WO2014030599A1 - センサ一体型カバーガラス - Google Patents

センサ一体型カバーガラス Download PDF

Info

Publication number
WO2014030599A1
WO2014030599A1 PCT/JP2013/072019 JP2013072019W WO2014030599A1 WO 2014030599 A1 WO2014030599 A1 WO 2014030599A1 JP 2013072019 W JP2013072019 W JP 2013072019W WO 2014030599 A1 WO2014030599 A1 WO 2014030599A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
sensor
film
cover glass
Prior art date
Application number
PCT/JP2013/072019
Other languages
English (en)
French (fr)
Inventor
玉井 喜芳
文 中川
仁 齊木
直己 上村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380043790.5A priority Critical patent/CN104583918A/zh
Priority to KR20157004438A priority patent/KR20150046047A/ko
Priority to JP2014531610A priority patent/JPWO2014030599A1/ja
Publication of WO2014030599A1 publication Critical patent/WO2014030599A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a sensor-integrated cover glass used for a capacitive touch panel or the like.
  • a capacitive touch panel is generally a transparent conductive film (transparent electrode) for detecting an input position extending on, for example, an x direction and a y direction on a glass substrate called a sensor glass. Etc. are formed to form the sensor function unit.
  • a general capacitive touch panel is configured by adhering a sensor glass on which a transparent conductive film or the like is formed and a glass called a cover glass.
  • a capacitive touch panel eliminates the sensor glass to reduce the number of parts, and reduce the thickness and weight. That is, this capacitive touch panel uses a tempered glass as a cover glass, and the cover glass and the sensor unit are integrated by forming a transparent conductive film for detecting an input position on the cover glass. (Sensor-integrated cover glass).
  • the tempered glass is a glass whose strength is increased by forming a tempered layer (compressive stress layer) on the surface and applying a compressive stress.
  • the tempered glass is manufactured by a physical tempering method (air-cooling tempering method) that forms a tempered layer using the expansion and contraction of the glass by heating and cooling, as well as alkali ions in the glass with a larger ionic radius.
  • a chemical strengthening method is known in which a reinforcing layer is formed by exchanging with alkali ions.
  • tempered glass by a chemical tempering method so-called chemically tempered glass is generally used.
  • the sensor-integrated cover glass in order to realize a touch panel with excellent durability, it is important that the cover glass to be operated has sufficient strength. For this reason, the sensor-integrated cover glass is required to have a strength equal to or higher than that of the cover glass.
  • An object of the present invention is a sensor-integrated cover glass used for a capacitive touch panel, in which a transparent conductive film for position detection, etc. is formed on a cover glass, and the capacitive touch panel having excellent durability.
  • the object is to provide a sensor-integrated cover glass that can be realized.
  • the sensor-integrated cover glass of one embodiment of the present invention includes a glass plate, a first transparent conductive film formed on one surface of the glass plate, and extending in a first direction, and the first direction.
  • the first transparent conductive film and the second transparent conductive film form an intersection where one of the first transparent conductive film and the second transparent conductive film covers the other, and the first transparent conductive film covers the first transparent conductive film. It is preferable to have an intersection insulating film between the transparent conductive film and the second transparent conductive film.
  • the base insulating film is formed only between the glass plate and the first transparent conductive film and the second transparent conductive film.
  • the base insulating film is formed so as to cover the glass plate entirely in at least a region where the first transparent conductive film and the second transparent conductive film are formed. It is preferable that
  • the base insulating film is not formed between the glass plate and the intersection where the first transparent conductive film and the second transparent conductive film intersect.
  • intersection insulating film is formed to extend between the glass plate other than the intersection and the first transparent conductive film and the second transparent conductive film.
  • the sensor-integrated cover glass of the present invention having the above-described configuration is a sensor-integrated cover glass that is used in a capacitive touch panel and is formed by forming a transparent conductive film for position detection on the cover glass, and has durability. It is possible to provide a sensor-integrated cover glass that can realize an excellent capacitive touch panel.
  • FIGS. 1 (A) to 1 (D) are diagrams conceptually showing an example of the sensor-integrated cover glass of the present invention
  • FIG. 1 (A) is a plan view
  • FIG. 1 (B) is FIG. 1 (A).
  • FIG. 1C is a cross section taken along the line cc of FIG. 1A
  • FIG. 1D is a cross section near the end.
  • FIG. 2 is a plan view for explaining the configuration of the sensor-integrated cover glass shown in FIGS. 1 (A) to 1 (D).
  • FIG. 3 is a flowchart showing an example of a method for manufacturing the sensor-integrated cover glass shown in FIGS. 1 (A) to 1 (D).
  • FIG. 4 (A) to 4 (C) are diagrams conceptually showing another embodiment of the sensor-integrated cover glass
  • FIG. 4 (A) is a plan view
  • FIG. 4 (B) is FIG. 4 (A).
  • FIG. 4C is a cross-sectional view taken along the line cc of FIG. 4A.
  • 5 (A) and 5 (B) are diagrams conceptually showing a test method for measuring the surface strength of each sample in the example of the present invention.
  • FIG. 5 (A) is a plan view
  • FIG. B) is a side view.
  • FIG. 1A to 1D conceptually show an example of a sensor-integrated cover glass of the present invention.
  • FIG. 1A is a plan view, that is, a sensor-integrated cover glass 10 in a surface direction of a glass plate 12 (hereinafter, this direction is simply referred to as a surface direction).
  • FIG. 1B is a cross-sectional view taken along line bb in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along line cc in FIG. 1A. It is a figure which shows a line cross section, respectively.
  • FIG. 1D is a diagram conceptually showing a cross section in the x direction of the sensor integrated cover glass 10 in the vicinity of the end portion in the x direction.
  • the sensor-integrated cover glass 10 is basically formed using the glass plate 12 as a substrate, and is formed on the first transparent conductive film 14, the second transparent conductive film 16, the light shielding film 18, and the light shielding film 18.
  • the metal wiring 20 to be formed and the protective insulating film 24 that covers these and is formed on the glass plate 12 are configured (in FIG. 1A, the protective insulating film 24 is omitted).
  • the light shielding film 18 and the metal wiring 20 are described in FIG. 2 described later).
  • An intersection insulating film 28 is provided between the first transparent conductive film 14 and the second transparent conductive film 16.
  • the sensor-integrated cover glass 10 of the present invention has a base insulating film 26 between the glass plate 12 and the first transparent conductive film 14 and the second transparent conductive film 16.
  • the sensor-integrated cover glass of the present invention is not limited to the configuration of the illustrated example, and is formed by forming a transparent conductive film or the like that constitutes the sensor on a glass plate that constitutes a surface on which the capacitive touch panel is operated. Various configurations of known sensor-integrated cover glass can be used.
  • the sensor-integrated cover glass 10 of the present invention constitutes a capacitive touch panel.
  • the surface (main surface) of the glass plate 12 on the side where the first transparent conductive film 14, the second transparent conductive film 16 and the like are not formed. ) 12a is the surface on which the operation is performed.
  • the operation surface 12a the surface on which the operation is performed
  • the sensor surface 12b the surface on which the first transparent conductive film 14, the second transparent conductive film 16, and the like are formed
  • the glass plate 12 functions as a cover glass that constitutes the operation surface 12a of the capacitive touch panel, and the first transparent conductive film 14 and the second transparent conductive film that function as sensors.
  • 16 has a function as a sensor glass on which 16 or the like is formed.
  • the glass plate 12 is not limited in terms of composition, manufacturing method such as a float method or a fusion method.
  • the glass plate 12 examples include tempered glass such as the above-described chemically tempered glass and physical tempered glass, soda lime glass, alkali-free glass, and the like. Among these, aluminosilicate chemically tempered glass, soda lime chemically tempered glass, and the like are preferably used.
  • the thickness of the glass plate 12 may be the same as that of a cover glass used for a known touch sensor.
  • the thickness of the glass plate 12 is usually 0.3 to 1.5 mm, preferably 0.5 to 1.1 mm.
  • the first transparent conductive film 14, the second transparent conductive film 16, and the light shielding film 18 are formed on the sensor surface 12b using such a glass plate 12 as a substrate.
  • a base insulating film 26 is formed between the first transparent conductive film 14 and the second transparent conductive film 16 and the glass plate 12.
  • the underlying insulating film 26 will be described in detail later.
