WO2014129139A1 - 多気筒エンジンの冷却装置 - Google Patents

多気筒エンジンの冷却装置 Download PDF

Info

Publication number
WO2014129139A1
WO2014129139A1 PCT/JP2014/000673 JP2014000673W WO2014129139A1 WO 2014129139 A1 WO2014129139 A1 WO 2014129139A1 JP 2014000673 W JP2014000673 W JP 2014000673W WO 2014129139 A1 WO2014129139 A1 WO 2014129139A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
block
water jacket
head
spacer
Prior art date
Application number
PCT/JP2014/000673
Other languages
English (en)
French (fr)
Inventor
大典 松本
大介 田畑
雅博 内藤
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to DE112014000928.8T priority Critical patent/DE112014000928B4/de
Priority to US14/760,943 priority patent/US9624816B2/en
Priority to CN201480006569.7A priority patent/CN104995383B/zh
Publication of WO2014129139A1 publication Critical patent/WO2014129139A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • the present invention relates to a cooling device for a multi-cylinder engine such as an automobile, and particularly belongs to a technical field of an engine for cooling a cylinder head and a cylinder block with a coolant.
  • a cooling device that cools the engine by flowing a coolant into the engine so that the engine has an appropriate temperature has been adopted.
  • Patent Document 1 discloses a technique for arranging a spacer in a water jacket of a cylinder block.
  • An induction slope portion for guiding the coolant to the cylinder head side is provided on the coolant introduction side of the spacer, and a flow path separation member that forms an upper flow path of the water jacket is connected to the upper end portion of the guide slope portion. Is done. According to this, the temperature difference in the vertical direction of the cylinder is suppressed by increasing the flow rate and flow rate of the coolant flowing in the upper flow path of the water jacket and flowing it in a U-turn shape.
  • warming up the engine early when the engine is cold is advantageous in terms of combustion performance and exhaust purification performance. Therefore, an engine cooling device that can effectively achieve warm-up promotion when the engine is cold is desired.
  • the cylinder head is exposed to high-temperature exhaust gas even when the engine is cold, so cooling is necessary. Therefore, an engine cooling device that can effectively achieve cooling of the cylinder head when the engine is cold is also desired.
  • an object of the present invention is to provide a cooling device for a multi-cylinder engine that can effectively achieve cooling of the cylinder head and promotion of warm-up of the engine when the engine is cold.
  • the present invention has a block-side water jacket provided in a cylinder block so as to surround cylinder bores of a plurality of cylinders arranged in series, and a head-side water jacket provided in a cylinder head.
  • a cooling device for a multi-cylinder engine provided with a coolant path for circulating coolant through the water jacket and the radiator by a water pump,
  • the cylinder block is provided on one end side of the cylinder row, and is provided in the vicinity of the introduction portion for introducing the coolant into the block-side water jacket, and the coolant introduced from the introduction portion is provided in the block.
  • the cylinder head is provided on the other end side of the cylinder row, and has a head side discharge portion that discharges the coolant from the head side water jacket,
  • the multi-cylinder engine cooling device is characterized in that a communication passage for communicating the block side water jacket and the head side water jacket with each other is provided on the cylinder head side of the inclined portion.
  • FIG. 1 shows a schematic configuration of a cooling device 1 for a multi-cylinder engine 2 according to an embodiment of the present invention.
  • this multi-cylinder engine 2 hereinafter simply referred to as “engine”
  • four cylinders are arranged in series in a crankshaft direction (not shown) (left-right direction in FIG. 1), and an intake system and an exhaust system are mutually connected to a cylinder head 4.
  • This is a so-called crossflow type in-line four-cylinder diesel engine disposed on the opposite side of the engine.
  • the engine 2 has an engine room (not shown) provided in the front part of the vehicle, in which the cylinder row faces in the vehicle width direction, the exhaust system is located on the rear side in the vehicle front-rear direction, and the cylinder shaft of each cylinder is It is mounted so that it faces up and down.
  • the engine 2 includes a cylinder block 3 and a cylinder head 4 provided on the upper side of the cylinder block 3 as main components.
  • the cylinder block 3 is viewed from above, and the cylinder head 4 is viewed from below. For this reason, the cylinder block 3 and the cylinder head 4 have the opposite positional relationship between the intake side (shown as “IN”) and the exhaust side (shown as “EX”).
  • the cylinder block 3 is provided with a block-side water jacket 33, an introduction hole (introduction portion) 36 for cooling water (cooling liquid) W, and a block-side discharge hole (block-side discharge portion) 37.
  • the cylinder head 4 is provided with a head side water jacket 61 and a head side discharge hole (head side discharge portion) 62. As will be described later, the cooling water W introduced into the block-side water jacket 33 from the introduction hole 36 is discharged from the block-side discharge hole 37, and the cooling water W introduced from the introduction hole 36 into the head-side water jacket 61 is It is discharged from the head side discharge hole 62.
  • the introduction hole 36 is provided with a water pump (WP) 5 for supplying cooling water W into the block side water jacket 33 and the head side water jacket 61.
  • the water pump 5 is a pump that is passively driven by the rotation of the engine 2.
  • the cooling device 1 includes a cooling water path (cooling liquid path) 10 for circulating the cooling water W to the block side water jacket 33 and the head side water jacket 61 via the radiator 7 and the like as appropriate.
  • the cooling water passage 10 has first to fourth passages 11 to 14.
  • the cooling water path 10 is switched by circulating the cooling water W in any one of the first to fourth passages 11 to 14.
  • the switching of the cooling water path 10 is performed by controlling the cooling circuit switching unit 6 by the cooling circuit control unit 101 of the ECU 100.
  • the cooling circuit switching unit 6 includes a thermostat valve 6a and first to third control valves 6b to 6d. Next, the first to fourth passages 11 to 14 will be described in detail.
  • the first passage 11 connects the head side discharge hole 62 and the introduction hole 36. While this 1st channel
  • the thermostat valve 6a is a valve that opens when the first to third control valves 6b to 6d break down and the water temperature of the cooling water W exceeds a predetermined value. According to the thermostat valve 6a, the cooling water W circulates only in the first passage 11 when normal, and the cooling water W circulates also through the second passage 12 when abnormal, thereby protecting the engine 2.
  • the water temperature sensor 102 is provided in the vicinity of the head side discharge hole 62.
  • the second passage 12 connects the head side discharge hole 62 and the introduction hole 36. While the second passage 12 bypasses the radiator 7, the idling stop water pump (WP) 21, the air conditioning heater core 22, the EGR cooler (EGR / C) 23, the EGR valve (EGR / V) 24, and the first It goes through the control valve 6b in order.
  • the idling stop water pump 21 is a pump for flowing the cooling water W to the air conditioning heater core 22 when the engine 2 is temporarily stopped during idling.
  • the EGR cooler 23 and the EGR valve 24 are disposed in the second passage 12 in parallel with each other.
  • the third passage 13 connects the block side discharge hole 37 and the introduction hole 36.
  • the third passage 13 bypasses the radiator 7, and sequentially passes through the engine oil cooler (O / C) 25, the oil heat exchanger (ATF / W) 26 of the automatic transmission, and the second control valve 6c. .
  • the engine oil cooler 25 is provided in the block side discharge hole 37.
  • the fourth passage 14 connects the head side discharge hole 62 and the introduction hole 36.
  • the fourth passage 14 sequentially passes through the water temperature sensor 102, the radiator 7, and the third control valve 6d.
  • the cooling circuit control unit 101 is one of control units provided in the ECU 100.
  • the cooling circuit control unit 101 inputs detection signals from the water temperature sensor 102, the engine speed sensor 103, and the fuel injection amount sensor 104, and is based on the load state of the engine 2 determined by the engine speed and the fuel injection amount. Then, the head combustion chamber wall surface temperature of the engine 2, that is, the head temperature T is predicted, and the first to third control valves 6b to 6d are controlled according to the predicted head temperature T. This will be described later (see FIGS. 14 and 15).
  • FIG. 2 is an exploded perspective view of the cylinder block 3, and FIG. 3 is a plan view of the cylinder block 3.
  • the cylinder block 3 includes a cylinder block body 30 and a spacer 40 as main components.
  • the gasket 50 is not a component of the cylinder block 3, but is illustrated in FIG. 2 for convenience of explanation.
  • the cylinder block body 30 is provided so that the cylinder shafts of the cylinder bores 32 of the first to fourth cylinders # 1 to # 4 arranged in series face the vertical direction.
  • the upper surface 31 of the cylinder block main body 30 is provided with a block-side water jacket 33 which is an annular concave groove surrounding the four cylinder bores 32.
  • the block-side water jacket 33 has an exhaust-side passage 34 that passes through the exhaust side of the cylinder block 3 and an intake-side passage 35 that passes through the intake side of the cylinder block 3.
  • the first cylinder # 1 to the fourth cylinder # 4 are arranged in order from left to right when the cylinder block 3 is viewed from the intake side.
  • the side where the first cylinder # 1 is located is “one end side” and the side where the fourth cylinder # 4 is located is “others”. It is called "end side”.
  • the inner side walls are the inner wall portions 34a and 35a and the outer side walls, respectively. These side walls are referred to as outer wall portions 34b and 35b, respectively (see FIGS. 4 and 5).
  • the cylinder block body 30 is provided at one end side of the cylinder row and is provided at an introduction hole (introduction portion) 36 for introducing the cooling water W into the block side water jacket 33 and at the center portion of the cylinder row on the intake side.
  • a block-side discharge hole (block-side discharge portion) 37 for discharging the cooling water W from the side water jacket 33 is provided.
  • the cylinder block body 30 is provided with screw holes 38... 38 into which a plurality of head bolts (not shown) for screwing the cylinder block 3 and the cylinder head 4 together through the gasket 50 can be screwed together. Yes.
  • the gasket 50 is a metal sheet gasket in which a plurality of metal plates are overlapped and a plurality of places are integrated by caulking, and the overall shape thereof is a shape corresponding to the upper surface 31 of the cylinder block body 30.
