WO2014017426A1 - プローブユニット、基板検査装置およびプローブユニット製造方法 - Google Patents

プローブユニット、基板検査装置およびプローブユニット製造方法 Download PDF

Info

Publication number
WO2014017426A1
WO2014017426A1 PCT/JP2013/069772 JP2013069772W WO2014017426A1 WO 2014017426 A1 WO2014017426 A1 WO 2014017426A1 JP 2013069772 W JP2013069772 W JP 2013069772W WO 2014017426 A1 WO2014017426 A1 WO 2014017426A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
support plate
probe
hole
probe unit
Prior art date
Application number
PCT/JP2013/069772
Other languages
English (en)
French (fr)
Inventor
昌史 小林
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Priority to CN201380039590.2A priority Critical patent/CN104508498B/zh
Priority to KR1020147031022A priority patent/KR101979060B1/ko
Publication of WO2014017426A1 publication Critical patent/WO2014017426A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a probe unit including a plurality of probes and a support portion that supports each probe, a substrate inspection apparatus including the probe unit, and a probe unit manufacturing method for manufacturing the probe unit.
  • This inspection jig is an inspection jig that is mounted and used in an inspection apparatus that performs an electrical inspection of an inspection object, and includes a probe, a tip-side support that supports the tip side of the probe, and a rear end side of the probe.
  • the rear end side support body to support and the support pillar which connects a front end side support body and a rear end side support body are comprised.
  • the probe is composed of a conductive wire and an insulating coating formed on the outer peripheral surface of the conductive wire excluding the front end portion and the rear end portion.
  • the front end side support is configured by laminating three support plates.
  • Each support plate is formed with a through hole, and each through hole constitutes a distal end side insertion hole through which the distal end portion of the probe is inserted.
  • the distal end side insertion hole is formed along a direction perpendicular to the support plate.
  • each through hole is formed so that each inner diameter is larger than the outer diameter of the tip side portion of the probe and smaller than the outer diameter of the insulating coating forming portion.
  • the rear end side support body is configured by stacking five support plates.
  • Each support plate is formed with a through hole, and a rear end side insertion hole through which the rear end side portion of the probe is inserted is formed by each through hole.
  • the rear end side insertion hole is inclined with respect to the support plate (with respect to the central axis of the front end side insertion hole) by stacking the support plate with the center of each through hole being slightly shifted. It is formed as follows. When assembling this inspection jig, first, the front end side support body and the rear end side support body are connected by a support column.
  • the rear end side support body is inserted into the probe from the rear end side insertion hole of the rear end side support body toward the front end side insertion hole of the front end side support body. It is made to contact
  • a rear end side support plate is attached. Thereby, the probe is supported by the front end side support body and the rear end side support body.
  • the rear end side insertion hole is inclined with respect to the front end side insertion hole, the intermediate portion of the probe supported by the front end side support body and the rear end side support body is inclined. For this reason, when the tip portion of the probe is pressed against the object to be inspected at the time of inspection, it is possible to easily bend the intermediate portion of the inclined probe.
  • the conventional inspection jig has the following problems. That is, in this inspection jig, the support plate is inclined with respect to the front end side insertion hole by laminating each support plate in a state where the centers of the through holes formed in the plurality of support plates constituting the rear end side support are slightly shifted. A rear end side insertion hole is formed. In this case, it is necessary to form as many through holes as the number of probes in the support plate, and in order to accurately form many through holes in many support plates (in the above example, five support plates). Requires long processing time.
  • the present invention has been made in view of such problems, and has as its main object to provide a probe unit, a substrate inspection apparatus, and a probe unit manufacturing method that can reduce manufacturing costs.
  • a probe unit includes a plurality of probes for inputting / outputting electric signals by bringing a tip portion into contact with a conductor portion of a substrate and a support portion for supporting the probe.
  • the probe unit includes a first support plate that has a first support hole and supports the tip portion that is inserted through the first support hole, and a second support hole.
  • a second support plate that supports the base end of the probe that is inserted into the second support hole, and the base that has a third support hole and is inserted into the third support hole.
  • a third support plate that supports the end portion, and the support plates are arranged so as to face each other in this order, and the support plates are arranged in a vertical direction perpendicular to the support plates.
  • the first support in a state in which the second support plate and the third support plate are in contact with or close to each other from the first posture stacked in contact with or close to each other so as to face each other on a straight line
  • the first support hole, the second support hole, and the third support hole along an inclination direction in which the plate is separated from the second support plate and is inclined with respect to the stacking direction of the support plates.
  • Each of the opening surfaces is configured to be able to shift to and maintain the second posture facing each other on a virtual straight line, and the probe is supported by the support plates in the second posture.
  • the tip end portion extends along the first support hole, and a portion excluding the tip end portion can be maintained in a state extending along the inclined direction.
  • the probe unit according to claim 2 is the probe unit according to claim 1, wherein each support plate is formed with an insertion hole communicating with each other in the state of the first posture.
  • the first posture is maintained by the pins inserted through the insertion holes.
  • the probe unit according to claim 3 is the probe unit according to claim 1 or 2, wherein the spacer is disposed between the first support plate and the second support plate in the second posture. Each support plate is fixed to the spacer and is configured to be maintained in the second posture.
  • a substrate inspection apparatus is based on the probe unit according to any one of claims 1 to 3 and an electric signal input through the probe of the probe unit in contact with a conductor portion of the substrate. And an inspection unit for inspecting the substrate.
  • a probe unit manufacturing method comprising: a plurality of probes for inputting and outputting electrical signals by bringing a tip portion into contact with a conductor portion of a substrate; and a support portion for supporting the probes.
  • a probe unit manufacturing method for manufacturing a unit comprising: a first support plate having a first support hole and supporting the tip portion inserted through the first support hole; and a second support hole.
  • a second support plate that supports the base end of the probe that is inserted into the second support hole, and the base that has a third support hole and is inserted into the third support hole.
  • the probe is inserted through the support holes in a state where the support plates are maintained in the first posture stacked in contact with or close to each other so that the opening surfaces of the holes face each other on an imaginary straight line.
  • the first support plate and the second support plate are separated from each other in a state in which the second support plate and the third support plate are in contact with or close to each other, and the stacking direction of the support plates is
  • the support plates are moved to a second posture in which the opening surfaces of the first support hole, the second support hole, and the third support hole face each other on an imaginary straight line along an inclined direction that is inclined And maintain the probe so that the tip extends along the first support hole and the portion excluding the tip extends along the inclined direction.
  • the probe unit is manufactured.
  • the probe unit manufacturing method according to claim 6 is the probe unit manufacturing method according to claim 5, wherein each of the insertions in each of the support plates in which insertion holes communicating with each other in the state of the first posture are formed. A pin is inserted into the hole to maintain each support plate in the first posture.
  • the probe unit manufacturing method according to claim 7 is the probe unit manufacturing method according to claim 5 or 6, wherein a spacer is provided between the first support plate and the second support plate in the second posture.
  • the support plates are fixed to the spacers, and the support plates are maintained in the second posture.
  • the probe is inserted into each support hole in a state where each support plate is maintained in the first posture. Thereafter, the support plates are moved to the second posture to maintain the state, and the probes are held by the support plates. For this reason, in the probe unit, the substrate inspection apparatus, and the probe unit manufacturing method, each of the first support hole, the second support hole, and the third support hole can be obtained by shifting the position of each support plate during assembly.
  • the base end of the probe is supported by only two support plates.
  • this type of support plate forms many support holes for inserting and supporting the probe, the manufacturing cost increases.
  • inspection apparatus, and probe unit manufacturing method compared with the structure and method using many support plates, since there are few support plates, manufacturing cost can fully be reduced. Further, in this probe unit, board inspection apparatus, and probe unit manufacturing method, after each probe is inserted into each support hole in a state where each support plate is maintained in the first position, each support plate is set in the second position.
  • the board inspection apparatus according to claim 4 the board inspection apparatus according to claim 4, and the probe unit manufacturing method according to claim 6, a pin is inserted into each insertion hole of each support plate, By maintaining each support plate in the first posture, it is possible to reliably and easily maintain each support plate in the first posture while having a simple configuration and method. The manufacturing efficiency of the substrate inspection apparatus can be sufficiently improved.
  • the first support plate and the second position in the second posture By arranging spacers between the support plates and fixing the support plates to the spacers, the support plates can be reliably and easily maintained in the second posture in a short time with a simple configuration and method. Therefore, the manufacturing efficiency of the probe unit, and hence the manufacturing efficiency of the substrate inspection apparatus can be sufficiently improved.
  • FIG. 1 is a configuration diagram showing a configuration of a substrate inspection apparatus 1.
  • FIG. 2 is a configuration diagram showing a configuration of a probe unit 2.
  • FIG. 2 is a plan view of a probe 11.
  • FIG. It is an exploded perspective view of the main-body part 12 in the state which faced the front-end
  • FIG. 6 is an exploded perspective view of the main body 12 in a state where the base end side support portion 32 is faced down.
  • 3 is a perspective view of a main body unit 12.
  • FIG. 5 is a first explanatory view illustrating a method for manufacturing the probe unit 2.
  • FIG. 8 is a second explanatory diagram (Y-plane cross-sectional view in FIG. 7) illustrating a method for manufacturing the probe unit 2;
  • FIG. 6 is a third explanatory view explaining the method for manufacturing the probe unit 2.
  • FIG. 10 is a fourth explanatory diagram (a cross-sectional view taken along the X plane in FIG. 6)
  • a substrate inspection apparatus 1 shown in FIG. 1 includes a probe unit 2, a moving mechanism 3, a mounting table 4, a measurement unit 5, an inspection unit 6, a storage unit 7, and a processing unit 8, as shown in FIG. It is configured to be inspectable.