  • another film may be provided between the base insulating film 26 and the first transparent conductive film 14 and the second transparent conductive film 16.
  • an inorganic film such as SiO 2 may be provided.
  • the first transparent conductive film 14 and the second transparent conductive film 16 are for detecting an input position (transparent electrode for input position detection). That is, the 1st transparent conductive film 14 and the 2nd transparent conductive film 16 comprise the sensor which detects an input position.
  • transparent conductive films 14 and 16 both are collectively referred to as transparent conductive films 14 and 16.
  • the first transparent conductive film 14 extends in the x direction in the drawing, and a plurality of first transparent conductive films 14 are arranged in the y direction orthogonal to the x direction.
  • the second transparent conductive film 16 extends in the y direction in the drawing, and a plurality of the second transparent conductive films 16 are arranged in the x direction.
  • the first transparent conductive film 14 includes rectangular large area portions (pad portions) 14a arranged at predetermined intervals in the extending direction, that is, the x direction, and connected by a connecting portion 14b. You may have the structure which becomes.
  • the second transparent conductive film 16 may have a configuration in which rectangular large-area portions 16a are arranged at predetermined intervals in the extending direction, that is, the y direction, and are connected by the connection portions 16b. .
  • the large area portion 14a and the large area portion 16a are arranged to be spaced apart from each other and alternately arranged in the x direction and the y direction, and are provided to improve input position detection. Accordingly, the first transparent conductive film 14 and the second transparent conductive film 16 are formed so as to intersect at the connection portion 14b and the connection portion 16b.
  • the second transparent conductive film is formed at the intersection of the first transparent conductive film 14 and the second transparent conductive film 16, that is, at the intersection of the connection portion 14b and the connection portion 16b.
  • An intersection insulating film 28 is formed so as to straddle the film 16 in the x direction.
  • the first transparent conductive film 14 is formed on the intersection insulating film 28 so as to straddle the intersection insulating film 28 and the second transparent conductive film 16 in the x direction.
  • the material for forming the transparent conductive films 14 and 16 is a known transparent (having light transmittance) used for forming a sensor portion in a capacitive touch sensor.
  • Various kinds of conductive materials can be used. Specific examples include ITO (indium tin oxide) and IZO (indium zinc oxide). Among these, ITO is preferably used.
  • the thickness of the transparent conductive films 14 and 16 may be appropriately determined according to the forming material or the like. The thickness of the transparent conductive films 14 and 16 is usually about 20 to 100 nm.
  • the material for forming the crossing insulating film 28 various known transparent insulating materials can be used. Specifically, various photoresists such as acrylic and polyimide are exemplified.
  • the thickness of the intersection insulating film 28 may be appropriately determined according to the forming material or the like. Note that the thickness of the intersection insulating film 28 is usually about 0.8 to 2.0 ⁇ m.
  • FIG. 2 is a plan view for explaining the configuration of the sensor-integrated cover glass 10.
  • the light shielding film 18 is an insulating film having a light shielding property formed on the outer peripheral portion of the sensor surface of the glass plate 12.
  • the light shielding film 18 is provided for shielding light leaked from the display combined with the sensor-integrated cover glass 10, concealing wiring and IC for driving the display, concealing metal wiring 20 described later, and the like.
  • the thickness of the light shielding film 18 can be changed as appropriate.
  • the thickness of the light shielding film 18 is usually about 0.8 to 2.0 ⁇ m.
  • the light shielding film 18 is provided as a preferred embodiment.
  • the metal wiring 20 is formed on the light shielding film 18 (the base insulating film 26 on the light shielding film 18) (sensor surface 12b).
  • a plurality of metal wirings 20 are formed according to the number of the first transparent conductive film 14 and the second transparent conductive film 16, and one end of each metal wiring 20 is the first transparent conductive film 14 or the second transparent conductive film 14. Connected to the transparent conductive film 16.
  • the other end side of each metal wiring 20 is connected to the flexible wiring board 30 connected to the display combined with the sensor integrated cover glass 10, for example.
  • various metal materials can be used for the metal wiring 20 in the touch panel.
  • a three-layer metal material (MAM) of Mo / Al / Mo a three-layer metal material of Mo—Nb alloy / Al / Mo—Nb alloy, Mo—Nb alloy / Al—Nb alloy / Mo— Examples of the metal material include three layers of Nb alloy.
  • the thickness of the metal wiring 20 is usually about 0.3 to 0.5 ⁇ m. In the sensor-integrated cover glass of the present invention, this metal wiring 20 is also provided as a preferred embodiment.
  • the protective insulating film 24 is provided on the metal wiring 20 described above, not all of the protective insulating film 24 is covered with the protective insulating film 24, and necessary portions are exposed to the outside.
  • the metal wiring 20 is not covered with the protective insulating film 24 but exposed only at the connection portion with the flexible wiring substrate 30 connected to a display or the like.
  • the protective insulating film 24 various known transparent insulating materials used for forming the protective film of the sensor-integrated cover glass can be used. A material similar to that of the partial insulating film 28 can be used. Further, the thickness of the protective insulating film 24 is a thickness that sufficiently covers the material and functions as a protective layer according to the forming material, the thickness of various portions formed on the sensor surface of the glass plate 12, and the like. What is necessary is just to set suitably. The thickness of the protective insulating film 24 is usually 0.8 to 2.0 ⁇ m.
  • the base insulating film 26 is formed between the glass plate 12 and the first transparent conductive film 14 and the second transparent conductive film 16.
  • the base insulating film 26 is formed not only between the glass plate 12 and the transparent conductive films 14 and 16 but also on the light shielding film 18.
  • the base insulating film 26 is a characteristic part of the present invention, and is a film made of an organic compound that is transparent and has an insulating property.
  • the sensor-integrated cover glass 10 according to the present invention has the underlying insulating film 26 to significantly improve the strength of the glass plate 12 and realize a touch sensor such as a smartphone or a tablet computer that has excellent durability. Yes.
  • the present inventor has found that the surface strength of the sensor surface of the glass plate is weak in the conventional sensor-integrated cover glass.
  • the operation of the device in which the sensor-integrated cover glass is incorporated is performed on the operation surface on the side opposite to the sensor surface on which the transparent conductive film is formed. That is, the glass plate usually receives a pressing force from the operation surface side, and a tensile stress is applied to the sensor surface. Therefore, in the glass plate, the low surface strength of the sensor surface to which tensile stress is applied can be a serious problem in the sensor-integrated cover glass.
  • the present invention is made in order to cope with the above-described problem.
  • the glass plate 12 and the transparent conductive films 14 and 16 are made of an organic compound
  • the base insulating film 26 is transparent and has an insulating property.
  • the base insulating film 26 is made of an organic compound and has sufficient transparency and insulation.
  • transparent epoxy resin, acrylic resin, other photo-curing resin, thermosetting resin, various photoresists and the like are exemplified.
  • sufficient transparency means that the transmittance in the visible light region (wavelength 400 nm to 700 nm) is 85% or more.
  • sufficient insulation means that the resistivity is 1E12 ( ⁇ / ⁇ ) or more, more preferably 1E14 ( ⁇ / ⁇ ) or more.
  • the thickness of the base insulating film 26 can be set as appropriate. According to the study of the present inventor, the thickness of the base insulating film 26 is preferably 0.8 to 2.0 ⁇ m, and more preferably 1.0 to 1.5 ⁇ m.
  • the base insulating film 26 is formed not only between the glass plate 12 and the transparent conductive films 14 and 16 but also on the light shielding film 18.
  • the present invention is not limited to this, and the base insulating film 26 may be provided only inside the light shielding film 18 without being formed on the light shielding film 18.
  • the base insulating film 26 is entirely formed on the sensor surface 12b.
  • the present invention is not limited to this, and the base insulating film 26 is not formed on the portion of the sensor surface 12b where the transparent conductive films 14 and 16 are absent, and the transparent conductive films 14 and 16 and the glass plate are not formed. You may form only between 12. That is, in the present invention, the base insulating film 26 may be formed at least between the transparent conductive films 14 and 16 and the glass plate 12. Note that, when it is necessary to pattern the base insulating film 26 as described above, the base insulating film 26 is preferably formed of a photoresist.