  • the gasket 50 is provided with circular holes 51... 51 at positions corresponding to the cylinder bores 32 of the cylinder block body 30, and the head bolt insertion holes described above at positions corresponding to the screw holes 38. 54... 54 are provided.
  • the gasket 50 has a plurality of first communication holes (communication paths) 52... 52 and second communication holes 53... 53 that allow the block-side water jacket 33 and the head-side water jacket 61 (see FIG. 1) to communicate with each other. Is provided.
  • the first communication holes 52 ... 52 are provided on one end side of the cylinder row of the gasket 50, and the second communication holes 53 ... 53 are provided on the exhaust side and the intake side, respectively.
  • the cylinder head 4 is provided with a head side discharge hole 62 for discharging the cooling water W from the head side water jacket 61 on the other end side of the cylinder row.
  • FIG. 4 is a vertical sectional view of the cylinder block 3 in the second cylinder # 2
  • FIG. 5 is a vertical sectional view of the cylinder block 3 in the fourth cylinder # 4.
  • a spacer 40 is arranged inside the block-side water jacket 33.
  • the spacer 40 is placed so that its bottom portion is in contact with the bottom surface of the block-side water jacket 33, and is arranged with a space between the inner wall portions 34a, 35a and the outer wall portions 34b, 35b of the block-side water jacket 33. It is installed.
  • the distance between the inner peripheral surface of the spacer 40 and the inner wall portions 34 a and 35 a of the block-side water jacket 33 is relatively narrow, and the outer peripheral surface of the spacer 40 and the outer wall portions 34 b and 35 b of the block-side water jacket 33 are The interval between the two is formed to be relatively wide. Therefore, a gap outside the spacer 40 is a main flow path through which the cooling water W flows. It should be noted that the “exhaust-side channel 34” or “intake-side channel 35” simply refers to the gap outside the spacer 40.
  • the spacer 40 and the outer wall 34 b are higher on the upper side than a later-described stepped portion 44 provided on the spacer 40 than on the lower side. Therefore, the exhaust-side channel 34 has a larger channel cross-sectional area on the upper side in the cylinder axial direction than on the lower side.
  • FIGS. 6 is a perspective view of the cylinder block 3
  • FIG. 7 is a perspective view of the spacer 40 alone viewed from the intake side
  • FIG. 8 is a perspective view of the spacer 40 alone viewed from the exhaust side
  • FIG. 10 is a front view of the spacer 40 alone viewed from the intake side
  • FIG. 11 is a rear view of the spacer 40 alone viewed from the exhaust side
  • FIG. 12 is a cylinder row of the spacer 40 alone.
  • FIG. 13 is a side view of the spacer 40 alone viewed from the other end side of the cylinder row.
  • symbols of IN (intake side) and EX (exhaust side) indicating directions when the spacer 40 is disposed inside the block-side water jacket 33 are attached.
  • the spacer 40 has such a thickness that it is stored in the block-side water jacket 33 with a gap and a height that does not protrude from the upper surface 31 of the cylinder block 3 ( 4 and 5).
  • the spacer 40 is mainly constituted by an annular vertical wall portion 41 in a plan view extending substantially parallel to the cylinder axial direction.
  • the vertical wall 41 on one end side and the intake side of the cylinder row is provided with a rib-like throttle portion 42 that protrudes outward from the outer periphery thereof. (See FIG. 3).
  • the aperture 42 has an upper aperture 42a and a lower aperture 42b.
  • the upper diaphragm portion 42a is formed to have a larger protrusion than the lower diaphragm portion 42b.
  • the vertical wall portion 41 on one end side of the cylinder row has a cylinder axial direction from the lower end of the vertical wall portion 41 toward the exhaust side from the intake side.
  • a rib-like inclined portion 43 that is smoothly inclined so as to climb to the center is provided (see FIG. 3).
  • a step 44 connected to the upper end of the inclined portion 43 is provided at the center in the cylinder axial direction of the vertical wall 41 on the exhaust side. (See FIGS. 3 to 5). According to this, when the spacer 40 is disposed inside the block-side water jacket 33, in the exhaust-side flow path 34, the upper side of the stepped portion 44 is less than the lower side than the spacer 40 and the outer wall portion 34 b. The interval of becomes wider.
  • the vertical wall 41 on the other end side of the cylinder row is connected to the above-mentioned step 44 and wraps around from the exhaust side to the intake side.
  • a rib-shaped guide portion 45 that is smoothly inclined so as to further rise toward the cylinder head 4 toward the intake side is provided (see FIGS. 3 and 5).
  • a flange 46 is provided at the lower end of the vertical wall 41 on the intake side so as to protrude outward from the outer periphery thereof (FIGS. 3 and 3). 4).
  • a notch for inserting a cold region heater (not shown) is inserted into the lower end of the vertical wall 41 on the other end side and the intake side of the cylinder row.
  • a certain cold region heater insertion portion 47 is provided.
  • the spacer 40 Since the spacer 40 is disposed inside the block-side water jacket 33, the spacer 40 has heat resistance that can withstand the high temperature in the cylinder block 3, and rigidity that does not cause deformation or breakage due to the water pressure of the cooling water W.
  • a resin examples include polyamide-based thermoplastic resins such as PA66 and PPA, olefin-based thermoplastic resins such as PP, and polyphenylene sulfide-based thermoplastic resins such as PPS. One of these can be used alone or in combination of two or more. You may mix
  • Such a resin spacer 40 can be integrally molded by, for example, an injection molding machine or the like.
  • FIGS. In these drawings, an arrow indicating the flow of the cooling water W when the spacer 40 is disposed inside the block-side water jacket 33 is attached.
  • the cooling water W is introduced into the block-side water jacket 33 from the introduction hole 36 of the cylinder block 3 by the water pump 5.
  • the spacer 40 is disposed in the block-side water jacket 33 with a space between the inner wall portions 34a and 35a and the outer wall portions 34b and 35b (see FIGS. 3 to 5). Therefore, it is possible to prevent the cooling water W introduced from the introduction hole 36 from directly hitting the inner wall portions 34a and 35a of the block-side water jacket 33 and locally lowering the temperature of the cylinder at that portion.
  • the flow of the cooling water W introduced from the introduction hole 36 is restricted to the intake side flow path 35 by the throttle portion 42 provided on the intake side in the vicinity of the introduction hole 36. Therefore, most of the cooling water W flows to the exhaust side flow path 34.
  • the lower throttle part 42b since the lower throttle part 42b has a smaller projection amount than the upper throttle part 42a, a relatively small amount of cooling water W passing through the wider gap between the lower throttle part 42b and the outer wall part 35b is taken into the intake side flow path 35. Flowing into.
  • the block-side water jacket 33 and the head-side water jacket 61 are communicated with each other via a first communication hole 52 on one end side of the gasket 50. Therefore, as will be described later, when the cooling circuit controller 101 controls the cooling water W to circulate only in the first passage 11 when the engine 2 is cold, the cooling water W directed to the cylinder head 4 side. Is less likely to flow into the exhaust-side flow path 34 of the block-side water jacket 33 and more easily flows into the head-side water jacket 61 via the first communication hole 52.
  • the cooling of the cylinder block 3 does not proceed, the temperature of the cylinder block 3 gradually increases, and the warm-up of the engine 2 is promoted.
  • the cylinder head 4 exposed to the high-temperature exhaust gas is cooled.
  • the cooling water W that has flowed into the head-side water jacket 61 is discharged from a head-side discharge hole 62 provided on the other end side of the cylinder head 4.
  • the cooling water W that has flowed from the inclined portion 43 to the exhaust side flow path 34 is located on the upper side of the stepped portion 44 that is connected to the upper end portion of the inclined portion 43. It flows more to the bottom and less to the bottom. This is because the gap between the spacer 40 and the outer wall portion 34b is wider on the upper side of the step portion 44 and the cross-sectional area of the flow path is larger on the upper side of the step portion 44 than on the lower side.
  • the exhaust side upper part of the cylinder block 3 that is particularly likely to rise in temperature due to the high temperature exhaust gas can be further cooled than the exhaust side lower part during actual operation of the engine 2 (that is, after the engine 2 is warmed up). A temperature difference in the vertical direction of the cylinder can be suppressed.
  • the cooling water W that has flowed through the exhaust side flow path 34 is connected to the stepped portion 44 and is sucked from the exhaust side flow path 34 by the guide portion 45 provided on the other end side of the vertical wall portion 41. As it flows in a U-turn shape toward the side flow path 35, it is directed to the cylinder head 4 side.
  • the cooling water W directed to the cylinder head 4 side easily flows into the head-side water jacket 61 through the second communication hole 53 provided on the intake side of the gasket 50. Therefore, the cylinder head 4 can be more actively cooled.
  • the cooling water W that has not flown into the head-side water jacket 61 through the second communication hole 53 passes through the intake-side flow path 35 and is provided at the center of the cylinder row on the intake side of the cylinder block 3.
  • the block side discharge hole 37 is discharged.
  • the cooling water W flows from the introduction hole 36 to the block side discharge hole 37 as described above, the cooling water W gradually increases in water temperature while absorbing the heat of each cylinder. Therefore, for example, in the first cylinder # 1, the exhaust side is cooled by the relatively low-temperature cooling water W, whereas the cooling side W hardly flows through the throttle portion 42 on the intake side, so that the cooling does not proceed. On the other hand, for example, the fourth cylinder # 4 is cooled by the cooling water W in which both the exhaust side and the intake side are relatively hot.
  • the temperature distribution of the entire cylinder can be made uniform by suppressing the temperature difference between the intake side and the exhaust side of each cylinder, the temperature difference between the cylinders in the vertical direction, and the temperature difference between the cylinders. .
  • the cooling water W that has flowed into the intake-side flow path 35 through the gap between the lower throttle portion 42 b and the outer wall portion 35 b has the flange portion 46 that protrudes outward from the outer periphery of the spacer 40 and is sucked into the vertical wall portion 41. Since it is provided at the lower end of the side portion (see FIG. 4), the collar portion 46 prevents the spacer 40 from entering the inside of the spacer 40 (between the inner peripheral surface of the spacer 40 and the inner wall portion 35a) from the lower end of the spacer 40. Is done. Thereby, it can prevent that the temperature difference of the up-down direction of a cylinder expands.