  • the probe unit 2 includes a plurality of probes 11, a body portion 12, and an electrode plate 13, as shown in FIG.
  • the probe 11 is used to input / output an electric signal by contacting a conductor portion such as a conductor pattern on the substrate 100 at the time of inspection.
  • a conductor portion such as a conductor pattern on the substrate 100 at the time of inspection.
  • a conductive metal material for example, beryllium copper alloy, SKH, etc.
  • tungsten steel are formed in a rod shape with a circular cross section that can be elastically deformed.
  • tip part 21 and the base end part 23 of the probe 11 are each sharply formed.
  • an insulating layer made of an insulating coating material (for example, fluorine resin, polyurethane, polyester, polyimide, or the like) is formed on the peripheral surface of the intermediate portion 22 of the probe 11.
  • the intermediate portion 22 has a diameter L2 larger than the diameter L1 of the distal end portion 21 and the diameter L3 of the proximal end portion 23. That is, the probe 11 has a distal end portion 21 and a proximal end portion 23 that are smaller in diameter than the intermediate portion 22.
  • the main body portion 12 corresponds to a support portion, and as shown in FIGS. 2 and 4 to 6, includes a distal end side support portion 31, a base end portion side support portion 32, and a spacer 33 so that the probe 11 can be supported. It is configured.
  • the distal end side support portion 31 is a member that supports the distal end portion 21 side of the probe 11, and includes a support plate 41 and a support plate 42.
  • the first support plate is configured by the support plates 41 and 42.
  • the support plate 41 is formed in a plate shape from a non-conductive resin material. Further, as shown in FIGS. 5 and 8, a plurality of support holes 51 (first support holes) that are circular in plan view (the same number as the number of probes 11) are formed in the support plate 41. As shown in FIG. 8, the support hole 51 is formed so that its diameter R1 is slightly larger than the diameter L1 of the tip portion 21 of the probe 11 and slightly smaller than the diameter L2 of the intermediate portion 22 of the probe 11. It is possible to insert only the tip portion 21 without inserting the intermediate portion 22.
  • the support plate 41 has a plurality of (for example, two) insertion holes 61 a into which positioning pins 34 a and 34 c used in the assembly process of the probe unit 2 described later can be inserted. Is formed. Further, as shown in FIG. 5, a plurality of (for example, six) fixing holes 61 b into which bolts 35 used when fixing the supporting plate 41 and the supporting plate 42 to the spacer 33 can be inserted are formed in the supporting plate 41. Has been.
  • the support plate 42 is formed in a plate shape using the same material as the support plate 41 (in this example, a non-conductive resin material). 4 and 8, a plurality of support holes 52 (first support holes) that are circular in plan view (the same number as the number of probes 11) are formed in the support plate 42. As shown in FIG. 8, the support hole 52 is formed such that its diameter R2 is the same as the diameter R1 of the support hole 51 of the support plate 41, and only the distal end portion 21 is inserted without inserting the intermediate portion 22. It is possible.
  • the support plate 42 is formed with a plurality of (for example, two) insertion holes 62 a into which the positioning pins 34 a and 34 c described above can be inserted. Further, as shown in FIG. 4, the support plate 42 is formed with a plurality of (for example, six) fixing holes 62b through which the bolts 35 can be inserted.
  • the base end side support portion 32 is a member that supports the base end portion 23 side of the probe 11, and as shown in FIGS. 2, 4, and 5, a support plate 43 (second support plate) and a support plate 44. (Third support plate) is provided.
  • the support plate 41 is formed in a plate shape from a non-conductive resin material.
  • a plurality of support holes 53 (second support holes) that are circular in plan view (the same number as the number of probes 11) are formed in the support plate 43.
  • the support hole 53 is formed such that its diameter R3 is slightly larger than the diameter L2 of the intermediate portion 22 of the probe 11 so that the intermediate portion 22 can be inserted.
  • a plurality of (for example, two) insertion holes 63 a and a plurality (for example, two) of insertion holes 63 b and 34 c to be used in the assembly process of the probe unit 2 can be inserted into the support plate 43.
  • two insertion holes 63b are formed.
  • a plurality of (for example, six) fixing holes 63 c into which the bolts 35 used when fixing the supporting plate 43 and the supporting plate 44 to the spacer 33 can be inserted are formed in the supporting plate 43. Has been.
  • the support plate 44 is formed in a plate shape from the same material as the support plate 43 (in this example, a non-conductive resin material). As shown in FIGS. 4 and 8, a plurality of support holes 54 (third support holes) that are circular in plan view (the same number as the number of probes 11) are formed in the support plate 44. In this case, as shown in FIG. 8, the support hole 54 is formed to have the same diameter R4 as the diameter R3 of the support hole 53 of the support plate 43 so that the intermediate portion 22 can be inserted. .
  • the support plate 44 has a plurality of (for example, two) insertion holes 64 a and a plurality of (for example, two) insertion holes 64 a into which the positioning pins 34 b and 34 c described above can be inserted.
  • An insertion hole 64b is formed.
  • a plurality of (for example, six) fixing holes 64 c into which the bolts 35 described above can be inserted are formed in the support plate 44.
  • the spacer 33 is formed in a U shape in plan view, and as shown in FIG. 6, the spacer 33 is formed between the distal end side support portion 31 and the proximal end side support portion 32 (support plate). 42 and the support plate 43).
  • the spacer 33 maintains the distal end side support portion 31 constituted by the support plate 41 and the support plate 42 and the proximal end side support portion 32 constituted by the support plate 43 and the support plate 44 in a separated state. It has a function to do.
  • an insertion hole 65a into which the positioning pin 34a can be inserted is formed in the end face of the spacer 33 on the tip end side (upper side in the figure).
  • an insertion hole 65b into which the positioning pin 34b described above can be inserted is formed on the end surface of the spacer 33 on the base end side (upper side in the figure).
  • a plurality of bolts 35 described above can be screwed onto the end surface on the distal end side and the end surface on the proximal end side of the spacer 33 (in this example, a total of 12 each of 6 bolts 35). ) Screw holes 65c are formed.
  • each of the insertion hole 61a of the support plate 41, the insertion hole 62a of the support plate 42, the insertion hole 63a of the support plate 43, and the insertion hole 64a of the support plate 44 is centered.
  • the opening surfaces of the support holes 51 to 54 are imaginary straight lines so that the axes are coaxial, that is, along the direction perpendicular to the support plates 41 to 44 (hereinafter also simply referred to as “vertical direction”).
  • the formation positions of the insertion holes 61a, 62a, 63a, and 64a are defined so as to face each other on A1 (a line segment indicated by a broken line in the drawing) (aligned on the virtual straight line A1).
  • the central axes of the insertion hole 61a of the support plate 41, the insertion hole 62a of the support plate 42, and the insertion hole 65a of the spacer 33 are in a coaxial state, and are supported.
  • the central axes of the insertion hole 63b of the plate 43, the insertion hole 64b of the support plate 44, and the insertion hole 65b of the spacer 33 are in a coaxial state, the openings of the support holes 51 and 52 along the vertical direction.
  • the distal end portion 21 of the probe 11 is inserted into the support holes 51 and 52 of the support plates 41 and 42 constituting the distal end portion side support portion 31, and the proximal end portion side.
  • the probe 11 is supported by the main body 12 in a state where the base end portion 23 of the probe 11 is inserted into the support holes 53 and 54 of the support plates 43 and 44 constituting the support portion 32.
  • the probe 11 is supported by the main body portion 12 such that the tip portion 21 side extends along the vertical direction and a portion other than the tip portion 21 side extends along the inclined direction. Has been.
  • the probe 11 is inclined except for the distal end portion 21 side, when the probe unit 2 is moved as a whole in a direction approaching the substrate 100, the distal end portion 21 is placed on the conductor portion of the substrate 100. In contact with each other, and the inclined portion bends according to the pressing force (reaction force) from the conductor portion applied at this time, thereby changing (increasing or decreasing) the amount of protrusion from the main body portion 12 (tip portion side support portion 31). .
  • the electrode plate 13 is formed in a plate shape with a non-conductive resin material or the like, and is disposed on the base end side support portion 32 in the main body portion 12 as shown in FIG.
  • a terminal having conductivity is fitted in a contact portion of each electrode 11 on the electrode plate 13 with each base end portion 23, and the probe 11 and the measurement unit 5 are electrically connected to each terminal.
  • Each cable for connection is connected.
  • the moving mechanism 3 moves the probe unit 2 in a direction toward and away from the mounting table 4 (the substrate 100 mounted on the mounting table 4) according to the control of the processing unit 8.
  • the mounting table 4 is configured to be able to mount the substrate 100 and to be able to fix the mounted substrate 100.
  • the measurement unit 5 performs a measurement process for measuring a physical quantity (for example, a resistance value) based on an electrical signal input / output via the probe 11.
  • the inspection unit 6 performs an inspection process for inspecting the quality of the substrate 100 (whether the conductor is disconnected or short-circuited) based on the resistance value as a physical quantity measured by the measurement unit 5 according to the control of the processing unit 8.
  • the storage unit 7 temporarily stores the resistance value measured by the measurement unit 5 and the result of the inspection performed by the inspection unit 6 according to the control of the processing unit 8.
  • the processing unit 8 controls each unit constituting the substrate inspection apparatus 1.
  • the support plates 41 to 44 are stacked while being in contact with each other.
  • the support plates 41 to 44 are aligned so that the central axes of the insertion holes 61a to 64a are coaxial.
  • the opening surfaces of the support holes 51 to 54 in the support plates 41 to 44 face each other on the virtual straight line A1 along the vertical direction.
  • the positioning pin 34c is inserted into each of the insertion holes 61a to 64a.
  • the support plates 41 to 44 are maintained in this posture (the posture in which the opening surfaces of the support holes 51 to 54 face each other on the virtual straight line A1 along the vertical direction: the first posture). Is done.
  • the distal end portion 21 of the probe 11 is inserted from the support hole 54 of the support plate 44 to support the support hole 53 of the support plate 43, the support hole 52 of the support plate 42, and the support plate 41.
  • the probe 11 is inserted through the hole 51.
  • the diameters R1 and R2 of the support hole 51 and the support hole 52 are smaller than the diameter L2 of the intermediate portion 22 in the probe 11, only the distal end portion 21 of the probe 11 is inserted through the support holes 51 and 52. Subsequently, the probe 11 is inserted through the support holes 51 to 54 in the same manner.
  • the support plate 42 and the support plate 43 are separated from each other while maintaining the state where the support plate 41 and the support plate 42 are in contact with each other and the support plate 43 and the support plate 44 are in contact with each other. Subsequently, the positioning pin 34c is pulled out from each of the insertion holes 61a to 64a, and then the spacer 33 is disposed between the support plate 42 and the support plate 43.
