WO2014208731A1 - 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体 - Google Patents

磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体 Download PDF

Info

Publication number
WO2014208731A1
WO2014208731A1 PCT/JP2014/067194 JP2014067194W WO2014208731A1 WO 2014208731 A1 WO2014208731 A1 WO 2014208731A1 JP 2014067194 W JP2014067194 W JP 2014067194W WO 2014208731 A1 WO2014208731 A1 WO 2014208731A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexagonal ferrite
ferrite magnetic
particles
magnetic particles
aqueous solution
Prior art date
Application number
PCT/JP2014/067194
Other languages
English (en)
French (fr)
Inventor
白田 雅史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015524137A priority Critical patent/JP5916952B2/ja
Publication of WO2014208731A1 publication Critical patent/WO2014208731A1/ja
Priority to US14/757,517 priority patent/US9748026B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites

Definitions

  • the present invention relates to a hexagonal ferrite magnetic powder for magnetic recording, and more particularly to a hexagonal ferrite magnetic powder for magnetic recording suitable as a magnetic powder for a coating type magnetic recording medium having high coating film durability. . Furthermore, the present invention relates to a method for producing hexagonal ferrite magnetic particles suitable for producing the magnetic powder, and a magnetic recording medium having a magnetic layer containing the magnetic powder.
  • ferromagnetic metal magnetic particles have been mainly used for the magnetic layer of high-density recording magnetic recording media.
  • Ferromagnetic metal magnetic particles are needle-like particles mainly composed of iron, and have been used for magnetic recording media for various purposes in pursuit of finer particle size and higher coercive force for high-density recording.
  • hexagonal ferrite magnetic particles Due to the increase in the amount of recorded information, high-density recording is always required for magnetic recording media. However, in order to achieve higher density recording, the improvement of the ferromagnetic metal magnetic particles is starting to appear.
  • hexagonal ferrite magnetic particles have a coercive force that is as large as that used in permanent magnet materials, and the magnetic anisotropy that is the basis of coercive force is derived from the crystal structure, so that even when the particles are miniaturized, the high coercive force is high. Magnetic force can be maintained.
  • a magnetic recording medium using hexagonal ferrite magnetic particles in the magnetic layer is excellent in high density characteristics due to its perpendicular component.
  • the hexagonal ferrite magnetic particles are a ferromagnetic material suitable for high density.
  • Patent Document 1 discloses that in the production of hexagonal ferrite magnetic particles by a glass crystallization method, by using a raw material mixture containing Al, hexagonal ferrite magnetic particles having Al uniformly deposited on the surface are obtained. ing.
  • Patent Document 1 it is said that by using the hexagonal ferrite magnetic particles obtained by the above production method, a magnetic recording medium with little wear of the dispersion medium at the time of dispersion, less output reduction and head wear can be obtained.
  • magnetic recording media particularly high-density recording media such as backup tapes, are also required to be usable with high reliability over a long period of time.
  • it is desirable that the magnetic layer has a high coating film durability so that it is not greatly shaved by sliding with the head during recording and reproduction.
  • the hexagonal ferrite magnetic particles obtained by the production method described in Patent Document 1 are sufficient to form a magnetic layer having high coating film durability. It wasn't.
  • an object of the present invention is to provide a hexagonal ferrite magnetic powder for magnetic recording suitable for producing a magnetic recording medium having high coating film durability.
  • the present inventors have obtained hexagonal ferrite magnetic particles obtained by this production method,
  • the film durability of the magnetic recording medium obtained using the hexagonal ferrite magnetic particles is that the Al compound deposited on the surface is hydroxide (aluminum hydroxide) or amorphous aluminum oxide. It was inferred that the cause was low.
  • the reason why the Al compound deposited on the particle surface exists as a hydroxide or an amorphous oxide is that the Al compound is a part of Al in the acid treatment or cleaning step in the glass crystallization method.
  • the present inventor has deposited a crystalline metal oxide on the surface of the hexagonal ferrite magnetic particles, so that a magnetic recording medium formed using this has been obtained. It was newly found that the coating film has high durability. Furthermore, the present inventor newly found that hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface can be obtained by a continuous hydrothermal synthesis process (also referred to as “supercritical synthesis method”). . The present invention has been completed based on the above findings.
  • Hexagonal ferrite magnetic powder for magnetic recording comprising hexagonal ferrite magnetic particles with a crystalline metal oxide deposited on the surface, About.
  • the hexagonal ferrite magnetic powder for magnetic recording has an activation volume in the range of 800 to 1600 nm 3 .
  • the crystalline metal oxide is a crystalline oxide of a metal selected from the group consisting of Al, Zr, and Ce.
  • the hexagonal ferrite magnetic particles have hexagonal ferrite magnetic particles having a crystalline metal oxide in an amount of 0.5 to 20 atomic% with respect to 100 atomic% Fe deposited on the surface. It is.
  • the hexagonal ferrite magnetic particles are barium ferrite magnetic particles. In another aspect, the hexagonal ferrite magnetic particles are strontium ferrite magnetic particles.
  • a further aspect of the invention provides: By heating and pressurizing an aqueous solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor, the crystalline metal oxide converted from the precursor is precipitated on the surface of the hexagonal ferrite magnetic particles.
  • a method for producing hexagonal ferrite magnetic particles including a crystalline metal oxide deposited on a surface thereof, About.
  • the heating and pressurizing are carried out by continuously feeding the aqueous solution to a reaction channel that heats the fluid flowing inside to 350 ° C. or higher and applies a pressure of 20 MPa or higher. Do.
  • the aqueous solution is added to a liquid feed path in which water heated to 350 ° C. or higher and a pressure of 20 MPa or higher is continuously fed, and the water, the aqueous solution, The liquid crystal was heated to 350 ° C. or higher and continuously fed while applying a pressure of 20 MPa or more, so that the crystalline metal oxide converted from the precursor was precipitated on the surfaces of the hexagonal ferrite magnetic particles.
  • the above-described production method includes mixing the aqueous solution with an aqueous solution containing hexagonal ferrite magnetic particles and the crystalline metal oxide precursor and an organic modifier solution containing an organic modifier in an organic solvent. It further includes preparing by.
  • the above manufacturing method further includes producing the hexagonal ferrite magnetic particles by a glass crystallization method.
  • the manufacturing method described above includes the hexagonal ferrite magnetic particles, Precipitating hexagonal ferrite precursor particles by mixing an iron salt and an alkaline earth metal salt in a basic aqueous solution; Mixing the aqueous solution containing the precipitated hexagonal ferrite precursor particles with an organic modifier solution containing an organic modifier in an organic solvent; Adding the aqueous solution obtained by the above mixing to a liquid supply path in which water heated to 350 ° C. or higher and pressure of 20 MPa or higher is continuously supplied; and By heating the mixed liquid of the water and the aqueous solution to 350 ° C. or higher and continuously feeding the liquid while applying a pressure of 20 MPa or more in the liquid feeding path, the hexagonal ferrite precursor particles are obtained. Conversion to hexagonal ferrite particles; It further includes making.
  • the above hexagonal ferrite magnetic powder for magnetic recording is produced by the manufacturing method described above.
  • a further aspect of the invention provides: A magnetic recording medium having a magnetic layer comprising a ferromagnetic powder and a binder on a nonmagnetic support,
  • the ferromagnetic powder is a magnetic recording medium that is the above-described hexagonal ferrite magnetic powder for magnetic recording, About.
  • a magnetic recording medium having high coating film durability can be provided. Furthermore, by using a fine-grained magnetic material as a hexagonal ferrite magnetic powder for magnetic recording, a magnetic recording medium suitable for a high-density recording medium having excellent electromagnetic conversion characteristics with high coating film durability is provided. Is also possible.
  • FIG. 1 is a schematic explanatory diagram of a production apparatus suitable for a continuous hydrothermal synthesis process (supercritical synthesis method).
  • One aspect of the present invention relates to a magnetic recording hexagonal ferrite magnetic powder comprising hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface thereof.
  • the reason why a hexagonal ferrite magnetic powder having a crystalline metal oxide deposited on the surface can provide a magnetic recording medium having high coating durability is not necessarily clear, but the crystalline metal oxide is not coated on the surface.
  • the inventor has inferred that the deposited hexagonal ferrite is in a state in which hydroxyl groups are regularly arranged on the particle surface, and is easily adsorbed to the binder.
  • the crystalline metal oxide is different from the hexagonal ferrite in composition, crystal structure, or both composition and crystal structure.
  • the crystalline metal oxide has at least one diffraction pattern belonging to each oxide at a diffraction angle of 10 ° or more in X-ray diffraction analysis, or a spot in electron diffraction. Having at least one pattern.
  • the presence or absence of crystallinity is determined by X-ray diffraction analysis.
  • having a diffraction pattern or a spot pattern means that the ratio of the maximum peak intensity of the crystalline metal oxide and the maximum peak intensity of the hexagonal ferrite is 1/1000 or more.
  • the measurement sample can be obtained by extracting the magnetic powder from the magnetic layer.
  • the magnetic layer is peeled off from the magnetic recording medium, 0.1 to 100 ml of n-butylamine is added to 100 to 500 mg of this magnetic layer, sealed in a glass tube, set in a thermal decomposition apparatus, and heated at 100 ° C. for about 3 days. To do.
  • the contents are taken out from the glass tube and centrifuged to separate the liquid and solids.
  • the separated solid content is washed with acetone to obtain a powder sample for X-ray analysis. Since the oxide is hardly damaged by heating at about 100 ° C. or immersion in an organic solvent, the crystallinity of the metal oxide deposited on the particle surface can be evaluated.
  • the electron diffraction analysis may use the measurement sample taken out from the magnetic layer as described above. By irradiating the medium itself with the electron beam from the magnetic layer side, each of the hexagonal ferrite spot patterns, The pattern attributed to the oxide can also be confirmed.
  • hexagonal ferrite magnetic powder for magnetic recording according to one embodiment of the present invention (hereinafter, also referred to as “hexagonal ferrite magnetic powder” or “magnetic powder”) will be described in more detail.
  • the above hexagonal ferrite magnetic powder can be obtained by subjecting hexagonal ferrite magnetic particles to a crystalline metal oxide deposition treatment. Details of the deposition process will be described later.
  • the hexagonal ferrite magnetic particles on which the crystalline metal oxide is deposited (hereinafter also referred to as “raw material hexagonal ferrite magnetic particles” or “raw material particles”) are not particularly limited as the raw material hexagonal ferrite magnetic particles, and are publicly known. For example, those obtained by the coprecipitation method, reverse micelle method, hydrothermal synthesis method, glass crystallization method, etc., or commercially available products can be used.
  • the glass crystallization method is excellent in terms of obtaining a magnetic powder having fine particle suitability and single particle dispersibility desired for a magnetic recording medium, narrow particle size distribution, etc. It has been broken. Therefore, in one embodiment of the present invention, it is preferable to prepare raw material particles by a glass crystallization method.
  • the method for producing hexagonal ferrite magnetic powder by the glass crystallization method generally comprises the following steps.
  • a step of melting a raw material mixture containing a hexagonal ferrite forming component (optionally including a coercive force adjusting component) and a glass forming component to obtain a melt (melting step); (2) A step of rapidly cooling the melt to obtain an amorphous body (amorphization step); (3) A step of heat-treating the amorphous body to precipitate hexagonal ferrite particles (crystallization step); (4) A step of collecting hexagonal ferrite magnetic particles precipitated from the heat-treated product (particle collection step).
  • raw material particles can also be obtained by a synthesis method using a continuous hydrothermal process that has been proposed as a method for synthesizing nanoparticles.
  • This synthesis method uses the high reactivity of subcritical to supercritical water by heating and pressurizing an aqueous fluid containing hexagonal ferrite precursor particles into the reaction channel. This is a method of converting precursor particles into ferrite.
  • specific embodiments of the synthesis method will be described.
  • the hexagonal ferrite precursor particles can be obtained by mixing an iron salt and an alkaline earth metal salt in a basic aqueous solution.
  • a salt containing iron and an alkaline earth metal is usually precipitated in the form of particles, preferably colloidal particles.
  • the particles precipitated here are then ferrite in the presence of subcritical to supercritical water to form hexagonal ferrite magnetic particles.
  • alkaline earth metal salts such as barium, strontium, calcium and lead can be used.
  • the type of alkaline earth metal may be determined according to the desired hexagonal ferrite. For example, when it is desired to obtain barium ferrite, barium salt is used as the alkaline earth metal salt, and when strontium ferrite is desired, strontium salt is used.
  • a water-soluble salt is preferable, and for example, hydroxides, chlorides, bromides, iodides and other halides, nitrates and the like can be used.
  • the iron salt a water-soluble salt of iron, for example, halides such as chloride, bromide, iodide, nitrate, sulfate, carbonate, organic acid salt and complex salt can be used.
  • the mixing ratio of the iron salt and the alkaline earth metal salt may be determined according to the desired ferrite composition.
  • a salt of an arbitrary element capable of forming the hexagonal ferrite may be added together with the iron and the alkaline earth metal. Examples of such optional elements include Nb, Co, Ti, Zn, and the like. What is necessary is just to determine the addition amount of the salt of the said arbitrary elements according to a desired ferrite composition.
  • particles hexagonal ferrite precursor particles containing the elements contained in the salt are precipitated.
  • the particles that precipitate here are then ferrite and converted to hexagonal ferrite.
  • the base contained in the basic aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia and the like.
  • the amount of the base used in the aqueous solution is preferably about 0.1 to 10 times, more preferably about 0.2 to 8 times, based on the mass, with respect to the total amount of salt added to the aqueous solution. preferable. The higher the base concentration, the more the precipitated particles tend to become fine particles.
  • hexagonal ferrite particles can be obtained.
  • a fluid containing water as a solvent is heated to 350 ° C. or higher and a pressure of 20 MPa or higher is applied, the water contained in the fluid becomes in a subcritical to supercritical state.
  • Specific embodiments of the step of converting the hexagonal ferrite precursor particles into hexagonal ferrite include the following embodiments.
  • An aqueous solution containing hexagonal ferrite precursor particles is continuously sent to a reaction flow path in which a fluid flowing inside is heated to 350 ° C. or higher and pressurized by applying a pressure of 20 MPa or higher.
  • the hexagonal ferrite precursor particles are converted into hexagonal ferrite in the reaction channel.
  • An aqueous solution containing hexagonal ferrite precursor particles is added to a liquid supply path in which water heated to 350 ° C. or higher and pressure of 20 MPa or higher is continuously supplied, and the water And a solution containing hexagonal ferrite precursor particles are heated to 350 ° C. or higher and continuously fed while applying a pressure of 20 MPa or more, so that the hexagonal ferrite precursor particles become hexagonal ferrite. Convert to
  • the aqueous solution containing the hexagonal ferrite precursor particles is brought into the subcritical to supercritical state in that the water in the subcritical to supercritical state is brought into contact with the aqueous solution containing the hexagonal ferrite precursor particles.
  • This is different from the aspect (1) in which heating and pressurization are performed.
  • Aspect (2) is advantageous in that the hexagonal ferrite precursor particles are instantaneously placed in a highly reactive state by being brought into contact with water in a subcritical to supercritical state, so that ferritization proceeds at an early stage. .
  • treating hexagonal ferrite magnetic particles with an organic modifier is an effective means for preventing aggregation between particles.
  • an organic modifier can be added to the reaction system after the start of ferritization, as described, for example, in JP-A-2009-208969.
  • an aqueous solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor which will be described later, can be added to the aqueous solution before heating and pressurizing. Details thereof will be described later.
  • the step is applied to the above-described embodiment (1) or embodiment (2).
  • the organic modifier can be adhered to the hexagonal ferrite precursor particles, the aggregation of the particles can be more effectively prevented, and extremely fine hexagonal ferrite magnetic particles can be obtained.
  • organic modifier examples include organic carboxylic acids, organic nitrogen compounds, organic sulfur compounds, and organic phosphorus compounds.
  • organic carboxylic acids include aliphatic carboxylic acids, alicyclic carboxylic acids, aromatic carboxylic acids, and the like, and aliphatic carboxylic acids are preferred.
  • the aliphatic carboxylic acid may be a saturated aliphatic carboxylic acid or an unsaturated aliphatic carboxylic acid, and is preferably an unsaturated carboxylic acid.