  • the cold wall heater insertion portion 47 Since the cold wall heater insertion portion 47 is provided in the vertical wall portion 41 of the spacer 40, the cold region heater insertion portion 47 inserts the cold region heater into the block side water jacket 33. Freezing of the cooling water W can be prevented.
  • the throttle part 42, the inclined part 43, the step part 44, the guide part 45, and the collar part 46 are provided on the outer periphery of the vertical wall part 41 of the spacer 40, they can be easily formed integrally with the spacer 40.
  • FIG. 14 is a flowchart showing a control method by the cooling circuit control unit 101
  • FIG. 15 is a block diagram showing a cooling method according to the engine temperature.
  • the cooling circuit control unit 101 closes all the control valves 6b to 6d (step S1). At this time, the cooling water W is circulated only in the first passage 11 as shown in FIG. A relatively small amount of cooling water W is passed through the cylinder head 4 in order to warm up the engine 2 while preventing local heating.
  • the cooling circuit control unit 101 determines that the head temperature T (the head combustion chamber wall temperature of the engine 2 predicted based on the load state of the engine 2 determined by the engine speed and the fuel injection amount as described above). It is determined whether or not the temperature is equal to or higher than a predetermined temperature T1 (for example, 150 ° C.) (step S2).
  • a predetermined temperature T1 for example, 150 ° C.
  • step S2 When it is determined in step S2 that the head temperature T is equal to or higher than the predetermined temperature T1, the cooling circuit control unit 101 opens the first control valve 6b (step S3). At this time, the cooling water W is circulated through the first passage 11 and the second passage 12 as shown in FIG.
  • the cooling circuit control unit 101 determines whether or not the head temperature T is equal to or higher than a predetermined temperature T2 (T2> T1) higher than the temperature T1 (step S4).
  • step S4 When it is determined in step S4 that the head temperature T is equal to or higher than the predetermined temperature T2, the cooling circuit control unit 101 opens the second control valve 6c (step S5). At this time, as shown in FIG. 15 (c), the cooling water W is circulated through the first passage 11 to the third passage 13.
  • the cooling circuit control unit 101 determines whether or not the engine 2 has been completely warmed up, that is, whether or not the engine 2 has been warmed up (step S6). This determination may be made based on whether or not the head temperature T is equal to or higher than a predetermined temperature T3 (T3> T2) higher than the temperature T2.
  • step S6 When it is determined in step S6 that the engine 2 is completely warmed up, the cooling circuit control unit 101 opens the third control valve 6d (step S7). At this time, as shown in FIG. 15D, the cooling water W is circulated through all of the first passage 11 to the fourth passage 14.
  • the first to third control valves 6b to 6d are sequentially opened by the cooling circuit control unit 101 as the engine temperature rises.
  • the cooling water W is also circulated through the second passage 12. Since the second passage 12 does not pass through the radiator 7 and the cooling water W hardly flows into the block-side water jacket 33, the engine 2 is continuously warmed up.
  • the cooling water W is also circulated through the third passage 13. Since the third passage 13 is connected to the cylinder block 3, the cylinder block 3 is also cooled to some extent. However, since the third passage 13 bypasses the radiator 7, the engine 2 warms up.
  • the first to third control valves 6b to 6d are closed during the cold operation, and the first to third are increased as the engine temperature rises.
  • the 1st control valve 6b is opened in the middle of warming up, and the cooling water W is also circulated through the second passage 12 via the air conditioning heater core 22 and the EGR cooler 23, the heating performance can be ensured in the middle of warming up.
  • the EGR gas can be properly cooled by the EGR cooler 23.
  • the second control valve 6c is opened during the warm-up, and the coolant W is circulated through the third passage 13 through the engine oil cooler 25 and the oil heat exchanger 26 of the automatic transmission.
  • Engine oil can be cooled from the middle, and transmission oil (ATF) can be heated appropriately.
  • ATF transmission oil
  • the viscosity of the transmission oil can be reduced early, the sliding resistance can be reduced early, and fuel consumption can be improved.
  • the present invention includes a block-side water jacket 33 provided on the cylinder block 3 so as to surround the cylinder bores 32 of the plurality of cylinders # 1 to # 4 arranged in series, and a head-side water jacket 61 provided on the cylinder head 4.
  • a cooling device 1 for a multi-cylinder engine 2 provided with a cooling water path 10 for circulating the cooling water W through the water jackets 33 and 61 and the radiator 7 by a water pump 5,
  • the cylinder block 3 is provided on one end side of the cylinder row, and is provided in the vicinity of the introduction hole 36 and the introduction hole 36 for introducing the cooling water W into the block-side water jacket 33, and is introduced from the introduction hole 36.
  • the cooling water W introduced from the introduction hole 36 is provided in the vicinity of the throttle portion 42 that restricts the cooling water W from flowing to the intake-side flow path 35 of the block-side water jacket 33 and the introduction hole 36.
  • An inclined portion 43 directed toward the cylinder head 4 side, The cylinder head 4 is provided on the other end side of the cylinder row, and has a head side discharge hole 62 for discharging the cooling water W from the head side water jacket 61.
  • a first communication hole 52... 52 is provided on the cylinder head 4 side of the inclined portion 43 to allow the block-side water jacket 33 and the head-side water jacket 61 to communicate with each other.
  • the cooling water W can be controlled to circulate only in the head-side water jacket 61.
  • the cooling water W directed to the cylinder head 4 side by the inclined portion 43 hardly flows into the exhaust-side flow path 34 of the block-side water jacket 33, It flows into the head-side water jacket 61 through one communication hole 52.
  • the cooling of the cylinder head 4 exposed to the high-temperature exhaust gas is promoted, and the cylinder block 3 is not cooled, so that the temperature gradually rises and the engine 2 is warmed up. Promoted.
  • lubricating oil transmission oil
  • a spacer 40 is disposed in the block-side water jacket 33 with a space between the inner wall portions 34a and 35a and the outer wall portions 34b and 35b, and the throttle portion 42 and the inclined portion 42 are inclined.
  • the portion 43 is formed on the outer periphery of the spacer 40.
  • the throttle part 42 and the inclined part 43 can be easily formed integrally with the spacer 40.
  • the exhaust-side flow path 34 of the block-side water jacket 33 is formed so that the flow path cross-sectional area is larger on the upper side in the cylinder axial direction than on the lower side.
  • a stepped portion 44 connected to the upper end portion of the inclined portion 43 is formed at the center in the cylinder axial direction. Is formed so that the space between the spacer 40 and the outer wall portion 34b is wider than the lower side.
  • the exhaust side portion of the spacer 40 is formed such that the distance between the spacer 40 and the outer wall portion 34b is wider on the upper side in the cylinder axial direction than on the lower side. Therefore, the upper part on the exhaust side of the cylinder block 3 whose temperature is particularly likely to rise due to the high-temperature exhaust gas during the actual operation of the engine 2 (after the engine 2 is warmed up) can be further cooled than the lower part on the exhaust side. Therefore, the effect of reducing the temperature difference in the vertical direction of each cylinder can be realized.
  • the throttle portion 42 includes a rib-shaped upper throttle portion 42a and a lower throttle portion 42b that protrude outward from the outer periphery of the spacer 40, and the upper throttle portion 42a is the lower side. It is formed so that the protruding amount is larger than that of the throttle portion 42b.
  • a flange 46 protruding outward from the outer periphery of the spacer 40 is formed at the lower end of the intake side portion of the spacer 40.
  • the cooling water W can be prevented from flowing from the lower end of the spacer 40 to the inside of the spacer 40 (between the inner peripheral surface of the spacer 40 and the inner wall portion 35a), and the temperature in the vertical direction of the cylinder can be suppressed. It is possible to prevent the difference from expanding.
  • the cylinder block 3 has a block-side discharge hole 37 that is provided in the center of the cylinder row on the intake side and discharges the cooling water W from the block-side water jacket 33.
  • the cylinder block 3 is provided with the block-side discharge hole 37 for discharging the coolant W from the central portion of the cylinder row on the intake side of the block-side water jacket 33.
  • the cooling water W flowing inside is introduced from one end side of the cylinder row, flows from the exhaust side through the other end side of the cylinder row to the intake side, and is discharged from the central portion of the cylinder row on the intake side.
  • the temperature gradually increases while taking heat away. Therefore, the cylinder on one end side of the cylinder row is cooled on the exhaust side by the relatively low-temperature cooling water W, whereas on the intake side, the cooling water W hardly flows by the throttle portion 42 and the cooling does not proceed.
  • both the exhaust side and the intake side of the cylinder on the other end side of the cylinder row are cooled by the relatively high-temperature cooling water W. Therefore, if the cooling on the exhaust side and the cooling on the intake side of each cylinder are averaged and compared, the cylinder on one end side and the cylinder on the other end side of the cylinder row are cooled equally. Thereby, the temperature difference between each cylinder is suppressed.
  • the throttle portion 42, the inclined portion 43, the step portion 44, and the guide portion 45 are formed integrally with the spacer 40, but the internal shape of the block-side water jacket 33 is devised without providing the spacer 40.
  • these parts 42 to 45 may be formed in the cylinder block 3 itself.
  • the present invention is applied to an in-line four-cylinder diesel engine.
  • any number of cylinders may be used as long as the number of cylinders is plural.
  • the cooling circuit control unit 101 predicts the head temperature (based on the load state of the engine 2 determined by the engine speed and the fuel injection amount as the engine temperature ( The temperature of the cooling water W detected by the water temperature sensor 102 may be used instead, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 シリンダブロック(3)は導入部(36)と絞り部(42)と傾斜部(43)とを有し、シリンダヘッドはヘッド側排出部を有する。導入部(36)は気筒列の第1気筒#1側に設けられ、ブロック側ウォータジャケット(33)へ冷却液を導入する。絞り部(42)は導入部(36)の近傍に設けられ、導入部(36)から導入された冷却液がブロック側ウォータジャケット(33)の吸気側流路(35)へ流れるのを制限する。傾斜部(43)は導入部(36)の近傍に設けられ、導入部(36)から導入された冷却液をシリンダヘッド側へ指向させる。ヘッド側排出部は気筒列の第4気筒#4側に設けられ、ヘッド側ウォータジャケットから冷却液を排出する。傾斜部(43)のシリンダヘッド側にブロック側ウォータジャケット(33)とヘッド側ウォータジャケットとを互いに連通させる連通路が設けられている。

