or FIG.
  • the other structure is similar to that of any of the semiconductor devices 100 shown in FIGS. 1A to 13.
  • the bottom-side conductive portion 48 in this example has a projecting region 49 that protrudes downward at the branch portion 110.
  • the projecting area 49 is integrally formed with the area of the other bottom-side conductive portion 48.
  • the projecting region 49 may project downward by the same length as the length of the branched portion 110 projecting downward. With such a configuration, the protruding region 49 can function as a field plate to reduce the concentration of the electric field at the bottom of the branch portion 110.
  • FIG. 15 is a view showing another example of the AA cross section.
  • the semiconductor device 100 of this example is the same as the structure of any of the semiconductor devices 100 shown in FIGS. 1A to 9 except for the structure of the insulating film 42.
  • the insulating film 42 in this example has a film thickness region 43 at the bottom of the branch portion 110.
  • the film thickness region 43 is thicker than the insulating film 42 at the bottom of the gate trench portion 40 other than the branch portion 110.
  • the film thickness region 43 may have a thickness twice or more that of the insulating film 42 of the other bottom region.
  • the maximum value of the thickness of the insulating film 42 at the bottom of the branch portion 110 may be used.
  • the thickness of the insulating film 42 in the other bottom region may be the average value of the thickness of the insulating film 42 at the bottom other than the branched portion 110. With such a configuration, the withstand voltage of the gate trench portion 40 at the bottom of the branch portion 110 can be improved.
  • the gate conductive portion 44 may be connected to the emitter electrode, and the dummy conductive portion 34 may be connected to the gate electrode. That is, the gate conductive portion 44 may function as a dummy electrode, and the dummy conductive portion 34 may function as a gate electrode. Such a configuration can also separate the branch portion 110 from the region where the channel is formed.
  • the bottom-side conductive portion 48 is formed below the dummy conductive portion 34.
  • the bottom-side conductive portion 48 formed below the dummy conductive portion 34 extends in the direction of the gate conductive portion 44 and is connected to the bottom of the gate conductive portion 44.
  • dummy trench 40 gate trench portion 42: insulating film 43: film thickness region 44: gate conductive portion 46: gate trench 48: bottom side conductive portion 49 ⁇ Protrusive area, 52 ⁇ ⁇ ⁇ Emitter electrode, 54 ⁇ ⁇ ⁇ Contact hole, 55 ⁇ ⁇ ⁇ Contact hole, 60 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ peripheral area, 100 ⁇ ⁇ ⁇ semiconductor devices ⁇ Branch part, 111 ⁇ ⁇ ⁇ Vertex 120 ... operating area, 130 ... extraction region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

ゲートトレンチが分岐した部分では、直線状のゲートトレンチの部分よりも、トレンチが深く形成されてしまう。第1導電型の半導体基板と、半導体基板のおもて面側に設けられた第2導電型のベース領域と、半導体基板のおもて面からベース領域を貫通して設けられた第1トレンチ部と、半導体基板のおもて面側においてベース領域の一部に設けられ、ベース領域よりも不純物濃度の高い第2導電型のコンタクト領域とを備え、第1トレンチ部は、半導体基板のおもて面において分岐部を有し、分岐部は、半導体基板のおもて面においてコンタクト領域に囲まれて設けられる半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
 従来、IGBT等の半導体装置において、分岐したゲートトレンチを有する構造が知られている(例えば、特許文献1参照)。
 特許文献1 特開2012-190938号公報
 ゲートトレンチが分岐した部分では、直線状のゲートトレンチの部分よりも、トレンチが深く形成されてしまう。
一般的開示
 本発明の一つの態様においては、第1導電型の基板を備える半導体装置を提供する。半導体基板のおもて面側には、第2導電型のベース領域が設けられてよい。半導体基板には、半導体基板のおもて面側からベース領域を貫通する第1トレンチ部が設けられてよい。半導体基板のおもて面側には、ベース領域の一部に設けられ、ベース領域よりも不純物濃度の高い第2導電型のコンタクト領域が設けられてよい。第1トレンチ部は、半導体基板のおもて面において分岐部を有してよい。分岐部は、半導体基板のおもて面においてコンタクト領域に囲まれて設けられてよい。