  • Carbon number of carboxylic acids is not particularly limited, and is, for example, 2 or more and 24 or less, preferably 5 or more and 20 or less, more preferably 8 or more and 16 or less.
  • aliphatic carboxylic acid examples include oleic acid, linoleic acid, linolenic acid, caprylic acid, capric acid, lauric acid, behenic acid, stearic acid, myristic acid, palmitic acid, myristoleic acid, palmitoleic acid, vaccenic acid, Examples include eicosenoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, and icosanoic acid.
  • the present invention is not limited to this.
  • Organic nitrogen compounds include organic amines, organic amide compounds, nitrogen-containing heterocyclic compounds, and the like.
  • Organic amines may be any of primary amines, secondary amines, and tertiary amines.
  • primary amines and secondary amines are used.
  • aliphatic amines etc. are mentioned, and primary aliphatic amines and secondary aliphatic amines can be mentioned.
  • Carbon number of amines is not specifically limited, For example, 5 or more and 24 or less, Preferably they are 8 or more and 20 or less, More preferably, they are 12 or more and 18 or less.
  • organic amines include, for example, alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and dioctylamine.
  • alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and dioctylamine.
  • alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decylamine, dode
  • nitrogen-containing heterocyclic compounds include heterocyclic compounds having a saturated or unsaturated 3- to 7-membered ring containing 1 to 4 nitrogen atoms.
  • a sulfur atom, an oxygen atom, or the like may be contained as a hetero atom.
  • Specific examples include pyridine, lutidine, collidine, quinolines and the like.
  • Organic sulfur compounds include organic sulfides, organic sulfoxides, sulfur-containing heterocyclic compounds and the like. Specific examples include dialkyl sulfides such as dibutyl sulfide, dialkyl sulfoxides such as dimethyl sulfoxide and dibutyl sulfoxide, and sulfur-containing heterocyclic compounds such as thiophene, thiolane, and thiomorpholine.
  • organic phosphorus compounds include phosphate esters, phosphine, phosphine oxides, trialkylphosphine, phosphite esters, phosphonate esters, phosphinate esters, phosphinate esters, Examples thereof include phosphinic acid esters.
  • trialkylphosphine such as tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide (TOPO), tridecylphosphine oxide, etc.
  • trialkylphosphine oxides such as tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide (TOPO), tridecylphos
  • the organic modifier is preferably mixed in an amount of about 1 to 1000 parts by mass with respect to 100 parts by mass of the hexagonal ferrite precursor particles. Thereby, aggregation of particle
  • the organic modifier may be added as it is to the aqueous solution containing the hexagonal ferrite precursor particles, but it is possible to add the organic modifier as a solution containing the organic modifier in an organic solvent (organic modifier solution). It is preferable for obtaining ferrite magnetic particles.
  • the organic solvent those miscible with water or hydrophilic are preferable. From this point, the use of a polar solvent is preferable.
  • the polar solvent means a solvent satisfying at least one of a dielectric constant of 15 or more and a solubility parameter of 8 or more.
  • Preferred organic solvents include, for example, alcohols, ketones, aldehydes, nitriles, lactams, oximes, amides, ureas, amines, sulfides, sulfoxides, phosphate esters, carboxylic acids or carboxylic acids. Examples thereof include esters which are acid derivatives, carbonic acid or carbonic acid esters, ethers and the like.
  • alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, cyclopentanol, hexanol, cyclohexanol, heptanol, cycloheptanol, octanol, cyclooctanol, nonanol, decanol, dodecanol, tridecanol, tetradecanol Nord, heptadecanol, cycloheptanol, methoxyethanol, chloroethanol, trifluoroethanol, hexafluoropropanol, phenol, benzyl alcohol, ethylene glycol, triethylene glycol and the like.
  • ketones or aldehydes examples include acetone, 2-butanone, 3-pentanone, diethyl ketone, methyl ethyl ketone, methyl propyl ketone, butyl methyl ketone, cyclohexanone, acetophenone, and the like.
  • nitriles examples include acetonitrile and benzonitrile.
  • lactams examples include ⁇ -caprolactam.
  • oximes examples include cyclohexanone oxime.
  • amides or ureas examples include formamide, N-methylformamide, N, N-dimethylformamide (DMF), N, N′-dimethylacetamide, pyrrolidone, N-methylpyrrolidone, N, N′-dimethylethyleneurea, N , N′-dimethylpropyleneurea, N, N-dimethylformamide, tetrahydrofuran and the like.
  • amines examples include quinoline, triethylamine, and tributylamine.
  • Examples of the sulfoxides include sulfolane.
  • Examples of phosphoric acid esters include hexamethylene phosphoric acid.
  • carboxylic acids or esters examples include ethyl acetate, methyl acetate, formic acid, acetic acid, dimethyl carbonate, diethyl carbonate, and propylene carbonate.
  • ethers examples include diglyme, diethyl ether and anisole.
  • the organic modifier solution has a ratio of water and the organic solvent in the mixed solution after mixing with the aqueous solution containing the hexagonal ferrite precursor particles. It is preferable to add to the aqueous solution so that the ratio of water / (water + organic solvent) on a volume basis is in the range of 0.2 to 0.8, and is added in the range of 0.25 to 0.75 More preferably.
  • the pH of the mixed solution is preferably 4 or more and 14 or less as a value at a liquid temperature of 25 ° C. from the viewpoint of obtaining fine particles and hexagonal ferrite magnetic particles having a small particle size distribution, and is 7 or more and 13 or less.
  • an acid or a base is optionally added to adjust one or both of an aqueous solution containing hexagonal ferrite precursor particles, an organic modifier solution, or a mixed solution obtained by mixing both solutions.
  • an acid and base used here those usually used for pH adjustment can be used without any limitation.
  • FIG. 1 is a schematic explanatory diagram of a production apparatus suitable for a continuous hydrothermal synthesis process.
  • the production apparatus shown in FIG. 1 includes liquid tanks 1, 2, 3, heating means 4 (4 a to 4 c), pressurized liquid feeding means 5 a, 5 b, 5 c, reactor 6, cooling unit 7, filtration means 8, pressure regulating valve. 9 and the recovery unit 10, fluid is sent from each liquid tank to the pipes 100, 101, and 102.
  • water such as purified water or distilled water is introduced into the liquid tank 1
  • an aqueous solution containing hexagonal ferrite precursor particles is introduced into the liquid tank 2
  • an organic modifier solution is introduced into the liquid tank 3.
  • the water introduced into the liquid tank 1 is fed into the pipe 100 while being pressurized by the pressurized liquid feeding means 5a, and heated in the heating means 4 to become subcritical to supercritical water and mixed. Part M1 is reached.
  • the aqueous solution containing the hexagonal ferrite precursor particles fed from the liquid tank 2 to the pipe 101 by the pressurized liquid feeding means 5b is sent from the liquid tank 3 to the pipe 102 by the pressurized liquid feeding means 5c. After joining the solution, it reaches the mixing section M1.
  • the organic modifier is deposited on the surface of the hexagonal ferrite precursor particles.
  • the organic modifier is deposited on the hexagonal ferrite precursor particles before contacting with subcritical to supercritical water, which is advantageous in obtaining fine hexagonal ferrite.
  • the aqueous solution containing the hexagonal ferrite precursor particles comes into contact with water in a subcritical to supercritical state, so that the precursor is ferritized. Thereafter, heating is continued in the reactor, and further pressure is applied by the pressurizing means 5a, so that water contained in the reaction system in the reactor 6 becomes a subcritical to supercritical state, and the ferrite formation of the precursor further proceeds. . Thereafter, a solution containing hexagonal ferrite magnetic particles in which the hexagonal ferrite precursor particles are converted to ferrite is discharged from the discharge port M2. The discharged solution is cooled by being mixed with cold water in the cooling unit 7, and then hexagonal ferrite magnetic particles are collected by a filtering means (filter or the like) 8. The hexagonal ferrite magnetic particles collected by the filtration means 8 are discharged from the filtration means 8 and are collected by the collection unit 10 via the pressure regulating valve 9.
  • a high-pressure metal pipe as the pipe in order to apply pressure to the fluid sent to the inside.
  • stainless steel such as SUS316 and SUS304, or nickel-based alloy such as Inconel (registered trademark) and Hastelloy (registered trademark) is preferable because of its low corrosiveness.
  • the material is not limited to these, and equivalent or similar materials can be used.
  • a pipe having a laminated structure described in Japanese Patent Application Laid-Open No. 2010-104928 may be used.
  • the hexagonal ferrite magnetic particles modified with the organic modifier are obtained by adding the organic modifier to the aqueous solution containing the hexagonal ferrite precursor particles and then subjecting the solution to the above-described aspect (2).
  • the process has been described, it is of course possible to add the organic modifier to the aqueous solution containing the hexagonal ferrite precursor particles and then subject the process to the above-described aspect (2).
  • the heating temperature may be a temperature at which the inside of the reaction system becomes 350 ° C. or higher, and is preferably in the range of 350 ° C. to 500 ° C.
  • the pressure applied to the reaction system is 20 MPa or more as described above, and preferably in the range of 20 MPa to 50 MPa.
  • the hexagonal ferrite magnetic powder for magnetic recording is composed of hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface thereof, and the crystalline metal oxide is applied to the hexagonal ferrite magnetic particles.
  • the deposition method is not particularly limited. Regardless of which method is used for deposition, it is included in one embodiment of the present invention as long as the metal oxide is deposited on the surface of the hexagonal ferrite magnetic particles as a crystalline substance.
  • the adherend can be converted into a crystalline metal oxide by heating hexagonal ferrite magnetic particles having a metal hydroxide or an amorphous metal oxide deposited on the surface.
  • the adherend can be converted into a crystalline metal oxide by heating the particles at a high temperature of about 400 to 500 ° C. in the atmosphere.
  • the particles that can be sintered during heating become coarse and become unsuitable for high-density recording, or the metal diffuses into the lattice of the hexagonal ferrite during heating. A metal oxide may not be obtained.
  • the present inventors have newly found that by applying the hydrothermal synthesis process described above, fine hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface can be obtained. It was done. Therefore, in one embodiment of the present invention, it is preferable to adhere the crystalline metal oxide to the hexagonal ferrite magnetic particles by a hydrothermal synthesis process.
  • Method for producing hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface Is provided.
  • the manufacturing method will be described in more detail.
  • the precursor By heating and pressurizing an aqueous solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor, the precursor can be converted into a crystalline metal oxide and deposited on the surface of the hexagonal ferrite magnetic particles.
  • the heating and pressurization are preferably carried out at a temperature and pressure at which water becomes a subcritical to supercritical state. As described above, when the reaction system in which water is present is heated to 350 ° C. or higher and pressurized by applying a pressure of 20 MPa or higher, the water becomes in a subcritical to supercritical state.
  • aqueous solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor by heating to 350 ° C. or higher and applying a pressure of 20 MPa or higher. More preferably, the heating temperature is in the range of 350 ° C. to 500 ° C., and the pressure applied to the reaction system is in the range of 20 MPa to 50 MPa.
  • the above reaction may be performed batchwise or continuously. From the viewpoint of improving productivity, the above reaction is preferably performed continuously, and more preferably, the above aqueous solution is heated to 350 ° C. or higher and a pressure of 20 MPa or higher is applied. It is carried out by continuously feeding the liquid to the reaction channel to be pressurized.
  • the manufacturing apparatus shown in FIG. 1 As an example of an apparatus suitable for performing such a reaction, the manufacturing apparatus shown in FIG.
  • water is introduced into the liquid tank 1 as described above.
  • a solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor is introduced into the liquid tank 2.
  • the solvent used in this solution include water or a mixed solvent of water and an organic solvent.
  • the organic solvent include various solvents miscible or hydrophilic with water.
  • water is preferably used from the viewpoint of allowing the reaction to proceed satisfactorily.
  • the crystalline metal oxide precursor various metal compounds that can be converted into a crystalline metal oxide by heating and pressurizing, preferably by contacting with water in a subcritical to supercritical state, are used. be able to.
  • the metal include various metals such as alkali metals, alkaline earth metals, transition metals, rare earth elements, and Al, Zr, and Ce are preferable from the viewpoint of further improving the durability of the coating film.
  • the crystalline metal oxide precursor examples include metal salts such as nitrates, sulfates and acetates, or hydrates thereof, metal alkoxides, and the like, and metal salts or hydration having high solubility in water. It is preferable to use a product.
  • the amount of the crystalline metal oxide deposited on the surface of the hexagonal ferrite magnetic particles is determined by the ratio of the above metal to 100 atomic% of Fe constituting the hexagonal ferrite (metal / Fe Ratio) is preferably in an amount of 0.5 atomic% or more, and more preferably in an amount of 2.0 atomic% or more.
  • the ratio of hexagonal ferrite, which is a part exhibiting magnetism, to the particles is large. From this point, the metal / Fe ratio is preferably 20 atomic% or less, and more preferably 15 atomic% or less.
  • the mixing ratio of the crystalline metal oxide precursor to the hexagonal ferrite magnetic particles is desirably determined so that the preferable amount of the crystalline metal oxide is deposited on the surfaces of the hexagonal ferrite magnetic particles.
  • the amount of hexagonal ferrite magnetic particles in the aqueous solution is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the solvent.
  • the solution containing the hexagonal ferrite magnetic particles and the crystalline metal oxide precursor is added to the solution. It is also preferable to add the organic modifier described in 1.
  • the organic modifier may be added as it is to the solution containing the hexagonal ferrite magnetic particles and the crystalline metal oxide precursor, but it should be added as a solution containing the organic modifier in an organic solvent (organic modifier solution). However, this is preferable from the viewpoint of depositing a crystalline metal oxide on fine hexagonal ferrite magnetic particles. For example, by introducing an organic modifier solution into the liquid tank 3 of the manufacturing apparatus shown in FIG.
  • Organic modifier solutions can be mixed. Specific examples of the organic modifier, preferred usage amount, and details of the organic solvent that can be used in the organic modifier solution are as described above.
  • Specific embodiments of the step of converting the crystalline metal oxide precursor into the crystalline metal oxide and precipitating on the surfaces of the hexagonal ferrite magnetic particles include the following embodiments. (3) An aqueous solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor and optionally containing an organic modifier, heating the fluid flowing inside to 350 ° C. or higher, and applying a pressure of 20 MPa or higher The crystalline metal oxide precursor is converted into a crystalline metal oxide in the reaction channel by continuously feeding the pressurized reaction channel. (4) A water-based solution containing hexagonal ferrite magnetic particles and a crystalline metal oxide precursor, and optionally containing an organic modifier, is continuously heated to 350 ° C. or higher and to which a pressure of 20 MPa or higher is applied. In addition, the mixed solution of this water and the aqueous solution is heated to 350 ° C. or higher and continuously fed while applying a pressure of 20 MPa or more, The crystalline metal oxide precursor is converted to a crystalline metal oxide.
  • aspects (3) is a process similar to aspect (1) described above, and aspect (4) is a process similar to aspect (2) described above.
  • the crystalline metal oxide precursor is hexagonal in that water in a subcritical to supercritical state is brought into contact with an aqueous solution containing the crystalline metal oxide precursor together with hexagonal ferrite magnetic particles.
  • the aqueous solution containing the crystal ferrite magnetic particles is heated and pressurized so as to be in a subcritical to supercritical state.
  • the crystalline metal oxide precursor is instantaneously placed in a highly reactive state by contact with water in a subcritical to supercritical state, so that the conversion to the crystalline metal oxide proceeds at an early stage. This is advantageous.
  • the mixed solution is heated and pressurized in the reactor 6, whereby the crystalline metal oxide precursor is converted into the crystalline metal oxide and deposited on the surfaces of the hexagonal ferrite magnetic particles.
  • hexagonal ferrite magnetic particles having a crystalline metal oxide deposited on the surface can be obtained.
  • the hexagonal ferrite magnetic powder for magnetic recording according to one embodiment of the present invention is preferably composed of hexagonal ferrite magnetic particles obtained by the above-described manufacturing method and having a crystalline metal oxide deposited on the surface thereof.
  • the hexagonal ferrite magnetic powder for magnetic recording according to one embodiment of the present invention is not limited to that obtained by this manufacturing method.
  • the hexagonal ferrite magnetic particles constituting the magnetic recording hexagonal ferrite magnetic powder according to one embodiment of the present invention are preferably fine particles. More specifically, the activation volume is preferably 1600 nm 3 or less, more preferably 1500 nm 3 or less, and even more preferably 1400 nm 3 or less. On the other hand, from the viewpoint of the stability of the magnetization, it is preferable that the activation volume is 800 nm 3 or more, more preferably 900 nm 3 or more, more preferably 1000 nm 3 or more.
  • the above-described production method is suitable as a method for obtaining such hexagonal ferrite magnetic particles that are in the form of fine particles and have a crystalline metal oxide deposited on the surface thereof.