  • alignment is performed so that the respective central axes of the insertion hole 61a of the support plate 41, the insertion hole 62a of the support plate 42, and the insertion hole 65a of the spacer 33 are coaxial,
  • the positioning pins 34a are inserted through the insertion holes 61a, 62a, 65a.
  • the opening surfaces of the support hole 51 of the support plate 41 and the support hole 52 of the support plate 42 are maintained in a state of facing each other on the virtual straight line A2 along the vertical direction.
  • the bolt 35 is inserted into the fixing hole 61 b of the support plate 41 and the fixing hole 62 b of the support plate 42, and the tip of the bolt 35 is screwed into the screw hole 65 c formed on the end surface of the spacer 33. Thereby, the support plate 41 and the support plate 42 are fixed to the spacer 33.
  • alignment is performed so that the respective center axes of the insertion hole 64 b of the support plate 44, the insertion hole 63 b of the support plate 43, and the insertion hole 65 b of the spacer 33 are coaxial.
  • the positioning pins 34b are inserted through the insertion holes 63b, 64b, 65b.
  • the opening surfaces of the support hole 52 of the support plate 42, the support hole 53 of the support plate 43, and the support hole 54 of the support plate 44 are maintained in a state of facing each other on the virtual straight line A3 along the inclination direction. .
  • the bolt 35 is inserted into the fixing hole 63 c of the support plate 43 and the fixing hole 64 c of the support plate 44, and the distal end portion of the bolt 35 is screwed into the screw hole 65 c formed on the end surface on the base end side of the spacer 33.
  • the support plate 43 and the support plate 44 are fixed to the spacer 33.
  • the support plate 42 and the support plate 43 are separated from each other while the support plate 41 and the support plate 42 are in contact with each other and the support plate 43 and the support plate 44 are in contact with each other.
  • the electrode plate 13 is fixed to the outside of the base end side support portion 32.
  • the manufacture of the probe unit 2 is completed as shown in FIG. 6 (illustration of the electrode plate 13 is omitted in FIG. 6).
  • the distal end side support portion 31 formed by only the two support plates 41 and 42 and the proximal end side support formed by only the two support plates 43 and 44 are provided. Since the portion 32 is used, it is possible to reduce the manufacturing cost of the probe unit 2 as compared with a configuration and method using a support portion formed by a large number of support plates. Further, in the probe unit 2 and the probe unit manufacturing method, the positions of the support plates 41 to 44 are shifted at the time of assembly so that the opening directions of the support holes 52, the support holes 53, and the support holes 54 face each other (support The direction in which the holes 52, 53, and 54 are aligned) is inclined with respect to the stacking direction of the support plates 41 to 44.
  • the opening surfaces of the support holes 51 to 54 are opposed to each other on the virtual straight line A1 along the direction perpendicular to the stacking direction of the support plates 41 to 44.
  • the probe 11 is inserted into the support holes 51 to 54 in a state where the support plates 41 to 44 are maintained in the one posture, and then the probe units 2 are moved to the second posture by moving the support plates 41 to 44 to the second posture.
  • the probe unit 2 in a state where the distal end side support portion 31 faces downward is fixed to the moving mechanism 3 (see FIG. 1).
  • the substrate 100 is mounted on the mounting surface of the mounting table 4, and then, the substrate 100 is fixed to the mounting table 4 by a fixing tool (not shown).
  • the substrate inspection apparatus 1 is operated.
  • the processing unit 8 controls the moving mechanism 3 to move (lower) the probe unit 2 in a direction (downward in FIG. 1) close to the substrate 100 (the mounting surface of the mounting table 4). .
  • the processing unit 8 controls the movement mechanism 3 to stop the movement when the probe unit 2 is moved by a predetermined movement amount.
  • the processing unit 8 controls the measurement unit 5 to execute measurement processing.
  • the measurement unit 5 measures a resistance value as a physical quantity based on an electric signal input / output via each probe 11.
  • the processing unit 8 controls the inspection unit 6 to execute the inspection process.
  • the inspection unit 6 inspects the conductor portion for disconnection and short circuit based on the resistance value measured by the measurement unit 5.
  • the processing unit 8 displays the inspection result on a display unit outside the drawing.
  • the inspection of the substrate 100 is completed.
  • the new substrate 100 is mounted on the mounting table 4 and fixed, and then the substrate inspection apparatus 1 is operated.
  • the processing unit 8 executes each process described above.
  • the probe 11 is replaced by the following procedure. First, the probe unit 2 is removed from the moving mechanism 3. Subsequently, the electrode plate 13 is removed from the main body portion 12 (base end side support portion 32). Next, the tip portion 21 of the damaged probe 11 is pushed into the support plate 44 side. At this time, the base end portion 23 of the probe 11 slightly protrudes from the support plate 44. Subsequently, the protruding proximal end portion 23 is picked and pulled out from the main body portion 12.
  • a new probe 11 is inserted from the support hole 54 of the support plate 44 and is inserted through the support hole 53 of the support plate 43, and then the tip 21 is inserted into the support hole 52 of the support plate 42.
  • the probe 11 since the opening surfaces of the support holes 54, 53, 52 face each other on the virtual straight line A 3 along the inclination direction, the probe 11 is guided by the support hole 54 and the support hole 53, and the tip portion 21 is supported. It accurately reaches the hole 52 and is inserted into the support hole 52.
  • the probe 11 is further pushed to insert the tip 21 into the support hole 51 of the support plate 41.
  • the boundary portion between the tip portion 21 and the intermediate portion 22 is elastically deformed, so that the tip portion 21 is The portion (intermediate portion 22 and base end portion 23) excluding the distal end portion 21 extends along the inclination direction along the vertical direction.
  • the probe 11 is further pushed to cause the tip 21 to protrude from the support plate 41, and the exchange of the probe 11 is completed.
  • the probe 11 is maintained in a state where the postures of the support plates 41 to 44 are maintained in the second posture (without shifting the postures of the support plates 41 to 44 to the first posture). It is possible to exchange.
  • the electrode plate 13 is attached to the main body 12, and then the probe unit 2 is attached to the moving mechanism 3.
  • the opening surfaces of the support holes 51 to 54 are brought into contact with each other so as to face each other on the virtual straight line A1 along the vertical direction.
  • the probe 11 is inserted into the support holes 51 to 54 in a state where the support plates 41 to 44 are maintained in the stacked first posture, the support plates 41 and 42 are brought into contact with each other, and the support plates 43 and 44 are brought into contact with each other. In this state, the support plates 42 and 43 are separated from each other, and the respective opening surfaces of the support holes 52 to 54 are shifted to the second posture in which they face each other on the virtual straight line A3 along the inclination direction.
  • the probe 11 is held by the support plates 41-44.
  • the positions of the support plates 41 to 44 are shifted during assembly so that the opening surfaces of the support holes 52 to 54 are aligned along the inclination direction.
  • the manufacturing cost of the probe unit 2 and the substrate inspection apparatus 1 can be reduced sufficiently.
  • the substrate inspection apparatus 1, and the probe unit manufacturing method the base end side support portion 32 formed by only the two support plates 43 and 44 is used.
  • this type of support plate has many support holes through which the probe 11 is inserted and supported, the manufacturing cost increases.
  • substrate inspection apparatus 1, and the probe unit manufacturing method compared with the structure and method using the front-end
  • the substrate inspection apparatus 1, and the probe unit manufacturing method after the probes 11 are inserted into the support holes 51 to 54 in a state where the support plates 41 to 44 are maintained in the first posture, By shifting each of the support plates 41 to 44 to the second posture, the tip portion 21 side extends along the support holes 51 and 52, and a portion other than the tip portion 21 side extends along the inclination direction.
  • the probe unit 2 can be assembled by maintaining (elastically deforming) all the probes 11 at once. For this reason, the distal end side support is provided while elastically deforming the probe 11 inserted from the respective support holes 54 and 53 of the proximal end side support portion 32 that is formed so that the respective opening surfaces are opposed in advance along the inclination direction.
  • the assembly process can be sufficiently shortened. For this reason, according to this probe unit 2, the board
  • the positioning pins 34c are inserted into the insertion holes 61a to 64a of the support plates 41 to 44, and the support plates 41 to 44 are moved to the first positions.
  • the support plates 41 to 44 can be reliably and easily maintained in the first posture with a simple configuration and method.
  • the manufacturing efficiency of the inspection apparatus 1 can be sufficiently improved.
  • the spacer 33 is disposed between the support plates 42 and 43 in the second posture, and the support plates 41 to 44 are attached to the spacer 33.
  • each support plate 41 to 44 can be maintained in the second posture reliably and easily in a short time with a simple configuration and method, so that the manufacturing efficiency of the probe unit 2 and thus the substrate inspection can be performed.
  • the manufacturing efficiency of the device 1 can be sufficiently improved.
  • the substrate inspection apparatus and the substrate inspection method are not limited to the above configuration and method.
  • the configuration and method for maintaining the support plates 41 to 44 in contact with each other in the first posture have been described above, but the support plates 41 to 44 are maintained in proximity to each other in the first posture. Configurations and methods can also be employed.
  • the support plate 41 and 42 are brought into contact with each other, the support plate 43 and 44 are brought into contact with each other, and the support plate 43 and 44 are kept separated from each other.
  • a configuration and a method of maintaining the support plates 41 and 42 in a state of being close to each other and maintaining the support plates 43 and 44 in a state of being close to each other can also be adopted.
  • the configuration and the method in which the opening surfaces of the support hole 51 and the support hole 52 face each other on the virtual straight line A2 along the vertical direction in the second posture are described above. It is also possible to adopt a configuration and a method that face each other on a virtual straight line along the line. In this case, the inclination direction may be the same as or different from the inclination direction of the virtual line A3.
  • the first support plate configured by the two support plates 41 and 42
  • the first support plate configured by a single plate body may be used.
  • the support hole of the first support plate may be formed so as to extend along the above-described vertical direction, or may be formed so as to extend along the above-described inclination direction. .
  • one or two or more support plates (that is, three or more support plates) of the probe 11 are used.
  • a configuration and a method for supporting the base end portion 23 can also be adopted.
  • the opening surface of the support hole in the added support plate is opposed to the virtual straight line A1 along the vertical direction in the first posture in the same manner as each opening surface of each support hole in the other support plate, By causing the second posture to face each other on the virtual straight line A3 along the inclination direction, it is possible to achieve the same effect as the above-described configuration and method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