 第1トレンチ部は、半導体基板のおもて面において1以上の動作領域をそれぞれ囲むように形成されてよい。半導体装置は、半導体基板のおもて面において動作領域内に形成され、第1トレンチ部とは分離した第2トレンチ部を更に備えてよい。第1トレンチ部はゲート電極に接続されたゲートトレンチ部であり、第2トレンチ部はエミッタ電極に接続されたダミートレンチ部であってよい。
 ダミートレンチ部が形成された動作領域内には、第1導電型のエミッタ領域が形成されてよい。半導体装置は、半導体基板のおもて面の上方に形成された層間絶縁膜を更に備えてよい。層間絶縁膜は、動作領域と対向する位置に、エミッタ領域およびコンタクト領域の少なくとも一部分を露出させるコンタクトホールを有してよい。
 ゲートトレンチ部は、半導体基板のおもて面において1以上の引抜領域をそれぞれ囲むように形成されてよい。それぞれの引抜領域には、エミッタ領域が形成されていなくてよい。引抜領域は、ゲートトレンチ部を介して動作領域と隣接して配置されていてよい。2つの引抜領域が、動作領域の両側に配置されていてよい。
 半導体基板のおもて面において、分岐部からエミッタ領域までの距離は、分岐部からコンタクト領域までの距離よりも大きくてよい。ゲートトレンチ部は、ダミートレンチ部に向かって突出する突出部を有してよい。
 ゲートトレンチ部は、半導体基板のおもて面からベース領域を貫通して設けられたゲートトレンチの内壁に形成された絶縁膜を有してよい。ゲートトレンチ部は、絶縁膜で内壁が覆われたゲートトレンチの内部に形成されたゲート導電部を有してよい。ゲートトレンチ部は、絶縁膜で内壁が覆われたゲートトレンチの内部において、ゲート導電部よりもゲートトレンチの底部側に形成され、ゲート導電部と絶縁されている底部側導電部を有してよい。
 ダミートレンチ部は、半導体基板のおもて面からベース領域を貫通して設けられたダミートレンチの内壁に形成された絶縁膜を有してよい。ダミートレンチ部は、絶縁膜で内壁が覆われたダミートレンチの内部に形成されたダミー導電部を有してよい。ダミートレンチ部は、底部側導電部は、半導体基板の内部においてダミー導電部と接続されていてよい。
 底部側導電部は、分岐部において下方に突出した突出導電部を有してよい。第1トレンチ部は、半導体基板のおもて面からベース領域を貫通して設けられたトレンチの内壁に形成された絶縁膜を有してよい。第1トレンチ部の分岐部の底部における絶縁膜の厚みは、第1トレンチ部の分岐部以外の底部における絶縁膜の厚みよりも厚くてよい。
 半導体基板においてベース領域の下方に形成された蓄積領域を更に備えてよい。第1トレンチ部は、蓄積領域を貫通して設けられてよい。分岐部を囲んで、蓄積領域に、第1トレンチ部に接する位置の蓄積領域の深さ方向の厚みが、隣り合う1第1トレンチ部から水平面方向に最も離れた位置の蓄積領域の厚みよりも薄い周辺領域が設けられていてよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の実施形態に係る半導体装置100の構成例を示す図である。 図1AにおけるA-A断面を示す図である。 分岐部110の周辺の拡大図である。 半導体装置100の斜視断面図である。 半導体装置100のxz断面の一例を示す図である。 半導体装置100のyz断面の一例を示す図である。 半導体装置100の他の構成例を示す図である。 図6に示した半導体装置100の斜視断面図である。 半導体装置100の他の構成例を示す図である。 図8に示した半導体装置100の斜視断面図である。 半導体装置100の他の構成例を示す斜視断面図である。 半導体装置100の他の構成例を示す斜視断面図である。 半導体装置100の他の構成例を示す図である。 図12におけるB-B断面を示す図である。 A-A断面の他の例を示す図である。 A-A断面の他の例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1Aは、本発明の実施形態に係る半導体装置100の構成例を示す図である。図1Bは、図1AにおけるA-A断面を示す。半導体装置100は、IGBT(Insulated Gate Bipolar Transistor)およびFWD(Free Wheel Diode)等の半導体素子を有する半導体チップである。図1Aにおいては、半導体装置100のおもて面のうち、半導体素子が形成される活性領域の一部を模式的に示している。半導体装置100のおもて面には、図1Aに示す構造が繰り返し形成されている。
 半導体装置100は、活性領域を囲んで耐圧構造部を有してよい。活性領域は、半導体装置100をオン状態に制御した場合に電流が流れる領域を指す。耐圧構造部は、半導体基板のおもて面側の電界集中を緩和する。耐圧構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。
 本例の半導体装置100は、チップのおもて面側において、ゲートトレンチ部40、ダミートレンチ部30、エミッタ領域12、コンタクト領域15、コンタクトホール54およびコンタクトホール55を備える。ゲートトレンチ部40は第1トレンチ部の一例であり、ダミートレンチ部30は第2トレンチ部の一例である。
 ゲートトレンチ部40、ダミートレンチ部30、エミッタ領域12およびコンタクト領域15は、半導体基板のおもて面側において、半導体基板の内部に形成される。本例において半導体基板は第1導電型を有する。第1導電型は一例としてn型である。半導体基板のおもて面側には、第2導電型のベース領域が形成される。ただし、図1Aに示す範囲では、ベース領域は半導体基板のおもて面に露出していない。第2導電型は一例としてp型である。なお、各例において説明する基板、領域およびその他の部分導電型は、それぞれ逆の導電型であってもよい。
 エミッタ領域12は、ベース領域の一部において、半導体基板のおもて面に露出するように形成される。本例のエミッタ領域12は、半導体基板よりも不純物濃度の高いn+型である。コンタクト領域15は、ベース領域の一部において、半導体基板のおもて面に露出するように形成される。本例のコンタクト領域15は、ベース領域よりも不純物濃度の高いp+型である。エミッタ領域12およびコンタクト領域15は、半導体基板のおもて面においてそれぞれ帯状に形成され、且つ、所定の配列方向において交互に形成される。
 ゲートトレンチ部40およびダミートレンチ部30は、半導体基板のおもて面側から、ベース領域を貫通して設けられる。エミッタ領域12またはコンタクト領域15が形成されている領域に設けられたゲートトレンチ部40およびダミートレンチ部30は、エミッタ領域12またはコンタクト領域15も貫通する。
 ゲートトレンチ部40は、ゲートトレンチの内壁に形成された絶縁膜42、および、絶縁膜42で内壁が覆われたゲートトレンチの内部に形成されたゲート導電部44を有する。ゲート導電部44は、チャネルを制御するゲート電極として機能する。また、ダミートレンチ部30は、ダミートレンチの内壁に形成された絶縁膜32、および、絶縁膜32で内壁が覆われたダミートレンチの内部に形成されたダミー導電部34を有する。ゲート導電部44およびダミー導電部34は例えばポリシリコンで形成される。
 ゲートトレンチ部40は、半導体基板のおもて面において分岐部110を有する。分岐部110とは、半導体基板のおもて面において、一つの場所から少なくとも3つの方向にゲートトレンチ部40が延伸している部分を指す。例えば、分岐部110の一例として、2以上の直線状のゲートトレンチ部40が交差している箇所、および、1本のゲートトレンチ部40からゲートトレンチ部40が枝分かれしている箇所が挙げられる。
 本例のゲートトレンチ部40は、エミッタ領域12およびコンタクト領域15の配列方向と略垂直な方向に延伸する第1部分を有する。つまり、ゲートトレンチ部40の第1部分は、エミッタ領域12およびコンタクト領域15の双方と交差するように形成される。ゲートトレンチ部40は、平行に設けられた複数の第1部分を有する。ゲートトレンチ部40の内部に形成されたゲート導電部44に所定の電圧が印加されると、エミッタ領域12の下方に形成されたp型のベース領域においてゲートトレンチ部40と接する領域にチャネルが形成される。これにより、半導体基板の深さ方向に電流が流れる。