  • the sensor-integrated cover glass 10 of the present invention is not limited to be manufactured by this procedure.
  • the base insulating film 26 can be formed between the transparent conductive films 14 and 16 and the glass plate 12, such as forming a metal wiring after the formation of the transparent conductive film, various types used in known sensor-integrated cover glasses.
  • the manufacturing method according to the procedure can be used.
  • the method for forming each film is not limited to the examples shown below, and various methods used in known sensor-integrated cover glasses can be used depending on the film forming material and the like.
  • the glass plate used as a raw material is prepared, and this glass plate is chemically strengthened to produce the glass plate 12. Chemical strengthening may be performed by a known method.
  • a light shielding film 18 is printed on the glass plate 12 so as to surround an area to be the active area A (see FIG. 2).
  • the light shielding film 18 may be printed by a known method used in the manufacture of touch panels. As described above, the light shielding film 18 may be formed as necessary.
  • a film to be the base insulating film 26 is formed, and patterning or the like is performed as necessary to form the base insulating film 26.
  • the method for forming the base insulating film 26 is not particularly limited, and various methods for forming a film made of a known organic compound can be used. Further, when patterning is performed, a known method corresponding to the material for forming the base insulating film 26 may be used.
  • ITO or the like which will later become a part of the second transparent conductive film 16, which will become the intersection transparent conductive film 16 c, is formed on the entire surface of the base insulating film 26 and patterned.
  • the ITO film may be formed by a known method such as sputtering. Patterning may be performed by a known method such as a method using photolithography.
  • an insulating film is formed on the intersection transparent conductive film 16c, and patterning is performed so as to expose a region other than the intersection transparent conductive film 16c and a part of the intersection transparent conductive film 16c. 28 is formed.
  • the film forming method and patterning may be performed by a known method according to the material for forming the intersection insulating film 28.
  • ITO etc. used as the 2nd transparent conductive film 16 except the 1st transparent conductive film 14 and the crossing part transparent conductive film 16c are formed into a film, and a transparent sensor wiring part is completed by performing patterning.
  • film formation of ITO or the like may be performed by a known method such as sputtering, and patterning may be performed by a known method.
  • a metal wiring 20 is formed on the light shielding film 18 and patterned. As described above, this step may be performed as necessary.
  • this embodiment although implemented during the process of forming the crossing part transparent conductive film 16c and the crossing insulating film 28, it is not restricted to this.
  • a protective insulating film 24 is formed so as to cover the entire sensor surface 12 b of the glass plate 12, and patterning is performed so that necessary portions of the metal wiring 20 such as a connection portion with the flexible wiring substrate 30 are exposed. I do.
  • the film forming method and patterning may be performed by a known method corresponding to the material for forming the protective insulating film 24.
  • FIGS. 4 (A) to 4 (C) are views conceptually showing another embodiment of the sensor-integrated cover glass of the present invention.
  • 4A is a plan view of the same portion as FIG. 1A
  • FIG. 4B is a cross-sectional view taken along the line bb of FIG. 4A
  • FIG. FIG. 5 is a view showing a cross section taken along line cc of FIG.
  • the sensor-integrated cover glass 10a shown in FIGS. 4 (A) to 4 (C) has many of the same members as the sensor-integrated cover glass 10 described above. Do different parts mainly.
  • the sensor-integrated cover glass 10a shown in FIGS. 4A to 4C does not have the base insulating film 26, and uses an organic compound as a transparent insulating film for forming the jumper portion.
  • the insulating film is formed not only on the jumper portion but also on the entire sensor surface 12b of the glass plate 12 to form the intersection / underlying insulating film 32. That is, in the sensor-integrated cover glass 10a, when forming the intersection insulating film 28 of the sensor-integrated cover glass shown in FIGS. 1 (A) and 1 (C), a transparent insulating film made of an organic compound is used as the sensor.
  • the crossing portion / base insulating film 32 is formed by integrating the crossing portion insulating film 28 and the base insulating film 26 of the above-described example.
  • the sensor-integrated cover glass 10a shown in FIGS. 4A to 4C is formed after the chemical strengthening and printing of the light shielding film 18 in the flowchart shown in FIG. Without forming the film, the processes from the formation of the crossing transparent conductive film 16c and the formation of the metal wiring 20 (metal wiring etching) are performed. That is, in this example, the intersection transparent conductive film 16c is formed directly on the glass plate 12 (sensor surface 12b). Next, a transparent insulating film is formed on the entire surface, and both ends in the y direction of the crossing transparent conductive film 16c are exposed by etching or the like to form a crossing / base insulating film 32. Thereafter, similarly, the transparent conductive films 14 and 16 other than the intersection transparent conductive film 16c and the protective insulating film 24 are formed.
  • the sensor-integrated cover glass 10a shown in FIGS. 4A to 4C includes a first transparent conductive film extending in the x direction, a second transparent conductive film extending in the y direction, and a first transparent conductive film.
  • a crossing portion made of a transparent organic compound provided between the conductive films at the crossing portion of the conductive film and the second transparent conductive film, and between the first transparent conductive film and the second transparent conductive film and the glass plate. / Having a base insulating film.
  • the sensor-integrated cover glass shown in FIGS. 1A to 1D does not have a base insulating film under the transparent conductive film of the jumper portion, and the cross-section insulating film is other than the jumper portion. This extends between the first transparent conductive film and the second transparent conductive film and the glass plate, and acts as a base insulating film.
  • the sensor-integrated cover glass 10 shown in FIGS. 1A to 1D it is necessary to add a process of forming a base insulating film.
  • the sensor-integrated cover glass 10a shown in FIGS. 4A to 4C of this embodiment can be manufactured with the same number of processes as the conventional sensor-integrated cover glass without increasing the number of processes. it can.
  • the base insulating film can be provided between the transparent conductive film and the glass plate in almost all regions, the effect of preventing the surface strength of the sensor surface 12b of the glass plate 12 from being lowered can be sufficiently obtained.
  • the sensor-integrated cover glass 10 shown in FIGS. 1 (A) to 1 (D) is advantageous in terms of strength of the glass plate 12 because it has a base insulating film under the jumper portion.
  • aluminosilicate glass (aluminosilicate glass) having a thickness of 0.7 mm was prepared. After this glass was chemically strengthened, it was cut into 50 mm squares. In order to investigate the dependence of chemical strengthening conditions, chemical strengthening was performed using two different types of chemical strengthening conditions.
  • the glass plates obtained under each chemical strengthening condition had a CS (compressive stress) of 647 MPa, a DOL (depth of layer) of 21 ⁇ m, and a CS of 630 MPa and a DOL of 49 ⁇ m.
  • a glass plate having a CS of 647 MPa and a DOL of 21 ⁇ m is referred to as a glass plate A
  • a glass plate having a CS of 630 MPa and a DOL of 49 ⁇ m is referred to as a glass plate B.
  • Example 2 A sample in which only ITO is formed on the glass plate A is Comparative Example 1, a sample in which only ITO is formed on the glass plate B is Comparative Example 2, and a sample in which the base insulating film and ITO are formed on the glass plate A is Example 1.
  • a sample in which a base insulating film and ITO are formed on a glass plate B is referred to as Example 2.
  • FIGS. 5 (A) and 5 (B) are diagrams conceptually showing a surface strength test method of a glass plate called BOR (Ball on Ring), FIG. 5 (A) is a plan view, and FIG. 5 (B) is a side view.
  • BOR All on Ring
  • FIG. 5 (A) is a plan view
  • FIG. 5 (B) is a side view.
  • FIG. As shown in FIGS. 5 (A) and 5 (B), the sample G is placed on the ring-shaped support portion S so that the centers coincide with each other and the ITO formation surface faces the support portion S side.
  • the surface strength of each sample G was measured by applying a load by pressing a spherical load portion L having a radius of 5 mm from the center of the support portion S.
  • the diameter of the support portion S was 30 mm (referenced to the center of the support portion S).
  • the measurement results of the surface strength of each sample and glass plate are shown in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明は、ガラス板と、前記ガラス板の一方の面に形成され、第1の方向に延在する第1の透明導電膜および前記第1の方向とは異なる方向に延在する第2の透明導電膜と、前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間に形成される、透明な有機化合物からなる下地絶縁膜と、を備えるセンサ一体型カバーガラスに関する。