Description

多気筒エンジンの冷却装置
 本発明は、自動車等の多気筒エンジンの冷却装置に関し、特にシリンダヘッド及びシリンダブロックを冷却液により冷却するエンジンの技術分野に属する。
 従来、自動車等において、エンジンが適切な温度となるようにエンジン内部に冷却液を流してエンジンを冷却する冷却装置が採用されている。
 例えば、特許文献1には、シリンダブロックのウォータジャケット内にスペーサを配置する技術が開示されている。このスペーサの冷却液導入側に、冷却液をシリンダヘッド側に誘導する誘導スロープ部が設けられ、この誘導スロープ部の上端部に、ウォータジャケットの上部流路を形成する流路分離部材が連設される。これによれば、ウォータジャケットの上部流路を流れる冷却液の流量及び流速を増加させてUターン状に流すことにより、シリンダの上下方向の温度差が抑制される。
日本国特許第4845620号
 ところで、エンジンの冷間時にエンジンを早期に暖気することは、燃焼性能や排気浄化性能の点で有利となる。そのため、エンジン冷間時の暖気促進を効果的に達成可能なエンジンの冷却装置が望まれる。
 また、エンジンの冷間時にもシリンダヘッドは高温の排気ガスに晒されるため冷却が必要である。そのため、エンジン冷間時にシリンダヘッドの冷却を効果的に達成可能なエンジンの冷却装置も望まれる。
 そこで、本発明は、エンジン冷間時にシリンダヘッドの冷却及びエンジンの暖気促進を効果的に達成可能な多気筒エンジンの冷却装置の提供を目的とする。
 前記課題を解決するため、本発明は、直列に配置された複数の気筒のシリンダボアを囲むようにシリンダブロックに設けられたブロック側ウォータジャケットと、シリンダヘッドに設けられたヘッド側ウォータジャケットとを有し、ウォータポンプにより、これらウォータジャケットとラジエータとを経由させて冷却液を循環させる冷却液経路が備えられた多気筒エンジンの冷却装置であって、
 前記シリンダブロックは、気筒列の一端側に設けられ、前記ブロック側ウォータジャケットへ冷却液を導入する導入部と、前記導入部の近傍に設けられ、前記導入部から導入された冷却液が前記ブロック側ウォータジャケットの吸気側流路へ流れるのを制限する絞り部と、前記導入部の近傍に設けられ、前記導入部から導入された冷却液をシリンダヘッド側へ指向させる傾斜部とを有し、
 前記シリンダヘッドは、気筒列の他端側に設けられ、前記ヘッド側ウォータジャケットから冷却液を排出するヘッド側排出部を有し、
 前記傾斜部のシリンダヘッド側に、前記ブロック側ウォータジャケットと前記ヘッド側ウォータジャケットとを互いに連通させる連通路が設けられたことを特徴とする多気筒エンジンの冷却装置である。
 前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面とから明らかになる。
本発明の一実施形態の冷却装置の概略構成を示すブロック図である。 同冷却装置のシリンダブロックの分解斜視図である。 同シリンダブロックの平面図である。 同シリンダブロックの第2気筒における垂直断面図である。 同シリンダブロックの第4気筒における垂直断面図である。 同シリンダブロックの斜視図である。 スペーサの吸気側の斜視図である。 同スペーサの排気側の斜視図である。 同スペーサの平面図である。 同スペーサの吸気側の正面図である。 同スペーサの排気側の背面図である。 同スペーサの傾斜部側(一端側)の側面図である。 同スペーサの案内部側(他端側)の側面図である。 同冷却装置の冷却回路制御部による制御方法を示すフローチャートである。 同冷却装置によるエンジン温度に応じた冷却方法を示すブロック図である。
 以下、本発明に係る多気筒エンジンの冷却装置の実施形態について、図1~図15を参照しながら説明する。
 図1は、本発明の実施形態に係る多気筒エンジン2の冷却装置1の概略構成を示している。この多気筒エンジン2(以下、単に「エンジン」という)は、4つのシリンダが図示しないクランク軸方向(図1において左右方向)に直列に配設され、吸気系と排気系とが互いにシリンダヘッド4の反対側に配置された所謂クロスフロー型の直列4気筒ディーゼルエンジンである。このエンジン2は、車両前部に設けられたエンジンルーム(図示しない)内に、気筒列が車幅方向を向き、その排気系が車両前後方向における後方側に位置し、各気筒のシリンダ軸が上下方向を向くように搭載されている。
 エンジン2は、主たる構成要素として、シリンダブロック3と、このシリンダブロック3の上側に設けられたシリンダヘッド4とを有する。
 図1では、シリンダブロック3は上方から見たもの、シリンダヘッド4は下方から見たものとして記載されている。そのため、シリンダブロック3とシリンダヘッド4とで、吸気側(「IN」と図示)と排気側(「EX」と図示)との位置関係が逆になっている。
 シリンダブロック3には、ブロック側ウォータジャケット33、冷却水(冷却液)Wの導入孔(導入部)36、及びブロック側排出孔(ブロック側排出部)37が設けられている。シリンダヘッド4には、ヘッド側ウォータジャケット61及びヘッド側排出孔(ヘッド側排出部)62が設けられている。後述するように、導入孔36からブロック側ウォータジャケット33内に導入された冷却水Wはブロック側排出孔37から排出され、導入孔36からヘッド側ウォータジャケット61内に導入された冷却水Wはヘッド側排出孔62から排出される。
 導入孔36には、これらブロック側ウォータジャケット33及びヘッド側ウォータジャケット61内に冷却水Wを供給するためのウォータポンプ(WP)5が設けられている。このウォータポンプ5は、エンジン2の回転によって受動的に駆動されるポンプである。
 冷却装置1は、ブロック側ウォータジャケット33及びヘッド側ウォータジャケット61に適宜ラジエータ7等を経由して冷却水Wを循環させるための冷却水経路(冷却液経路)10を備えている。冷却水経路10は第1~4通路11~14を有する。これら第1~4通路11~14のいずれかに冷却水Wを循環させることにより冷却水経路10が切り換えられる。この冷却水経路10の切り換えは、ECU100の冷却回路制御部101によって冷却回路切換部6を制御することで行われる。冷却回路切換部6は、サーモスタット弁6a及び第1~第3制御弁6b~6dを有する。次に、これら第1~4通路11~14について詳細に説明する。
 第1通路11は、ヘッド側排出孔62と導入孔36とを連結する。この第1通路11は、ラジエータ7を迂回する一方、冷却水Wの温度を検知する水温センサ102、及びサーモスタット弁6aを順に経由する。サーモスタット弁6aは、第1~第3制御弁6b~6dが故障して冷却水Wの水温が所定値以上になると開く弁である。このサーモスタット弁6aによれば、正常時は第1通路11のみに冷却水Wが循環し、異常時は第2通路12にも冷却水Wが循環する状態になり、エンジン2が保護される。水温センサ102はヘッド側排出孔62の近傍に設けられている。
 第2通路12は、ヘッド側排出孔62と導入孔36とを連結する。この第2通路12は、ラジエータ7を迂回する一方、アイドリングストップ用ウォータポンプ(WP)21、空調用ヒータコア22、EGRクーラ(EGR/C)23、EGRバルブ(EGR/V)24、及び第1制御弁6bを順に経由する。アイドリングストップ用ウォータポンプ21は、アイドリング時にエンジン2を一時停止している際に空調用ヒータコア22へ冷却水Wを流すためのポンプである。EGRクーラ23及びEGRバルブ24は互いに並列に第2通路12に配設されている。
 第3通路13は、ブロック側排出孔37と導入孔36とを連結する。この第3通路13は、ラジエータ7を迂回する一方、エンジンオイルクーラ(O/C)25、自動変速機のオイルの熱交換器(ATF/W)26、及び第2制御弁6cを順に経由する。エンジンオイルクーラ25はブロック側排出孔37に設けられている。
 第4通路14は、ヘッド側排出孔62と導入孔36とを連結する。この第4通路14は、水温センサ102、ラジエータ7、及び第3制御弁6dを順に経由する。
 冷却回路制御部101は、ECU100内に設けられた制御部の一つである。この冷却回路制御部101は、水温センサ102、エンジン回転数センサ103、及び燃料噴射量センサ104から検知信号を入力し、エンジン回転数と燃料噴射量とにより判定されるエンジン2の負荷状態に基づいてエンジン2のヘッド燃焼室壁面温度、すなわちヘッド温度Tを予測し、予測されたヘッド温度Tに応じて第1~第3制御弁6b~6dを制御する。これについては後述する(図14及び図15参照)。
 図2は、シリンダブロック3の分解斜視図、図3は、シリンダブロック3の平面図である。シリンダブロック3は、主たる構成要素として、シリンダブロック本体30と、スペーサ40とを有する。ガスケット50はシリンダブロック3の構成要素ではないが、説明の便宜上、図2に記載している。
 シリンダブロック本体30は、直列に配置された第1~第4気筒#1~#4のシリンダボア32のシリンダ軸が上下方向を向くように設けられている。図2及び図3に示すように、シリンダブロック本体30の上面31には、これら4つのシリンダボア32を囲むような環状の凹溝であるブロック側ウォータジャケット33が設けられている。このブロック側ウォータジャケット33は、シリンダブロック3の排気側を通る排気側流路34とシリンダブロック3の吸気側を通る吸気側流路35とを有する。
 本実施形態では、シリンダブロック3を吸気側から見て左から右に第1気筒#1から第4気筒#4が順に並んでいる。本実施形態の説明では、これら第1~第4気筒#1~#4が並ぶ気筒列において、第1気筒#1がある側を「一端側」、第4気筒#4がある側を「他端側」という。
 また、本実施形態の説明では、凹溝であるブロック側ウォータジャケット33の排気側流路34及び吸気側流路35を形成する壁面のうち、内側にある側壁をそれぞれ内壁部34a,35a、外側にある側壁をそれぞれ外壁部34b,35bという(図4及び図5参照)。
 シリンダブロック本体30には、気筒列の一端側に設けられ、ブロック側ウォータジャケット33へ冷却水Wを導入する導入孔(導入部)36と、吸気側における気筒列の中央部に設けられ、ブロック側ウォータジャケット33から冷却水Wを排出するブロック側排出孔(ブロック側排出部)37とが設けられている。
 さらに、シリンダブロック本体30には、シリンダブロック3とシリンダヘッド4とをガスケット50を介して互いに結合するための複数のヘッドボルト(図示しない)が螺合可能なねじ穴38…38が設けられている。
 ガスケット50は、複数の金属板を重ね合わせて複数箇所をカシメにより一体化した金属シートガスケットであり、その全体の形状がシリンダブロック本体30の上面31に対応する形状とされている。
 ガスケット50には、図2に示すように、シリンダブロック本体30のシリンダボア32に対応する位置に円孔51…51が設けられ、ねじ穴38…38に対応する位置に上述のヘッドボルトの挿通穴54…54が設けられている。
 また、ガスケット50には、ブロック側ウォータジャケット33とヘッド側ウォータジャケット61(図1参照)とを互いに連通させる複数の第1連通孔(連通路)52…52及び第2連通孔53…53が設けられている。第1連通孔52…52は、ガスケット50の気筒列の一端側に設けられ、第2連通孔53…53は、排気側と吸気側とにそれぞれ設けられている。
 ガスケット50を間に挟んでシリンダブロック3とシリンダヘッド4とを結合した際、ガスケット50が有する弾性反発力によって、円孔51…51の周囲及び挿通穴54…54の周囲がシールされる。これにより、各気筒#1~#4の燃焼室からの燃焼ガスの漏出や、ブロック側ウォータジャケット33及びヘッド側ウォータジャケット61からの冷却水Wの漏出等が防止される。