 また、本例のゲートトレンチ部40は、当該配列方向とは垂直な方向に延伸する第2部分を有する。つまり、ゲートトレンチ部40の第2部分は、エミッタ領域12およびコンタクト領域15と平行に延伸する。ゲートトレンチ部40は、平行に設けられた複数の第2部分を有する。ゲートトレンチ部40の第2部分は、2つのコンタクト領域15に挟まれた領域に形成されてよい。本例の半導体基板のおもて面には、配列方向において、コンタクト領域15、エミッタ領域12、コンタクト領域15およびゲートトレンチ部40がこの順番で繰り返し形成される。
 このように、ゲートトレンチ部40が分岐部110を有することで、半導体基板のおもて面におけるゲートトレンチ部40の密度を容易に調整できる。つまり、ゲートトレンチ部40の分岐の周期を調整することで、ゲートトレンチ部40が占める面積を容易に調整できる。また、ダミートレンチ部30をゲートトレンチ部40が囲む領域にドット状に配置しているので、ダミートレンチ部30の密度も容易に調整できる。つまり、ダミートレンチ部30の個数を調整することで、ダミートレンチ部30が占める面積を容易に調整できる。このため、ゲート容量を所望の値に容易に調整できる。
 本例においては、ゲートトレンチ部40の第1部分および第2部分は交差するように形成される。つまり、第1部分および第2部分の交差部分が、分岐部110に対応する。ゲートトレンチ部40は、半導体基板のおもて面側からエッチングで形成したゲートトレンチを有する。
 ここで、図1Bのように、分岐部110に対応する部分のゲートトレンチは、分岐部110でない部分のゲートトレンチに比べてトレンチ内にエッチャントが入り込みやすく、ゲートトレンチが深く形成されやすい。なお、ゲートトレンチの下側には、n-型のドリフト領域18が形成されている。一方で、ゲートトレンチが深く形成されると、深く形成されたゲートトレンチ部40の先端に電界が集中しやすくなり、当該先端部分でアバランシェ降伏が生じやすくなる。
 また、ゲートトレンチ部40のトレンチ深さが変動すると、ゲート導電部44が形成される深さ位置も変動する。このため、ゲート導電部44とベース領域とが対向する領域の深さ方向の長さが変化してしまう場合がある。この場合、チャネル長が変化して、半導体素子の閾値電圧が変動してしまう。
 本例の分岐部110は、半導体基板のおもて面において、p+型のコンタクト領域15に囲まれて形成される。分岐部110からは、3以上の延伸方向にゲートトレンチ部40が延伸している。分岐部110がコンタクト領域15に囲まれるとは、少なくとも分岐部110の各頂点111には、コンタクト領域15が隣接していることを指す。また、各頂点111から所定の距離内の領域にも、コンタクト領域15が形成されていることが好ましい。当該所定の距離は、例えばゲートトレンチ部40の幅の1/10であってよく、半分であってよく、幅と等しくてもよい。
 なお、T字形状のように、直線等の所定形状のゲートトレンチ部40の一方の側壁からゲートトレンチ部40が枝分かれし、他方の側壁からはゲートトレンチ部40が枝分かれしていない形状では、分岐部110においてゲートトレンチ部40が枝分かれしていない側にも、コンタクト領域15が隣接して形成される。当該コンタクト領域15は、少なくとも、枝分かれしているゲートトレンチ部40と対向する範囲に渡って形成されることが好ましい。また、枝分かれしているゲートトレンチ部40と対向するゲートトレンチ部の端部から上述した所定の距離内の領域にも、コンタクト領域15が形成されていることが好ましい。
 分岐部110が高濃度のp+型のコンタクト領域15に囲まれることで、分岐部110が低濃度のp型のベース領域に囲まれる場合に比べて、電界が集中しやすい部分における耐圧を向上させることができる。また、分岐部110底部で発生したアバランシェ電流は、分岐部110の周囲に形成された高濃度のp+型のコンタクト領域15からエミッタ電極に流すことができる。これにより、n+型のエミッタ領域12に向かってアバランシェ電流が流れないので、ラッチアップを抑制することができる。また、分岐部110の周囲にエミッタ領域12が形成されていないので、分岐部110の周囲にはチャネルが形成されない。このため、分岐部110のゲートトレンチ部40の内部に設けられるゲート導電部44の深さ位置が変動した場合でも、半導体素子の閾値電圧の変動を抑えることができる。
 また、本例のゲートトレンチ部40は、半導体基板のおもて面において1以上の動作領域120を囲むように形成される。動作領域120においては、エミッタ領域12が半導体基板のおもて面に露出する。また、動作領域120においては、ゲートトレンチ部40と隣接するエミッタ領域12の下方のベース領域にチャネルが形成される。
 動作領域120において、エミッタ領域12は2つのコンタクト領域15に挟まれて配置される。なお、図1Aに示した半導体基板のおもて面の領域の上方には、層間絶縁膜およびエミッタ電極が形成される。層間絶縁膜は、半導体基板のおもて面を覆って形成される。層間絶縁膜において、エミッタ領域12および2つのコンタクト領域15と対向する一部の領域にはコンタクトホール55が形成されている。それぞれのコンタクトホール55は、一方のコンタクト領域15からエミッタ領域12を通過して他方のコンタクト領域15まで、配列方向に延伸して形成されている。
 コンタクトホール55は、動作領域120毎に1以上形成されてよい。例えばコンタクトホール55は、配列方向とは垂直な方向において、ゲートトレンチ部40とダミートレンチ部30の間、および、隣接する2つのダミートレンチ部30の間に形成される。
 また、少なくとも1つの動作領域120には、1以上のダミートレンチ部30が形成される。本例では、それぞれの動作領域120に複数のダミートレンチ部30が形成されている。ダミートレンチ部30は、ゲートトレンチ部40とは分離している。ここで分離とは、ダミー導電部34およびゲート導電部44とが電気的に絶縁されていることを指す。本例においてダミートレンチ部30は、半導体基板のおもて面において、ゲートトレンチ部40と離れて形成されている。
 本例のダミートレンチ部30は、動作領域120において、一方のコンタクト領域15からエミッタ領域12を通過して他方のコンタクト領域15まで延伸して形成される。配列方向において、ダミートレンチ部30とゲートトレンチ部40との間には、コンタクト領域15が形成されてよい。他の例では、配列方向におけるダミートレンチ部30とゲートトレンチ部40との間の半導体基板のおもて面には、絶縁膜のみが形成されていてもよい。
 この場合、動作領域120の内部におけるコンタクト領域15およびエミッタ領域12が、ダミートレンチ部30により分断される。コンタクトホール55は、ダミートレンチ部30により分断されるそれぞれの領域に設けられる。また、ダミートレンチ部30の内部に形成されるダミー導電部34は、コンタクトホール54を介してエミッタ電極に電気的に接続される。
 なお、ゲートトレンチ部40のゲート導電部44は、ゲート電極と電気的に接続される。ゲートトレンチ部40は、エミッタ電極に覆われない領域まで延伸して形成され、当該領域においてゲート電極と接続されてよい。
 なお、それぞれのダミートレンチ部30とゲートトレンチ部40との距離が、各方向で等しくなるようにダミートレンチ部30が設けられてよい。また、ダミートレンチ部30どうしの距離と、ダミートレンチ部30およびゲートトレンチ部40の距離も等しくてよい。
 図2は、分岐部110の周辺の拡大図である。上述したように、分岐部110はコンタクト領域15に囲まれて配置されている。このため、半導体基板のおもて面において、分岐部110からエミッタ領域12までの距離D1は、分岐部110からコンタクト領域15までの距離よりも大きい。このような構成により、分岐部110におけるゲートトレンチ部40の深さがばらつきを有していても、半導体素子の閾値電圧への影響を低減できる。