 製造コストを低減する。 複数のプローブ11と、プローブ11の先端部21を支持する支持板41,42およびプローブ11の基端部23を支持する支持板43,44を有する本体部12とを備え、各支持板41~44は、垂直方向に沿って各支持孔51~54の各開口面が仮想直線上で対向するように互いに当接して積み重ねられた第1の姿勢から、支持板41,42が当接し支持板43,44が当接して支持板42,43が離間すると共に傾斜方向に沿って支持孔52~54の各開口面が仮想直線A3上で対向する第2の姿勢に移行させられてその状態を維持可能に構成され、プローブ11は、第2の姿勢の各支持板41~44に支持された状態において、先端部21が垂直方向に沿って延在し先端部21を除く部分が傾斜方向に沿って延在する状態に維持されている。

Description

プローブユニット、基板検査装置およびプローブユニット製造方法
 本発明は、複数のプローブと各プローブを支持する支持部とを備えたプローブユニット、そのプローブユニットを備えた基板検査装置、およびそのプローブユニットを製造するプローブユニット製造方法に関するものである。
 この種のプローブユニットとして、特開2009-8585号公報に開示された検査冶具が知られている。この検査冶具は、検査対象の電気的検査を行う検査装置に搭載されて使用される検査冶具であって、プローブと、プローブの先端側を支持する先端側支持体と、プローブの後端側を支持する後端側支持体と、先端側支持体および後端側支持体を連結する支持柱とを備えて構成されている。プローブは、導電ワイヤと、導電ワイヤにおける先端側部分および後端側部分を除く部分の外周面に形成された絶縁被覆とで構成されている。先端側支持体は、3枚の支持板が積層されて構成されている。また、各支持板には、貫通孔が形成され、各貫通孔によって、プローブの先端側部分が挿通される先端側挿通孔が構成される。また、先端側挿通孔は支持板に対して垂直な方向に沿って形成されている。この場合、各貫通孔は、各々の内径がプローブの先端側部分の外径よりも大径でかつ絶縁被覆の形成部分の外径よりも小径に形成されており、このように貫通孔(先端側挿通孔)を形成することで、検査対象側へのプローブの抜け落ちが防止されている。
 後端側支持体は、5枚の支持板が積層されて構成されている。また、各支持板には、貫通孔が形成され、各貫通孔によって、プローブの後端側部分が挿通される後端側挿通孔が構成される。この場合、後端側挿通孔は、各貫通孔の中心が少しずつずらした状態で支持板が積層されることにより、支持板に対して(先端側挿通孔の中心軸に対して)傾斜するように形成されている。この検査冶具を組み立てるときには、まず、先端側支持体と後端側支持体とを支持柱によって連結する。次いで、後端側支持板を取り外した状態で、後端側支持体の後端側挿通孔から先端側支持体の先端側挿通孔に向けてプローブに差し込み、絶縁被覆の形成部分における先端部を先端側挿通孔を構成する貫通孔の縁部に当接させる。次いで、後端側支持板を取り付ける。これにより、先端側支持体および後端側支持体によってプローブが支持される。この場合、後端側挿通孔が先端側挿通孔に対して傾斜しているため、先端側支持体および後端側支持体によって支持されたプローブは、中間部分が傾斜している。このため、検査の際にプローブの先端部位が検査対象に当接して押し込まれたときには、傾斜しているプローブの中間部分を容易に撓ませることが可能となっている。
特開2009-8585号公報(第4-6頁、第1-4図)
 ところが、従来の検査冶具には、以下の問題点がある。すなわち、この検査冶具では、後端側支持体を構成する複数の支持板にそれぞれ形成した貫通孔の中心を少しずつずらした状態で各支持板を積層することによって先端側挿通孔に対して傾斜する後端側挿通孔を形成している。この場合、支持板にはプローブの数と同数の数多くの貫通孔を形成する必要があり、数多くの支持板(上記の例では5枚の支持板)に数多くの貫通孔を正確に形成するには長い加工時間を必要とする。また、後端側挿通孔が予め決められた傾斜方向に傾斜するように各貫通孔の中心を正確に少しずつずらして各支持板を積層する作業にも高度な技術を要する。さらに、この検査冶具では、後端側挿通孔が支持板に対して傾斜し、先端側挿通孔が支持板に対して垂直となっているため、後端側挿通孔から挿入したプローブの先端部を先端側挿通孔に挿通させる際に、プローブの先端部を弾性変形させつつ押し込む煩雑な作業が必要となる。このため、数多くのプローブを挿通させるには長い時間が必要となる。したがって、この検査冶具には、これらの加工や作業に起因して製造コストが上昇するという問題点が存在する。
 本発明は、かかる問題点に鑑みてなされたものであり、製造コストを低減し得るプローブユニット、基板検査装置およびプローブユニット製造方法を提供することを主目的とする。
 上記目的を達成すべく請求項1記載のプローブユニットは、基板の導体部に先端部を接触させて電気信号の入出力を行うための複数のプローブと、当該プローブを支持する支持部とを備えたプローブユニットであって、前記支持部は、第1の支持孔を有して当該第1の支持孔に挿通させた前記先端部を支持する第1の支持板と、第2の支持孔を有して当該第2の支持孔に挿通させた前記プローブの基端部を支持する第2の支持板と、第3の支持孔を有して当該第3の支持孔に挿通させた前記基端部を支持する第3の支持板とを備えて当該各支持板がこの順序で対向するように配置されて構成され、前記各支持板は、当該各支持板に対して垂直な垂直方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向するように互いに当接または近接した状態で積み重ねられた第1の姿勢から、前記第2の支持板および前記第3の支持板が当接または近接した状態で前記第1の支持板と当該第2の支持板とが離間すると共に当該各支持板の積層方向に対して傾斜する傾斜方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向する第2の姿勢に移行可能で、かつ当該第2の姿勢に維持可能に構成され、前記プローブは、前記第2の姿勢の前記各支持板によって支持された状態において、前記先端部が前記第1の支持孔に沿って延在すると共に当該先端部を除く部分が前記傾斜方向に沿って延在する状態に維持可能に構成されている。
 また、請求項2記載のプローブユニットは、請求項1記載のプローブユニットにおいて、前記各支持板には、前記第1の姿勢の状態において互いに連通する挿通孔がそれぞれ形成され、前記各支持板は、前記各挿通孔に挿通されたピンによって前記第1の姿勢に維持可能に構成されている。
 また、請求項3記載のプローブユニットは、請求項1または2記載のプローブユニットにおいて、前記第2の姿勢の前記第1の支持板と前記第2の支持板との間に配設されるスペーサを備え、前記各支持板は、前記スペーサに固定されて前記第2の姿勢に維持可能に構成されている。
 また、請求項4記載の基板検査装置は、請求項1から3のいずれかに記載のプローブユニットと、基板の導体部に接触させた前記プローブユニットの前記プローブを介して入力した電気信号に基づいて当該基板を検査する検査部とを備えている。
 また、請求項5記載のプローブユニット製造方法は、基板の導体部に先端部を接触させて電気信号の入出力を行うための複数のプローブと、当該プローブを支持する支持部とを備えたプローブユニットを製造するプローブユニット製造方法であって、第1の支持孔を有して当該第1の支持孔に挿通させた前記先端部を支持する第1の支持板と、第2の支持孔を有して当該第2の支持孔に挿通させた前記プローブの基端部を支持する第2の支持板と、第3の支持孔を有して当該第3の支持孔に挿通させた前記基端部を支持する第3の支持板とを備えて当該各支持板がこの順序で対向するように配置されて構成された前記支持部を用いて、前記各支持板に対して垂直な垂直方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向するように前記各支持板を互いに当接または近接させて積み重ねた第1の姿勢に維持した状態で当該各支持孔に前記プローブを挿通させ、その後に、前記第2の支持板および前記第3の支持板を当接または近接させた状態で前記第1の支持板と当該第2の支持板とを離間させると共に当該各支持板の積層方向に対して傾斜する傾斜方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向する第2の姿勢に当該各支持板を移行させてその状態を維持させて、前記先端部が前記第1の支持孔に沿って延在すると共に当該先端部を除く部分が前記傾斜方向に沿って延在する状態に前記プローブを維持させて前記プローブユニットを製造する。
 また、請求項6記載のプローブユニット製造方法は、請求項5記載のプローブユニット製造方法において、前記第1の姿勢の状態において互いに連通する挿通孔がそれぞれ形成された前記各支持板における当該各挿通孔にピンを挿通して、当該各支持板を前記第1の姿勢に維持する。
 また、請求項7記載のプローブユニット製造方法は、請求項5または6記載のプローブユニット製造方法において、前記第2の姿勢の前記第1の支持板と前記第2の支持板との間にスペーサを配設し、前記各支持板を前記スペーサに固定して当該各支持板を前記第2の姿勢に維持する。