Description

センサ一体型カバーガラス
 本発明は、静電容量型のタッチパネル等に利用される、センサ一体型カバーガラスに関する。
 スマートフォンやタブレット型コンピュータ等にタッチパネルが利用されている。
 各種のタッチパネルのうち、静電容量型のタッチパネルは、一般的に、センサガラスと呼ばれるガラス基板上に、例えば、x方向およびy方向に延在する入力位置検出用の透明導電膜(透明電極)等を形成することで、センサ機能部を形成している。
 一般的な静電容量型タッチパネルは、透明導電膜等が形成されたセンサガラスとカバーガラスと呼ばれるガラスを、接着することで構成される。
 これに対し、静電容量型タッチパネルでは、特許文献1に示されるように、センサガラスを無くして、部品数の低減、および、薄型化や軽量化を計ることも知られている。
 すなわち、この静電容量型タッチパネルは、強化ガラスをカバーガラスとして用い、このカバーガラスに、入力位置検出用の透明導電膜等を形成することで、カバーガラスとセンサ部とを一体型とした構成を有する(センサ一体型カバーガラス)。
 強化ガラスとは、表面に、強化層(圧縮応力層)を形成して圧縮応力を働かせることにより、強度を高めたガラスである。
 強化ガラスの製造方法としては、加熱と冷却によるガラスの膨張と収縮を利用して、強化層を形成する物理強化法(風冷強化法)と、ガラス中のアルカリイオンをよりイオン半径の大きな他のアルカリイオンと交換することで、強化層を形成する化学強化法が知られている。
 タッチパネルのカバーガラスなどの薄いガラスでは、一般的に、化学強化法による強化ガラス、いわゆる化学強化ガラスが利用される。
日本国特開2011-197708号公報
 ところで、センサ一体型カバーガラスにおいて、耐久性に優れたタッチパネルを実現するためには、操作を行われるカバーガラスが十分な強度を有することが重要である。
 そのため、センサ一体型カバーガラスでは、カバーガラスと同等もしくはそれ以上の強度を確保することが求められている。
 本発明の目的は、静電容量型タッチパネルに用いられる、カバーガラスに位置検出用の透明導電膜等を形成してなるセンサ一体型カバーガラスであって、耐久性に優れる静電容量型タッチパネルを実現可能なセンサ一体型カバーガラスを提供することにある。
 本発明の一態様のセンサ一体型カバーガラスは、ガラス板と、前記ガラス板の一方の面に形成され、第1の方向に延在する第1の透明導電膜および前記第1の方向とは異なる方向に延在する第2の透明導電膜と、前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間に形成される透明な有機化合物からなる下地絶縁膜とを備える。
 本発明のセンサ一体型カバーガラスにおいて、前記第1の透明導電膜と前記第2の透明導電膜とは、一方が他方を覆うように交差する交差部を形成し、前記交差部において前記第1の透明導電膜と前記第2の透明導電膜との間に交差部絶縁膜を有することが好ましい。
 本発明のセンサ一体型カバーガラスにおいて、前記下地絶縁膜は、前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間にのみ形成されていることが好ましい。
 本発明のセンサ一体型カバーガラスにおいて、前記下地絶縁膜は、少なくとも前記第1の透明導電膜および前記第2の透明導電膜の形成された領域において、前記ガラス板を全面的に覆うように形成されていることが好ましい。
 また、前記下地絶縁膜は、前記第1の透明導電膜と前記第2の透明導電膜とが交差する前記交差部と前記ガラス板との間には形成されていないことが好ましい。
 さらに、前記交差部絶縁膜が、前記交差部以外の前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間まで延在して形成されていることが好ましい。
 上記構成を有する本発明のセンサ一体型カバーガラスは、静電容量型タッチパネルに用いられる、カバーガラスに位置検出用の透明導電膜等を形成してなるセンサ一体型カバーガラスであって、耐久性に優れる静電容量型タッチパネルを実現可能なセンサ一体型カバーガラスを提供することができる。
図1(A)~1(D)は、本発明のセンサ一体型カバーガラスの一例を概念的に示す図で、図1(A)は平面図、図1(B)は図1(A)のb-b線断面、図1(C)は図1(A)のc-c線断面、図1(D)は端部近傍の断面である。 図2は、図1(A)~1(D)に示すセンサ一体型カバーガラスの構成を説明するための平面図である。 図3は、図1(A)~1(D)に示すセンサ一体型カバーガラスの製造方法の一例を示すフローチャートである。 図4(A)~4(C)は、センサ一体型カバーガラスの別の実施形態を概念的に示す図で、図4(A)は平面図、図4(B)は図4(A)のb-b線断面、図4(C)は図4(A)のc-c線断面である。 図5(A)及び5(B)は、本発明の実施例における各サンプルの面強度を測定するための試験方法を概念的に示す図で、図5(A)は平面図、図5(B)は側面図である。
 以下、本発明のセンサ一体型カバーガラスについて、添付の図面に示される好適な例を基に、詳細に説明する。
 図1(A)~1(D)に、本発明のセンサ一体型カバーガラスの一例を概念的に示す。
 なお、図1(A)~1(D)において、図1(A)は、平面図すなわちセンサ一体型カバーガラス10をガラス板12の面方向(以下、この方向を、単に面方向とする)と直交する方向から見た際の一部であり、図1(B)は、図1(A)のb-b線断面を、図1(C)は、図1(A)のc-c線断面を、それぞれ示す図である。さらに、図1(D)は、センサ一体型カバーガラス10の、x方向の端部近傍のx方向の断面を概念的に示す図である。
 図示例において、センサ一体型カバーガラス10は、基本的に、ガラス板12を基板として形成され、第1透明導電膜14、第2透明導電膜16および遮光膜18と、遮光膜18の上に形成される金属配線20と、これらを覆ってガラス板12の上に形成される保護絶縁膜24とを有して構成される(図1(A)では、保護絶縁膜24は省略されており、遮光膜18および金属配線20は、後述する図2に記載されている)。また、第1透明導電膜14と第2透明導電膜16との間に交差部絶縁膜28が設けられている。
 また、本発明のセンサ一体型カバーガラス10は、ガラス板12と、第1透明導電膜14および第2透明導電膜16との間に、下地絶縁膜26を有する。
 本発明のセンサ一体型カバーガラスは、図示例の構成に限定はされず、静電容量形タッチパネルを操作する面を構成するガラス板に、センサを構成する透明導電膜等を形成してなる、公知のセンサ一体型カバーガラスの構成が、各種、利用可能である。
 本発明のセンサ一体型カバーガラス10は、静電容量型タッチパネルを構成するものである。図1(B)に示すように、このセンサ一体型カバーガラス10においては、ガラス板12の、第1透明導電膜14や第2透明導電膜16等が形成されていない側の表面(主面)12aが、操作を行う面となる。以下、ガラス板12において、操作が行われる面12aを操作面12a、第1透明導電膜14および第2透明導電膜16等が形成される面をセンサ面12bとする。
 すなわち、センサ一体型カバーガラス10において、ガラス板12は、静電容量形タッチパネルの操作面12aを構成するカバーガラスとしての機能と、センサとして機能する第1透明導電膜14および第2透明導電膜16等が形成されるセンサガラスとしての機能とを、併せ持っている。
 センサ一体型カバーガラス10において、ガラス板12は、公知のタッチセンサにおいて、操作面を構成するカバーガラスとして利用可能なガラス板が、各種、利用可能である。すなわち、ガラス板12には、組成、フロート法やフュージョン法などの製造方法などの制限は無い。
 ガラス板12としては、一例として、前述の化学強化ガラスや物理強化ガラス等の強化ガラス、ソーダライムガラス、無アルカリガラス等が例示される。中でも、アルミノシリケート化学強化ガラス,ソーダライム化学強化ガラス等は、好適に利用される。
 ガラス板12の厚さは、公知のタッチセンサに用いられるカバーガラスと同様でよい。なお、ガラス板12の厚さは、通常、0.3~1.5mmであり、好ましくは、0.5~1.1mmである。
 センサ一体型カバーガラス10は、このようなガラス板12を基板として、センサ面12b上に第1透明導電膜14、第2透明導電膜16、および、遮光膜18が形成される。
 また、第1透明導電膜14および第2透明導電膜16と、ガラス板12との間には、下地絶縁膜26が形成される。この下地絶縁膜26に関しては、後に詳述する。なお、下地絶縁膜26と第1透明導電膜14および第2透明導電膜16との間に別の膜が設けられていても構わない。例えばSiO2等の無機膜が設けられていても構わない。
 センサ一体型カバーガラス10において、第1透明導電膜14および第2透明導電膜16は、入力位置を検出するためのものである(入力位置検出用の透明電極)。すなわち、第1透明導電膜14および第2透明導電膜16は、入力位置を検出するセンサを構成するものである。
 以下の説明では、第1透明導電膜14と第2透明導電膜16とを区別する必要が無い場合には、両者をまとめて透明導電膜14および16とも言う。