 なお、分岐部110からエミッタ領域12までの距離D1は、分岐部110の頂点111からエミッタ領域12までの最短距離を指してよい。同様に、分岐部110からコンタクト領域15までの距離は、頂点111からコンタクト領域15までの最短距離を指す。頂点111に接してコンタクト領域15が形成されているので、当該距離はゼロである。
 また、エミッタ領域12の下方のベース領域にはチャネルが形成されるので、ターンオフ時に半導体基板のうら面側から流れる正孔が、チャネルの電子に引き寄せられる。一方で、分岐部110の周辺には、半導体基板のうら面側から流れる正孔が比較的に集まりやすい。従って、分岐部110とエミッタ領域12とが近くに配置されていると、分岐部110の周辺の正孔が、エミッタ領域12側に引き寄せられてしまい、正孔を効率よく引き抜くことができない。本例では、エミッタ領域12が分岐部110から離れて形成されるので、エミッタ領域12側に正孔が引き寄せられることを抑制できる。
 図3は、半導体装置100の斜視断面図である。図3では、半導体基板10およびコレクタ電極24を示している。本例では、エミッタ領域12およびコンタクト領域15の配列方向をy方向とし、半導体基板10のおもて面においてy方向と直交する方向をx方向とし、半導体基板10の深さ方向をz方向とする。半導体基板10の深さ方向とは、半導体基板10のおもて面およびうら面と垂直な方向である。図3においては、エミッタ領域12を通過するxz断面と、ダミートレンチ部30を通過するyz断面を示している。なお、半導体基板10のおもて面はxy面である。
 半導体基板10は、シリコン基板であってよく、炭化シリコン基板、窒化物半導体基板等であってもよい。半導体基板10のおもて面側には、p-型のベース領域14が形成される。xz断面に示すように、n+型のエミッタ領域12が、ベース領域14のおもて面側における一部の領域に選択的に形成される。また、yz断面に示すように、p+型のコンタクト領域15が、ベース領域14のおもて面側における一部の領域に選択的に形成される。
 半導体基板10は、n+型の蓄積領域16、n-型のドリフト領域18、n-型のバッファ領域20、p+型のコレクタ領域22を更に有する。蓄積領域16は、ベース領域14のうら面側に形成される。蓄積領域16の不純物濃度は、ドリフト領域18の不純物濃度よりも高い。
 蓄積領域16は、隣接するトレンチ間に形成される。蓄積領域16は、ダミートレンチ部30およびゲートトレンチ部40の間、ならびに、隣接するダミートレンチ部30の間に形成される。ダミートレンチ部30はダミートレンチ36を有し、ゲートトレンチ部40はゲートトレンチ46を有している。蓄積領域16は、各トレンチ部の間の全領域を覆うように設けられてよい。蓄積領域16を設けることで、IE効果を高めて、オン電圧を低減することができる。
 ドリフト領域18は、蓄積領域16のうら面側に形成される。バッファ領域20は、ドリフト領域18のうら面側に形成される。バッファ領域20の不純物濃度は、ドリフト領域18の不純物濃度よりも高い。バッファ領域20は、ベース領域14のうら面側から広がる空乏層が、コレクタ領域22に到達することを防ぐフィールドストップ層として機能してよい。コレクタ領域22は、バッファ領域20のうら面側に形成される。また、コレクタ領域22のうら面にはコレクタ電極24が設けられる。
 なお、分岐部110の周辺における半導体基板10の断面構造は、yz断面における構造と同様である。つまり、分岐部110の周辺においては、半導体基板10のおもて面側から、コンタクト領域15、ベース領域14、蓄積領域16、ドリフト領域18、バッファ領域20およびコレクタ領域22が形成される。つまり、分岐部110の周辺には、チャネルが形成されない。このため、分岐部110におけるゲートトレンチ部40が深く形成されても、半導体素子の閾値電圧への影響が小さい。
 図4は、半導体装置100のxz断面の一例を示す図である。図4は、エミッタ領域12を通過するxz断面を示す。半導体基板10におけるxz断面は、図3に示したxz断面と同一である。半導体基板10のおもて面の上方には、層間絶縁膜26およびエミッタ電極52が形成される。
 層間絶縁膜26は、半導体基板10のおもて面を覆って形成される。エミッタ電極52は、層間絶縁膜26の上方に形成される。層間絶縁膜26のうち、動作領域120に対向する位置にはコンタクトホールが形成される。具体的には、エミッタ領域12に対向する領域にはコンタクトホール55が形成され、ダミートレンチ部30に対向する領域にはコンタクトホール54が形成される。エミッタ電極52は、コンタクトホール54およびコンタクトホール55の内部にも形成され、ダミー導電部34およびエミッタ領域12と電気的に接続する。エミッタ電極52は、アルミニウムを含む金属で形成されてよい。
 また、コンタクトホール54およびコンタクトホール55の内部のエミッタ電極52は、タングステンを含む金属で形成されてよい。エミッタ電極52の一部をタングステンを含む金属で形成することで、コンタクトホール54およびコンタクトホール55を微細化しても、エミッタ電極52とエミッタ領域12およびダミー導電部34の電気的な接続の信頼性を向上させることができる。
 なお、分岐部110以外の領域において、ゲートトレンチ部40と、ダミートレンチ部30とは同一の深さで形成されてよい。この場合、ゲートトレンチ部40およびダミートレンチ部30は同一の幅で形成される。また、ゲートトレンチ部40およびダミートレンチ部30は、一方が他方よりも深く形成されてもよい。この場合、深く形成されるトレンチ部の幅が、浅く形成されるトレンチ部の幅よりも小さい。
 図5は、半導体装置100のyz断面の一例を示す図である。図5は、コンタクトホール55を通過するyz断面を示す。当該断面において、半導体基板10のおもて面側には、複数のゲートトレンチ部40が形成される。2つのゲートトレンチ部40の間における半導体基板10のおもて面には、コンタクト領域15、エミッタ領域12、コンタクト領域15がこの順番で露出する。
 半導体基板10のおもて面は、層間絶縁膜26により覆われている。コンタクトホール55は、エミッタ領域12およびコンタクト領域15のそれぞれの領域について、少なくとも一部分を露出させる。エミッタ電極52は、コンタクトホール55を通過して、エミッタ領域12およびコンタクト領域15に接続する。
 図6は、半導体装置100の他の構成例を示す図である。本例の半導体装置100は、図1Aから図5において説明した半導体装置100に対して、半導体基板10のおもて面において引抜領域130を更に備える。
 図7は、図6に示した半導体装置100の斜視断面図である。ゲートトレンチ部40は、半導体基板10のおもて面において、1以上の引抜領域130を囲むように形成される。なお、それぞれの引抜領域130には、エミッタ領域12が形成されていない。
 図7に示すように、本例では引抜領域130のおもて面全体に、コンタクト領域15が形成されている。引抜領域130は、動作領域120の両側に配置されてよい。動作領域120の両側とは、動作領域120を挟む位置を指す。本例の半導体装置100は、それぞれの動作領域120を囲むように、複数の引抜領域130を有する。引抜領域130は、動作領域120を囲む領域に離散的に配置されてよい。
 それぞれの引抜領域130は、ゲートトレンチ部40を介して動作領域120と隣接して配置されている。つまり、それぞれの引抜領域130は、ゲートトレンチ部40上のみを通る直線で、ゲートトレンチ部40と結線することができるように配置される。
 引抜領域130を設けることで、ターンオフ時に半導体基板10のうら面側から流れる正孔を、更に効率よく引き抜くことができる。それぞれの引抜領域130は、同一の形状および同一の大きさを有してよく、異なる形状および異なる大きさを有してもよい。引抜領域130の間のゲートトレンチ部40の幅は、動作領域120の周囲のゲートトレンチ部40の幅と同一であってよい。
 図8は、半導体装置100の他の構成例を示す図である。本例の半導体装置100は、図1Aから図7において説明したいずれかの半導体装置100に対して、ゲートトレンチ部40に突出部60を有する。図8では、図6に示した引抜領域130を有する半導体装置100に、更に突出部60を設けた例を示しているが、図1Aに示した引抜領域130を有さない半導体装置100にも、更に突出部60を設けてよい。