 請求項1記載のプローブユニット、請求項4記載の基板検査装置、および請求項5記載のプローブユニット製造方法では、各支持板を第1の姿勢に維持した状態で各支持孔にプローブを挿通させ、その後に、各支持板を第2の姿勢に移行させてその状態を維持させて、各支持板によってプローブを保持する。このため、このプローブユニット、基板検査装置およびプローブユニット製造方法では、組立ての際に各支持板の位置をずらすことで、第1の支持孔、第2の支持孔および第3の支持孔の各開口面を傾斜方向に沿って仮想直線上で対向させることができる結果、各貫通孔の中心をずらしつつ複数の支持板を積層して1枚の基端部側支持部を形成するような高度な技術を必要としないため、その分、プローブユニットおよび基板検査装置の製造コストを十分に低減することができる。
 また、このプローブユニット、基板検査装置およびプローブユニット製造方法では、2枚の支持板だけでプローブの基端部を支持する。この場合、この種の支持板は、プローブを挿通させて支持する支持孔を数多く形成するため、製造コストが高騰する。このため、このプローブユニット、基板検査装置およびプローブユニット製造方法によれば、数多くの支持板を用いる構成および方法と比較して、支持板が少ない分、製造コストを十分に低減することができる。また、このプローブユニット、基板検査装置およびプローブユニット製造方法では、各支持板を第1の姿勢に維持させた状態で各支持孔にプローブを挿通させた後に、各支持板を第2の姿勢に移行させることで、先端部側が第1の支持孔に沿って延在し先端部側を除く部分が傾斜方向に沿って延在する状態に全てのプローブを一度に維持(弾性変形)させてプローブユニットを組み立てることができる。このため、各開口面が予め傾斜方向に沿って対向するように形成されている各支持孔から挿入したプローブを弾性変形させつつ、各開口面が垂直方向に沿って対向している支持孔に差し込む作業をプローブの一本一本について行ってプローブユニットを組み立てる構成および方法と比較して、組み立て工程を十分に短縮させることができる。このため、このプローブユニット、基板検査装置およびプローブユニット製造方法によれば、組み立て工程が短縮される分、製造コストを十分に低減することができる。
 また、請求項2記載のプローブユニット基板検査装置、請求項4記載の基板検査装置、および請求項6記載のプローブユニット製造方法によれば、各支持板の各挿通孔にピンを挿入して、各支持板を第1の姿勢に維持することにより、簡易な構成および方法でありながら、確実かつ容易に各支持板を第1の姿勢に維持することができるため、プローブユニットの製造効率、ひいては基板検査装置の製造効率を十分に向上させることができる。
 また、請求項3記載のプローブユニット基板検査装置、請求項4記載の基板検査装置、および請求項7記載のプローブユニット製造方法によれば、第2の姿勢の第1の支持板と第2の支持板との間にスペーサを配設し、各支持板をスペーサに固定することにより、簡易な構成および方法でありながら、短時間で確実かつ容易に各支持板を第2の姿勢に維持することができるため、プローブユニットの製造効率、ひいては基板検査装置の製造効率を十分に向上させることができる。
基板検査装置1の構成を示す構成図である。 プローブユニット2の構成を示す構成図である。 プローブ11の平面図である。 先端部側支持部31を下向きした状態の本体部12の分解斜視図である。 基端部側支持部32を下向きした状態の本体部12の分解斜視図である。 本体部12の斜視図である。 プローブユニット2の製造方法を説明する第1の説明図である。 プローブユニット2の製造方法を説明する第2の説明図(図7におけるY面断面図)である。 プローブユニット2の製造方法を説明する第3の説明図である。 プローブユニット2の製造方法を説明する第4の説明図(図6におけるX面断面図)である。
 以下、本発明に係るプローブユニット、基板検査装置およびプローブユニット製造方法の実施の形態について、図面を参照して説明する。
 最初に、基板検査装置1の構成について説明する。図1に示す基板検査装置1は、同図に示すように、プローブユニット2、移動機構3、載置台4、測定部5、検査部6、記憶部7および処理部8を備えて、基板100を検査可能に構成されている。
 プローブユニット2は、図2に示すように、複数のプローブ11、本体部12および電極板13を備えて構成されている。
 プローブ11は、検査の際に基板100における導体パターン等の導体部に接触させて電気信号の入出力を行うために用いられ、一例として、導電性を有する金属材料(例えば、ベリリウム銅合金、SKH(高速度工具鋼)およびタングステン鋼など)によって弾性変形可能な断面円形の棒状に形成されている。また、図3に示すように、プローブ11の先端部21および基端部23は、それぞれ鋭利に形成されている。また、プローブ11の中間部22の周面には、絶縁性を有するコーティング材料(一例として、フッ素系樹脂、ポリウレタン、ポリエステルおよびポリイミドなど)で形成された絶縁層が形成されている。このため、中間部22は、その直径L2が先端部21の直径L1および基端部23の直径L3よりも大径となっている。つまり、プローブ11は、先端部21および基端部23が中間部22よりも小径に形成されている。
 本体部12は、支持部に相当し、図2,4~6に示すように、先端部側支持部31、基端部側支持部32、およびスペーサ33を備えて、プローブ11を支持可能に構成されている。先端部側支持部31は、プローブ11の先端部21側を支持する部材であって、支持板41および支持板42を備えて構成されている。この場合、この構成例では、支持板41,42によって第1の支持板が構成される。
 支持板41は、一例として、非導電性を有する樹脂材料によって板状に形成されている。また、支持板41には、図5,8に示すように、平面視円形の複数(プローブ11の数と同数)の支持孔51(第1の支持孔)が形成されている。支持孔51は、図8に示すように、その直径R1がプローブ11の先端部21の直径L1よりもやや大径で、かつプローブ11の中間部22の直径L2よりもやや小径に形成されて、中間部22を挿通させずに、先端部21のみを挿通させることが可能となっている。
 また、支持板41には、図5,8,10に示すように、後述するプローブユニット2の組み立て工程において用いる位置決めピン34a,34cを挿入可能な複数(例えば、2個)の挿通孔61aが形成されている。また、支持板41には、図5に示すように、スペーサ33に支持板41および支持板42を固定する際に用いるボルト35を挿通可能な複数(例えば、6個)の固定孔61bが形成されている。
 支持板42は、支持板41と同じ材料(この例では、非導電性を有する樹脂材料)によって板状に形成されている。また、支持板42には、図4,8に示すように、平面視円形の複数(プローブ11の数と同数)の支持孔52(第1の支持孔)が形成されている。支持孔52は、図8に示すように、その直径R2が支持板41の支持孔51の直径R1と同じ直径に形成されて、中間部22を挿通させずに、先端部21のみを挿通させることが可能となっている。
 また、支持板42には、図4,8,10に示すように、上記した位置決めピン34a,34cを挿入可能な複数(例えば、2個)の挿通孔62aが形成されている。また、支持板42には、図4に示すように、上記したボルト35を挿通可能な複数(例えば、6個)の固定孔62bが形成されている。
 基端部側支持部32は、プローブ11の基端部23側を支持する部材であって、図2,4,5に示すように、支持板43(第2の支持板)および支持板44(第3の支持板)を備えて構成されている。支持板41は、一例として、非導電性を有する樹脂材料によって板状に形成されている。また、支持板43には、図5,8に示すように、平面視円形の複数(プローブ11の数と同数)の支持孔53(第2の支持孔)が形成されている。支持孔53は、図8に示すように、その直径R3がプローブ11の中間部22の直径L2よりもやや大径に形成されて、中間部22を挿通させることが可能となっている。
 また、支持板43には、図5,8,10に示すように、プローブユニット2の組み立て工程において用いる位置決めピン34b,34cを挿入可能な複数(例えば、2個)の挿通孔63aおよび複数(例えば、2個)の挿通孔63bが形成されている。また、支持板43には、図5に示すように、スペーサ33に支持板43および支持板44を固定する際に用いるボルト35を挿通可能な複数(例えば、6個)の固定孔63cが形成されている。
 支持板44は、支持板43と同じ材料(この例では、非導電性を有する樹脂材料)によって板状に形成されている。また、支持板44には、図4,8に示すように、平面視円形の複数(プローブ11の数と同数)の支持孔54(第3の支持孔)が形成されている。この場合、支持孔54は、図8に示すように、その直径R4が支持板43の支持孔53の直径R3と同じ直径に形成されて、中間部22を挿通させることが可能となっている。
 また、支持板44には、図4,8,10に示すように、上記した位置決めピン34b,34cを挿入可能な複数(例えば、2個)の挿通孔64aおよび複数(例えば、2個)の挿通孔64bが形成されている。また、支持板44には、図4に示すように、上記したボルト35を挿通可能な複数(例えば、6個)の固定孔64cが形成されている。
 スペーサ33は、図4,5に示すように、平面視コ字状に形成されて、図6に示すように、先端部側支持部31と基端部側支持部32との間(支持板42と支持板43との間)に配設される。このスペーサ33は、支持板41および支持板42によって構成される先端部側支持部31と、支持板43および支持板44によって構成される基端部側支持部32とを離反させた状態に維持する機能を有している。