  • the hexagonal ferrite magnetic particles described above can have a core / shell structure having hexagonal ferrite as a core and a crystalline metal oxide film as a shell.
  • the shell may be a continuous phase or may be present on the core as a discontinuous phase of a so-called sea-island structure having a part of the uncoated portion.
  • the presence of such a crystalline metal oxide as a shell on the hexagonal ferrite surface makes it possible to provide a magnetic recording medium having high coating film durability. This is a finding newly found by the present inventors.
  • Magnetic recording medium One aspect of the present invention is a magnetic recording medium having a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, the magnetic recording medium including the above-described hexagonal ferrite magnetic powder for magnetic recording as the ferromagnetic powder.
  • the present invention relates to a recording medium. As described above, by using the above-described hexagonal ferrite magnetic powder for magnetic recording as the ferromagnetic powder of the magnetic layer, a magnetic recording medium having high coating film durability can be provided.
  • magnétique recording hexagonal ferrite magnetic powder and a manufacturing method thereof is a ferromagnetic powder used in the magnetic layer a magnetic layer, as described above.
  • the magnetic layer contains a binder together with ferromagnetic powder.
  • the binder contained in the magnetic layer includes polyurethane resin, polyester resin, polyamide resin, vinyl chloride resin, acrylic resin copolymerized with styrene, acrylonitrile, methyl methacrylate, cellulose resin such as nitrocellulose, epoxy
  • a single resin or a mixture of a plurality of resins can be used from a polyvinyl alkyl resin such as a resin, a phenoxy resin, polyvinyl acetal, and polyvinyl butyral.
  • polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins are preferred. These resins can also be used as a binder in the nonmagnetic layer described later.
  • paragraphs 0029 to 0031 of JP2010-24113A can be referred to. It is also possible to use a polyisocyanate curing agent together with the resin.
  • An additive can be added to the magnetic layer as necessary.
  • the additive include an abrasive, a lubricant, a dispersant / dispersion aid, an antifungal agent, an antistatic agent, an antioxidant, a solvent, and carbon black.
  • the additives described above can be used by appropriately selecting commercially available products according to desired properties.
  • the magnetic recording medium can have a nonmagnetic layer containing a nonmagnetic powder and a binder between the nonmagnetic support and the magnetic layer.
  • the nonmagnetic powder used for the nonmagnetic layer may be an inorganic substance or an organic substance. Carbon black or the like can also be used. Examples of the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. These nonmagnetic powders are available as commercial products, and can also be produced by a known method. For details, refer to paragraphs 0036 to 0039 of JP2010-24113A.
  • the binder, lubricant, dispersant, additive, solvent, dispersion method, etc. of the nonmagnetic layer can be applied to those of the magnetic layer.
  • known techniques relating to the magnetic layer can be applied to the amount of binder, type, additive, and amount of dispersant added, and type.
  • carbon black or organic powder can be added to the nonmagnetic layer. Regarding these, reference can be made, for example, to paragraphs 0040 to 0042 of JP2010-24113A.
  • Non-magnetic support examples include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable. These supports may be subjected in advance to corona discharge, plasma treatment, easy adhesion treatment, heat treatment and the like.
  • the surface roughness of the nonmagnetic support that can be used in the present invention is preferably a center average roughness Ra of 3 to 10 nm at a cutoff value of 0.25 mm.
  • the thickness of the nonmagnetic support is preferably 3 to 80 ⁇ m.
  • the thickness of the magnetic layer is optimized depending on the saturation magnetization amount, head gap length, and recording signal band of the magnetic head to be used, but is generally 0.01 to 0.15 ⁇ m, preferably 0.02 to The thickness is 0.12 ⁇ m, more preferably 0.03 to 0.10 ⁇ m.
  • the thickness of the nonmagnetic layer is, for example, 0.1 to 3.0 ⁇ m, preferably 0.3 to 2.0 ⁇ m, and more preferably 0.5 to 1.5 ⁇ m.
  • the nonmagnetic layer of the magnetic recording medium according to one embodiment of the present invention exhibits its effect as long as it is substantially nonmagnetic.
  • the nonmagnetic layer includes impurities or intentionally contains a small amount of magnetic material.
  • this shows the effect of the present invention and can be regarded as substantially the same configuration as the magnetic recording medium according to one embodiment of the present invention.
  • the residual magnetic flux density of the nonmagnetic layer is 10 mT or less or the coercive force is 7.96 kA / m (100 Oe) or less, and preferably has no residual magnetic flux density and coercive force. Means.
  • a backcoat layer may be provided on the surface of the nonmagnetic support opposite to the surface having the magnetic layer.
  • the back coat layer preferably contains carbon black and inorganic powder.
  • the formulation of the magnetic layer and the nonmagnetic layer can be applied.
  • the thickness of the back coat layer is preferably 0.9 ⁇ m or less, more preferably 0.1 to 0.7 ⁇ m.
  • the process for producing the coating liquid for forming the magnetic layer, nonmagnetic layer or backcoat layer usually comprises at least a kneading process, a dispersing process, and a mixing process provided before and after these processes as necessary. Become. Each process may be divided into two or more stages. All raw materials such as ferromagnetic powder, non-magnetic powder, binder, carbon black, abrasive, antistatic agent, lubricant, and solvent used in the present invention may be added at the beginning or middle of any step. In addition, individual raw materials may be added in two or more steps.
  • polyurethane may be divided and added in a kneading step, a dispersing step, and a mixing step for adjusting the viscosity after dispersion.
  • a conventional known manufacturing technique can be used as a partial process.
  • a kneading force such as an open kneader, a continuous kneader, a pressure kneader, or an extruder. Details of these kneading processes are described in JP-A-1-106338 and JP-A-1-79274.
  • Glass beads can be used to disperse the magnetic layer coating solution, nonmagnetic layer coating solution or backcoat layer coating solution.
  • Such glass beads are preferably zirconia beads, titania beads, and steel beads, which are high specific gravity dispersion media. The particle diameter and filling rate of these dispersion media are optimized.
  • a well-known thing can be used for a disperser.
  • For details of the method of manufacturing the magnetic recording medium reference can be made, for example, to paragraphs 0051 to 0057 of JP2010-24113A.
  • the magnetic recording medium according to one embodiment of the present invention described above can exhibit high coating film durability by including the above-described hexagonal ferrite magnetic powder for magnetic recording in the magnetic layer, and thus has high reliability over a long period of time. Therefore, it is suitable as a magnetic recording medium for high density recording that is required to be recordable and reproducible.
  • X-ray powder diffraction spectra were measured under the following experimental conditions: -PANalytical X'Pert Pro diffractometer, PIXcel detector-Voltage 45kV, intensity 40mA ⁇ Soller slit for incident beam and diffracted beam: 0.017 radians ⁇ Fixed angle of dispersion slit: 1/4 degree ⁇ Mask: 10 mm -Anti-scattering slit: 1/4 degree-Measurement mode: Continuous-Measurement time per stage: 3 seconds-Measurement speed: 0.017 degrees per second-Measurement step: 0.05 degrees
  • Example 1-1 (Preparation of core particles by glass crystallization method) BaCO 3 was weighed to 1481 g, H 3 BO 3 to 666 g, Fe 2 O 3 to 1115 g, and Nb 2 O 5 to 17.6 g, and mixed with a mixer to obtain a raw material mixture.
  • the obtained raw material mixture was dissolved in a platinum crucible having a capacity of 1 L, and the hot water outlet provided at the bottom of the platinum crucible was heated while stirring at 1380 ° C., so that the melt was discharged in a rod shape at about 6 g / sec.
  • the hot water was quenched and rolled with a water-cooled twin roll to produce an amorphous material.
  • the obtained amorphous material was charged in an electric furnace and held at 650 ° C. (crystallization temperature) for 5 hours to precipitate (crystallize) ferromagnetic hexagonal barium ferrite particles.
  • the crystallized material containing the ferromagnetic hexagonal barium ferrite particles is coarsely pulverized in a mortar, and 1000 g of 1 mm ⁇ zirconia beads and 800 ml of 1% acetic acid are added to a 2000 ml glass bottle, followed by dispersion treatment for 3 hours in a paint shaker. The dispersion was separated from the beads and placed in a 3 L stainless steel beaker. The dispersion was treated at 100 ° C.
  • the purified water introduced into the liquid tank 1 was heated by the heater 4 while being fed by the high-pressure pump 5 a, thereby circulating the high-temperature and high-pressure water in the pipe 100.
  • the temperature and pressure were controlled so that the temperature of the high-temperature high-pressure water after passing through the heating means 4c was 450 ° C. and the pressure was 30 MPa.
  • the liquid mixture obtained here had a water / ethanol volume ratio of 75/25 and a pH (25 ° C.) of 12.0.
  • This mixed liquid was mixed with the high-temperature and high-pressure water in the mixing part M1, and subsequently heated and pressurized at 450 ° C. and 30 MPa for 10 seconds in the reactor 6, whereby barium ferrite particles coated with crystalline Al 2 O 3 were obtained. Obtained.
  • the liquid containing the obtained particles was cooled in the cooling unit 7 with cold water, and the particles were collected. The collected particles were washed with ethanol and separated.
  • Example 1-2 The same procedure as in Example 1 was performed except that cerium hydroxide Ce (OH) 4 was used instead of aluminum nitrate nonahydrate. As a result of XRD analysis of the obtained particles, a CeO 2 (ceria) peak was confirmed in addition to the diffraction peak of barium ferrite.
  • Example 1-3 The same procedure as in Example 1 was performed except that zirconium acetate Zr (CH 3 COO) 4 was used instead of aluminum nitrate nonahydrate. As a result of XRD analysis of the obtained particles, the peak of ZrO 2 (zirconia) was confirmed in addition to the diffraction peak of barium ferrite.
  • the preparation of the core particles by the glass crystallization method was performed in the same manner as in Comparative Example 1 except that drying at 110 ° C. for 6 hours after repeated washing was performed at 420 ° C. for 5 hours. As a result of XRD analysis of the obtained particles, only the diffraction peak of barium ferrite was confirmed.
  • Example 1-4 Preparation of the core particles by the glass crystallization method was performed in the same manner as in Example 1 except that barium carbonate was replaced with strontium carbonate. As a result of XRD analysis of the obtained particles, a peak of ⁇ -type Al 2 O 3 was confirmed in addition to the diffraction peak of barium ferrite.
  • the strontium ferrite which does not contain a substitution element is represented by SrFe 12 O 19 .
  • Nb is included as the Fe substitution element, in the obtained strontium ferrite, part of Fe in the above formula is substituted with Nb.
  • Examples 1-5 to 1-9, 1-11, 1-12 The same procedure as in Example 1 was performed except that the crystallization temperature in the preparation of the core particles by the glass crystallization method was set to the temperature shown in Table 1. As a result of XRD analysis of the obtained particles, a peak of ⁇ -type Al 2 O 3 was confirmed in addition to the diffraction peak of barium ferrite.
  • Example 1-10 The core particles were prepared in the same manner as in Example 1 except that the core particles were prepared by the following supercritical synthesis method.
  • barium hydroxide (Ba (OH) 2 ⁇ 8H 2 O), iron (III) nitrate (Fe (NO 3 ) 3 ⁇ 9H 2 O), and KOH in purified water, metal salts and metal hydroxides are dissolved.
  • An aqueous solution (sol) containing the product was prepared.
  • the concentration of the prepared aqueous solution (sol) was 0.01M, and the Ba / Fe molar ratio was 0.5.
  • oleic acid was dissolved in ethanol to prepare a modifier solution.
  • the concentration of the prepared solution was 0.2M.
  • An aqueous solution (sol) was introduced into the liquid tank 2 of the manufacturing apparatus shown in FIG. Note that a SUS316BA tube was used as the piping of the manufacturing apparatus.
  • the purified water introduced into the liquid tank 1 was heated by the heater 4 while being fed by the high-pressure pump 5 a, thereby circulating the high-temperature and high-pressure water in the pipe 100.
  • the temperature and pressure were controlled so that the temperature of the high-temperature high-pressure water after passing through the heating means 4c was 450 ° C. and the pressure was 30 MPa.
  • the aqueous solution (sol) and the modifier solution are sent to the pipes 101 and 102 at 25 ° C.
  • the two liquids were mixed on the way.
  • the liquid mixture obtained here had a water / ethanol volume ratio of 75/25 and a pH (25 ° C.) of 12.0.
  • This mixed liquid was mixed with the high-temperature and high-pressure water in the mixing part M1, and then heated and pressurized at 400 ° C. and 30 MPa in the reactor 6 to synthesize barium ferrite nanoparticles.
  • the liquid containing the barium ferrite nanoparticles was cooled and collected in the cooling unit 7 with cold water. The collected particles were washed with ethanol and subsequently centrifuged to separate barium ferrite nanoparticles modified with oleic acid.
  • Magnetic layer coating solution formulation Hexagonal ferrite magnetic powder (described in Table 2): 100 parts Polyurethane resin: 12 parts Weight average molecular weight 10,000 Sulfonic acid functional group content 0.5 meq / g Diamond fine particles (average particle size 50 nm): 2 parts Carbon black (Asahi Carbon Co., Ltd. # 55, particle size 0.015 ⁇ m): 0.5 parts Stearic acid: 0.5 parts Butyl stearate: 2 parts Methyl ethyl ketone: 180 parts Cyclohexanone : 100 copies
  • Nonmagnetic layer coating solution formulation Nonmagnetic powder ⁇ -iron oxide: 100 parts Average primary particle size 0.09 ⁇ m Specific surface area by BET method 50m 2 / g pH 7 DBP oil absorption 27-38g / 100g Surface treatment agent Al 2 O 3 8% by mass Carbon black (Conductex SC-U manufactured by Columbian Carbon Co., Ltd.): 25 parts Vinyl chloride copolymer (MR104 manufactured by Zeon Corporation): 13 parts Polyurethane resin (UR8200 manufactured by Toyobo Co., Ltd.): 5 parts Phenylphosphonic acid: 3.5 Parts Butyl stearate: 1 part Stearic acid: 2 parts Methyl ethyl ketone: 205 parts Cyclohexanone: 135 parts
  • the obtained non-magnetic layer coating solution is applied and dried on a polyethylene naphthalate base having a thickness of 5 ⁇ m so that the thickness after drying becomes 1.0 ⁇ m, and then the thickness of the magnetic layer becomes 70 nm.
  • Sequential multilayer coating was carried out, and after drying, treatment was performed at a temperature of 90 ° C. and a linear pressure of 300 kg / cm with a seven-stage calendar.
  • the magnetic tape was obtained by slitting to 1/4 inch width and surface polishing.
  • the magnetic tape was evaluated by the following method. ⁇ Film durability (Abrasion resistance (alumina abrasion)> Under a 23 ° C. and 10% RH environment, the surface of the tape sample after being repeatedly run 20 times under a load of 20 g using an alumina sphere having a diameter of 4 mm was observed with an optical microscope (200 times). It was evaluated by. A ... No scratches on the sample surface in the field of view of the optical microscope B ... No more than 1 to 5 spots on the surface of the sample in the field of view of the optical microscope C ... In the field of view of the optical microscope In the case where the scratch on the sample surface is 6 to 10 or less.
  • D In the field of view of the optical microscope, the surface of the sample is more than 10 or less than 50.
  • E The surface of the sample is scratched in the field of view of the optical microscope. More than 50 ⁇ SNR>
  • a recording head (MIG, gap 0.15 ⁇ m, 1.8 T) and a reproducing GMR head are attached to a drum tester, and a signal with a track density of 16 KTPI and a linear recording density of 400 Kbpi (area recording density of 6.4 Gbpsi) Were recorded and reproduced, and the ratio (SNR) between the reproduced signal and noise was determined.
  • Examples 2-1 to 2-12 magnetic particles in which the surfaces of hexagonal ferrite magnetic particles (core particles) were coated with a shell of crystalline alumina, ceria, or zirconia were used as the ferromagnetic powder of the magnetic layer. It was an example, and good results were shown in the evaluation of scratch resistance. In particular, it was confirmed from the comparison of Examples 2-1 to 2-3 that better scratch resistance (coating film durability) can be obtained by forming crystalline alumina as a shell.
  • Comparative Examples 2-1 and 2-2 are examples in which magnetic particles in which an Al-containing adherend was formed on the particle surface by glass crystallization were used as the ferromagnetic powder in the magnetic layer.
  • Comparative Example 1-1 In the magnetic particles used in Comparative Example 2-1 (Comparative Example 1-1), the peak of alumina was not detected by XRD analysis, so it was confirmed that the Al-containing deposit on the surface did not exist as a crystalline phase. It was done.
  • the magnetic particles (Comparative Example 1-2) used in Comparative Example 2-2 are examples in which the drying temperature was increased to crystallize the surface Al-containing adherend, but no alumina peak was detected by XRD analysis. This confirmed that there was no crystalline alumina on the surface. Although the drying temperature was increased, the reason is that Al was diffused in the barium ferrite lattice as a result. Moreover, since some particles were united by high temperature drying, the activation volume of the obtained magnetic particles became large.
  • Example 2-4 is an example using magnetic particles (Example 1-4) whose core particles are strontium ferrite, and had high SNR and excellent scratch resistance.
  • Examples 2-5 to 2-9 and Examples 2-11 and 2-12 are examples in which the activation volume was changed by changing the crystallization temperature of the barium ferrite particles of the core. In Examples 2-5 to 2-9 having an activation volume in the range of 800 to 1600 nm 3 , a better SNR was obtained compared to Examples 2-11 and 2-12.
  • Example 2-10 is an example in which magnetic particles (Example 1-10) having barium ferrite obtained by supercritical synthesis as core particles are used. Not only has high scratch resistance, but also a glass crystallization method. Compared with the Example using the magnetic particle obtained by (1), the SNR was remarkably high.
  • the present invention is useful in the field of manufacturing high-density magnetic recording media such as backup tapes.