 なお、図1に示すように、シリンダヘッド4には、気筒列の他端側に、ヘッド側ウォータジャケット61から冷却水Wを排出するヘッド側排出孔62が設けられている。
 図4は、シリンダブロック3の第2気筒#2における垂直断面図、図5は、シリンダブロック3の第4気筒#4における垂直断面図である。
 図4及び図5に示すように、ブロック側ウォータジャケット33の内部にスペーサ40が配設されている。スペーサ40は、その底部がブロック側ウォータジャケット33の底面に接するように載置されると共に、ブロック側ウォータジャケット33の内壁部34a,35a及び外壁部34b,35bとの間に間隔を設けて配設されている。
 スペーサ40は、スペーサ40の内周面とブロック側ウォータジャケット33の内壁部34a,35aとの間の間隔は比較的狭く、スペーサ40の外周面とブロック側ウォータジャケット33の外壁部34b,35bとの間の間隔は比較的広くなるように形成されている。そのため、このスペーサ40の外側の隙間が冷却水Wの流れる主な流路となっている。なお、単に「排気側流路34」又は「吸気側流路35」という場合には、このスペーサ40の外側の隙間を指すものとする。
 図4及び図5に示すように、ブロック側ウォータジャケット33の排気側流路34においては、スペーサ40に設けられた後述する段部44より上側の方が下側よりもスペーサ40と外壁部34bとの間隔が広いため、排気側流路34はシリンダ軸方向の上側の方が下側よりも流路断面積が大きくなっている。
 次に、図6~図13を参照しながら、スペーサ40の構造について説明する。図6は、シリンダブロック3の斜視図、図7は、スペーサ40単体を吸気側から見た斜視図、図8は、スペーサ40単体を排気側から見た斜視図、図9は、スペーサ40単体を上方から見た平面図、図10は、スペーサ40単体を吸気側から見た正面図、図11は、スペーサ40単体を排気側から見た背面図、図12は、スペーサ40単体を気筒列の一端側から見た側面図、図13は、スペーサ40単体を気筒列の他端側から見た側面図である。これら図面には、スペーサ40がブロック側ウォータジャケット33の内部に配設された際の向きを示すIN(吸気側)及びEX(排気側)の記号が付されている。
 まず、図6に示すように、スペーサ40は、ブロック側ウォータジャケット33の内部に間隔を設けて収納されるような板厚と、シリンダブロック3の上面31から突出しないような高さとを有する(図4及び図5参照)。図7~図13に示すように、スペーサ40は、シリンダ軸方向にほぼ平行に延在する平面視で環状の縦壁部41によって主に構成されている。
 例えば図7、図9、図10、及び図12に示すように、気筒列の一端側かつ吸気側の縦壁部41には、その外周から外側へ突出するリブ状の絞り部42が設けられている(図3参照)。この絞り部42は、上側絞り部42aと下側絞り部42bとを有する。上側絞り部42aは下側絞り部42bよりも突出量が大きくなるように形成されている。
 例えば図7、図9、図10、及び図12に示すように、気筒列の一端側の縦壁部41には、吸気側から排気側に向かって縦壁部41の下端からシリンダ軸方向の中央まで登るように滑らかに傾斜したリブ状の傾斜部43が設けられている(図3参照)。
 例えば図8、図9、及び図11~図13に示すように、排気側の縦壁部41におけるシリンダ軸方向の中央には、上述の傾斜部43の上端部に連設された段部44が設けられている(図3~図5参照)。これによれば、スペーサ40がブロック側ウォータジャケット33の内部に配設された際に、排気側流路34においては、段部44の上側の方が下側よりもスペーサ40と外壁部34bとの間隔が広くなる。
 例えば図7~図11、及び図13に示すように、気筒列の他端側の縦壁部41には、上述の段部44に連設され、排気側から吸気側まで回り込み、排気側から吸気側に向かってシリンダヘッド4側に更に登るように滑らかに傾斜したリブ状の案内部45が設けられている(図3及び図5参照)。
 例えば図7、図9、図10、及び図12に示すように、吸気側の縦壁部41の下端には、その外周から外側へ突出するつば部46が設けられている(図3及び図4参照)。
 例えば図7、図10、及び図13に示すように、気筒列の他端側かつ吸気側の縦壁部41の下端には、寒冷地用ヒータ(図示しない)を挿入するための切り欠きである寒冷地用ヒータ挿入部47が設けられている。
 スペーサ40は、ブロック側ウォータジャケット33の内部に配設されるため、シリンダブロック3内の高温に耐え得る耐熱性と、冷却水Wの水圧によって変形や破損が生じない程度の剛性とを備えた樹脂で形成される。このような樹脂として、例えば、PA66やPPA等のポリアミド系熱可塑性樹脂、PP等のオレフィン系熱可塑性樹脂、PPS等のポリフェニレンサルファイド系熱可塑性樹脂等を挙げることができる。これらのうちの1種を単独で又は2種以上を組み合せて使用することが可能である。必要に応じてガラス繊維等を前記樹脂に配合してもよい。このような樹脂製のスペーサ40は、例えば射出成形機等によって一体的に成形することができる。
 次に、図6~図13を参照しながら、スペーサ40の作用について説明する。これら図面には、スペーサ40がブロック側ウォータジャケット33の内部に配設された際の冷却水Wの流れを示す矢印が付されている。
 (1)まず、ウォータポンプ5によってシリンダブロック3の導入孔36から冷却水Wがブロック側ウォータジャケット33内に導入される。
 その際、スペーサ40がブロック側ウォータジャケット33内に内壁部34a,35a及び外壁部34b,35bとの間に間隔を設けて配設されている(図3~図5参照)。そのため、導入孔36から導入された冷却水Wがブロック側ウォータジャケット33の内壁部34a,35aに直接当たって、その部分でシリンダが局所的に低温になるのを抑制することができる。
 また、図7に示すように、導入孔36から導入された冷却水Wは、導入孔36の近傍の吸気側に設けられた絞り部42によって吸気側流路35への流れが制限される。そのため、冷却水Wの大部分が排気側流路34へ流れる。一方、下側絞り部42bは上側絞り部42aよりも突出量が小さいため、より広い下側絞り部42bと外壁部35bとの隙間を通った比較的少量の冷却水Wが吸気側流路35に流れる。
 したがって、吸気側流路35よりも排気側流路34により多くの冷却水Wが流れる。そのため、吸気側よりも温度が上がりやすい排気側のシリンダブロック3をより多く冷却でき、各シリンダの吸気側と排気側との温度差を抑制することができる。
 (2)次いで、排気側流路34へ流れた冷却水Wは、図6、図7、及び図12に示すように、導入孔36の近傍の排気側に設けられた傾斜部43によって、シリンダヘッド4側へ指向されて流れる。
 ここで、ブロック側ウォータジャケット33とヘッド側ウォータジャケット61とは、ガスケット50の一端側にある第1連通孔52を介して互いに連通されている。そのため、後述するように、冷却回路制御部101によって、エンジン2の冷間時に第1通路11のみに冷却水Wが循環するように制御されると、シリンダヘッド4側へ指向された冷却水Wは、ブロック側ウォータジャケット33の排気側流路34には流れにくくなり、第1連通孔52を介してヘッド側ウォータジャケット61内に流れやすくなる。
 したがって、エンジン2の冷間時は、シリンダブロック3の冷却が進まず、シリンダブロック3の温度が徐々に上昇して、エンジン2の暖機が促進される。併せて、エンジン2の冷間時であっても、高温の排気ガスに晒されるシリンダヘッド4は冷却される。なお、ヘッド側ウォータジャケット内61に流れた冷却水Wは、シリンダヘッド4の他端側に設けられたヘッド側排出孔62から排出される。
 (3)次いで、傾斜部43から排気側流路34へ流れた冷却水Wは、図8及び図11に示すように、傾斜部43の上端部に連設された段部44の上側の方に多く流れ、下側の方に少なく流れる。これは、前記段部44によって、段部44の上側の方が下側よりも、スペーサ40と外壁部34bとの間隔が広くなり、流路断面積が大きくなるからである。
 したがって、エンジン2の実働時に(つまりエンジン2の暖機後に)高温の排気ガスによって特に温度が上がりやすいシリンダブロック3の排気側上部を、排気側下部よりも、さらに冷却することができるため、各シリンダの上下方向の温度差を抑制することができる。
 (4)次いで、排気側流路34を流れた冷却水Wは、段部44に連設され、縦壁部41の他端側に設けられた案内部45によって、排気側流路34から吸気側流路35に向かってUターン状に流れるにつれて、シリンダヘッド4側に指向される。
 したがって、シリンダヘッド4側に指向された冷却水Wは、ガスケット50の吸気側に設けられた第2連通孔53を介してヘッド側ウォータジャケット61内に流れやすくなる。そのため、シリンダヘッド4をより積極的に冷却することができる。
 (5)次いで、第2連通孔53を介してヘッド側ウォータジャケット61に流れなかった冷却水Wは、吸気側流路35を通って、シリンダブロック3の吸気側の気筒列の中央部に設けられたブロック側排出孔37から排出される。
 冷却水Wが導入孔36からブロック側排出孔37まで上述のように流れる間に、冷却水Wは各シリンダの熱を吸収しながら徐々に水温が上昇する。そのため、例えば第1気筒#1は、比較的低温の冷却水Wによって排気側は冷却が進行するのに対して、吸気側は絞り部42によって冷却水Wがほとんど流れないため冷却が進行しない。一方、例えば第4気筒#4は、排気側及び吸気側の双方が比較的高温になった冷却水Wで冷却される。
 したがって、各シリンダの排気側の冷却と吸気側の冷却とを平均して比較すると、気筒列の両端にある第1気筒#1と第4気筒#4であっても、同等に冷却されるため、各シリンダ間の温度差を抑制することができる。
 以上により、各シリンダの吸気側と排気側との温度差、各シリンダの上下方向の温度差、及び各シリンダ間の温度差を抑制することで、シリンダ全体の温度分布を均一にすることができる。
 (6)下側絞り部42bと外壁部35bとの隙間を通って吸気側流路35に流れた冷却水Wは、スペーサ40の外周から外側へ突出するつば部46が縦壁部41の吸気側部分の下端に設けられているため(図4参照)、このつば部46によってスペーサ40の下端からスペーサ40の内側(スペーサ40の内周面と内壁部35aとの間)に回り込むのが抑止される。これにより、シリンダの上下方向の温度差が拡大するのを防止できる。
 (7)スペーサ40の縦壁部41に寒冷地用ヒータ挿入部47が設けられているため、この寒冷地用ヒータ挿入部47に寒冷地用ヒータを挿入することで、ブロック側ウォータジャケット33内の冷却水Wの凍結を防止することができる。
 (8)絞り部42、傾斜部43、段部44、案内部45、及びつば部46は、スペーサ40の縦壁部41の外周に設けられているため、スペーサ40と共に容易に一体形成できる。
 図14は、冷却回路制御部101による制御方法を示すフローチャート、図15は、エンジン温度に応じた冷却方法を示すブロック図である。次に、図14のフローチャートに従って、冷却回路制御部101による冷却装置1の制御方法について、図15を参照しながら説明する。
 まず、エンジン2の冷間時は、冷却回路制御部101は、全ての制御弁6b~6dを閉弁する(ステップS1)。このとき、図15(a)に示すように、第1通路11のみに冷却水Wが循環される。シリンダヘッド4には、局所的な加熱を防止しながらエンジン2を暖機するため、比較的少量の冷却水Wが流される。
 次いで、冷却回路制御部101は、ヘッド温度T(上述したようにエンジン回転数と燃料噴射量とにより判定されるエンジン2の負荷状態に基づいて予測されるエンジン2のヘッド燃焼室壁面温度)が所定の温度T1(例えば150℃)以上であるか否かを判定する(ステップS2)。