 また、図5に示すように、スペーサ33における先端部側(同図における上部側)の端面には、上記した位置決めピン34aを挿入可能な挿通孔65aが形成されている。また、図4に示すように、スペーサ33における、基端部側(同図における上部側)の端面には、上記した位置決めピン34bを挿入可能な挿通孔65bが形成されている。さらに、図4,5に示すように、スペーサ33の先端部側の端面および基端部側の端面には、上記したボルト35をねじ込み可能な複数(この例では、各々6個の合計12個)のねじ穴65cが形成されている。
 この場合、このプローブユニット2では、図8に示すように、支持板41の挿通孔61a、支持板42の挿通孔62a、支持板43の挿通孔63a、および支持板44の挿通孔64aにおける各々の中心軸が同軸状態となったときに、支持板41の各支持孔51、支持板42の各支持孔52、支持板43の支持孔53、および支持板44の支持孔54における各々の中心軸が同軸状態となるように、つまり、各支持板41~44に対して垂直な方向(以下、単に「垂直方向」ともいう)に沿って各支持孔51~54の各開口面が仮想直線A1(同図において破線で示す線分)上で対向する(仮想直線A1上に並ぶ)ように各挿通孔61a,62a,63a,64aの形成位置が規定されている。
 また、このプローブユニット2では、図10に示すように、支持板41の挿通孔61a、支持板42の挿通孔62a、およびスペーサ33の挿通孔65aにおける各々の中心軸が同軸状態となり、かつ支持板43の挿通孔63b、支持板44の挿通孔64b、およびスペーサ33の挿通孔65bにおける各々の中心軸が同軸状態となったときに、垂直方向に沿って各支持孔51,52の各開口面が仮想直線A2(同図に破線で示す線分)上で対向し(仮想直線A2上に並び)、かつ各支持板41~44の積層方向(厚み方向)に対して傾斜する方向(以下、単に「傾斜方向」ともいう)に沿って支持孔52,53,54の各開口面が仮想直線A3(同図において一点鎖線で示す線分)上で対向する(仮想直線A3上に並ぶ)ように各挿通孔61a,62a,65a,63b,64b,65bの形成位置が規定されている。
 また、このプローブユニット2では、図2に示すように、先端部側支持部31を構成する支持板41,42の支持孔51,52にプローブ11の先端部21が挿通され、基端部側支持部32を構成する支持板43,44の支持孔53,54にプローブ11の基端部23が挿通された状態で、プローブ11が本体部12によって支持されている。また、プローブ11は、同図に示すように、先端部21側が垂直方向に沿って延在し、先端部21側を除く部分が傾斜方向に沿って延在するようにして本体部12によって支持されている。この場合、プローブ11は、先端部21側を除く部分が傾斜しているため、基板100に近接する向きにプローブユニット2が全体として移動させられたときに、基板100の導体部に先端部21が接触し、この際に加わる導体部からの押圧力(反力)に応じて傾斜部分が湾曲し、これによって本体部12(先端部側支持部31)からの突出量が変化(増減)する。
 電極板13は、非導電性を有する樹脂材料等によって板状に形成されて、図2に示すように、本体部12における基端部側支持部32の上部に配設されている。また、電極板13における各プローブ11の各基端部23との接触部位には、導電性を有する端子が嵌め込まれており、この各端子には、プローブ11と測定部5とを電気的に接続するためのケーブルがそれぞれ接続されている。
 移動機構3は、処理部8の制御に従い、載置台4(載置台4に載置されている基板100)に対して近接する向きおよび離反する向きにプローブユニット2を移動させる。載置台4は、基板100を載置可能に構成されると共に、載置された基板100を固定可能に構成されている。測定部5は、プローブ11を介して入出力する電気信号に基づき、物理量(例えば、抵抗値)を測定する測定処理を実行する。
 検査部6は、処理部8の制御に従い、測定部5によって測定された物理量としての抵抗値に基づいて基板100の良否(導体部の断線や短絡の有無)を検査する検査処理を実行する。記憶部7は、処理部8の制御に従い、測定部5によって測定された抵抗値や検査部6によって行われた検査の結果などを一時的に記憶する。処理部8は、基板検査装置1を構成する各部を制御する。
 次に、プローブユニット2の製造方法について、図面を参照して説明する。
 まず、図7,8に示すように、各支持板41~44を互いに当接させた状態で積み重ねる。次いで、各支持板41~44における各挿通孔61a~64aの中心軸が同軸となるように位置合わせする。この際に、図8に示すように、支持板41~44における支持孔51~54の各開口面が垂直方向に沿って仮想直線A1上で対向する。続いて、同図に示すように、各挿通孔61a~64aに位置決めピン34cを挿通させる。これにより、各支持板41~44がこの姿勢(互いに当接して、各支持孔51~54の各開口面が垂直方向に沿って仮想直線A1上で対向する姿勢:第1の姿勢)に維持される。
 次いで、図8に示すように、支持板44の支持孔54からプローブ11の先端部21を挿入して、支持板43の支持孔53、支持板42の支持孔52、および支持板41の支持孔51にプローブ11を挿通させる。この場合、支持孔51および支持孔52の直径R1,R2がプローブ11における中間部22の直径L2よりも小径のため、プローブ11の先端部21のみが各支持孔51,52を挿通される。続いて、同様にして、各支持孔51~54にプローブ11を挿通させる。
 次いで、図9に示すように、支持板41および支持板42が当接し、かつ支持板43および支持板44が当接した状態を維持しつつ、支持板42と支持板43とを離間させ、続いて、各挿通孔61a~64aから位置決めピン34cを引き抜き、次いで、支持板42と支持板43との間にスペーサ33を配設する。
 続いて、図10に示すように、支持板41の挿通孔61a、支持板42の挿通孔62a、およびスペーサ33の挿通孔65aにおける各の中心軸が同軸となるように位置合わせを行い、次いで、各挿通孔61a,62a,65aに位置決めピン34aを挿通させる。この際に、支持板41の支持孔51および支持板42の支持孔52の各開口面が垂直方向に沿って仮想直線A2上で対向する状態に維持される。
 続いて、支持板41の固定孔61bおよび支持板42の固定孔62bにボルト35を挿通させ、ボルト35の先端部をスペーサ33の先端部側の端面に形成されているねじ穴65cにねじ込む。これにより、支持板41および支持板42がスペーサ33に固定される。
 次いで、図10に示すように、支持板44の挿通孔64b、支持板43の挿通孔63b、およびスペーサ33の挿通孔65bにおける各の中心軸が同軸となるように位置合わせを行い、続いて、各挿通孔63b,64b,65bに位置決めピン34bを挿通させる。この際に、支持板42の支持孔52、支持板43の支持孔53、および支持板44の支持孔54の各開口面が傾斜方向に沿って仮想直線A3上で対向する状態に維持される。
 次いで、支持板43の固定孔63cおよび支持板44の固定孔64cにボルト35を挿通させ、ボルト35の先端部をスペーサ33の基端部側の端面に形成されているねじ穴65cにねじ込む。これにより、支持板43および支持板44がスペーサ33に固定される。
 この状態では、図10に示すように、支持板41および支持板42が当接し支持板43および支持板44が当接した状態で支持板42と支持板43とが離間すると共に、垂直方向に沿って支持孔51および支持孔52の各開口面が仮想直線A2上で対向し、かつ傾斜方向に沿って支持孔52、支持孔53および支持孔54の各開口面が仮想直線A3上で対向する姿勢(第2の姿勢)に維持される。続いて、基端部側支持部32の外側に電極板13を固定する。以上により、図6に示すように、プローブユニット2の製造が完了する(同図では電極板13の図示を省略する)。
 このプローブユニット2およびプローブユニット製造方法では、2枚の支持板41,42だけで形成された先端部側支持部31、および2枚の支持板43,44だけで形成された基端部側支持部32を用いているため、数多くの支持板で形成された支持部を用いる構成および方法と比較してプローブユニット2の製造コストを低く抑えることが可能となっている。また、このプローブユニット2およびプローブユニット製造方法では、組立ての際に各支持板41~44の位置をずらすことで、支持孔52、支持孔53および支持孔54の各開口面の対向方向(支持孔52,53,54の並び方向)を各支持板41~44の積層方向に対して傾斜させている。このため、このプローブユニット2およびプローブユニット製造方法では、各貫通孔の中心を少しずつずらしつつ各支持板を積層して1枚に形成するような高度な技術を必要としないため、その分、プローブユニット2の製造コストを低く抑えることが可能となっている。さらに、このプローブユニット2およびプローブユニット製造方法では、各支持孔51~54の各開口面が各支持板41~44の積層方向に対して垂直な方向に沿って仮想直線A1上で対向する第1の姿勢に各支持板41~44を維持した状態で各支持孔51~54にプローブ11を挿通させ、その後に各支持板41~44を第2の姿勢に移行させることでプローブユニット2を製造することができるため、各開口面が予め傾斜方向に沿って対向するように形成されている基端部側支持部32の各支持孔54,53から挿入したプローブ11を弾性変形させつつ、各開口面が垂直方向に沿って対向している先端部側支持部31の支持孔52,51に差し込む作業をプローブ11の一本一本について行ってプローブユニット2を組み立てる構成および方法と比較して、組み立て工程を十分に短縮させることが可能となっている。