Abstract

結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなる磁気記録用六方晶フェライト磁性粉。結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子の製造方法。磁気記録媒体。

Description

磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体
 本発明は、磁気記録用六方晶フェライト磁性粉に関するものであり、詳しくは、高い塗膜耐久性を有する塗布型磁気記録媒体用磁性粉として好適な磁気記録用六方晶フェライト磁性粉に関するものである。
 更に本発明は、上記磁性粉の作製に好適な六方晶フェライト磁性粒子の製造方法、および上記磁性粉を含む磁性層を有する磁気記録媒体に関する。
 従来、高密度記録用磁気記録媒体の磁性層には強磁性金属磁性粒子が主に用いられてきた。強磁性金属磁性粒子は主に鉄を主体とする針状粒子であり、高密度記録のために粒子サイズの微細化、高保磁力化が追求され各種用途の磁気記録媒体に用いられてきた。
 記録情報量の増加により、磁気記録媒体には常に高密度記録が要求されている。しかしながら更に高密度記録を達成するためには強磁性金属磁性粒子の改良には限界が見え始めている。これに対し、六方晶フェライト磁性粒子は、保磁力は永久磁石材料にも用いられた程に大きく、保磁力の基である磁気異方性は結晶構造に由来するため粒子を微細化しても高保磁力を維持することができる。更に、六方晶フェライト磁性粒子を磁性層に用いた磁気記録媒体はその垂直成分により高密度特性に優れる。このように六方晶フェライト磁性粒子は、高密度化に適した強磁性体である。
 近年、上記優れた特性を有する六方晶フェライト磁性粒子を更に改良するために、六方晶フェライトの粒子表面にAl等の金属を存在させること(例えば特許文献1参照)が提案されている。
特開2011-225417号公報
 特許文献1には、ガラス結晶化法による六方晶フェライト磁性粒子の製造において、Alを含む原料混合物を用いることにより、表面にAlが均一に被着した六方晶フェライト磁性粒子を得ることが開示されている。特許文献1では、上記製造方法により得られた六方晶フェライト磁性粒子を用いることにより、分散時の分散メディアの摩耗が少なく、出力低下もヘッド摩耗も少ない磁気記録媒体が得られるとされている。
 しかるに磁気記録媒体、特にバックアップテープ等の高密度記録媒体には、長期にわたり高い信頼性を持って使用可能であることも求められる。そのためには磁性層が記録再生時にヘッドとの摺動により大きく削れることのない、高い塗膜耐久性を有することが望ましい。この点に関し、本発明者の検討によれば、特許文献1に記載の製造方法により得られた六方晶フェライト磁性粒子は、高い塗膜耐久性を有する磁性層を形成するためには十分なものではなかった。
 そこで本発明の目的は、高い塗膜耐久性を有する磁気記録媒体の作製に好適な磁気記録用六方晶フェライト磁性粉を提供することにある。
 本発明者は、上記目的を達成するために特許文献1に記載の製造方法により得られた六方晶フェライト磁性粒子について検討を重ねた結果、この製造方法により得られた六方晶フェライト磁性粒子は、表面に被着しているAl化合物が水酸化物(水酸化アルミニウム)または非晶質の酸化アルミニウムであることが、この六方晶フェライト磁性粒子を用いて得られた磁気記録媒体の塗膜耐久性が低い原因であると推察するに至った。特許文献1に記載の製造方法では、粒子表面に被着したAl化合物が水酸化物または非晶質の酸化物として存在する理由は、ガラス結晶化法における酸処理や洗浄工程において、Alの一部が溶解し再被着することが原因と考えられる。
 そこで本発明者は、以上の知見に基づき更に検討を重ねた結果、六方晶フェライト磁性粒子表面に結晶性の金属酸化物を被着させることにより、これを用いて形成された磁気記録媒体が、高い塗膜耐久性を有するものになることを新たに見出した。更に本発明者は、連続的水熱合成プロセス(「超臨界合成法」ともいう。)により、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子が得られることも新たに見出した。
 本発明は、以上の知見に基づき完成された。
 本発明の一態様は、
 結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなる磁気記録用六方晶フェライト磁性粉、
 に関する。
 一態様では、上記磁気記録用六方晶フェライト磁性粉は、活性化体積が800~1600nm3の範囲である。
 一態様では、上記結晶性金属酸化物は、Al、ZrおよびCeからなる群から選ばれる金属の結晶性酸化物である。
 一態様では、上記六方晶フェライト磁性粒子は、Fe100原子%に対する上記金属の量が0.5~20原子%の範囲となる量の結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子である。
 一態様では、上記六方晶フェライト磁性粒子は、バリウムフェライト磁性粒子である。他の一態様では、上記六方晶フェライト磁性粒子は、ストロンチウムフェライト磁性粒子である。
 本発明の更なる態様は、
 六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を加熱および加圧することにより、上記前駆体が転換した結晶性金属酸化物を上記六方晶フェライト磁性粒子表面に析出させることを含む、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子の製造方法、
 に関する。
 一態様では、上記加熱および加圧を、上記水系溶液を、内部を流れる流体を350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより行う。
 一態様では、上記水系溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加し、かつ上記水と上記水系溶液との混合液を、350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、上記前駆体が転換した結晶性金属酸化物を上記六方晶フェライト磁性粒子表面に析出させる。
 一態様では、上述の製造方法は、上記水系溶液を、六方晶フェライト磁性粒子と上記結晶性金属酸化物前駆体とを含む水溶液を、有機修飾剤を有機溶媒中に含む有機修飾剤溶液と混合することにより調製することを更に含む。
 一態様では、上述の製造方法は、上記六方晶フェライト磁性粒子をガラス結晶化法により作製することを更に含む。
 一態様では、上述の製造方法は、上記六方晶フェライト磁性粒子を、
 鉄塩とアルカリ土類金属塩とを塩基性水溶液中で混合することにより六方晶フェライト前駆体粒子を析出させること;
 上記析出した六方晶フェライト前駆体粒子を含む水溶液を、有機修飾剤を有機溶媒中に含む有機修飾剤溶液と混合すること;
 上記混合により得られた水系溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加すること;および、
 上記送液路内で、上記水と上記水系溶液との混合液を350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、上記六方晶フェライト前駆体粒子を六方晶フェライト粒子に転換すること;
により作製することを更に含む。
 一態様では、上述の製造方法により、上記磁気記録用六方晶フェライト磁性粉を作製する。
 本発明の更なる態様は、
 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、
 上記強磁性粉末は、上述の磁気記録用六方晶フェライト磁性粉である磁気記録媒体、
 に関する。
 本発明によれば、高い塗膜耐久性を有する磁気記録媒体を提供することができる。更に、磁気記録用六方晶フェライト磁性粉として微粒子状の磁性体を用いることにより、高い塗膜耐久性とともに優れた電磁変換特性を有する、高密度記録用媒体として好適な磁気記録媒体を提供することも可能となる。
図1は、連続的水熱合成プロセス(超臨界合成法)に好適な製造装置の概略説明図である。
[磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法]
 本発明の一態様は、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなる磁気記録用六方晶フェライト磁性粉に関する。
 結晶性の金属酸化物が表面に被着した六方晶フェライト磁性粉により高い塗膜耐久性を有する磁気記録媒体が提供可能になる理由は必ずしも明らかではないが、結晶性金属酸化物が表面に被着した六方晶フェライトは、粒子表面に水酸基が規則的に配列した状態になり、結合剤に吸着しやすくなることが一因ではないかと、本発明者は推察している。なお上記の結晶性金属酸化物とは、六方晶フェライトとは組成、結晶構造、または組成および結晶構造の両方が異なるものとする。
 ここで本発明において結晶性金属酸化物とは、少なくとも、X線回折分析において回折角10°以上にそれぞれの酸化物に帰属される回折パターンを1本以上有すること、または、電子線回折におけるスポットパターンを一つ以上有すること、をいうものとする。好ましくは、X線回折分析において結晶性の有無を判定する。また回折パターンまたはスポットパターンを有するとは、結晶性金属酸化物の最大ピーク強度と六方晶フェライトの最大ピーク強度との比が1/1000以上であることを指す。
 粉末として存在する試料については、この粉末をX線回折分析または電子線回折分析に付すことにより、結晶性金属酸化物が表面に被着していることを確認することができる。
 一方、磁気記録媒体の磁性層に含まれる磁性粉については、磁性層から磁性粉を抽出し測定用試料を得ることができる。例えば、磁気記録媒体から磁性層を剥ぎ取り、この磁性層100~500mgにn-ブチルアミンを0.1~100ml加え、ガラス管中に封かんし熱分解装置にセットして100℃で約3日加熱する。冷却後にガラス管から内容物を取り出し、遠心分離し、液と固形分を分離する。分離した固形分をアセトンで洗浄し、X線分析用の粉末試料を得る。100℃程度の加熱や有機溶剤への浸漬では酸化物へのダメージはほとんどないため、粒子表面に被着した金属酸化物の結晶性を評価することができる。
 また電子線回折分析は、上記のように磁性層から取り出した測定用試料を用いてもよく、媒体そのものに磁性層側から電子線照射することで、六方晶フェライトのスポットパターンの中に、それぞれの酸化物に帰属されるパターンを確認することもできる。
 以下、本発明の一態様にかかる磁気記録用六方晶フェライト磁性粉(以下、「六方晶フェライト磁性粉」または「磁性粉」ともいう。)について、更に詳細に説明する。
 上述の六方晶フェライト磁性粉は、六方晶フェライト磁性粒子に、結晶性金属酸化物被着処理を施すことにより得ることができる。被着処理の詳細については、後述する。結晶性金属酸化物を被着させる六方晶フェライト磁性粒子(以下、「原料六方晶フェライト磁性粒子」または「原料粒子」ともいう。)は、原料六方晶フェライト磁性粒子としては特に限定されず、公知の方法、例えば、共沈法、逆ミセル法、水熱合成法、ガラス結晶化法、等により得られたものや、市販品を用いることができる。磁気記録用の六方晶フェライトの製法としては、磁気記録媒体に望まれる微粒子適性・単粒子分散適性を有する磁性粉末が得られる、粒度分布が狭い、等の点からガラス結晶化法が優れると言われている。したがって本発明の一態様では、ガラス結晶化法により、原料粒子を作製することが好ましい。ガラス結晶化法による六方晶フェライト磁性粉末の製造方法は、一般に以下の工程からなるものである。
(1)六方晶フェライト形成成分(任意に保磁力調整成分を含む)およびガラス形成成分を含む原料混合物を溶融し、溶融物を得る工程(溶融工程);
(2)溶融物を急冷し非晶質体を得る工程(非晶質化工程);
(3)非晶質体を加熱処理し、六方晶フェライト粒子を析出させる工程(結晶化工程);
(4)加熱処理物から析出した六方晶フェライト磁性粒子を捕集する工程(粒子捕集工程)。
 以上の工程の詳細については、例えば特開2011-213544号公報段落0018~0035、特開2011-225417号公報段落0013~0024等を参照できる。
 また近年、ナノ粒子の合成方法として提案されている連続的水熱プロセスによる合成法により、原料粒子を得ることもできる。この合成法は、六方晶フェライト前駆体粒子を含む水系流体を反応流路に送液しつつ加熱および加圧することにより、亜臨界~超臨界状態の水の高い反応性を利用し、六方晶フェライト前駆体粒子をフェライトに転換する手法である。以下、上記合成法の具体的態様について説明する。
 上記六方晶フェライト前駆体粒子は、鉄塩とアルカリ土類金属塩とを塩基性水溶液中で混合することにより得ることができる。上記塩基性水溶液中では、通常、鉄とアルカリ土類金属とを含む塩が粒子状、好ましくはコロイド粒子として析出する。ここで析出する粒子は、その後に亜臨界~超臨界状態の水の存在下に置かれることによりフェライト化し六方晶フェライト磁性粒子となる。
 アルカリ土類金属塩としては、バリウム、ストロンチウム、カルシウム、鉛等のアルカリ土類金属塩を用いることができる。アルカリ土類金属の種類は、所望の六方晶フェライトに応じて決定すればよい。例えばバリウムフェライトを得たい場合には、アルカリ土類金属塩としてバリウム塩を使用し、ストロンチウムフェライトを得たい場合には、ストロンチウム塩を使用する。塩としては、水溶性塩が好ましく、例えば、水酸化物、塩化物、臭化物、沃化物等のハロゲン化物、硝酸塩等を用いることができる。
 鉄塩としては、鉄の水溶性塩、例えば、塩化物、臭化物、沃化物等のハロゲン化物、硝酸塩、硫酸塩、炭酸塩、有機酸塩および錯塩等を用いることができる。鉄塩とアルカリ土類金属塩の混合比は、所望のフェライト組成に応じて決定すればよい。また、鉄塩、アルカリ土類金属塩に加えて、鉄およびアルカリ土類金属とともに六方晶フェライトを構成可能な任意元素の塩を添加してもよい。そのような任意元素としては、Nb、Co、Ti、Zn等が挙げられる。上記任意元素の塩の添加量も、所望のフェライト組成に応じて決定すればよい。
 以上説明した塩を、塩基性水溶液中で混合することにより、上記塩に含まれていた元素を含む粒子(六方晶フェライト前駆体粒子)が析出する。ここで析出する粒子は、その後フェライト化し、六方晶フェライトに転換される。塩基性水溶液に含まれる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水等を挙げることができる。上記水溶液中の塩基の使用量は、水溶液に添加する塩の合計量に対して、質量基準で0.1~10倍程度であることが好ましく、0.2~8倍程度であることがより好ましい。塩基濃度が高いほど、析出する粒子は微粒子化する傾向がある。