 図示例のセンサ一体型カバーガラス10において、第1透明導電膜14は、図中x方向に延在して、このx方向と直交するy方向に、複数が配列される。他方、第2透明導電膜16は、図中y方向に延在して、x方向に、複数が配列される。
 図1(A)に示すように、第1透明導電膜14は、矩形の大面積部(パッド部)14aを延在方向すなわちx方向に所定間隔で配列して、接続部14bで接続してなる構成を有していても構わない。また、第2透明導電膜16も、同じく、矩形の大面積部16aを延在方向すなわちy方向に所定間隔で配列して、接続部16bで接続してなる構成を有していても構わない。
 大面積部14aおよび大面積部16aは、互いに離間して、x方向およびy方向に交互になるように配列され、入力位置検出を向上させるために設けられる。従って、第1透明導電膜14と第2透明導電膜16とは、接続部14bと接続部16bとで交差するように形成される。
 図1(A)および1(C)に示すように、第1透明導電膜14と第2透明導電膜16との交差部すなわち接続部14bと接続部16bとの交差部では、第2透明導電膜16をx方向に跨ぐように交差部絶縁膜28が形成されている。
 また、この交差部においては、第1透明導電膜14は、この交差部絶縁膜28の上に、交差部絶縁膜28および第2透明導電膜16をx方向に跨ぐように形成されている。
 これにより、第1透明導電膜14と第2透明導電膜16とを絶縁状態で交差させるジャンパ部(交差部)が形成され、互いに交差して形成される第1透明導電膜14と第2透明導電膜16との絶縁状態が保たれる。
 本発明のセンサ一体型カバーガラス10において、透明導電膜14および16の形成材料は、静電容量型のタッチセンサにおいてセンサ部を形成するために用いられる、公知の透明(光透過性を有する)な導電性材料が、各種、利用可能である。
 具体的には、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)等が例示される。中でも、ITOは、好適に利用される。
 透明導電膜14および16の厚さは、形成材料等に応じて、適宜、決定すればよい。なお、透明導電膜14および16の厚さは、通常、20~100nm程度である。
 交差部絶縁膜28の形成材料は、公知の透明な絶縁性材料が、各種、利用可能である。具体的には、アクリル系、ポリイミド系等の各種フォトレジスト等が例示される。
 また、交差部絶縁膜28の厚さは、形成材料等に応じて、適宜、決定すればよい。なお、交差部絶縁膜28の厚さは、通常、0.8~2.0μm程度である。
 図2は、センサ一体型カバーガラス10の構成を説明するための平面図である。図2において、遮光膜18は、ガラス板12のセンサ面外周部に形成される、遮光性を有する絶縁性の膜である。
 遮光膜18は、センサ一体型カバーガラス10と組み合わされるディスプレイからの漏れ光の遮光、同ディスプレイを駆動するための配線やICの隠蔽、後述する金属配線20の隠蔽等のために設けられる。
 遮光膜18の厚さは、適宜、変更可能である。なお、遮光膜18の厚さは、通常0.8~2.0μm程度である。
 なお、本発明のセンサ一体型カバーガラス10において、遮光膜18は、好ましい態様として設けられる。
 図2および図1(D)に示すように、遮光膜18(遮光膜18上の下地絶縁膜26)の上(センサ面12b)には、金属配線20が形成される。
 金属配線20は、第1透明導電膜14および第2透明導電膜16の数に応じて、複数が形成されており、個々の金属配線20は、一端が、第1透明導電膜14もしくは第2透明導電膜16に接続される。また、個々の金属配線20の他端側は、例えば、センサ一体型カバーガラス10に組み合わされるディスプレイに接続されるフレキシブル配線基板30に接続される。
 この金属配線20を有することにより、ITO等からなる透明導電膜の導電性の低さを補って、センサからの信号を容易に取り出すことが可能になる。
 本発明のセンサ一体型カバーガラス10において、金属配線20は、タッチパネルにおいて、各種の金属材料が利用可能である。
 具体的には、Mo/Al/Moの3層の金属材料(MAM)、Mo-Nb合金/Al/Mo-Nb合金の3層の金属材料、Mo-Nb合金/Al-Nb合金/Mo-Nb合金の3層の金属材料等が例示される。
 金属配線20の厚さは、使用する材料の導電性や可能な配線の幅等に応じて、適宜、決定すればよい。なお、金属配線20の厚さは、通常、0.3~0.5μm程度である。
 本発明のセンサ一体型カバーガラスにおいては、この金属配線20も、好ましい態様として設けられる。
 上述した金属配線20上には保護絶縁膜24が設けられているが、全てが保護絶縁膜24に覆われるわけではなく、必要な部分は外部に露出している。例えば、金属配線20は、ディスプレイ等に接続されるフレキシブル配線基板30との接続部のみは、保護絶縁膜24に覆われず、露出している。
 本発明のセンサ一体型カバーガラス10において、保護絶縁膜24は、センサ一体型カバーガラスの保護膜を形成するために用いられる、公知の透明な絶縁性材料が、各種、利用可能であり、交差部絶縁膜28と同様の材料を使用することが出来る。
 また、保護絶縁膜24の厚さは、形成材料や、ガラス板12のセンサ面に形成される各種の部位の厚さ等に応じて、これらを覆い、かつ、保護層として十分に作用する厚さを、適宜、設定すればよい。なお、保護絶縁膜24の厚さは、通常、0.8~2.0μmである。
 前述のように、本発明のセンサ一体型カバーガラス10において、ガラス板12と、第1透明導電膜14および第2透明導電膜16との間には、下地絶縁膜26が形成される。なお、図示例では、図1(D)に示すように、下地絶縁膜26は、ガラス板12と透明導電膜14および16との間のみならず、遮光膜18の上まで形成されている。
 下地絶縁膜26は、本発明の特徴的な部位で、透明で絶縁性を有する、有機化合物からなる膜である。
 本発明のセンサ一体型カバーガラス10は、この下地絶縁膜26を有することにより、ガラス板12の強度を大幅に向上し、耐久性に優れる、スマートフォンやタブレット型コンピュータ等のタッチセンサを実現している。
 すなわち、本発明者は、検討の結果、従来のセンサ一体型カバーガラスでは、ガラス板のセンサ面の面強度が弱いことを見出した。
 前述のように、センサ一体型カバーガラスが組み込まれた機器の操作は、透明導電膜が形成されている面であるセンサ面とは反対側の、操作面で行われる。すなわち、ガラス板は、操作面側から押圧力を受けるのが通常であり、センサ面には、引張応力がかかる。
 従って、ガラス板において、引張応力がかかるセンサ面の面強度が低いというのは、センサ一体型カバーガラスでは、重大な問題となりうる。
 本発明は、上記問題に対応するために成されたものであり、センサ一体型カバーガラス10のセンサ面12bにおいて、ガラス板12と透明導電膜14および16との間に、有機化合物からなり、かつ、透明で絶縁性を有する下地絶縁膜26を有する。
 本発明のセンサ一体型カバーガラス10において、下地絶縁膜26の形成材料は、有機化合物からなり、かつ、十分な透明性および絶縁性を有するものであれば、各種の材料が利用可能である。具体的には、透明なエポキシ樹脂、アクリル樹脂、その他光硬化性樹脂や熱硬化性樹樹脂、各種フォトレジスト等が例示される。ここで、十分な透明性とは可視光領域(波長400nm~700nm)における透過率が85%以上のことを指す。また、十分な絶縁性とは、抵抗率が1E12(Ω/□)以上、より好ましくは1E14(Ω/□)以上のことを指す。
 下地絶縁膜26の厚さは、適宜、設定することができる。本発明者の検討によれば、下地絶縁膜26の厚さは、0.8~2.0μmが好ましく、特に、1.0~1.5μmが好ましい。
 図1(D)に示すように、下地絶縁膜26は、ガラス板12と透明導電膜14および16との間のみならず、遮光膜18の上まで形成されている。しかしながら、本発明は、これに限定はされず、下地絶縁膜26は、遮光膜18の上には形成せずに、遮光膜18の内側のみに設けてもよい。
 さらに、図1(C)及び1(D)に示すように、下地絶縁膜26は、センサ面12bの上に全面的に形成されている。しかしながら、本発明は、これに限定はされず、下地絶縁膜26は、センサ面12bの上の透明導電膜14および16が無い部分には形成せずに、透明導電膜14および16とガラス板12との間のみに形成してもよい。すなわち、本発明において、下地絶縁膜26は、少なくとも、透明導電膜14および16と、ガラス板12との間に形成すればよい。
 なお、このように、下地絶縁膜26のパターニングを行う必要が有る場合には、下地絶縁膜26は、フォトレジストで形成するのが好ましい。
 以下、図3のフローチャートを参照して、センサ一体型カバーガラス10の製造方法の一例を説明する。
 なお、本発明のセンサ一体型カバーガラス10は、この手順で製造するのに限定はされない。例えば、金属配線を透明導電膜の形成後に形成する等、透明導電膜14および16とガラス板12との間に下地絶縁膜26を形成できれば、公知のセンサ一体型カバーガラスで用いられている各種の手順での製造方法が利用可能である。
 また、各膜の形成方法も、以下に示す例に限定はされず、膜の形成材料等に応じて、公知のセンサ一体型カバーガラスで用いられている各種の方法が利用可能である。
 まず、素材となるガラス板を準備して、このガラス板に化学強化を施して、ガラス板12を作製する。化学強化は、公知の方法で行えばよい。