 次に、基板検査装置1を用いて基板100の検査を行う基板検査方法について、図面を参照して説明する。
 まず、先端部側支持部31を下向きにした状態のプローブユニット2を移動機構3に固定する(図1参照)。次いで、載置台4の載置面に基板100を載置して、続いて、図外の固定具によって基板100を載置台4に固定する。次いで、基板検査装置1を作動させる。この際に、処理部8が、移動機構3を制御して、基板100(載置台4の載置面)に対して近接する向き(図1における下向き)にプローブユニット2を移動(降下)させる。
 続いて、処理部8は、移動機構3を制御して、予め決められた移動量だけプローブユニット2を移動させた時点で、その移動を停止させる。次いで、処理部8は、測定部5を制御して測定処理を実行させる。この測定処理では、測定部5は、各プローブ11を介して入出力する電気信号に基づいて物理量としての抵抗値を測定する。
 続いて、処理部8は、検査部6を制御して検査処理を実行させる。この検査処理では、検査部6は、測定部5によって測定された抵抗値に基づいて導体部の断線および短絡の有無を検査する。次いで、処理部8は、検査結果を図外の表示部に表示させる。以上により、基板100の検査が終了する。続いて、新たな基板100を検査するときには、新たな基板100を載置台4に載置して固定し、次いで、基板検査装置1を作動させる。この際に、処理部8が、上記した各処理を実行する。
 一方、プローブユニット2に配設されているプローブ11の一部が破損したときには、次のような手順でプローブ11を交換する。まず、プローブユニット2を移動機構3から取り外す。続いて、電極板13を本体部12(基端部側支持部32)から取り外す。次いで、破損したプローブ11の先端部21を支持板44側に押し込む。この際に、プローブ11の基端部23が支持板44からやや突出する。続いて、突出した基端部23を摘んで本体部12から引き抜く。
 次いで、新たなプローブ11を支持板44の支持孔54から挿入して、支持板43の支持孔53に挿通させ、続いて、支持板42の支持孔52に先端部21を挿入させる。この場合、支持孔54,53,52の各開口面が傾斜方向に沿って仮想直線A3上で対向しているため、支持孔54および支持孔53によってプローブ11が案内されて先端部21が支持孔52に正確に到達して、支持孔52に挿入される。次いで、プローブ11をさらに押し込むことによって先端部21を支持板41の支持孔51に挿入させる。
 この場合、支持孔51,52の開口面が垂直方向に沿って仮想直線A2上で対向しているため、先端部21と中間部22との境界部分が弾性変形させられて、先端部21が垂直方向に沿って延在し、先端部21を除く部分(中間部22および基端部23)が傾斜方向に沿って延在する。続いて、プローブ11をさらに押し込むことによって先端部21を支持板41から突出させて、プローブ11の交換を終了する。このように、このプローブユニット2では、各支持板41~44の姿勢を第2の姿勢に維持した状態で(各支持板41~44の姿勢を第1の姿勢に移行させることなく)プローブ11の交換を行うことが可能となっている。次いで、電極板13を本体部12に取り付け、続いて、プローブユニット2を移動機構3に取り付ける。
 このように、このプローブユニット2、基板検査装置1およびプローブユニット製造方法では、垂直方向に沿って各支持孔51~54の各開口面が仮想直線A1上で対向するように互いに当接させて各支持板41~44を積み重ねた第1の姿勢に維持した状態で各支持孔51~54にプローブ11を挿通させ、支持板41,42を互いに当接させ支持板43,44を互いに当接させた状態で支持板42,43を離間させると共に傾斜方向に沿って支持孔52~54の各開口面が仮想直線A3上で対向する第2の姿勢に移行させてその状態を維持させて各支持板41~44によってプローブ11を保持する。このため、このプローブユニット2、基板検査装置1およびプローブユニット製造方法では、組立ての際に各支持板41~44の位置をずらすことで、支持孔52~54の各開口面を傾斜方向に沿って仮想直線A3上で対向させることができる結果、各貫通孔の中心をずらしつつ複数の支持板を積層して1枚の基端部側支持部を形成するような高度な技術を必要としないため、その分、プローブユニット2および基板検査装置1の製造コストを十分に低減することができる。
 また、このプローブユニット2、基板検査装置1およびプローブユニット製造方法では、2枚の支持板43,44だけで形成された基端部側支持部32を用いている。この場合、この種の支持板は、プローブ11を挿通させて支持する支持孔を数多く形成するため、製造コストが高騰する。このため、このプローブユニット2、基板検査装置1およびプローブユニット製造方法によれば、数多くの支持板で形成された先端部側支持部や基端部側支持部を用いる構成および方法と比較して、支持板が少ない分、製造コストを十分に低減することができる。また、このプローブユニット2、基板検査装置1およびプローブユニット製造方法では、各支持板41~44を第1の姿勢に維持させた状態で各支持孔51~54にプローブ11を挿通させた後に、各支持板41~44を第2の姿勢に移行させることで、先端部21側が支持孔51,52に沿って延在し先端部21側を除く部分が傾斜方向に沿って延在する状態に全てのプローブ11を一度に維持(弾性変形)させてプローブユニット2を組み立てることができる。このため、各開口面が予め傾斜方向に沿って対向するように形成されている基端部側支持部32の各支持孔54,53から挿入したプローブ11を弾性変形させつつ、先端部側支持部31の支持孔52,51に差し込む作業をプローブ11の一本一本について行ってプローブユニット2を組み立てる構成および方法と比較して、組み立て工程を十分に短縮させることができる。このため、このプローブユニット2、基板検査装置1およびプローブユニット製造方法によれば、組み立て工程が短縮される分、製造コストを十分に低減することができる。
 また、このプローブユニット2、基板検査装置1およびプローブユニット製造方法によれば、各支持板41~44の各挿通孔61a~64aに位置決めピン34cを挿入して、各支持板41~44を第1の姿勢に維持することにより、簡易な構成および方法でありながら、確実かつ容易に各支持板41~44を第1の姿勢に維持することができるため、プローブユニット2の製造効率、ひいては基板検査装置1の製造効率を十分に向上させることができる。
 また、このプローブユニット2、基板検査装置1およびプローブユニット製造方法によれば、第2の姿勢の支持板42,43の間にスペーサ33を配設し、各支持板41~44をスペーサ33に固定することにより、簡易な構成および方法でありながら、短時間で確実かつ容易に各支持板41~44を第2の姿勢に維持することができるため、プローブユニット2の製造効率、ひいては基板検査装置1の製造効率を十分に向上させることができる。
 なお、基板検査装置および基板検査方法は、上記の構成および方法に限定されない。例えば、第1の姿勢において、各支持板41~44を互いに当接した状態に維持する構成および方法について上記したが、第1の姿勢において各支持板41~44を互いに近接した状態に維持する構成および方法を採用することもできる。また、第2の姿勢において、支持板41,42を互いに当接させ、支持板43,44を互いに当接し、かつ支持板43,44を離間させた状態に維持する構成および方法について上記したが、支持板41,42を互いに近接した状態に維持させたり、支持板43,44を互いに近接した状態に維持させたりする構成および方法を採用することもできる。
 また、第2の姿勢において支持孔51および支持孔52の各開口面が垂直方向に沿って仮想直線A2上で対向する構成および方法について上記したが、第2の姿勢において各開口面が傾斜方向に沿って仮想直線上で対向する構成および方法を採用することもできる。この場合、この傾斜方向は、上記した仮想直線A3の傾斜方向と同じでもよいし異なってもよい。
 さらに、第1の支持板を2枚の支持板41,42で構成した例について上記したが、1枚の板体で構成した第1の支持板を用いることもできる。この場合、この第1の支持板の支持孔は、上記した垂直方向に沿って延在するように形成してもよいし、上記した傾斜方向に沿って延在するように形成してもよい。
 また、上記した2枚の支持板43,44(第2の支持板および第3の支持板)に加えて、1または2以上の支持板(つまり、3枚以上の支持板)でプローブ11の基端部23を支持する構成および方法を採用することもできる。この場合、追加した支持板における支持孔の開口面を、他の支持板における各支持孔の各開口面と同様にして、第1の姿勢において垂直方向に沿って仮想直線A1上で対向させ、第2の姿勢において傾斜方向に沿って仮想直線A3上で対向させることで、上記した構成および方法と同様の効果を実現することができる。
 また、支持板42,43の間に平面視コ字状のスペーサ33を配設して各支持板41~44を第2の姿勢に維持する構成および方法について上記したが、スペーサ33に代えて、直方体状や円柱状などの任意の形状のスペーサを用いる構成や方法を採用することができる。
   1 基板検査装置
   2 プローブユニット
   6 検査部
  11 プローブ
  12 本体部
  21 先端部
  22 中間部
  23 基端部
  31 先端部側支持部
  32 基端部側支持部
  33 スペーサ
 34a,34b,34c 位置決めピン
  41~44 支持板
  51~54 支持孔
 61a,62a,63a,64a,65a,65b 挿通孔
 65c ねじ穴
 100 基板