 次いで、六方晶フェライト前駆体粒子を含む水溶液を加熱および加圧し、含まれる水を亜臨界~超臨界状態とすることにより、粒子内で六方晶フェライト前駆体がフェライトに転換する反応(フェライト化)が進行する結果、六方晶フェライト粒子を得ることができる。一般に、溶媒として水を含む流体を、350℃以上に加熱し、かつ20MPa以上の圧力を加えることにより、流体に含まれる水は亜臨界~超臨界状態となる。
 六方晶フェライト前駆体粒子を六方晶フェライトに転換する工程の具体的態様としては、下記態様を挙げることができる。
 (1)六方晶フェライト前駆体粒子を含む水溶液を、内部を流れる流体を350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより、上記反応流路内で六方晶フェライト前駆体粒子を六方晶フェライトに転換する。
 (2)六方晶フェライト前駆体粒子を含む水溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加し、かつこの水と六方晶フェライト前駆体粒子を含む水溶液との混合液を、350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、六方晶フェライト前駆体粒子を六方晶フェライトに転換する。
 態様(2)は、亜臨界~超臨界状態にある水と、六方晶フェライト前駆体粒子を含む水溶液とを接触させる点において、六方晶フェライト前駆体粒子を含む水溶液を亜臨界~超臨界状態にすべく加熱・加圧する態様(1)と相違する。態様(2)は、亜臨界~超臨界状態にある水と接触することで、六方晶フェライト前駆体粒子が瞬時に高反応状態に置かれるためフェライト化が早期に進行する点で、有利である。
 ところで六方晶フェライト磁性粒子を有機修飾剤により処理することは、粒子間の凝集を防ぐために有効な手段である。このような有機修飾剤は、一態様では、例えば特開2009-208969号公報に記載されているように、フェライト化の開始後、反応系に添加することができる。
 または他の態様では、後述の、六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を加熱・加圧する前に、この水系溶液に添加することができる。その詳細は後述する。
 または、更に他の態様では、六方晶フェライト前駆体粒子を含む水溶液に有機修飾剤を添加した後、上述の態様(1)または態様(2)の工程に付す。これにより、六方晶フェライト前駆体粒子に有機修飾剤を被着させておくことができるため、粒子の凝集をより効果的に防ぐことができ、きわめて微粒子の六方晶フェライト磁性粒子を得ることができる。
 上記有機修飾剤としては、例えば、有機カルボン酸類、有機窒素化合物類、有機硫黄化合物類、有機リン化合物類などが挙げられる。
 有機カルボン酸類としては、脂肪族カルボン酸類、脂環式カルボン酸類、芳香族カルボン酸類などが挙げられ、脂肪族カルボン酸類が好ましい。脂肪族カルボン酸は飽和脂肪族カルボン酸でも不飽和脂肪族カルボン酸でもよく、不飽和カルボン酸が好ましい。カルボン酸類の炭素数は、特に限定されるものではなく、例えば2以上24以下、好ましくは5以上20以下、より好ましくは8以上16以下である。脂肪族カルボン酸の具体例としては、オレイン酸、リノール酸、リノレン酸、カプリル酸、カプリン酸、ラウリン酸、ベヘン酸、ステアリン酸、ミリスチン酸、パルミチン酸、ミリストレイン酸、パルミトレイン酸、バクセン酸、エイコセン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸などが挙げられるが、これに限定されるものではない。
 有機窒素化合物類としては、有機アミン類、有機アミド化合物類、窒素含有複素環式化合物類などが挙げられる。
 有機アミン類としては、1級アミン類、2級アミン類および3級アミン類のいずれであってもよい。好ましくは1級アミン類、2級アミン類が挙げられる。例えば、脂肪族アミン類などが挙げられ、1級脂肪族アミン類、2級脂肪族アミン類を挙げることができる。アミン類の炭素数は、特に限定されるものではなく、例えば5以上24以下、好ましくは8以上20以下、より好ましくは12以上18以下である。有機アミン類の具体例としては、例えば、オレイルアミン、ラウリルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ジオクチルアミン等のアルキルアミン類、アニリン等の芳香族アミン、メチルエタノールアミン、ジエタノールアミン等の水酸基含有アミン類、さらにそれらの誘導体などが挙げられる。
 窒素含有複素環式化合物類としては、例えば、窒素原子を1~4個含有している飽和または不飽和の3~7員環を有する複素環式化合物類が挙げられる。ヘテロ原子として硫黄原子、酸素原子などを含有していてもよい。具体例としては、例えば、ピリジン、ルチジン、コリジン、キノリン類などが挙げられる。
 有機硫黄化合物類としては、有機スルフィド類、有機スルホキシド類、硫黄含有複素環式化合物類などが挙げられる。具体例としては、例えば、ジブチルスルフィド等のジアルキルスルフィド類、ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類、チオフェン、チオラン、チオモルホリン等の硫黄含有複素環式化合物類などが挙げられる。
 有機リン化合物類としては、リン酸エステル類、フォスフィン類、フォスフィンオキシド類、トリアルキルフォスフィン類、亜リン酸エステル類、フォスフォン酸エステル類、亜フォスフォン酸エステル類、フォスフィン酸エステル類、亜フォスフィン酸エステルなどが挙げられる。例えば、トリブチルフォスフィン、トリヘキシルフォスフィン、トリオクチルフォスフィン等のトリアルキルフォスフィン類、トリブチルフォスフィンオキシド、トリヘキシルフォスフィンオキシド、トリオクチルフォスフィンオキシド(TOPO)、トリデシルフォスフィンオキシド等のトリアルキルフォスフィンオキシド類などが挙げられる。
 上記有機修飾剤は、六方晶フェライト前駆体粒子100質量部に対して1~1000質量部程度の量で混合することが好ましい。これにより、粒子の凝集をより効果的に抑制することができる。有機修飾剤は、六方晶フェライト前駆体粒子を含む水溶液中にそのまま添加してもよいが、有機修飾剤を有機溶媒中に含む溶液(有機修飾剤溶液)として添加することが、微粒子の六方晶フェライト磁性粒子を得るために好ましい。有機溶媒としては、水と混和性のもの、または、親水性のものが好ましい。この点からは、極性溶媒の使用が好適である。ここで極性溶媒とは、誘電率が15以上、溶解パラメータが8以上の少なくとも一方を満たす溶媒をいう。好ましい有機溶媒としては、例えば、アルコール類、ケトン類、アルデヒド類、ニトリル類、ラクタム類、オキシム類、アミド類、尿素類、アミン類、スルフィド類、スルホキシド類、リン酸エステル類、カルボン酸類またはカルボン酸誘導体であるエステル類、炭酸または炭酸エステル類、エーテル類などが挙げられる。
 例えば、アルコール類としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、シクロペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、シクロヘプタノール、オクタノール、シクロオクタノール、ノナノール、デカノール、ドデカノール、トリデカノール、テトラデカノール、ヘプタデカノール、シクロヘプタノール、メトキシエタノール、クロロエタノール、トリフルオロエタノール、ヘキサフルオロプロパノール、フェノール、ベンジルアルコール、エチレングリコール、トリエチレングリコール等が挙げられる。
 ケトン類またはアルデヒド類としては、アセトン、2-ブタノン、3-ペンタノン、ジエチルケトン、メチルエチルケトン、メチルプロピルケトン、ブチルメチルケトン、シクロヘキサノン、アセトフェノン等が挙げられる。
 ニトリル類としては、アセトニトリル、ベンゾニトリル等が挙げられる。
 ラクタム類としては、ε-カプロラクタム等が挙げられる。
 オキシム類としては、シクロヘキサノンオキシム等が挙げられる。
 アミド類ないしは尿素類としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド(DMF)、N,N’-ジメチルアセトアミド、ピロリドン、N-メチルピロリドン、N,N’-ジメチルエチレン尿素、N,N’-ジメチルプロピレン尿素、N,N-ジメチルホルムアミド、テトラヒドロフラン等が挙げられる。
 アミン類としては、キノリン、トリエチルアミン、トリブチルアミン等が挙げられる。
 スルホキシド類としては、スルホラン等が挙げられる。
 リン酸エステル類としては、ヘキサメチレンフォスホリックアシッド等が挙げられる。
 カルボン酸類またはエステル類としては、酢酸エチル、酢酸メチル、ギ酸、酢酸、炭酸ジメチル、炭酸ジエチル、プロピレンカーボネート等が挙げられる。
 エーテル類としては、ジグライム、ジエチルエーテル、アニソール等が挙げられる。
 以上、有機修飾剤溶液の調製に使用可能な有機溶媒の例を挙げたが、これらに限定されるものではない。
 有機修飾剤溶液は、微粒子かつ粒度分布の小さい六方晶フェライト磁性粒子を得る観点からは、六方晶フェライト前駆体粒子を含む水溶液と混合した後の混合溶液中の水と有機溶媒との割合が、体積基準の水/(水+有機溶媒)の比率として0.2~0.8の範囲となるように上記水溶液に添加することが好ましく、0.25~0.75の範囲となるように添加することがより好ましい。また、上記混合溶液のpHは、微粒子かつ粒度分布の小さい六方晶フェライト磁性粒子を得る観点からは、液温25℃での値として、4以上14以下であることが好ましく、7以上13以下であることがより好ましい。このために、任意に、pH調整のために酸または塩基を、六方晶フェライト前駆体粒子を含む水溶液、有機修飾剤溶液の一方もしくは両方に添加するか、両溶液を混合した混合溶液に添加することができる。ここで使用される酸、塩基としては、pH調整のために通常使用されるものを、何ら制限なく用いることができる。
 有機修飾剤溶液と六方晶フェライト前駆体粒子を含む水溶液との混合は、バッチ式で行っても連続的に行ってもよいが、その後に系内に含まれる水を亜臨界~超臨界状態とするために反応系を加熱・加圧する工程と連続して行うことで生産性を高めるためには、連続的に行うことが好ましい。図1は、連続的水熱合成プロセスに好適な製造装置の概略説明図である。
 図1に示す製造装置は、液槽1、2、3、加熱手段4(4a~4c)、加圧送液手段5a、5b、5c、反応器6、冷却部7、濾過手段8、圧力調整弁9、および回収部10を含み、配管100、101、102に、各液槽から流体が送液される。
 一態様では、液槽1に精製水、蒸留水等の水を、液槽2に六方晶フェライト前駆体粒子を含む水溶液を、液槽3に有機修飾剤溶液を、導入する。液槽1に導入された水は、加圧送液手段5aにより圧力を加えられながら配管100内に送液され、加熱手段4において加熱されることで、亜臨界~超臨界状態の水となり、混合部M1に達する。
 一方、液槽2から加圧送液手段5bにより配管101に送液された六方晶フェライト前駆体粒子を含む水溶液は、液槽3から加圧送液手段5cにより配管102に送液された有機修飾剤溶液と合流した後、混合部M1に達する。
 好ましくは、混合部M1に達する前に、有機修飾剤が六方晶フェライト前駆体粒子表面に被着する。このように亜臨界~超臨界状態の水と接触する前に、有機修飾剤を六方晶フェライト前駆体粒子に被着させることは、微粒子の六方晶フェライトを得るうえで有利である。このためには、有機修飾剤溶液の有機溶媒として、前述の水と混和性または親水性の有機溶媒を用いることが好ましい。
 次いで、混合部M1において、六方晶フェライト前駆体粒子を含む水系溶液が、亜臨界~超臨界状態の水と接触することで、前駆体のフェライト化が開始される。その後、引き続き、反応器において加熱し、更に加圧手段5aにより圧力を加えることにより、反応器6内の反応系に含まれる水が亜臨界~超臨界状態となり前駆体のフェライト化が更に進行する。その後、排出口M2から、六方晶フェライト前駆体粒子がフェライトに転換した、六方晶フェライト磁性粒子を含む溶液が排出される。排出された溶液は、冷却部7において冷水と混合することで冷却された後、濾過手段(フィルター等)8で六方晶フェライト磁性粒子が捕集される。濾過手段8で捕集された六方晶フェライト磁性粒子は濾過手段8から放出され圧力調整弁9を経て回収部10に回収される。
 上述の方法では、内部に送液される流体に圧力をかけるため、配管として、高圧用の金属配管を用いることが好ましい。配管を構成する金属としては、低腐食性であることから、SUS316、SUS304などのステンレス鋼、またはインコネル(登録商標)、ハステロイ(登録商標)などのニッケル基合金が好ましい。ただし、これらに限定されるものではなく、同等もしくは類似の材料も用いることができる。また、特開2010-104928号公報に記載された積層構成の配管を用いてもよい。
 なお図1に示す製造装置では、亜臨界~超臨界状態の水と六方晶フェライト前駆体粒子を含む水系溶液とは、配管同士をティー型の継ぎ手で接合した混合部M1において混合されるが、特開2007-268503号公報、特開2008-12453号公報、特開2010-75914号公報に記載のリアクター等を用いてもよい。リアクターの素材としては、特開2007-268503号公報、特開2008-12453号公報、特開2010-75914号公報に記載された素材が好ましい。具体的には、配管を構成する金属として好適なものとして上述したものが好ましい。ただし、これらに限定されるものではなく、同等もしくは類似の材料も用いることができる。また、低腐食性のチタン合金、タンタル合金、およびセラミックスなどと組み合わせてもよい。
 以上の説明では、六方晶フェライト前駆体粒子を含む水溶液に有機修飾剤を添加した後、上述の態様(2)の工程に付すことにより、有機修飾剤により修飾された六方晶フェライト磁性粒子を得る工程について説明したが、六方晶フェライト前駆体粒子を含む水溶液に有機修飾剤を添加した後、上述の態様(2)の工程に付すことも、もちろん可能である。
 水が存在する反応系を、350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧することで、水が亜臨界~超臨界状態となり、きわめて高い反応性を有する反応場がもたらされる。この状態の下に六方晶フェライト前駆体粒子を置くことによりフェライト化が迅速に進行し、六方晶フェライト磁性粒子を得ることができる。加熱温度は、反応系内が350℃以上となる温度であればよく、好ましくは350℃~500℃の範囲である。一方、反応系に加える圧力は、上記の通り20MPa以上であり、好ましくは20MPa~50MPaの範囲である。
 本発明の一態様にかかる磁気記録用六方晶フェライト磁性粉は、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなるが、六方晶フェライト磁性粒子への結晶性金属酸化物の被着方法は、特に限定されるものではない。いずれの方法により被着したとしても、結晶性物質として六方晶フェライト磁性粒子表面に金属酸化物が被着している限り、本発明の一態様に包含されるものとする。