 突出部60は、動作領域120の周囲のゲートトレンチ部40から、当該動作領域120の内部に設けたダミートレンチ部30に向かって突出して形成される。本例の突出部60は、動作領域120の周囲に設けたゲートトレンチ部40のうち、コンタクト領域15およびエミッタ領域12の配列方向とは垂直な方向に延伸する部分から、ダミートレンチ部30に向かって形成される。突出部60は、ダミートレンチ部30の両側に形成されてよい。つまり、動作領域120の対向する2つの辺のそれぞれに、突出部60が形成されてよい。
 本例の突出部60は、ダミートレンチ部30と同一の幅で形成される。突出部60とダミートレンチ部30の間には、ゲート絶縁膜42またはダミー絶縁膜32の絶縁膜が形成されている。本例において突出部60とダミートレンチ部30の間における半導体基板10のおもて面には、コンタクト領域15およびエミッタ領域12のいずれも露出していない。他の例では、突出部60とダミートレンチ部30の間における半導体基板10のおもて面には、コンタクト領域15が露出していてもよい。
 このような構成によっても、分岐部110における絶縁破壊を抑制することができる。また、半導体素子の閾値電圧の変動を抑制することができる。また、ターンオフ時において正孔を効率よく引き抜くことができる。
 図9は、図8に示した半導体装置100の斜視断面図である。本例では、配列方向における突出部60とダミートレンチ部30との間に、コンタクト領域15、ベース領域14および蓄積領域16が設けられた例を示している。上述したように、突出部60とダミートレンチ部30との間には、コンタクト領域15、ベース領域14および蓄積領域16に代えて絶縁膜が形成されていてもよい。
 図10は、半導体装置100の他の構成例を示す斜視断面図である。本例の半導体装置100は、図1Aから図9に示したいずれかの半導体装置100に対して、底部側導電部48を更に備える。他の構成は、図1Aから図9に示したいずれかの半導体装置100と同一である。図10では、図3に示した半導体装置100に、底部側導電部48を追加した構成を示している。底部側導電部48は、ゲート導電部44およびダミー導電部34と同一の材料で形成されてよい。
 底部側導電部48は、ゲートトレンチ部40の内部に設けられる。より具体的には、底部側導電部48は、絶縁膜で内壁が覆われたゲートトレンチの内部において、ゲート導電部44よりもゲートトレンチの底部側に形成される。底部側導電部48は、ゲート導電部44とは電気的に絶縁される。本例では、底部側導電部48およびゲート導電部44の間には絶縁膜が形成されている。
 ゲート導電部44は、深さ方向において、少なくともベース領域14と対向する領域に渡って形成される。ゲート導電部44の底部は、蓄積領域16と対向して配置されてよい。底部側導電部48は、少なくとも一部の領域が、蓄積領域16よりも下方に設けられる。底部側導電部48は、全体が蓄積領域16よりも下方に設けられてもよい。
 底部側導電部48は、エミッタ電極52と電気的に接続されてよく、電気的にフローティングであってもよい。ゲートトレンチ部40の底部に底部側導電部48を設けることで、ゲートコレクタ間のミラー容量を低減することができる。
 ダミートレンチ部30には、底部側導電部48が形成されない。底部側導電部48を有するゲートトレンチ部40は、ダミートレンチ部30と同一の深さを有してよく、ダミートレンチ部30よりも深く形成されてもよい。ゲートトレンチ部40は、少なくとも底部側導電部48の分、ダミートレンチ部30よりも長くてもよい。この場合、ゲートトレンチ部40は、ダミートレンチ部30よりも幅が広くてよい。
 図11は、半導体装置100の他の構成例を示す斜視断面図である。本例の半導体装置100は、図1Aから図9に示したいずれかの半導体装置100に対して、底部側導電部48を更に備える。他の構成は、図1Aから図9に示したいずれかの半導体装置100と同一である。図11では、図8に示した半導体装置100に底部側導電部48を追加した構成を示している。
 底部側導電部48の構造は、図10に示した底部側導電部48と同様である。ただし、本例の底部側導電部48は、半導体基板10の内部において、ダミー導電部34と接続されている。より具体的には、底部側導電部48は、ゲート導電部44の下方に設けられた部分からダミー導電部34に向かって延伸して、ダミー導電部34に接続される。本例では、底部側導電部48は、y方向に延伸してダミー導電部34に接続される。このような構成により、底部側導電部48をエミッタ電位にすることができる。
 なお、底部側導電部48は、ゲート導電部44の下方に設けられた部分、および、ダミー導電部34に向かって延伸する部分の両方が絶縁膜に囲まれていることが好ましい。ゲート導電部44およびダミー導電部34の間には、コンタクト領域15等の半導体領域が配置されないことが好ましい。本例においてゲート導電部44およびダミー導電部34の間には絶縁膜42が設けられている。
 図11に示した、配列方向に延伸する底部側導電部48の製造方法の一例を説明する。まず、半導体基板10のおもて面に、配列方向において延伸するトレンチを形成する。次に、トレンチの内壁を覆う酸化膜を形成する。
 次に、トレンチの底部にポリシリコンを形成して、底部側導電部48およびダミー導電部34の底部分を形成する。次に、形成したポリシリコンの上部に絶縁膜を形成する。次に、ダミー導電部34を形成すべき領域の絶縁膜を除去して、トレンチ内にポリシリコンを形成する。次に、ゲート導電部44およびダミー導電部34となる領域を残して、ポリシリコンを除去する。つまり、ゲート導電部44およびダミー導電部34の間に絶縁用のトレンチを形成する。当該トレンチは、底部側導電部48の上部の絶縁膜まで形成する。そして、当該トレンチの内部に絶縁膜42を形成する。これにより、図11のyz断面に示した構造を形成できる。
 なお、底部側導電部48は、ゲートトレンチ部40およびダミートレンチ部30が形成されない領域まで延伸して形成されてもよい。底部側導電部48は、活性領域の外側まで延伸してよい。底部側導電部48は、ゲートトレンチ部40およびダミートレンチ部30が形成されない領域において、エミッタ電極52と電気的に接続してよい。この場合、動作領域120内においてコンタクトホール54を設けなくともよい。このため、半導体装置100の微細化が容易となる。
 図12は、半導体装置100の他の構成例を示す図である。本例の半導体装置100は、図1Aから図11において説明した半導体装置100に対して、周辺領域70を更に有する。他の構造は、図1Aから図11において説明したいずれかの半導体装置100と同一である。周辺領域70は、蓄積領域16において、深さ方向の厚みが、ゲートトレンチ部40からX方向に最も離れた位置よりも薄い領域を指す。周辺領域70は、分岐部110の周辺に配置されている。
 一例として周辺領域70は、半導体基板10のおもて面と平行な面内において、それぞれの分岐部110を囲むように配置される。周辺領域70の一部はコンタクトホール55と重なる位置に形成されてよく、周辺領域70の全体がコンタクトホール55と重ならない位置に形成されてもよい。
 図1Bに示したA-A断面のように、分岐部110におけるゲートトレンチ部40は、他の領域におけるゲートトレンチ部40よりも深く形成されてしまう場合がある。このため、分岐部110におけるゲートトレンチ部40は、電界が集中してアバランシェ破壊が生じやすい。
 図13は、図12におけるB-B断面を示す図である。B-B断面は、周辺領域70を含むxz断面に対応する。本例における周辺領域70は、蓄積領域16のうち、ゲートトレンチ部40と隣接する領域である。2つのゲートトレンチ部40の間に設けられた周辺領域70の、x軸方向における総幅は、x軸方向における蓄積領域16の他の領域の幅よりも小さくてよく、大きくてもよい。周辺領域70のx軸方向における幅は、y軸方向において分岐部110に近づくほど大きくなっていてもよい。また、蓄積領域16は、中央部において周辺領域70よりも-Z方向に突出する凸状の形状を有してよい。周辺領域70は、ゲートトレンチ部40に近づくほど薄く形成されてよい。ゲートトレンチ部40と接する周辺領域70の厚みは、蓄積領域16のX軸方向における中央部分の厚みの80%以下であってよく、50%以下であってもよい。