Claims (7)

  1.  基板の導体部に先端部を接触させて電気信号の入出力を行うための複数のプローブと、当該プローブを支持する支持部とを備えたプローブユニットであって、
     前記支持部は、第1の支持孔を有して当該第1の支持孔に挿通させた前記先端部を支持する第1の支持板と、第2の支持孔を有して当該第2の支持孔に挿通させた前記プローブの基端部を支持する第2の支持板と、第3の支持孔を有して当該第3の支持孔に挿通させた前記基端部を支持する第3の支持板とを備えて当該各支持板がこの順序で対向するように配置されて構成され、
     前記各支持板は、当該各支持板に対して垂直な垂直方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向するように互いに当接または近接した状態で積み重ねられた第1の姿勢から、前記第2の支持板および前記第3の支持板が当接または近接した状態で前記第1の支持板と当該第2の支持板とが離間すると共に当該各支持板の積層方向に対して傾斜する傾斜方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向する第2の姿勢に移行可能で、かつ当該第2の姿勢に維持可能に構成され、
     前記プローブは、前記第2の姿勢の前記各支持板によって支持された状態において、前記先端部が前記第1の支持孔に沿って延在すると共に当該先端部を除く部分が前記傾斜方向に沿って延在する状態に維持可能に構成されているプローブユニット。
  2.  前記各支持板には、前記第1の姿勢の状態において互いに連通する挿通孔がそれぞれ形成され、
     前記各支持板は、前記各挿通孔に挿通されたピンによって前記第1の姿勢に維持可能に構成されている請求項1記載のプローブユニット。
  3.  前記第2の姿勢の前記第1の支持板と前記第2の支持板との間に配設されるスペーサを備え、
     前記各支持板は、前記スペーサに固定されて前記第2の姿勢に維持可能に構成されている請求項1または2記載のプローブユニット。
  4.  請求項1から3のいずれかに記載のプローブユニットと、基板の導体部に接触させた前記プローブユニットの前記プローブを介して入力した電気信号に基づいて当該基板を検査する検査部とを備えている基板検査装置。
  5.  基板の導体部に先端部を接触させて電気信号の入出力を行うための複数のプローブと、当該プローブを支持する支持部とを備えたプローブユニットを製造するプローブユニット製造方法であって、
     第1の支持孔を有して当該第1の支持孔に挿通させた前記先端部を支持する第1の支持板と、第2の支持孔を有して当該第2の支持孔に挿通させた前記プローブの基端部を支持する第2の支持板と、第3の支持孔を有して当該第3の支持孔に挿通させた前記基端部を支持する第3の支持板とを備えて当該各支持板がこの順序で対向するように配置されて構成された前記支持部を用いて、
     前記各支持板に対して垂直な垂直方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向するように前記各支持板を互いに当接または近接させて積み重ねた第1の姿勢に維持した状態で当該各支持孔に前記プローブを挿通させ、その後に、
     前記第2の支持板および前記第3の支持板を当接または近接させた状態で前記第1の支持板と当該第2の支持板とを離間させると共に当該各支持板の積層方向に対して傾斜する傾斜方向に沿って前記第1の支持孔、前記第2の支持孔および前記第3の支持孔の各開口面が仮想直線上で対向する第2の姿勢に当該各支持板を移行させてその状態を維持させて、前記先端部が前記第1の支持孔に沿って延在すると共に当該先端部を除く部分が前記傾斜方向に沿って延在する状態に前記プローブを維持させて前記プローブユニットを製造するプローブユニット製造方法。
  6.  前記第1の姿勢の状態において互いに連通する挿通孔がそれぞれ形成された前記各支持板における当該各挿通孔にピンを挿通して、当該各支持板を前記第1の姿勢に維持する請求項5記載のプローブユニット製造方法。
  7.  前記第2の姿勢の前記第1の支持板と前記第2の支持板との間にスペーサを配設し、
     前記各支持板を前記スペーサに固定して当該各支持板を前記第2の姿勢に維持する請求項5または6記載のプローブユニット製造方法。
PCT/JP2013/069772 2012-07-26 2013-07-22 プローブユニット、基板検査装置およびプローブユニット製造方法 WO2014017426A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380039590.2A CN104508498B (zh) 2012-07-26 2013-07-22 探针单元、基板检查装置以及探针单元制造方法
KR1020147031022A KR101979060B1 (ko) 2012-07-26 2013-07-22 프로브 유닛, 기판 검사 장치 및 프로브 유닛 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-165301 2012-07-26
JP2012165301A JP6184667B2 (ja) 2012-07-26 2012-07-26 プローブユニット、基板検査装置およびプローブユニット製造方法

Publications (1)

Publication Number Publication Date
WO2014017426A1 true WO2014017426A1 (ja) 2014-01-30

Family

ID=49997238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069772 WO2014017426A1 (ja) 2012-07-26 2013-07-22 プローブユニット、基板検査装置およびプローブユニット製造方法

Country Status (5)

Country Link
JP (1) JP6184667B2 (ja)
KR (1) KR101979060B1 (ja)
CN (1) CN104508498B (ja)
TW (1) TWI591347B (ja)
WO (1) WO2014017426A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656047B1 (ko) * 2016-03-23 2016-09-09 주식회사 나노시스 기판 검사용 지그
WO2018021140A1 (ja) * 2016-07-28 2018-02-01 日本電産リード株式会社 検査治具、これを備えた基板検査装置、及び検査治具の製造方法
KR101886536B1 (ko) * 2016-12-27 2018-08-07 주식회사 텝스 접촉력을 조절할 수 있는 스트레이트 니들 프로브 카드
CN110068711B (zh) * 2018-01-24 2022-04-26 台湾中华精测科技股份有限公司 探针卡装置及矩形探针
KR102072451B1 (ko) * 2018-07-27 2020-02-04 주식회사 에스디에이 프로브카드 헤드블록
CN108982933A (zh) * 2018-08-07 2018-12-11 深圳市芽庄电子有限公司 印制电路板测试治具
KR102170506B1 (ko) * 2020-03-04 2020-10-28 (주)뉴씨텍 기판 검사용 가동식 지그

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286788A (ja) * 2007-04-17 2008-11-27 Nidec-Read Corp 基板検査用治具
JP2010156648A (ja) * 2009-01-05 2010-07-15 Totoku Electric Co Ltd プローブユニット構造
JP2012078297A (ja) * 2010-10-05 2012-04-19 Tokuso Riken:Kk ワイヤープローブ用治具並びにこれを用いた検査装置並びに検査方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505495B2 (ja) * 2000-09-13 2004-03-08 日本電産リード株式会社 基板検査用検査治具、該検査治具を備えた基板検査装置および基板検査用検査治具の組立方法
KR100773732B1 (ko) * 2006-05-09 2007-11-09 주식회사 파이컴 프로브 유닛 및 이를 포함하는 프로브 장치
KR100843224B1 (ko) * 2007-01-04 2008-07-02 삼성전자주식회사 웨이퍼 테스트용 프로브 카드
JP4965341B2 (ja) * 2007-05-31 2012-07-04 日置電機株式会社 プローブユニットおよび回路基板検査装置
JP2009008585A (ja) 2007-06-29 2009-01-15 Koyo Technos:Kk 検査冶具および検査装置
JP5179301B2 (ja) * 2008-09-09 2013-04-10 日置電機株式会社 プローブユニットおよび検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286788A (ja) * 2007-04-17 2008-11-27 Nidec-Read Corp 基板検査用治具
JP2010156648A (ja) * 2009-01-05 2010-07-15 Totoku Electric Co Ltd プローブユニット構造
JP2012078297A (ja) * 2010-10-05 2012-04-19 Tokuso Riken:Kk ワイヤープローブ用治具並びにこれを用いた検査装置並びに検査方法

Also Published As

Publication number Publication date
CN104508498A (zh) 2015-04-08
KR20150037736A (ko) 2015-04-08
JP2014025769A (ja) 2014-02-06
TWI591347B (zh) 2017-07-11
CN104508498B (zh) 2018-04-10
JP6184667B2 (ja) 2017-08-23
KR101979060B1 (ko) 2019-05-15
TW201418720A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
WO2014017426A1 (ja) プローブユニット、基板検査装置およびプローブユニット製造方法
KR100455097B1 (ko) 기판 검사용 검사지그 및 그 검사지그를 구비한 기판검사장치
WO2014123031A1 (ja) プローブユニット、基板検査装置およびプローブユニット組立方法
US20150233973A1 (en) Method of Manufacturing a Test Socket Body of an Impedance-Matched Test Socket
KR100864435B1 (ko) 기판검사용 접촉자, 기판검사용 치구 및 기판검사장치
EP2871483A1 (en) Inspection jig
KR101704188B1 (ko) 와이어 프로브를 구비한 프로브 카드
JP6104724B2 (ja) プローブユニット、基板検査装置およびプローブユニット製造方法
JP2015075370A (ja) 検査用治具、電極部、プローブ、及び検査用治具の製造方法
JP5179301B2 (ja) プローブユニットおよび検査装置
JP5098339B2 (ja) 基板検査治具の製造方法
JP2012078297A (ja) ワイヤープローブ用治具並びにこれを用いた検査装置並びに検査方法
TW202332918A (zh) 用於開爾文測試系統的彈簧探針組件
JP5528532B2 (ja) 基板検査装置
JP2007232558A (ja) 電子部品検査プローブ
JP2008197009A (ja) 電子部品検査プローブ
JP6104720B2 (ja) プローブユニットおよび基板検査装置
KR101729068B1 (ko) 커넥터 지그
JP2013164304A (ja) 基板検査用治具
TWI737765B (zh) 用於晶圓測試接觸件之堆疊立柱凸塊接觸及其相關方法
JP2014021059A (ja) プローブユニットおよび基板検査装置
JP2014044104A (ja) プローブユニット、基板検査装置およびプローブユニット製造方法
JP2009271005A (ja) 基板検査治具
JP2019152639A (ja) 多連電気信号接続装置の製造検査装置
JP2008249425A (ja) 異方導電性コネクター並びに回路基板の電気抵抗測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823642

Country of ref document: EP

Kind code of ref document: A1