 一態様では、金属水酸化物または非晶質の金属酸化物が表面に被着した六方晶フェライト磁性粒子を加熱することにより、被着物を結晶性金属酸化物に転換することができる。例えば、大気中、400~500℃程度の高温で粒子を加熱することにより、被着物を結晶性金属酸化物に転換することができる。ただしこの手段では、加熱中に粒子の焼結が生じ得られる粒子が粗大になり高密度記録に不適なものとなったり、加熱中に金属が六方晶フェライトの格子内に拡散してしまい結晶性金属酸化物が得られない場合がある。
 これに対し、前述の水熱合成プロセスを応用することにより、結晶性金属酸化物が表面に被着した、微粒子の六方晶フェライト磁性粒子を得ることができることが、本発明者により新たに見出された。したがって本発明の一態様では、結晶性金属酸化物を水熱合成プロセスにより六方晶フェライト磁性粒子に被着させることが好ましい。
 即ち、本発明の一態様によれば、
 六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を加熱および加圧することにより、前駆体が転換した結晶性金属酸化物を六方晶フェライト磁性粒子表面に析出させることを含む、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子の製造方法、
 が提供される。
 以下、上記製造方法について、更に詳細に説明する。
 六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を加熱および加圧することにより、前駆体を結晶性金属酸化物に転換し六方晶フェライト磁性粒子表面に析出させることができる。前駆体が結晶性金属酸化物へ転換する反応を良好に進行させるためには、上記の加熱および加圧は、水が亜臨界~超臨界状態となる温度および圧力で行うことが好ましい。上述の通り、水が存在する反応系を、350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧することで、水が亜臨界~超臨界状態となる。したがって、六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を、350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧することが好ましい。より好ましくは、加熱温度は350℃~500℃の範囲、反応系に加える圧力は、20MPa~50MPaの範囲である。
 上記反応は、バッチ式で行ってもよく、連続的に行ってもよい。生産性向上の観点からは、上記反応は、連続的に行うことが好ましく、より好ましくは、上述の水系溶液を、内部を流れる流体を350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより行う。このような反応を行うために好適な装置の一例としては、先に記載した図1に示す製造装置を挙げることができる。
 以下、図1に示す製造装置により結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子を得る態様について、説明する。
 図1中、液槽1には、先に記載したように水を導入する。一方、液槽2には、六方晶フェライト磁性粒子および結晶性金属酸化物前駆体を含む溶液を導入する。この溶液に用いる溶媒としては、水、または水と有機溶媒との混合溶媒を挙げることができる。有機溶媒としては、上述の水と混和性または親水性の各種溶媒を挙げることができる。溶媒としては、反応を良好に進行させる観点からは、水を使用することが好ましい。
 結晶性金属酸化物前駆体としては、加熱および加圧されることにより、好ましくは亜臨界~超臨界状態の水と接触することにより、結晶性金属酸化物に転換可能な各種金属化合物を使用することができる。金属としては、アルカリ金属、アルカリ土類金属、遷移金属、希土類元素等の各種金属を挙げることができ、より一層の塗膜耐久性向上の観点から、Al、Zr、Ceが好ましい。
 結晶性金属酸化物前駆体としては、硝酸塩、硫酸塩、酢酸塩等の金属塩、またはこれらの水和物、金属アルコキシド等を挙げることができ、水への溶解性の高い金属塩または水和物を用いることが好ましい。
 より一層の塗膜耐久性向上の観点からは、六方晶フェライト磁性粒子表面に被着する結晶性金属酸化物の量は、六方晶フェライトを構成するFe100原子%に対する上記金属の割合(金属/Fe比)が0.5原子%以上となる量であることが好ましく、2.0原子%以上となる量であることがより好ましい。他方、磁気特性の観点からは磁性を示す部分である六方晶フェライトが粒子に占める割合が多い方が好ましい。この点からは、上記金属/Fe比は20原子%以下であることが好ましく、15原子%以下であることがより好ましい。結晶性金属酸化物前駆体の六方晶フェライト磁性粒子との混合比は、上記好ましい量の結晶性金属酸化物が六方晶フェライト磁性粒子表面に被着するように決定することが望ましい。また、反応を良好に進行させるためには、上記水系溶液中の六方晶フェライト磁性粒子の量は、溶媒100質量部あたり0.01~10質量部程度とすることが好ましい。
 反応中の六方晶フェライト磁性粒子の凝集を抑制し、微粒子状の粒子に結晶性金属酸化物を被着させるために、六方晶フェライト磁性粒子と結晶性金属酸化物前駆体を含む溶液に、先に記載した有機修飾剤を添加することも好ましい。有機修飾剤は、六方晶フェライト磁性粒子と結晶性金属酸化物前駆体を含む溶液にそのまま添加してもよいが、有機修飾剤を有機溶媒中に含む溶液(有機修飾剤溶液)として添加することが、微粒子の六方晶フェライト磁性粒子に結晶性金属酸化物を被着させる観点からは好ましい。例えば、図1に示す製造装置の液槽3に、有機修飾剤溶液を導入し、配管102を配管101と合流させることにより、六方晶フェライト磁性粒子と結晶性金属酸化物前駆体を含む溶液と有機修飾剤溶液を混合することができる。有機修飾剤の具体例、好ましい使用量、有機修飾剤溶液に使用可能な有機溶媒の詳細は、上述の通りである。
 結晶性金属酸化物前駆体を結晶性金属酸化物に転換し六方晶フェライト磁性粒子表面に析出させる工程の具体的態様としては、下記態様を挙げることができる。
 (3)六方晶フェライト磁性粒子および結晶性金属酸化物前駆体を含み、任意に有機修飾剤を含む水系溶液を、内部を流れる流体を350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより、上記反応流路内で結晶性金属酸化物前駆体を結晶性金属酸化物に転換する。
 (4)六方晶フェライト磁性粒子および結晶性金属酸化物前駆体を含み、任意に有機修飾剤を含む水系溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加し、かつこの水と上記水系溶液との混合液を、350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、結晶性金属酸化物前駆体を結晶性金属酸化物に転換する。
 態様(3)は先に記載した態様(1)に、態様(4)は先に記載した態様(2)に類似する工程である。態様(4)は、亜臨界~超臨界状態にある水と、結晶性金属酸化物前駆体を六方晶フェライト磁性粒子とともに含む水系溶液とを接触させる点において、結晶性金属酸化物前駆体を六方晶フェライト磁性粒子とともに含む水系溶液を亜臨界~超臨界状態にすべく加熱・加圧する態様(3)と相違する。態様(4)は、亜臨界~超臨界状態にある水と接触することで、結晶性金属酸化物前駆体が瞬時に高反応状態に置かれるため結晶性金属酸化物への転換が早期に進行する点で、有利である。
 例えば図1に示す製造装置では、混合部M1において、亜臨界~超臨界状態にある水と、結晶性金属酸化物前駆体を六方晶フェライト磁性粒子とともに含み、任意に有機修飾剤を含む水系溶液が混合され、混合液が反応器6において加熱・加圧されることにより、結晶性金属酸化物前駆体が結晶性金属酸化物に転換し、六方晶フェライト磁性粒子表面に析出する。こうして、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子を得ることができる。
 その他、連続的水熱合成プロセスの具体的態様については、上述の通りである。
 本発明の一態様にかかる磁気記録用六方晶フェライト磁性粉は、好ましくは上述の製造方法により得られた、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなる。ただし先に記載した通り、本発明の一態様にかかる磁気記録用六方晶フェライト磁性粉は、この製造方法により得られるものに限定されるものではない。
 高密度記録化と良好な電磁変換特性を両立する観点からは、磁性層の強磁性粉末として、微粒子磁性体を用いることが好ましい。この点から、本発明の一態様にかかる磁気記録用六方晶フェライト磁性粉を構成する六方晶フェライト磁性粒子は微粒子であることが好ましい。より詳しくは、活性化体積が1600nm3以下であることが好ましく、1500nm3以下であることがより好ましく、1400nm3以下であることが更に好ましい。他方、磁化の安定性の観点からは、活性化体積が800nm3以上であることが好ましく、900nm3以上であることがより好ましく、1000nm3以上であることが更に好ましい。このような微粒子状であって、かつ結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子を得る方法として、上述の製造方法は好適である。
 以上説明した六方晶フェライト磁性粒子は、六方晶フェライトをコアとし、結晶性金属酸化物の被膜をシェルとするコア/シェル構造を有することができる。シェルは、連続相であってもよく、一部に未被覆部分を有する、いわゆる海島構造の不連続相としてコア上に存在していてもよい。六方晶フェライト表面に、このようなシェルとして結晶性金属酸化物が存在することにより、高い塗膜耐久性を有する磁気記録媒体の提供が可能になる。この点は、本発明者により新たに見出された知見である。
[磁気記録媒体]
 本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、強磁性粉末として、上述の磁気記録用六方晶フェライト磁性粉を含む磁気記録媒体に関する。
 先に記載した通り、上述の磁気記録用六方晶フェライト磁性粉を磁性層の強磁性粉末として用いることにより、高い塗膜耐久性を有する磁気記録媒体を提供することができる。
磁性層
 磁性層に使用される強磁性粉末である磁気記録用六方晶フェライト磁性粉およびその製造方法の詳細は、前述の通りである。
 磁性層は、強磁性粉末とともに結合剤を含む。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、スチレン、アクリロニトリル、メチルメタクリレートなどを共重合したアクリル系樹脂、ニトロセルロースなどのセルロース系樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラールなどのポリビニルアルキラール樹脂などから単独または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル系樹脂、セルロース系樹脂、塩化ビニル系樹脂である。これらの樹脂は、後述する非磁性層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報段落0029~0031を参照できる。また、上記樹脂とともにポリイソシアネート系硬化剤を使用することも可能である。
 磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。以上説明した添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。
非磁性層
 次に非磁性層に関する詳細な内容について説明する。本発明の一態様にかかる磁気記録媒体は、非磁性支持体と磁性層との間に非磁性粉末と結合剤を含む非磁性層を有することができる。非磁性層に使用される非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2010-24113号公報段落0036~0039を参照できる。
 非磁性層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。また、非磁性層にはカーボンブラックや有機質粉末を添加することも可能である。それらについては、例えば特開2010-24113号公報段落0040~0042を参照できる。
非磁性支持体
 非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
 これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3~10nmが好ましい。
層構成
 本発明の一態様にかかる磁気記録媒体の厚み構成は、非磁性支持体の厚みが、好ましくは3~80μmである。磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には0.01~0.15μmであり、好ましくは0.02~0.12μmであり、さらに好ましくは0.03~0.10μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
 非磁性層の厚みは、例えば0.1~3.0μmであり、0.3~2.0μmであることが好ましく、0.5~1.5μmであることが更に好ましい。なお、本発明の一態様にかかる磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の一態様にかかる磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT以下または抗磁力が7.96kA/m(100Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
バックコート層
 磁気記録媒体には、非磁性支持体の磁性層を有する面とは反対の面にバックコート層を設けることもできる。バックコート層には、カーボンブラックと無機粉末が含有されていることが好ましい。バックコート層形成のための結合剤、各種添加剤は、磁性層や非磁性層の処方を適用することができる。バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
製造方法
 磁性層、非磁性層またはバックコート層を形成するための塗布液を製造する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報、特開平1-79274号公報に記載されている。また、磁性層塗布液、非磁性層塗布液またはバックコート層塗布液を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。磁気記録媒体の製造方法の詳細については、例えば特開2010-24113号公報段落0051~0057を参照できる。