 次いで、アクティブエリアAとなる領域を囲むように(図2参照)、ガラス板12に遮光膜18を印刷する。遮光膜18の印刷は、タッチパネルの製造で利用されている公知の方法によればよい。なお、遮光膜18の形成は、必要に応じて行えばよいのは、前述のとおりである。
 次いで、下地絶縁膜26となる膜を成膜して、必要に応じて、パターニング等を行って下地絶縁膜26を形成する。
 下地絶縁膜26の成膜方法には、特に限定はなく、公知の有機化合物からなる膜の成膜方法が、各種、利用可能である。
 また、パターニングを行う際にも、下地絶縁膜26の形成材料に応じた、公知の方法で行えばよい。
 次いで、後に第2透明導電膜16の一部となる交差部透明導電膜16cとなるITO等を下地絶縁膜26上に全面に成膜し、パターニングを行う。ITO等の成膜は、スパッタリング等の公知の方法で行えばよい。パターニングもフォトリソグラフィを利用する方法等の公知の方法で行えばよい。
 次いで、絶縁膜を交差部透明導電膜16c上に成膜して、交差部透明導電膜16c以外の領域と交差部透明導電膜16cの一部を露出させるようにパターニングを行い、交差部絶縁膜28を形成する。成膜方法およびパターニングは、交差部絶縁膜28の形成材料に応じた公知の方法で行えばよい。
 次いで、第1透明導電膜14および交差部透明導電膜16cを除く第2透明導電膜16となるITO等を成膜して、パターニングを行うことで、透明センサ配線部分を完成する。先と同様、ITO等の成膜は、スパッタリング等の公知の方法で行えばよく、パターニングも、公知の方法で行えばよい。
 さらに、遮光膜18の上に金属配線20を形成し、パターニングする。なお、この工程も、必要に応じて行えばよいのは、前述のとおりである。また、本実施形態では、交差部透明導電膜16cと交差部絶縁膜28を形成する工程の間に実施しているが、これに限らない。
 次いで、ガラス板12のセンサ面12bを全面的に覆うように、保護絶縁膜24を成膜し、フレキシブル配線基板30との接続部などの金属配線20の必要な部分を露出するように、パターニングを行う。成膜方法およびパターニングは、保護絶縁膜24の形成材料に応じた公知の方法で行えばよい。
 次に、図4(A)~4(C)は、本発明のセンサ一体型カバーガラスの別の実施形態を概念的に示す図である。
 なお、図4(A)は図1(A)と同様の部分の平面図であり、図4(B)は、図4(A)のb-b線断面を、図4(C)は、図4(A)のc-c線断面を、それぞれ示す図である。
 なお、図4(A)~4(C)に示すセンサ一体型カバーガラス10aは、前述のセンサ一体型カバーガラス10と同じ部材を多数有するので、同じ部材には同じ符号を付し、説明は異なる部位を主に行う。
 図4(A)~4(C)に示すセンサ一体型カバーガラス10aは、下地絶縁膜26を有さず、かつ、ジャンパ部を形成するための透明な絶縁膜として、有機化合物を用い、この絶縁膜を、ジャンパ部のみならず、ガラス板12のセンサ面12bに全面的に形成して、交差部/下地絶縁膜32とするものである。
 すなわち、センサ一体型カバーガラス10aでは、図1(A)及び1(C)に示すセンサ一体型カバーガラスの交差部絶縁膜28を形成する際に、有機化合物からなる透明な絶縁膜を、センサ面12bの全面に形成することにより、前述の例の交差部絶縁膜28と下地絶縁膜26とを一体化してなる、交差部/下地絶縁膜32を有する。
 具体的には、図4(A)~4(C)に示すセンサ一体型カバーガラス10aは、図3に示すフローチャートにおいて、化学強化および遮光膜18の印刷を行った後、下地絶縁膜26の成膜を行わずに、交差部透明導電膜16cの形成および金属配線20の形成(金属配線エッチング)までの工程を行う。すなわち、本例においては、交差部透明導電膜16cは、ガラス板12(センサ面12b)上に、直接、形成される。
 次いで、透明な絶縁膜を全面的に成膜して、エッチング等により交差部透明導電膜16cのy方向の両端を露出させて、交差部/下地絶縁膜32形成する。
 以降は、同様に、交差部透明導電膜16c以外の透明導電膜14および16の形成、および保護絶縁膜24の形成を行う。
 すなわち、図4(A)~4(C)に示すセンサ一体型カバーガラス10aは、x方向に延在する第1透明導電膜およびy方向に延在する第2透明導電膜と、第1透明導電膜と第2透明導電膜との交差部の両導電膜の間、および、前記第1透明導電膜および第2透明導電膜とガラス板との間に設けられる透明な有機化合物からなる交差部/下地絶縁膜を有するものである。
 言い換えると、図1(A)~1(D)に示すセンサ一体型カバーガラスにおいて、ジャンパ部の透明導電膜の下に下地絶縁膜を有さず、かつ、交差部絶縁膜が、ジャンパ部以外の第1透明導電膜および第2透明導電膜とガラス板との間まで延在して、下地絶縁膜として作用するものである。
 図1(A)~1(D)に示されるセンサ一体型カバーガラス10を製造する際には、下地絶縁膜の形成という工程を追加する必要が有る。これに対し、本実施形態の図4(A)~4(C)に示すセンサ一体型カバーガラス10aは、工程数を増やさず、従来のセンサ一体型カバーガラスと同じ工程数で製造することができる。また、殆どの領域で、透明導電膜とガラス板との間に下地絶縁膜を設けることができるので、ガラス板12のセンサ面12bの面強度低下の防止効果も十分に得られる。
 一方で、図1(A)~1(D)に示されるセンサ一体型カバーガラス10は、ジャンパ部の下にも下地絶縁膜を有するので、ガラス板12の強度的に、有利である。
 以上、本発明のセンサ一体型カバーガラスについて詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、勿論である。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されない。
 まず、板厚0.7mmのアルミノケイ酸ガラス(アルミノシリケートガラス)を用意した。このガラスを化学強化した後、50mm角に切断を行った。
 化学強化条件の依存性を調べるため、化学強化は、異なる2種類の化学強化条件を用いて行った。各化学強化条件で得られたガラス板は、それぞれ、CS(compressive stress)が647MPaでDOL(depth of layer)が21μm、CSが630MPaでDOL49μmであった。
 以下、便宜的に、CSが647MPaでDOLが21μmのガラス板をガラス板A、CSが630MPaでDOL49μmのガラス板をガラス板Bとする。
 続いて、得られたガラス板に、スパッタリング法によりITO膜を全面に成膜したサンプルと、スピンコートにより下地絶縁膜を全面に成膜した後、その上に、同様に全面にITO膜を成膜したサンプルとを作成した。ここでITO膜は100nm、下地絶縁膜は1.2μmの厚さで、それぞれ成膜を行った。また、下地絶縁膜は、アクリル系樹脂を使用した。
 ガラス板AにITOのみを成膜したサンプルを比較例1、ガラス板BにITOのみを成膜したサンプルを比較例2、ガラス板Aに下地絶縁膜およびITOを成膜したサンプルを実施例1、および、ガラス板Bに下地絶縁膜およびITOを成膜したサンプルを実施例2、とする。
 得られたそれぞれのサンプルに対し、図5(A)及び5(B)に示すような方法で各サンプルの面強度を測定した。また、同様の面強度の測定を、ガラス板Aおよびガラス板Bについても行った。
 図5(A)及び5(B)はBOR(Ball on Ring)と呼ばれるガラス板の面強度試験方法を概念的に示す図で、図5(A)は平面図、図5(B)は側面図である。図5(A)及び5(B)に示すように、リング状の支持部Sの上に、中心を一致して、ITOの形成面を支持部S側に向けてサンプルGを載置し、支持部Sの中心上からサンプルGとの接触部が半径5mmの球状の荷重部Lを押しつけて荷重をかけることで、各サンプルGの面強度を測定した。支持部Sの直径は30mm(支持部Sの中心を基準)とした。
 各サンプルおよびガラス板の面強度の測定結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の比較例1および2、ならびに、ガラス板AおよびBの面強度の測定結果から分かるように、化学強化条件に係わらずガラス板上にITOを成膜すると、ITOの成膜面においてガラス板の面強度が低下している。この結果より、従来のセンサ一体型カバーガラスは、センサ面の面強度が弱いことが分かる。
 これに対し、実施例1および2、ならびに、ガラス板AおよびBの面強度の測定結果から、ガラス板上にITOを成膜したとしても、下地絶縁膜を成膜することで、ガラス板のITO成膜面が、ITO成膜前の強度と同等の面強度を確保することが出来きることが確認された。すなわち、本発明のセンサ一体型カバーガラスによれば、センサ面の面強度を十分に確保した、耐久性に優れる、スマートフォンやタブレット型コンピュータ等のタッチセンサを実現できる。
 本出願は、2012年8月23日出願の日本国特許出願2012-183832に基づくものであり、その内容はここに参照として取り込まれる。
 10,10a センサ一体型カバーガラス
 12 ガラス板
 14 第1透明導電膜
 16 第2透明導電膜
 18 遮光膜
 20 金属配線
 24 保護絶縁膜
 26 下地絶縁膜
 28 交差部絶縁膜
 30 フレキシブル配線基板
 32 交差部/下地絶縁膜