 ステップS2で、ヘッド温度Tが所定の温度T1以上であると判定されると、冷却回路制御部101は、第1制御弁6bを開弁する(ステップS3)。このとき、図15(b)に示すように、第1通路11と第2通路12とに冷却水Wが循環される。
 次いで、冷却回路制御部101は、ヘッド温度Tが前記温度T1より高い所定の温度T2(T2>T1)以上であるか否かを判定する(ステップS4)。
 ステップS4で、ヘッド温度Tが所定の温度T2以上であると判定されると、冷却回路制御部101は、第2制御弁6cを開弁する(ステップS5)。このとき、図15(c)に示すように、第1通路11~第3通路13に冷却水Wが循環される。
 次いで、冷却回路制御部101は、エンジン2が完全に暖機したか、つまりエンジン2の暖機が完了したか否かを判定する(ステップS6)。なお、この判定は、ヘッド温度Tが前記温度T2より高い所定の温度T3(T3>T2)以上であるか否かで行ってもよい。
 ステップS6で、エンジン2が完全に暖機したと判定されると、冷却回路制御部101は、第3制御弁6dを開弁する(ステップS7)。このとき、図15(d)に示すように、第1通路11~第4通路14の全てに冷却水Wが循環される。
 以上により、冷間運転時に冷却回路制御部101によって第1~第3制御弁6b~6dが閉弁されると、ヘッド側排出孔62と導入孔36とを連結する第1通路11のみに冷却水Wが循環される。このとき、冷却水Wはブロック側ウォータジャケット33にはほとんど流れないため、シリンダブロック3の温度が徐々に上昇し、エンジン2の暖機が促進される。一方、ヘッド側ウォータジャケット61には冷却水Wが流れるため、冷間運転時であっても高温の排気ガスに晒されるシリンダヘッド4の冷却が促進される。
 そして、エンジン温度の上昇に伴い冷却回路制御部101によって第1~第3制御弁6b~6dが順次開弁される。最初に、第1制御弁6bが開弁されると、第2通路12にも冷却水Wが循環される。この第2通路12はラジエータ7を経由しないと共に、冷却水Wはブロック側ウォータジャケット33にはほとんど流れないため、引き続きエンジン2の暖機が促進される。
 次いで、第2制御弁6cが開弁されると、第3通路13にも冷却水Wが循環される。この第3通路13はシリンダブロック3に接続されているため、シリンダブロック3もある程度冷却される。しかし、第3通路13はラジエータ7を迂回しているため、エンジン2の暖機が進む。
 最後に、第3制御弁6dが開弁されると、第4通路14にも冷却水Wが循環される。この第4通路14はラジエータ7に接続されているため、ラジエータ7によって冷却水Wの温度が下げられ、暖機後のエンジン2を所定温度に保つことができる。
 したがって、冷却回路制御部101による冷却装置1の制御方法によれば、冷間運転時は第1~第3制御弁6b~6dを閉弁し、エンジン温度の上昇に伴って第1~第3制御弁6b~6dを順次開弁することによって、エンジン2の温度に応じて各シリンダ及びシリンダヘッド4を適正に冷却することができる。
 また、暖機途中で第1制御弁6bを開弁し、空調用ヒータコア22及びEGRクーラ23を経由する第2通路12にも冷却水Wを循環させるため、暖機途中から暖房性能を確保できると共に、EGRクーラ23でEGRガスを適正に冷却できる。
 さらに、暖機途中で第2制御弁6cを開弁し、エンジンオイルクーラ25及び自動変速機のオイルの熱交換器26を経由する第3通路13にも冷却水Wを循環させるため、暖機途中からエンジンオイルを冷却できると共に、変速機オイル(ATF)を適正に加熱することができる。その結果、変速機オイルの粘度が早期に低下し、摺動抵抗が早期に低減して、燃費を向上させることができる。
 以上説明した本発明をまとめると以下の通りである。
 本発明は、直列に配置された複数の気筒#1~#4のシリンダボア32を囲むようにシリンダブロック3に設けられたブロック側ウォータジャケット33と、シリンダヘッド4に設けられたヘッド側ウォータジャケット61とを有し、ウォータポンプ5により、これらウォータジャケット33,61とラジエータ7とを経由させて冷却水Wを循環させる冷却水経路10が備えられた多気筒エンジン2の冷却装置1であって、
 前記シリンダブロック3は、気筒列の一端側に設けられ、前記ブロック側ウォータジャケット33へ冷却水Wを導入する導入孔36と、前記導入孔36の近傍に設けられ、前記導入孔36から導入された冷却水Wが前記ブロック側ウォータジャケット33の吸気側流路35へ流れるのを制限する絞り部42と、前記導入孔36の近傍に設けられ、前記導入孔36から導入された冷却水Wをシリンダヘッド4側へ指向させる傾斜部43とを有し、
 前記シリンダヘッド4は、気筒列の他端側に設けられ、前記ヘッド側ウォータジャケット61から冷却水Wを排出するヘッド側排出孔62を有し、
 前記傾斜部43のシリンダヘッド4側に、前記ブロック側ウォータジャケット33と前記ヘッド側ウォータジャケット61とを互いに連通させる第1連通孔52…52が設けられたことを特徴とする。
 この構成によれば、例えばエンジン2の冷間時等に、ヘッド側ウォータジャケット61のみに冷却水Wが循環するように制御することができる。そして、エンジン2の冷間時にそのように制御すると、傾斜部43によってシリンダヘッド4側へ指向された冷却水Wは、ブロック側ウォータジャケット33の排気側流路34にはほとんど流れずに、第1連通孔52…52を介してヘッド側ウォータジャケット61内に流れる。したがって、多気筒エンジン2の冷間時に、高温の排気ガスに晒されるシリンダヘッド4の冷却が促進されると共に、シリンダブロック3が冷却されずに温度が徐々に上昇してエンジン2の暖機が促進される。これにより、潤滑油(変速機オイル)の粘度が早期に低下し、摺動抵抗が低減するため、燃費が向上する。
 本発明において、好ましくは、前記ブロック側ウォータジャケット33内に、その内壁部34a,35a及び外壁部34b,35bとの間に間隔を設けてスペーサ40が配設され、前記絞り部42及び前記傾斜部43は、前記スペーサ40の外周に形成されている。
 この構成によれば、導入孔36より導入される冷却水Wによりシリンダが直接冷却されて局所的に低温になるのを抑制することができる。
 また、スペーサ40と共に絞り部42及び傾斜部43を容易に一体形成できる。
 本発明において、好ましくは、前記ブロック側ウォータジャケット33の排気側流路34は、シリンダ軸方向の上側の方が下側よりも流路断面積が大きくなるように形成されている。
 この構成によれば、エンジン2の実働時に(エンジン2の暖機後に)高温の排気ガスによって特に温度が上がりやすいシリンダブロック3の排気側上部を、排気側下部よりも、さらに冷却することができる。そのため、各シリンダの上下方向の温度差が抑制される。
 本発明において、好ましくは、前記スペーサ40の排気側部分において、シリンダ軸方向の中央には前記傾斜部43の上端部に連設された段部44が形成され、この段部44の上側の方が下側よりも前記スペーサ40と前記外壁部34bとの間隔が広くなるように形成されている。
 この構成によれば、スペーサ40の排気側部分は、シリンダ軸方向の上側の方が下側よりもスペーサ40と外壁部34bとの間隔が広くなるように形成されている。そのため、エンジン2の実働時に(エンジン2の暖機後に)高温の排気ガスによって特に温度が上がりやすいシリンダブロック3の排気側上部を、排気側下部よりも、さらに冷却することができる。そのため、各シリンダの上下方向の温度差を低減する効果を実現できる。
 本発明において、好ましくは、前記絞り部42は、前記スペーサ40の外周から外側へ突出するリブ形状の上側絞り部42aと下側絞り部42bとを有し、前記上側絞り部42aは前記下側絞り部42bよりも突出量が大きくなるように形成されている。
 この構成によれば、導入孔36より導入した冷却水Wは大部分が排気側流路34に流れるが、比較的少量の冷却水Wが下側絞り部42bを介して吸気側流路35に流れる。したがって、吸気側流路35よりも排気側流路34により多くの冷却水Wが流れるため、吸気側よりも温度が上がりやすい排気側のシリンダブロック3をより多く冷却でき、各シリンダの吸気側と排気側の温度差を抑制することができる。
 本発明において、好ましくは、前記スペーサ40の吸気側部分の下端に、前記スペーサ40の外周から外側へ突出するつば部46が形成されている。
 この構成によれば、スペーサ40の下端からスペーサ40の内側(スペーサ40の内周面と内壁部35aとの間)に冷却水Wが回り込むのを抑制することができ、シリンダの上下方向の温度差が拡大するのを防止できる。
 本発明において、好ましくは、前記シリンダブロック3は、吸気側における気筒列の中央部に設けられ、前記ブロック側ウォータジャケット33から冷却水Wを排出するブロック側排出孔37を有する。
 この構成によれば、シリンダブロック3には、ブロック側ウォータジャケット33の吸気側における気筒列の中央部から冷却水Wを排出するブロック側排出孔37が設けられているため、ブロック側ウォータジャケット33内を流れる冷却水Wは、気筒列の一端側から導入され、排気側から気筒列の他端側を介して吸気側へ流れ、吸気側の気筒列の中央部から排出されるまで、シリンダの熱を奪いながら徐々にその温度が上昇する。そのため、気筒列の一端側のシリンダは、比較的低温の冷却水Wによって排気側が冷却されるのに対して、吸気側は絞り部42によって冷却水Wがほとんど流れず冷却が進まない。一方、気筒列の他端側のシリンダは、比較的高温の冷却水Wによって排気側及び吸気側の双方が冷却される。したがって、各シリンダの排気側の冷却と吸気側の冷却とを平均して比較すれば、気筒列の一端側のシリンダと他端側のシリンダとは同等に冷却される。これにより、各シリンダ間の温度差が抑制される。
 なお、本発明は例示された実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であることはいうまでもない。
 例えば、本実施形態では、絞り部42、傾斜部43、段部44、及び案内部45をスペーサ40と一体に形成したが、スペーサ40を設けずに、ブロック側ウォータジャケット33の内部形状を工夫してこれら各部42~45の機能を持たせることで、シリンダブロック3自体にこれら各部42~45を形成してもよい。
 また、本実施形態では、本発明を直列4気筒ディーゼルエンジンに適用したが、気筒数は複数であれば何気筒であってもよい。また、本発明を、ディーゼルエンジンに限らず、例えばガソリンエンジンに適用してもよい。
 また、本実施形態では、図14のフローチャートにおいて、冷却回路制御部101は、エンジン温度として、エンジン回転数と燃料噴射量とにより判定されるエンジン2の負荷状態に基づいて予測されるヘッド温度(ヘッド燃焼室壁面温度)を用いたが、これに代えて、例えば水温センサ102で検知される冷却水Wの温度を用いてもよい。
 この出願は、2013年2月21日に出願された日本国特許出願特願2013-031899を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ充分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、そのような変更形態又は改良形態は、請求の範囲に記載された請求項の権利範囲に包括されると解釈される。
 以上のように、本発明によれば、自動車等の多気筒エンジンにおいて、冷間時におけるシリンダヘッドの冷却及びエンジンの暖気促進を効果的に達成できるので、本発明は、この種のエンジンの製造産業分野において好適に利用される可能性がある。