 分岐部110の近傍に周辺領域70を設けることで、分岐部110の近傍においてキャリアを引き抜きやすくなる。このため、分岐部110のゲートトレンチ部40におけるアバランシェ破壊を抑制できる。
 図14は、A-A断面の他の例を示す図である。本例の半導体装置100は、図10または図11に示した半導体装置100と同様に、ゲートトレンチ部40において底部側導電部48を有する。他の構造は、図1Aから図13に示したいずれかの半導体装置100の構造と同様である。
 本例の底部側導電部48は、分岐部110において下方に突出した突出領域49を有する。突出領域49は、他の底部側導電部48の領域と一体に形成されている。突出領域49は、分岐部110が下方に突出する長さと同一の長さだけ、下方に突出してよい。このような構成により、突出領域49がフィールドプレートとして機能して、分岐部110の底部における電界集中を緩和することができる。
 図15は、A-A断面の他の例を示す図である。本例の半導体装置100は、絶縁膜42の構造以外は、図1Aから図9に示したいずれかの半導体装置100の構造と同様である。
 本例の絶縁膜42は、分岐部110の底部において、膜厚領域43を有する。膜厚領域43は、分岐部110以外のゲートトレンチ部40の底部における絶縁膜42よりも厚い。膜厚領域43は、他の底部領域の絶縁膜42の2倍以上の厚みを有してよい。膜厚領域43の厚みは、分岐部110の底部における絶縁膜42の厚みの最大値を用いてよい。他の底部領域の絶縁膜42の厚みは、分岐部110以外の底部における絶縁膜42の厚みの平均値を用いてよい。このような構成により、分岐部110の底部におけるゲートトレンチ部40の耐圧を向上させることができる。
 また、図1Aから図15に示したそれぞれの半導体装置100において、ゲート導電部44をエミッタ電極に接続し、ダミー導電部34をゲート電極に接続してもよい。つまり、ゲート導電部44がダミー電極として機能して、ダミー導電部34がゲート電極として機能してもよい。このような構成によっても、分岐部110とチャネルが形成される領域とを離すことができる。
 ただし、図10、図11および図14に示した半導体装置100において、上述したようにゲートとエミッタとを入れ替える場合、底部側導電部48は、ダミー導電部34の下方に形成される。また、図11に示した半導体装置100においては、ダミー導電部34の下方に形成した底部側導電部48が、ゲート導電部44の方向に延伸して、ゲート導電部44の底部に接続する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
10・・・半導体基板、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、18・・・ドリフト領域、20・・・バッファ領域、22・・・コレクタ領域、24・・・コレクタ電極、26・・・層間絶縁膜、30・・・ダミートレンチ部、32・・・絶縁膜、34・・・ダミー導電部、36・・・ダミートレンチ、40・・・ゲートトレンチ部、42・・・絶縁膜、43・・・膜厚領域、44・・・ゲート導電部、46・・・ゲートトレンチ、48・・・底部側導電部、49・・・突出領域、52・・・エミッタ電極、54・・・コンタクトホール、55・・・コンタクトホール、60・・・突出部、70・・・周辺領域、100・・・半導体装置、110・・・分岐部、111・・・頂点、120・・・動作領域、130・・・引抜領域

Claims (16)

  1.  第1導電型の半導体基板と、
     前記半導体基板のおもて面側に設けられた第2導電型のベース領域と、
     前記半導体基板のおもて面から前記ベース領域を貫通して設けられた第1トレンチ部と、
     前記半導体基板のおもて面側において前記ベース領域の一部に設けられ、前記ベース領域よりも不純物濃度の高い第2導電型のコンタクト領域と
     を備え、
     前記第1トレンチ部は、前記半導体基板のおもて面において分岐部を有し、
     前記分岐部は、前記半導体基板のおもて面において前記コンタクト領域に囲まれて設けられる半導体装置。
  2.  前記第1トレンチ部は、前記半導体基板のおもて面において1以上の動作領域をそれぞれ囲むように形成され、
     前記半導体装置は、前記半導体基板のおもて面において前記動作領域内に形成され、前記第1トレンチ部とは分離した第2トレンチ部を更に備える
     を有する請求項1に記載の半導体装置。
  3.  前記第1トレンチ部はゲート電極に接続されたゲートトレンチ部であり、前記第2トレンチ部はエミッタ電極に接続されたダミートレンチ部である
     請求項2に記載の半導体装置。
  4.  前記ダミートレンチ部が形成された前記動作領域内には、第1導電型のエミッタ領域が形成されている
     請求項3に記載の半導体装置。
  5.  前記半導体基板のおもて面の上方に形成された層間絶縁膜を更に備え、
     前記層間絶縁膜は、前記動作領域と対向する位置に、前記エミッタ領域および前記コンタクト領域の少なくとも一部分を露出させるコンタクトホールを有する
     請求項4に記載の半導体装置。
  6.  前記ゲートトレンチ部は、前記半導体基板のおもて面において1以上の引抜領域をそれぞれ囲むように形成され、
     それぞれの前記引抜領域には、前記エミッタ領域が形成されていない
     請求項4または5に記載の半導体装置。
  7.  前記引抜領域は、前記ゲートトレンチ部を介して前記動作領域と隣接して配置されている
     請求項6に記載の半導体装置。
  8.  2つの前記引抜領域が、前記動作領域の両側に配置されている
     請求項7に記載の半導体装置。
  9.  前記半導体基板のおもて面において、前記分岐部から前記エミッタ領域までの距離は、前記分岐部から前記コンタクト領域までの距離よりも大きい
     請求項4から8のいずれか一項に記載の半導体装置。
  10.  前記ゲートトレンチ部は、前記ダミートレンチ部に向かって突出する突出部を有する
     請求項3から9のいずれか一項に記載の半導体装置。
  11.  前記ゲートトレンチ部は、
     前記半導体基板のおもて面から前記ベース領域を貫通して設けられたゲートトレンチの内壁に形成された絶縁膜と、
     前記絶縁膜で内壁が覆われた前記ゲートトレンチの内部に形成されたゲート導電部と、
     前記絶縁膜で内壁が覆われた前記ゲートトレンチの内部において、前記ゲート導電部よりも前記ゲートトレンチの底部側に形成され、前記ゲート導電部と絶縁されている底部側導電部と
     を有する請求項3から10のいずれか一項に記載の半導体装置。
  12.  前記ダミートレンチ部は、
     前記半導体基板のおもて面から前記ベース領域を貫通して設けられたダミートレンチの内壁に形成された絶縁膜と、
     前記絶縁膜で内壁が覆われた前記ダミートレンチの内部に形成されたダミー導電部と
     を有し、
     前記底部側導電部は、前記半導体基板の内部において前記ダミー導電部と接続されている
     請求項11に記載の半導体装置。
  13.  前記底部側導電部は、前記分岐部において下方に突出した突出領域を有する
     請求項11または12に記載の半導体装置。
  14.  前記第1トレンチ部は、前記半導体基板のおもて面から前記ベース領域を貫通して設けられたトレンチの内壁に形成された絶縁膜を有し、
     前記第1トレンチ部の前記分岐部の底部における前記絶縁膜の厚みは、前記第1トレンチ部の前記分岐部以外の底部における前記絶縁膜の厚みよりも厚い
     請求項1から10のいずれか一項に記載の半導体装置。
  15.  前記半導体基板において前記ベース領域の下方に形成された蓄積領域を更に備え、
     前記第1トレンチ部は、前記蓄積領域を貫通して設けられる
     請求項1から14のいずれか一項に記載の半導体装置。