Claims (6)

  1.  ガラス板と、
     前記ガラス板の一方の面に形成され、第1の方向に延在する第1の透明導電膜および前記第1の方向とは異なる方向に延在する第2の透明導電膜と、
     前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間に形成される、透明な有機化合物からなる下地絶縁膜と、を備えるセンサ一体型カバーガラス。
  2.  前記第1の透明導電膜と前記第2の透明導電膜とは、一方が他方を覆うように交差する交差部を形成し、前記交差部において前記第1の透明導電膜と前記第2の透明導電膜との間に交差部絶縁膜を有する請求項1に記載のセンサ一体型カバーガラス。
  3.  前記下地絶縁膜は、前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間にのみ形成されている請求項1または2に記載のセンサ一体型カバーガラス。
  4.  前記下地絶縁膜は、少なくとも前記第1の透明導電膜および前記第2の透明導電膜の形成された領域において、前記ガラス板を全面的に覆うように形成されている請求項1または2に記載のセンサ一体型カバーガラス。
  5.  前記下地絶縁膜は、前記第1の透明導電膜と前記第2の透明導電膜とが交差する前記交差部と前記ガラス板との間には形成されていない請求項2に記載のセンサ一体型カバーガラス。
  6.  前記交差部絶縁膜が、前記交差部以外の前記ガラス板と、前記第1の透明導電膜および前記第2の透明導電膜との間まで延在して形成されている請求項5に記載のセンサ一体型カバーガラス。
PCT/JP2013/072019 2012-08-23 2013-08-16 センサ一体型カバーガラス WO2014030599A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380043790.5A CN104583918A (zh) 2012-08-23 2013-08-16 传感器一体型保护玻璃
KR20157004438A KR20150046047A (ko) 2012-08-23 2013-08-16 센서 일체형 커버 유리
JP2014531610A JPWO2014030599A1 (ja) 2012-08-23 2013-08-16 センサ一体型カバーガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-183832 2012-08-23
JP2012183832 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030599A1 true WO2014030599A1 (ja) 2014-02-27