Claims (7)

  1.  直列に配置された複数の気筒のシリンダボアを囲むようにシリンダブロックに設けられたブロック側ウォータジャケットと、シリンダヘッドに設けられたヘッド側ウォータジャケットとを有し、ウォータポンプにより、これらウォータジャケットとラジエータとを経由させて冷却液を循環させる冷却液経路が備えられた多気筒エンジンの冷却装置であって、
     前記シリンダブロックは、
     気筒列の一端側に設けられ、前記ブロック側ウォータジャケットへ冷却液を導入する導入部と、
     前記導入部の近傍に設けられ、前記導入部から導入された冷却液が前記ブロック側ウォータジャケットの吸気側流路へ流れるのを制限する絞り部と、
     前記導入部の近傍に設けられ、前記導入部から導入された冷却液をシリンダヘッド側へ指向させる傾斜部と
    を有し、
     前記シリンダヘッドは、
     気筒列の他端側に設けられ、前記ヘッド側ウォータジャケットから冷却液を排出するヘッド側排出部を有し、
     前記傾斜部のシリンダヘッド側に、前記ブロック側ウォータジャケットと前記ヘッド側ウォータジャケットとを互いに連通させる連通路が設けられた
    ことを特徴とする多気筒エンジンの冷却装置。
  2.  前記ブロック側ウォータジャケット内に、その内壁部及び外壁部との間に間隔を設けてスペーサが配設され、
     前記絞り部及び前記傾斜部は、前記スペーサの外周に形成されている
    ことを特徴とする請求項1に記載の多気筒エンジンの冷却装置。
  3.  前記ブロック側ウォータジャケットの排気側流路は、シリンダ軸方向の上側の方が下側よりも流路断面積が大きくなるように形成されている
    ことを特徴とする請求項2に記載の多気筒エンジンの冷却装置。
  4.  前記スペーサの排気側部分において、シリンダ軸方向の中央には前記傾斜部の上端部に連設された段部が形成され、この段部の上側の方が下側よりも前記スペーサと前記外壁部との間隔が広くなるように形成されている
    ことを特徴とする請求項3に記載の多気筒エンジンの冷却装置。
  5.  前記絞り部は、前記スペーサの外周から外側へ突出するリブ形状の上側絞り部と下側絞り部とを有し、前記上側絞り部は前記下側絞り部よりも突出量が大きくなるように形成されている
    ことを特徴とする請求項3又は4に記載の多気筒エンジンの冷却装置。
  6.  前記スペーサの吸気側部分の下端に、前記スペーサの外周から外側へ突出するつば部が形成されている
    ことを特徴とする請求項5に記載の多気筒エンジンの冷却装置。
  7.  前記シリンダブロックは、
     吸気側における気筒列の中央部に設けられ、前記ブロック側ウォータジャケットから冷却液を排出するブロック側排出部を有する
    ことを特徴とする請求項3~6のいずれか1項に記載の多気筒エンジンの冷却装置。
PCT/JP2014/000673 2013-02-21 2014-02-07 多気筒エンジンの冷却装置 WO2014129139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014000928.8T DE112014000928B4 (de) 2013-02-21 2014-02-07 Kühlvorrichtung für Mehrzylindermotor
US14/760,943 US9624816B2 (en) 2013-02-21 2014-02-07 Cooling device for multi-cylinder engine
CN201480006569.7A CN104995383B (zh) 2013-02-21 2014-02-07 多缸发动机的冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031899A JP5974926B2 (ja) 2013-02-21 2013-02-21 多気筒エンジンの冷却構造
JP2013-031899 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129139A1 true WO2014129139A1 (ja) 2014-08-28