 以上説明した本発明の一態様にかかる磁気記録媒体は、上述の磁気記録用六方晶フェライト磁性粉を磁性層に含むことにより高い塗膜耐久性を発揮することができるため、長期にわたり高い信頼性をもって記録再生が可能であることが求められる
高密度記録用磁気記録媒体として好適である。
 以下に本発明を実施例によりさらに具体的に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。以下に記載の「部」は、「質量部」を示す。また、下記工程および評価は、特記しない限り、23℃±1℃の大気中で行った。
 下記のX線回折分析は、CuKα線を40kV、45mAの条件で走査し、XRDパターンを測定することにより行った。X線粉末回折スペクトルは、下記の実験的条件下で測定した:
・PANalytical X'Pert Pro回折計、PIXcel検出器
・電圧45kV、強度40mA
・入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
・分散スリットの固定角:1/4度
・マスク:10mm
・散乱防止スリット:1/4度
・測定モード:連続
・1段階あたりの測定時間:3秒
・測定速度:毎秒0.017度
・測定ステップ:0.05度
1.磁気記録用六方晶フェライト磁性粉に関する実施例・比較例
[実施例1-1]
(ガラス結晶化法によるコア粒子の調製)
 BaCO3を1481g、H3BO3を666g、Fe23を1115g、Nb25を17.6gとなるよう秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、容量1Lの白金ルツボで溶解し、1380℃で攪拌しつつ白金ルツボの底に設けた出湯口を加熱し融液を約6g/secで棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質を作製した。
 得られた非晶質体280gを電気炉に仕込み、650℃(結晶化温度)で5時間保持させて、強磁性六方晶バリウムフェライト粒子を析出(結晶化)させた。
 次いで強磁性六方晶バリウムフェライト粒子を含む結晶化物を乳鉢で粗粉砕し、2000mlのガラス瓶に1mmφジルコニアビーズ1000gと1%濃度の酢酸を800ml加えてペイントシェーカーにて3時間分散処理を行った後、分散液をビーズと分離させ3Lステンレスビーカーに入れた。分散液を100℃で3時間処理した後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、110℃6時間乾燥させて粒子を得た。得られた粒子についてはX線回折分析を行い、六方晶フェライト(バリウムフェライト)であることを確認した。
(超臨界合成法による結晶性アルミナのシェル付け)
 上記方法により得られたバリウムフェライト粒子表面に超臨界合成法により結晶性Al23を析出させるため、下記の操作を行った。
 硝酸アルミニウム9水和物(純度99.9%)を0.1Mになるように精製水に溶解し、Al/Fe比が4原子%となるようにバリウムフェライト粒子を混合し原料混合液を得た。
 次にオレイン酸を0.2Mになるようにエタノールに溶解して修飾剤溶液を調製した。
 図1に示す製造装置の液槽2に原料混合物を、液槽3に修飾剤溶液を導入した。なお製造装置の配管としては、SUS316BAチューブを用いた。
 液槽1に導入した精製水を高圧ポンプ5aで送液しつつヒーター4で加熱することで配管100中に高温高圧水を流通させた。この際、加熱手段4c通過後の高温高圧水の温度が450℃、圧力が30MPaとなるように温度および圧力を制御した。
 一方、原料混合液と修飾剤溶液は、体積比で原料混合液:修飾剤溶液=50:50の割合になるように各々高圧ポンプ5b、5cを用いて25℃で配管101、102に送液し、途中2液を混合した。ここで得られた混合液は、水/エタノールの体積比が75/25、pH(25℃)は12.0であった。この混合液を混合部M1において上記高温高圧水と混合させ、引き続き、反応器6において450℃、30MPaで10秒間加熱・加圧することにより、結晶性Al23に被覆されたバリウムフェライト粒子を得た。得られた粒子を含む液を冷却部7において冷水で冷却し、粒子を収集した。
 収集した粒子をエタノールで洗浄し、分離した。XRD解析(X線回折分析)の結果、バリウムフェライトの回折ピークのほかにγ型Al23(アルミナ)のピークが確認された。なお置換元素を含まないバリウムフェライトは、BaFe1219で表される。本実施例では、Fe置換元素としてNbを含んでいるため、得られたバリウムフェライトでは、上記式中のFeの一部がNbに置換されている。
[実施例1-2]
 硝酸アルミニウム9水和物の代わりに水酸化セリウムCe(OH)4を用いた点以外、実施例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのほかCeO2(セリア)のピークが確認された。
[実施例1-3]
 硝酸アルミニウム9水和物の代わりに酢酸ジルコニウムZr(CH3COO)4を用いた点以外、実施例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのほかZrO2(ジルコニア)のピークが確認された。
[比較例1-1]
 ガラス結晶化法によるコア粒子の調製において、原料混合物に、Al(OH)3を74.2g混合した点、およびシェル付けの処理を行わなかった点以外は、実施例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのみが確認された。
 ガラス結晶化法によるコア粒子の調製において、繰り返し洗浄後の110℃6時間乾燥を420℃5時間乾燥とした点以外は、比較例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのみが確認された。
[実施例1-4]
 ガラス結晶化法によるコア粒子の調製において、炭酸バリウムを炭酸ストロンチウムに置き換えた点以外、実施例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのほかにγ型Al23のピークが確認された。なお置換元素を含まないストロンチウムフェライトは、SrFe1219で表される。本実施例では、Fe置換元素としてNbを含んでいるため、得られたストロンチウムフェライトでは、上記式中のFeの一部がNbに置換されている。
[実施例1-5~1-9、1-11、1-12]
ガラス結晶化法によるコア粒子の調製における結晶化温度を表1に示した温度にした点以外、実施例1と同様に行った。
 得られた粒子をXRD解析した結果、バリウムフェライトの回折ピークのほかにγ型Al23のピークが確認された。
[実施例1-10]
 コア粒子を、以下の超臨界合成法により調製した点以外、実施例1と同様に行った。
 精製水に水酸化バリウム(Ba(OH)2・8H2O)、硝酸鉄(III)(Fe(NO33・9H2O)、およびKOHを溶解することで、金属塩および金属水酸化物を含んだ水溶液(ゾル)を調製した。調製した水溶液(ゾル)の濃度は0.01Mで、Ba/Feモル比は0.5であった。
 次にオレイン酸をエタノールに溶解して修飾剤溶液を調製した。調製した溶液の濃度は0.2Mであった。
 図1に示す製造装置の液槽2に水溶液(ゾル)を、液槽3に修飾剤溶液を導入した。なお製造装置の配管としては、SUS316BAチューブを用いた。
 液槽1に導入した精製水を高圧ポンプ5aで送液しつつヒーター4で加熱することで配管100中に高温高圧水を流通させた。この際、加熱手段4cを通過後の高温高圧水の温度が450℃、圧力が30MPaとなるように温度および圧力を制御した。
 一方、水溶液(ゾル)と修飾剤溶液は、体積比で水溶液:修飾剤溶液=5:5の割合となるように各々高圧ポンプ5b、5cを用いて25℃で配管101、102に送液し、途中2液を混合した。ここで得られた混合液は、水/エタノールの体積比が75/25、pH(25℃)は12.0であった。この混合液を混合部M1において上記高温高圧水と混合させ、引き続き、反応器6において400℃、30MPaで加熱・加圧することにより、バリウムフェライトナノ粒子を合成した。
 バリウムフェライトナノ粒子合成後、冷却部7において冷水によりバリウムフェライトナノ粒子を含んだ液を冷却し、収集した。
 収集した粒子をエタノールで洗浄し、続いて遠心分離することにより、オレイン酸に修飾されたバリウムフェライトナノ粒子を分離した。
 以上の各実施例で得られた磁性粉について、磁性粉0.01gを10mLの4N-HCl溶液に浸漬し、ホットプレートにて80℃で3時間加熱することで溶解させた。溶解液を希釈後、ICPにてFeと金属(Al、CeまたはZr)を定量することで金属/Fe比を求めたところ、いずれも約4原子%であった。
 上記実施例、比較例で得られた各粒子の活性化体積を、以下の方法により求めた。
 振動試料型磁束計(東英工業社製)を用いてHc測定部の磁場スイープ速度を3分と30分で測定し、以下の熱揺らぎによるHcと磁化反転体積の関係式から活性化体積Vを算出した。
 Hc=(2Ku/Ms)*{1-[(kT/KuV)ln(At/0.693)]^(1/2)}
[上記式中、Ku:異方性定数、Ms:飽和磁化、k:ボルツマン定数、T:絶対温度、V:活性化体積、A:スピン歳差周波数、t:磁界反転時間]
 上記実施例、比較例の詳細を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
2.磁気記録媒体(磁気テープ)に関する実施例、比較例
[実施例2-1~2-12、比較例2-1、2-2]
(1)磁性層塗布液処方
 六方晶フェライト磁性粉(表2に記載):100部
 ポリウレタン樹脂:12部
   質量平均分子量 10000
   スルホン酸官能基含有量 0.5meq/g
 ダイアモンド微粒子(平均粒径50nm):2部
 カーボンブラック(旭カーボン社製#55、粒子サイズ0.015μm):0.5部
 ステアリン酸:0.5部
 ブチルステアレート:2部
 メチルエチルケトン:180部
 シクロヘキサノン:100部
(2)非磁性層塗布液処方
 非磁性粉体 α酸化鉄:100部
   平均一次粒子径 0.09μm
   BET法による比表面積 50m2/g
   pH 7
   DBP吸油量27~38g/100g
   表面処理剤Al23 8質量%
 カーボンブラック(コロンビアンカーボン社製コンダクテックスSC-U):25部
 塩化ビニル共重合体(日本ゼオン社製MR104):13部
 ポリウレタン樹脂(東洋紡社製UR8200):5部
 フェニルホスホン酸:3.5部
 ブチルステアレート:1部
 ステアリン酸:2部
 メチルエチルケトン:205部
 シクロヘキサノン:135部
(3)磁気テープの作製
 上記の塗布液のそれぞれについて、各成分をニ-ダで混練した。1.0mmφのジルコニアビーズを分散部の容積に対し65%充填する量を入れた横型サンドミルにポンプで通液し、2000rpmで120分間(実質的に分散部に滞留した時間)分散させた。得られた分散液にポリイソシアネートを非磁性層の塗布液には6.5部、さらにメチルエチルケトン7部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
 得られた非磁性層塗布液を、厚さ5μmのポリエチレンナフタレートベース上に乾燥後の厚さが1.0μmになるように塗布乾燥させた後、磁性層の厚さが70nmになるように逐次重層塗布を行い、乾燥後7段のカレンダで温度90℃、線圧300kg/cmにて処理を行った。1/4インチ巾にスリットし表面研磨処理を施して磁気テープを得た。
(4)磁気テープの評価
 以下の方法で、磁気テープの評価を行った。
<塗膜耐久性(耐擦り傷性(アルミナ擦り傷)>
 23℃10%RH環境下において、直径4mmのアルミナ球を用いて、テープ表面を20g荷重において、20回繰り返し走行させた後のテープ試料表面を光学顕微鏡(200倍)により観察し、以下の基準により評価した。
A・・・光学顕微鏡の視野中で試料表面のキズがみられないもの
B・・・光学顕微鏡の視野中で試料表面のキズが1~5箇所以下のもの
C・・・光学顕微鏡の視野中で試料表面のキズが6~10箇所以下のもの
D・・・光学顕微鏡の視野中で試料表面のキズが10箇所超50箇所以下のもの
E・・・光学顕微鏡の視野中で試料表面のキズが50箇所超のもの
<SNR>
 各磁気テープに対し、記録ヘッド(MIG、ギャップ0.15μm、1.8T)と再生用GMRヘッドをドラムテスターに取り付けて、トラック密度16KTPI、線記録密度400Kbpi(面記録密度6.4Gbpsi)の信号を記録および再生し、再生信号とノイズとの比(SNR)を求めた。
 以上の結果を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例2-1~2-12は、六方晶フェライト磁性粒子(コア粒子)表面が、結晶性のアルミナ、セリア、またはジルコニアのシェルに被覆された磁性粒子を磁性層の強磁性粉末として使用した例であり、耐擦り傷性の評価において、良好な結果を示した。中でも実施例2-1~2-3の対比から、シェルとして結晶性アルミナを形成することにより、より良好な耐擦り傷性(塗膜耐久性)が得られることが確認された。
 比較例2-1、2-2は、ガラス結晶化法により粒子表面にAl含有被着物を形成した磁性粒子を磁性層の強磁性粉末として使用した例である。比較例2-1で使用した磁性粒子(比較例1-1)は、XRD解析によりアルミナのピークが検出されなかったことから、表面のAl含有被着物は結晶相として存在していないことが確認された。比較例2-2で使用した磁性粒子(比較例1-2)は、表面のAl含有被着物を結晶化すべく乾燥温度を高めた例であるが、XRD解析によりアルミナのピークが検出されなかったことから、表面に結晶性アルミナが存在しないことが確認された。乾燥温度を高めたものの、結果的にはAlがバリウムフェライトの格子中に拡散してしまったことが理由と考えられる。また、高温乾燥により一部粒子が合一したため、得られた磁性粒子の活性化体積が大きくなってしまった。その結果、耐擦り傷性は良化せず、SNRも低いものであった。
 実施例2-4は、コア粒子がストロンチウムフェライトである磁性粒子(実施例1-4)を使用した例であり、SNRが高く、耐擦り傷性にも優れていた。
 実施例2-5~2-9、実施例2-11、2-12は、コアのバリウムフェライト粒子の結晶化温度を変えることにより、活性化体積を変えた例である。活性化体積が800~1600nm3の範囲の実施例2-5~2-9において、実施例2-11、2-12と比べて良好なSNRが得られた。
 実施例2-10は、超臨界合成法で得たバリウムフェライトをコア粒子とする磁性粒子(実施例1-10)を使用した例であり、耐擦り傷性が高いだけでなく、ガラス結晶化法で得られた磁性粒子を用いた実施例と比較して、SNRが顕著に高いものであった。
 本発明は、バックアップテープ等の高密度記録用磁気記録媒体の製造分野において有用である。