Family

ID=50149908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072019 WO2014030599A1 (ja) 2012-08-23 2013-08-16 センサ一体型カバーガラス

Country Status (5)

Country Link
JP (1) JPWO2014030599A1 (ja)
KR (1) KR20150046047A (ja)
CN (1) CN104583918A (ja)
TW (1) TW201415337A (ja)
WO (1) WO2014030599A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021235A (ja) * 2014-07-14 2016-02-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. タッチパネルを備えるフレキシブル表示装置
WO2016103991A1 (ja) * 2014-12-26 2016-06-30 富士フイルム株式会社 硬化性組成物、転写フィルム、画像表示装置の前面板、前面板一体型センサー、画像表示装置および画像表示装置の前面板の製造方法
WO2019151321A1 (ja) 2018-01-31 2019-08-08 Agc株式会社 反射防止膜付ガラス基板及び光学部品
JP2019214492A (ja) * 2018-06-13 2019-12-19 東レ株式会社 ガラス強化基板
KR20200010213A (ko) 2017-05-24 2020-01-30 도레이 카부시키가이샤 투명 수지 조성물, 투명 피막 및 투명 수지 피복 유리 기판
KR20200010212A (ko) 2017-05-24 2020-01-30 도레이 카부시키가이샤 네가티브형 감광성 수지 조성물 및 경화막

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083497A (ja) * 2006-09-28 2008-04-10 Epson Imaging Devices Corp 電極基板の製造方法
JP2011197708A (ja) * 2010-03-17 2011-10-06 Sony Corp タッチパネルの製造方法
WO2012090790A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 タッチパネル
JP2012155644A (ja) * 2011-01-28 2012-08-16 Toppan Printing Co Ltd 加飾カバーガラス一体型タッチパネルの製造方法及び液晶表示装置
JP5133449B1 (ja) * 2011-11-04 2013-01-30 Smk株式会社 透明タッチパネル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314244A (zh) * 2010-06-29 2012-01-11 东莞万士达液晶显示器有限公司 触控显示面板
CN102156600A (zh) * 2011-04-20 2011-08-17 信利光电(汕尾)有限公司 电容式触摸屏及其制造方法和触摸显示器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083497A (ja) * 2006-09-28 2008-04-10 Epson Imaging Devices Corp 電極基板の製造方法
JP2011197708A (ja) * 2010-03-17 2011-10-06 Sony Corp タッチパネルの製造方法
WO2012090790A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 タッチパネル
JP2012155644A (ja) * 2011-01-28 2012-08-16 Toppan Printing Co Ltd 加飾カバーガラス一体型タッチパネルの製造方法及び液晶表示装置
JP5133449B1 (ja) * 2011-11-04 2013-01-30 Smk株式会社 透明タッチパネル

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021235A (ja) * 2014-07-14 2016-02-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. タッチパネルを備えるフレキシブル表示装置
US10459588B2 (en) 2014-07-14 2019-10-29 Samsung Display Co., Ltd. Flexible display device with touch panel
WO2016103991A1 (ja) * 2014-12-26 2016-06-30 富士フイルム株式会社 硬化性組成物、転写フィルム、画像表示装置の前面板、前面板一体型センサー、画像表示装置および画像表示装置の前面板の製造方法
JP2016124720A (ja) * 2014-12-26 2016-07-11 富士フイルム株式会社 硬化性組成物、転写フィルム、画像表示装置の前面板、前面板一体型センサー、画像表示装置および画像表示装置の前面板の製造方法
EP3239111A4 (en) * 2014-12-26 2017-12-27 FUJIFILM Corporation Curable composition, transfer film, front plate of image display device, front plate-integrated sensor, image display device, and manufacturing method for front plate of image display device
KR20200010213A (ko) 2017-05-24 2020-01-30 도레이 카부시키가이샤 투명 수지 조성물, 투명 피막 및 투명 수지 피복 유리 기판
KR20200010212A (ko) 2017-05-24 2020-01-30 도레이 카부시키가이샤 네가티브형 감광성 수지 조성물 및 경화막
US11306212B2 (en) 2017-05-24 2022-04-19 Toray Industries, Inc. Transparent resin composition, transparent coating film and transparent resin-coated glass substrate
WO2019151321A1 (ja) 2018-01-31 2019-08-08 Agc株式会社 反射防止膜付ガラス基板及び光学部品
US11964904B2 (en) 2018-01-31 2024-04-23 AGC Inc. Glass substrate with antireflection film, and optical member
JP2019214492A (ja) * 2018-06-13 2019-12-19 東レ株式会社 ガラス強化基板
JP7115054B2 (ja) 2018-06-13 2022-08-09 東レ株式会社 ガラス強化基板

Also Published As

Publication number Publication date
TW201415337A (zh) 2014-04-16
CN104583918A (zh) 2015-04-29
JPWO2014030599A1 (ja) 2016-07-28
KR20150046047A (ko) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2014030599A1 (ja) センサ一体型カバーガラス
TWI635428B (zh) 具有含銀之透明傳導層的投射式電容觸摸面板
TWI459254B (zh) 觸控裝置及其製造方法
US20130266724A1 (en) Method of manufacturing touch screen panel
US20120249436A1 (en) Liquid Crystal Display Apparatus with In Touch Sensor and Manufacturing Method Thereof
JP5413228B2 (ja) タッチパネルセンサ製造方法およびタッチパネルセンサ
KR102170653B1 (ko) 커버 유리의 제조 방법, 커버 유리 및 커버 유리를 구비한 표시 장치
US20100182267A1 (en) Touch screen panel with a window
US11119611B2 (en) Film touch sensor for enhancing image quality
WO2013073299A1 (ja) タッチパネル
WO2017008450A1 (zh) 平面转换模式阵列基板及其制作方法、显示器件
JP5588466B2 (ja) タッチパネルの配線構造
WO2018076817A1 (zh) 触控面板及其制备方法和显示装置
JP2014146283A (ja) 前面板一体型タッチパネルセンサー基板及び表示装置
JP2013020347A (ja) タッチパネルおよびタッチパネルの製造方法
US8269741B2 (en) Touch screen panel device
CN102236482B (zh) 电容式触控结构及其制造方法以及触控设备
KR102007662B1 (ko) 베젤이 최소화된 표시소자
TW201531899A (zh) 觸控面板及附顯示裝置的觸控面板
WO2019097888A1 (ja) タッチセンサ及びタッチパネル
JP5659684B2 (ja) タッチパネル基板及びその製造方法
WO2016136664A1 (ja) タッチセンサ付き液晶表示装置
JP5874712B2 (ja) タッチパネルセンサ製造方法およびタッチパネルセンサ
JP5834488B2 (ja) タッチパネルセンサー付液晶表示装置及びその製造方法
KR101390991B1 (ko) 터치스크린 패널 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531610

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157004438

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830385

Country of ref document: EP

Kind code of ref document: A1