  16.  前記分岐部を囲んで、前記蓄積領域に、前記第1トレンチ部に接する位置の前記蓄積領域の深さ方向の厚みが、隣り合う前記第1トレンチ部から前記半導体基板のおもて面と平行な方向に最も離れた位置の前記蓄積領域の厚みよりも薄い周辺領域が設けられている
     請求項15に記載の半導体装置。
PCT/JP2016/086285 2015-12-11 2016-12-06 半導体装置 WO2017099096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017555086A JP6451869B2 (ja) 2015-12-11 2016-12-06 半導体装置
CN201680032134.9A CN107636836B (zh) 2015-12-11 2016-12-06 半导体装置
US15/826,666 US10818782B2 (en) 2015-12-11 2017-11-29 Insulated-gate bipolar transistor (IGBT) including a branched gate trench

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015242474 2015-12-11
JP2015-242474 2015-12-11
JP2016158920 2016-08-12
JP2016-158920 2016-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/826,666 Continuation US10818782B2 (en) 2015-12-11 2017-11-29 Insulated-gate bipolar transistor (IGBT) including a branched gate trench

Publications (1)

Publication Number Publication Date
WO2017099096A1 true WO2017099096A1 (ja) 2017-06-15

Family

ID=59013192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086285 WO2017099096A1 (ja) 2015-12-11 2016-12-06 半導体装置

Country Status (4)

Country Link
US (1) US10818782B2 (ja)
JP (1) JP6451869B2 (ja)
CN (1) CN107636836B (ja)
WO (1) WO2017099096A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018100237A1 (de) * 2018-01-08 2019-07-11 Infineon Technologies Austria Ag Leistungshalbleiterbauelement mit dU/dt Steuerbarkeit
CN111052394A (zh) * 2018-03-15 2020-04-21 富士电机株式会社 半导体装置
JP2020161712A (ja) * 2019-03-27 2020-10-01 ローム株式会社 半導体装置
JP2021072418A (ja) * 2019-11-01 2021-05-06 三菱電機株式会社 半導体装置およびその製造方法
JP2021136311A (ja) * 2020-02-26 2021-09-13 三菱電機株式会社 半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125879B3 (de) * 2016-12-29 2018-06-21 Infineon Technologies Ag Halbleitervorrichtung mit einer IGBT-Region und einer nicht schaltbaren Diodenregion
CN108922923B (zh) * 2018-07-10 2020-09-29 电子科技大学 一种槽栅双极型晶体管
US11069770B2 (en) * 2018-10-01 2021-07-20 Ipower Semiconductor Carrier injection control fast recovery diode structures
JP7250473B2 (ja) * 2018-10-18 2023-04-03 三菱電機株式会社 半導体装置
CN109755300B (zh) * 2018-11-28 2020-11-10 株洲中车时代半导体有限公司 一种沟槽igbt芯片
JP7337619B2 (ja) 2019-09-17 2023-09-04 株式会社東芝 半導体装置
KR102315054B1 (ko) * 2020-05-15 2021-10-21 현대모비스 주식회사 전력 반도체 소자 및 전력 반도체 칩
CN112018173A (zh) * 2020-08-19 2020-12-01 广东美的白色家电技术创新中心有限公司 一种半导体器件及其制作方法、家用电器
JP7438080B2 (ja) * 2020-10-30 2024-02-26 三菱電機株式会社 半導体装置
CN114975577A (zh) * 2021-02-19 2022-08-30 苏州东微半导体股份有限公司 半导体器件
CN113871469A (zh) * 2021-09-16 2021-12-31 上海擎茂微电子科技有限公司 一种用于优化饱和电压/关断损耗的绝缘栅双极型晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221012A (ja) * 2006-02-20 2007-08-30 Fuji Electric Device Technology Co Ltd Mos型半導体装置とその製造方法
JP2012059841A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 半導体装置
JP2013120809A (ja) * 2011-12-07 2013-06-17 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
WO2015182233A1 (ja) * 2014-05-26 2015-12-03 トヨタ自動車株式会社 半導体装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823435B2 (ja) 2001-05-29 2011-11-24 三菱電機株式会社 半導体装置及びその製造方法
JP4090747B2 (ja) 2002-01-31 2008-05-28 三菱電機株式会社 絶縁ゲート型半導体装置
WO2003103056A2 (en) * 2002-05-31 2003-12-11 Koninklijke Philips Electronics N.V. Trench-gate semiconductor device,corresponding module and apparatus ,and method of operating the device
JP2004022941A (ja) * 2002-06-19 2004-01-22 Toshiba Corp 半導体装置
JP4623956B2 (ja) * 2003-11-12 2011-02-02 株式会社豊田中央研究所 Igbt
JP4765000B2 (ja) 2003-11-20 2011-09-07 富士電機株式会社 絶縁ゲート型半導体装置
EP1760790B1 (en) * 2004-05-12 2019-04-03 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP4731848B2 (ja) 2004-07-16 2011-07-27 株式会社豊田中央研究所 半導体装置