Family

ID=51390940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000673 WO2014129139A1 (ja) 2013-02-21 2014-02-07 多気筒エンジンの冷却装置

Country Status (5)

Country Link
US (1) US9624816B2 (ja)
JP (1) JP5974926B2 (ja)
CN (1) CN104995383B (ja)
DE (1) DE112014000928B4 (ja)
WO (1) WO2014129139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370271A1 (en) * 2016-06-22 2017-12-28 Hyundai Motor Company Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
EP3239507A4 (en) * 2014-12-22 2018-09-26 Nichias Corporation Water jacket spacer, internal combustion engine, and automobile
JP2019015250A (ja) * 2017-07-07 2019-01-31 マツダ株式会社 エンジンの冷却システム

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455136B2 (ja) * 2014-12-24 2019-01-23 三菱自動車工業株式会社 シリンダブロック
KR20160097613A (ko) * 2015-02-09 2016-08-18 현대자동차주식회사 통합 egr 쿨러
EP3279456A1 (en) * 2015-04-03 2018-02-07 NOK Corporation Water jacket spacer
US9810134B2 (en) * 2015-08-13 2017-11-07 Ford Global Technologies, Llc Internal combustion engine cooling system
US10313211B1 (en) * 2015-08-25 2019-06-04 Avi Networks Distributed network service risk monitoring and scoring
JP6417315B2 (ja) * 2015-12-17 2018-11-07 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置
JP6299737B2 (ja) * 2015-12-18 2018-03-28 マツダ株式会社 多気筒エンジンの冷却構造
JP6505613B2 (ja) * 2016-01-06 2019-04-24 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置、冷却装置の制御装置、冷却装置用流量制御弁、及び、車両用内燃機関の冷却装置の制御方法
KR101776756B1 (ko) 2016-03-16 2017-09-08 현대자동차 주식회사 워터자켓을 갖는 엔진
JP6358284B2 (ja) * 2016-04-19 2018-07-18 マツダ株式会社 エンジンの冷却構造
JP6315022B2 (ja) * 2016-04-19 2018-04-25 マツダ株式会社 多気筒エンジンの冷却構造
JP6350584B2 (ja) * 2016-04-19 2018-07-04 マツダ株式会社 多気筒エンジンの冷却構造
KR101795279B1 (ko) * 2016-06-22 2017-11-08 현대자동차주식회사 내연기관의 분리냉각 시스템
JP6465315B2 (ja) * 2016-11-30 2019-02-06 株式会社Subaru 多気筒エンジン冷却装置
JP6910155B2 (ja) * 2017-02-07 2021-07-28 本田技研工業株式会社 内燃機関の冷却構造
JP6874975B2 (ja) * 2017-03-22 2021-05-19 内山工業株式会社 スペーサ
JP2018184939A (ja) * 2017-04-27 2018-11-22 トヨタ自動車株式会社 内燃機関の冷却構造
JP6504214B2 (ja) * 2017-08-04 2019-04-24 マツダ株式会社 エンジンの冷却装置
US10190529B1 (en) * 2017-10-06 2019-01-29 Brunswick Corporation Marine engines having cylinder block cooling jacket with spacer
KR102487183B1 (ko) * 2017-12-20 2023-01-10 현대자동차 주식회사 차량용 냉각 시스템
JP6709255B2 (ja) * 2018-07-27 2020-06-10 本田技研工業株式会社 内燃機関の冷却構造
KR20200068989A (ko) * 2018-12-06 2020-06-16 현대자동차주식회사 실린더블록용 워터재킷의 내장 구조물
JP7238413B2 (ja) * 2019-01-17 2023-03-14 マツダ株式会社 エンジンの冷却構造
JP7172629B2 (ja) 2019-01-17 2022-11-16 マツダ株式会社 エンジンの冷却構造
US10907530B2 (en) * 2019-05-10 2021-02-02 Ford Global Technologies, Llc Water jacket diverter and method for operation of an engine cooling system
JP7085581B2 (ja) * 2020-03-31 2022-06-16 本田技研工業株式会社 ウォータジャケット
US11480132B2 (en) * 2020-10-12 2022-10-25 Deere & Company Internal combustion engine and head gasket for internal combustion engine
CN114508440A (zh) * 2022-01-28 2022-05-17 江门市大长江集团有限公司 缸体结构、水冷发动机及摩托车
DE102022003904A1 (de) * 2022-10-13 2024-04-18 Deutz Aktiengesellschaft Brennkraftmaschine
JP2024071017A (ja) * 2022-11-14 2024-05-24 トヨタ自動車株式会社 エンジン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221079A (ja) * 2001-01-24 2002-08-09 Honda Motor Co Ltd 往復動型水冷式内燃機関のシリンダブロック
JP2009243414A (ja) * 2008-03-31 2009-10-22 Daihatsu Motor Co Ltd ウォータージャケット用スペーサ
JP2010014067A (ja) * 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関のシリンダブロック

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156143U (ja) * 1982-04-15 1983-10-18 日産自動車株式会社 シリンダブロツクのウオ−タジヤケツト構造
DE19812831A1 (de) * 1998-03-24 1999-09-30 Volkswagen Ag Brennkraftmaschine mit Fluidkühlsystem
JP4227914B2 (ja) * 2004-03-10 2009-02-18 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP4279759B2 (ja) * 2004-09-22 2009-06-17 愛三工業株式会社 内燃機関の冷却装置
JP2006207459A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 内燃機関の冷却構造及び水路形成部材
US7237511B2 (en) * 2005-03-25 2007-07-03 Mazda Motor Corporation Cooling device of engine
JP2007138791A (ja) * 2005-11-17 2007-06-07 Toyota Motor Corp エンジンの冷却媒体循環装置
JP4845620B2 (ja) * 2006-07-21 2011-12-28 トヨタ自動車株式会社 内燃機関冷却用熱媒体流路区画部材、内燃機関冷却構造及び内燃機関冷却構造形成方法
JP2008128133A (ja) * 2006-11-22 2008-06-05 Toyota Motor Corp 内燃機関冷却用熱媒体伝熱調節装置
JP4411335B2 (ja) * 2007-05-16 2010-02-10 本田技研工業株式会社 水冷式内燃機関のウォータジャケット構造
JP4547017B2 (ja) * 2008-04-25 2010-09-22 トヨタ自動車株式会社 内燃機関の冷却構造
JP2011106399A (ja) * 2009-11-19 2011-06-02 Honda Motor Co Ltd 内燃機関の冷却構造
CN102072040B (zh) 2009-11-19 2013-04-17 本田技研工业株式会社 内燃机
JP5064471B2 (ja) 2009-11-19 2012-10-31 本田技研工業株式会社 内燃機関の冷却構造
JP5526982B2 (ja) * 2010-04-27 2014-06-18 株式会社デンソー 内燃機関冷却装置
JP2012047088A (ja) * 2010-08-26 2012-03-08 Honda Motor Co Ltd スペーサ
JP2013031899A (ja) 2011-08-02 2013-02-14 Shinobu Sato 建築材切断用受け台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221079A (ja) * 2001-01-24 2002-08-09 Honda Motor Co Ltd 往復動型水冷式内燃機関のシリンダブロック
JP2009243414A (ja) * 2008-03-31 2009-10-22 Daihatsu Motor Co Ltd ウォータージャケット用スペーサ
JP2010014067A (ja) * 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関のシリンダブロック

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239507A4 (en) * 2014-12-22 2018-09-26 Nichias Corporation Water jacket spacer, internal combustion engine, and automobile
US20170370271A1 (en) * 2016-06-22 2017-12-28 Hyundai Motor Company Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
US10428719B2 (en) * 2016-06-22 2019-10-01 Hyundai Motor Company Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
US10787952B2 (en) 2016-06-22 2020-09-29 Hyundai Motor Company Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
JP2019015250A (ja) * 2017-07-07 2019-01-31 マツダ株式会社 エンジンの冷却システム

Also Published As

Publication number Publication date
US9624816B2 (en) 2017-04-18
CN104995383A (zh) 2015-10-21
DE112014000928T5 (de) 2015-11-26
DE112014000928B4 (de) 2021-10-14
JP5974926B2 (ja) 2016-08-23
JP2014163224A (ja) 2014-09-08
CN104995383B (zh) 2017-07-18
US20160010533A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
WO2014129139A1 (ja) 多気筒エンジンの冷却装置
JP5880471B2 (ja) 多気筒エンジンの冷却装置
JP6056741B2 (ja) 多気筒エンジンの冷却装置
US10787952B2 (en) Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
JP6036668B2 (ja) 多気筒エンジンの冷却構造
US20170298860A1 (en) Cooling structure of multi-cylinder engine
JP6090138B2 (ja) エンジンの冷却装置
US10018099B2 (en) Engine cooling system
JP6079594B2 (ja) 多気筒エンジンの冷却構造
JP4085253B2 (ja) エンジンの冷却装置
JP5939176B2 (ja) 多気筒エンジンの冷却構造
JP6358284B2 (ja) エンジンの冷却構造
JP6415806B2 (ja) エンジンの冷却装置
JP6296111B2 (ja) 多気筒エンジンの冷却構造
JP6167838B2 (ja) エンジンの冷却装置
JP2016061251A (ja) エンジンの冷却装置
US10174708B2 (en) Cooling structure of multi-cylinder engine
JP5482581B2 (ja) 内燃機関の冷却装置
JP2014088808A (ja) 内燃機関のウォータジャケット用スペーサ
JP2011185110A (ja) 内燃機関の冷却装置
JP2019031915A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754123

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14760943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000928

Country of ref document: DE

Ref document number: 1120140009288

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754123

Country of ref document: EP

Kind code of ref document: A1