Claims (14)

  1. 結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子からなる磁気記録用六方晶フェライト磁性粉。
  2. 活性化体積が800~1600nm3の範囲である請求項1に記載の磁気記録用六方晶フェライト磁性粉。
  3. 前記結晶性金属酸化物は、Al、ZrおよびCeからなる群から選ばれる金属の結晶性酸化物である請求項1または2に記載の磁気記録用六方晶フェライト磁性粉。
  4. 前記六方晶フェライト磁性粒子は、Fe100原子%に対する前記金属の割合が0.5~20原子%の範囲となる量の結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子である請求項1~3のいずれか1項に記載の磁気記録用六方晶フェライト磁性粉。
  5. 前記六方晶フェライト磁性粒子は、バリウムフェライト磁性粒子である請求項1~4のいずれか1項に記載の磁気記録用六方晶フェライト磁性粉。
  6. 前記六方晶フェライト磁性粒子は、ストロンチウムフェライト磁性粒子である請求項1~4のいずれか1項に記載の磁気記録用六方晶フェライト磁性粉。
  7. 六方晶フェライト磁性粒子と結晶性金属酸化物前駆体とを含む水系溶液を加熱および加圧することにより、前記前駆体が転換した結晶性金属酸化物を前記六方晶フェライト磁性粒子表面に析出させることを含む、結晶性金属酸化物が表面に被着した六方晶フェライト磁性粒子の製造方法。
  8. 前記加熱および加圧を、前記水系溶液を、内部を流れる流体を350℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより行う、請求項7に記載の六方晶フェライト磁性粒子の製造方法。
  9. 前記水系溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加し、かつ前記水と前記水系溶液との混合液を、350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、前記前駆体が転換した結晶性金属酸化物を前記六方晶フェライト磁性粒子表面に析出させる、請求項7または8に記載の六方晶フェライト磁性粒子の製造方法。
  10. 前記水系溶液を、六方晶フェライト磁性粒子と前記結晶性金属酸化物前駆体とを含む水溶液を、有機修飾剤を有機溶媒中に含む有機修飾剤溶液と混合することにより調製することを更に含む、請求項7~9のいずれか1項に記載の六方晶フェライト磁性粒子の製造方法。
  11. 前記六方晶フェライト磁性粒子をガラス結晶化法により作製することを更に含む、請求項7~10のいずれか1項に記載の六方晶フェライト磁性粒子の製造方法。
  12. 前記六方晶フェライト磁性粒子を、
    鉄塩とアルカリ土類金属塩とを塩基性水溶液中で混合することにより六方晶フェライト前駆体粒子を析出させること;
    前記析出した六方晶フェライト前駆体粒子を含む水溶液を、有機修飾剤を有機溶媒中に含む有機修飾剤溶液と混合すること;
    前記混合により得られた水系溶液を、350℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加すること;および、
    前記送液路内で、前記水と前記水系溶液との混合液を350℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、前記六方晶フェライト前駆体粒子を六方晶フェライト粒子に転換すること;
    により作製することを更に含む、請求項7~10のいずれか1項に記載の六方晶フェライト磁性粒子の製造方法。
  13. 請求項1~6のいずれか1項に記載の磁気記録用六方晶フェライト磁性粉を作製する、請求項8~12のいずれか1項に記載の六方晶フェライト磁性粒子の製造方法。
  14. 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、
    前記強磁性粉末は、請求項1~6のいずれか1項に記載の磁気記録用六方晶フェライト磁性粉である磁気記録媒体。
PCT/JP2014/067194 2013-06-28 2014-06-27 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体 WO2014208731A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015524137A JP5916952B2 (ja) 2013-06-28 2014-06-27 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体
US14/757,517 US9748026B2 (en) 2013-06-28 2015-12-23 Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136838 2013-06-28
JP2013136838 2013-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/757,517 Continuation US9748026B2 (en) 2013-06-28 2015-12-23 Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2014208731A1 true WO2014208731A1 (ja) 2014-12-31

Family

ID=52142056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067194 WO2014208731A1 (ja) 2013-06-28 2014-06-27 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体

Country Status (3)

Country Link
US (1) US9748026B2 (ja)
JP (1) JP5916952B2 (ja)
WO (1) WO2014208731A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178761A (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 六方晶フェライト粉末、磁気記録媒体および六方晶フェライト粉末の製造方法
CN109087769A (zh) * 2017-06-14 2018-12-25 富士胶片株式会社 磁记录用六方晶锶铁氧体粉末及磁记录介质
JP2019164876A (ja) * 2018-03-20 2019-09-26 富士フイルム株式会社 磁気記録用強磁性粉末および磁気記録媒体
US11488627B2 (en) 2018-03-20 2022-11-01 Fujifilm Corporation Ferromagnetic powder for magnetic recording and magnetic recording medium

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291511B2 (ja) * 2015-01-22 2018-03-14 Dowaエレクトロニクス株式会社 磁気記録媒体用磁性粉
JP6316248B2 (ja) 2015-08-21 2018-04-25 富士フイルム株式会社 磁気テープおよびその製造方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
JP6552402B2 (ja) 2015-12-16 2019-07-31 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
JP6430927B2 (ja) 2015-12-25 2018-11-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6427127B2 (ja) 2016-02-03 2018-11-21 富士フイルム株式会社 磁気テープおよびその製造方法
JP6465823B2 (ja) 2016-02-03 2019-02-06 富士フイルム株式会社 磁気テープおよびその製造方法
JP6472764B2 (ja) 2016-02-29 2019-02-20 富士フイルム株式会社 磁気テープ
JP6474748B2 (ja) 2016-02-29 2019-02-27 富士フイルム株式会社 磁気テープ
JP6467366B2 (ja) 2016-02-29 2019-02-13 富士フイルム株式会社 磁気テープ
JP6556096B2 (ja) 2016-06-10 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534637B2 (ja) 2016-06-13 2019-06-26 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534969B2 (ja) 2016-06-22 2019-06-26 富士フイルム株式会社 磁気テープ
JP6556100B2 (ja) 2016-06-22 2019-08-07 富士フイルム株式会社 磁気テープ
JP6549529B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556102B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6498154B2 (ja) 2016-06-23 2019-04-10 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717684B2 (ja) 2016-06-23 2020-07-01 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6549528B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6507126B2 (ja) 2016-06-23 2019-04-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556101B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6496277B2 (ja) 2016-06-23 2019-04-03 富士フイルム株式会社 磁気テープ
JP6529933B2 (ja) 2016-06-24 2019-06-12 富士フイルム株式会社 磁気テープ
JP6556107B2 (ja) 2016-08-31 2019-08-07 富士フイルム株式会社 磁気テープ
JP6552467B2 (ja) 2016-08-31 2019-07-31 富士フイルム株式会社 磁気テープ
JP6585570B2 (ja) 2016-09-16 2019-10-02 富士フイルム株式会社 磁気記録媒体およびその製造方法
JP6684203B2 (ja) 2016-12-27 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6588002B2 (ja) 2016-12-27 2019-10-09 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP2018106778A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6701072B2 (ja) 2016-12-27 2020-05-27 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6637456B2 (ja) 2017-02-20 2020-01-29 富士フイルム株式会社 磁気テープ
JP6684239B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6684237B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684238B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6689223B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6684236B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649298B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649297B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6602805B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6685248B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6602806B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6689222B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6684235B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684234B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649314B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6660336B2 (ja) * 2017-03-29 2020-03-11 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632561B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649312B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615814B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649313B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6626031B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632562B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ
JP6626032B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6694844B2 (ja) 2017-03-29 2020-05-20 富士フイルム株式会社 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法
JP6723198B2 (ja) 2017-06-23 2020-07-15 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6707061B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気記録媒体
JP6707060B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気テープ
JP6678135B2 (ja) 2017-07-19 2020-04-08 富士フイルム株式会社 磁気記録媒体
JP6714548B2 (ja) 2017-07-19 2020-06-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6717786B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6723202B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6723203B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
JP6717785B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気記録媒体
JP6717787B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
CN111164685B (zh) 2017-09-29 2021-07-23 富士胶片株式会社 磁带及磁记录回放装置
WO2019065200A1 (ja) 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7049306B2 (ja) * 2018-12-06 2022-04-06 Dowaエレクトロニクス株式会社 六方晶フェライト磁性粉
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7275740B2 (ja) 2019-03-27 2023-05-18 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP7275739B2 (ja) 2019-03-27 2023-05-18 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP7268440B2 (ja) 2019-03-27 2023-05-08 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7338395B2 (ja) 2019-10-18 2023-09-05 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840723A (ja) * 1994-08-02 1996-02-13 Nissan Chem Ind Ltd バリウムフェライト微粒子の製造方法
JP2012128904A (ja) * 2010-12-15 2012-07-05 Toda Kogyo Corp 磁気記録媒体用六方晶フェライト粒子粉末
JP2012156438A (ja) * 2011-01-28 2012-08-16 Fujifilm Corp 磁性粒子およびその製造方法、磁気記録用磁性粉、ならびに磁気記録媒体
JP2012164410A (ja) * 2011-01-17 2012-08-30 Fujifilm Corp 磁気記録媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657816A (en) * 1982-04-19 1987-04-14 Memorex Corporation Ferromagnetic recording materials
AU558199B2 (en) * 1982-09-16 1987-01-22 Ishihara Sangyo Kaisha Ltd. Production of magnetic powder
JP2784794B2 (ja) * 1989-04-20 1998-08-06 戸田工業 株式会社 磁性酸化鉄粒子粉末
DE69108958T2 (de) * 1990-02-21 1995-12-14 Toda Kogyo Corp Superparamagnetische feine Teilchen aus Eisenoxid und magnetische Aufzeichnungsträger, welche diese enthalten.
US5190841A (en) * 1991-12-19 1993-03-02 Eastman Kodak Company Two-phase ferroelectric-ferromagnetic composite and carrier therefrom
JP3389935B2 (ja) * 1994-03-04 2003-03-24 戸田工業株式会社 針状コバルト被着型マグネタイト粒子粉末及びその製造法
US7485366B2 (en) * 2000-10-26 2009-02-03 Inframat Corporation Thick film magnetic nanoparticulate composites and method of manufacture thereof
US6632528B1 (en) * 2001-05-18 2003-10-14 Ensci Inc Metal oxide coated nano substrates
JP2003109209A (ja) * 2001-09-28 2003-04-11 Fuji Photo Film Co Ltd 磁気記録媒体
JP5697399B2 (ja) 2010-03-31 2015-04-08 富士フイルム株式会社 六方晶フェライト磁性粒子およびその製造方法、磁気記録媒体用磁性粉、ならびに磁気記録媒体
JP5490025B2 (ja) * 2011-01-06 2014-05-14 富士フイルム株式会社 六方晶バリウムフェライト磁性粒子およびその製造方法、磁気記録用磁性粉、ならびに磁気記録媒体
JP5799042B2 (ja) * 2013-03-07 2015-10-21 富士フイルム株式会社 磁気記録媒体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840723A (ja) * 1994-08-02 1996-02-13 Nissan Chem Ind Ltd バリウムフェライト微粒子の製造方法
JP2012128904A (ja) * 2010-12-15 2012-07-05 Toda Kogyo Corp 磁気記録媒体用六方晶フェライト粒子粉末
JP2012164410A (ja) * 2011-01-17 2012-08-30 Fujifilm Corp 磁気記録媒体
JP2012156438A (ja) * 2011-01-28 2012-08-16 Fujifilm Corp 磁性粒子およびその製造方法、磁気記録用磁性粉、ならびに磁気記録媒体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178761A (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 六方晶フェライト粉末、磁気記録媒体および六方晶フェライト粉末の製造方法
US20170287515A1 (en) * 2016-03-31 2017-10-05 Fujifilm Corporation Hexagonal ferrite powder, magnetic recording medium, and method of hexagonal ferrite powder
CN109087769A (zh) * 2017-06-14 2018-12-25 富士胶片株式会社 磁记录用六方晶锶铁氧体粉末及磁记录介质
JP2019003715A (ja) * 2017-06-14 2019-01-10 富士フイルム株式会社 磁気記録用六方晶ストロンチウムフェライト粉末および磁気記録媒体
CN109087769B (zh) * 2017-06-14 2021-06-18 富士胶片株式会社 磁记录用六方晶锶铁氧体粉末及磁记录介质
US11244701B2 (en) 2017-06-14 2022-02-08 FUJIFILM Cornoration Hexagonal strontium ferrite powder for magnetic recording and magnetic recording medium
JP2019164876A (ja) * 2018-03-20 2019-09-26 富士フイルム株式会社 磁気記録用強磁性粉末および磁気記録媒体
US11488627B2 (en) 2018-03-20 2022-11-01 Fujifilm Corporation Ferromagnetic powder for magnetic recording and magnetic recording medium

Also Published As

Publication number Publication date
JPWO2014208731A1 (ja) 2017-02-23
US9748026B2 (en) 2017-08-29
US20160141084A1 (en) 2016-05-19
JP5916952B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5916952B2 (ja) 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体
JP5978201B2 (ja) 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP6517166B2 (ja) 六方晶フェライト粉末および磁気記録媒体
JP6280922B2 (ja) 六方晶フェライト粒子の製造方法および磁気記録媒体の製造方法
JP5998185B2 (ja) 強磁性六方晶フェライト粉末および磁気記録媒体
JP5319561B2 (ja) 磁気記録媒体
US9454983B2 (en) Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording
US9741382B2 (en) Hexagonal ferrite powder and magnetic recording medium
JP5978200B2 (ja) 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP6556087B2 (ja) 六方晶フェライト粉末、磁気記録媒体および六方晶フェライト粉末の製造方法
JP5998170B2 (ja) 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP2015010018A (ja) 金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体
JP7112979B2 (ja) 磁気記録媒体および磁気記録再生装置
JP5972421B2 (ja) 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP7264843B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818429

Country of ref document: EP

Kind code of ref document: A1