CN102687264B (zh) * 2009-12-25 2014-08-06 松下电器产业株式会社 半导体装置
JP5647420B2 (ja) 2010-02-10 2014-12-24 株式会社豊田中央研究所 半導体装置
JP5488691B2 (ja) * 2010-03-09 2014-05-14 富士電機株式会社 半導体装置
JP5580150B2 (ja) * 2010-09-09 2014-08-27 株式会社東芝 半導体装置
DE112011104322T5 (de) * 2010-12-10 2013-10-02 Mitsubishi Electric Corporation Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
JP5568036B2 (ja) 2011-03-09 2014-08-06 トヨタ自動車株式会社 Igbt
CN103890955B (zh) * 2011-07-27 2017-06-13 丰田自动车株式会社 半导体器件
US8785278B2 (en) * 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
JP5983864B2 (ja) * 2013-04-02 2016-09-06 トヨタ自動車株式会社 トレンチゲート電極を利用するigbt
JP2015138789A (ja) * 2014-01-20 2015-07-30 トヨタ自動車株式会社 半導体装置
JP2015162610A (ja) 2014-02-27 2015-09-07 株式会社東芝 半導体装置
JP6135636B2 (ja) * 2014-10-17 2017-05-31 トヨタ自動車株式会社 半導体装置
JP6003961B2 (ja) * 2014-11-04 2016-10-05 トヨタ自動車株式会社 半導体装置
JP6478316B2 (ja) * 2014-11-10 2019-03-06 ローム株式会社 トレンチゲート構造を備えた半導体装置およびその製造方法
JP2016167539A (ja) * 2015-03-10 2016-09-15 株式会社東芝 半導体装置
KR101745776B1 (ko) * 2015-05-12 2017-06-28 매그나칩 반도체 유한회사 전력용 반도체 소자
CN104882477B (zh) * 2015-06-03 2018-04-06 杭州士兰集成电路有限公司 沟槽栅型igbt器件及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221012A (ja) * 2006-02-20 2007-08-30 Fuji Electric Device Technology Co Ltd Mos型半導体装置とその製造方法
JP2012059841A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 半導体装置
JP2013120809A (ja) * 2011-12-07 2013-06-17 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
WO2015182233A1 (ja) * 2014-05-26 2015-12-03 トヨタ自動車株式会社 半導体装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018100237A1 (de) * 2018-01-08 2019-07-11 Infineon Technologies Austria Ag Leistungshalbleiterbauelement mit dU/dt Steuerbarkeit
US10644141B2 (en) 2018-01-08 2020-05-05 Infineon Technologies Austria Ag Power semiconductor device with dV/dt controllability
DE102018100237B4 (de) 2018-01-08 2022-07-21 Infineon Technologies Austria Ag Leistungshalbleiterbauelement mit dU/dt Steuerbarkeit und Verfahren zum Herstellen eines Leistungshalbleiterbauelements
CN111052394A (zh) * 2018-03-15 2020-04-21 富士电机株式会社 半导体装置
US11817495B2 (en) 2018-03-15 2023-11-14 Fuji Electric Co., Ltd. Semiconductor device
CN111052394B (zh) * 2018-03-15 2024-01-16 富士电机株式会社 半导体装置
JP2020161712A (ja) * 2019-03-27 2020-10-01 ローム株式会社 半導体装置
JP7290973B2 (ja) 2019-03-27 2023-06-14 ローム株式会社 半導体装置
JP2021072418A (ja) * 2019-11-01 2021-05-06 三菱電機株式会社 半導体装置およびその製造方法
JP7325301B2 (ja) 2019-11-01 2023-08-14 三菱電機株式会社 半導体装置およびその製造方法
JP2021136311A (ja) * 2020-02-26 2021-09-13 三菱電機株式会社 半導体装置
JP7331733B2 (ja) 2020-02-26 2023-08-23 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20180097094A1 (en) 2018-04-05
CN107636836A (zh) 2018-01-26
JPWO2017099096A1 (ja) 2018-03-29
CN107636836B (zh) 2020-11-27
US10818782B2 (en) 2020-10-27
JP6451869B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6451869B2 (ja) 半導体装置
JP6540906B2 (ja) 半導体装置
US11195941B2 (en) Semiconductor device
JP5701913B2 (ja) 半導体装置
JPWO2018220879A1 (ja) 半導体装置
JP6576926B2 (ja) 半導体装置のエッジ終端および対応する製造方法
US11201208B2 (en) Semiconductor device
JP2023065461A (ja) 半導体装置
JP2019021787A (ja) 半導体装置
JP2018026472A (ja) 半導体装置
JP2019186312A (ja) 半導体装置
JP7327672B2 (ja) 半導体装置
JP5694285B2 (ja) 半導体装置
JP2018049866A (ja) 半導体装置
JP2015141921A (ja) 半導体装置
JP2005150348A (ja) 半導体装置
JP2013069871A (ja) 半導体装置
JP2009111237A (ja) 半導体素子
JP5774744B2 (ja) 半導体装置
CN112889158B (zh) 半导体装置
US12027578B2 (en) Semiconductor device
JP7222758B2 (ja) 半導体装置
US9502498B2 (en) Power semiconductor device
JP2015119198A (ja) 半導体装置
JP2024022428A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872994

Country of ref document: EP

Kind code of ref document: A1