WO2012062110A1 - Procédé de préparation d'un composite phosphate de fer lithié/carbone pour pile lithium-ion - Google Patents

Procédé de préparation d'un composite phosphate de fer lithié/carbone pour pile lithium-ion Download PDF

Info

Publication number
WO2012062110A1
WO2012062110A1 PCT/CN2011/075932 CN2011075932W WO2012062110A1 WO 2012062110 A1 WO2012062110 A1 WO 2012062110A1 CN 2011075932 W CN2011075932 W CN 2011075932W WO 2012062110 A1 WO2012062110 A1 WO 2012062110A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
graphene
carbon
ion battery
Prior art date
Application number
PCT/CN2011/075932
Other languages
English (en)
Chinese (zh)
Inventor
朱杰
杜振山
Original Assignee
河北力滔电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北力滔电池材料有限公司 filed Critical 河北力滔电池材料有限公司
Publication of WO2012062110A1 publication Critical patent/WO2012062110A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and particularly relates to a preparation method of a lithium ion battery composite material lithium iron phosphate/carbon. Background technique
  • the synthesis method of lithium iron phosphate material is mainly divided into a solid phase method and a liquid phase method.
  • the solid phase method mainly utilizes iron salt, lithium salt and phosphate to synthesize lithium iron phosphate at high temperature sintering.
  • a soluble iron salt, a lithium salt, and a phosphoric acid salt are dissolved in a solvent, and lithium iron phosphate or a precursor thereof is prepared by ion reaction, and then a high-temperature sintering is performed to obtain a finished product.
  • the solid phase reaction is simple, the raw materials are easy to handle, and the yield is high, but the morphology of the raw materials is not easy to control, and the tap density and compaction density of the product are low.
  • the invention patents CN101200289, CN1762798, CN101140985, etc. all adopt a solid phase synthesis process route.
  • Some new synthetic methods such as microwave synthesis (CN101172597, CN101807692A) and ultrasonic coprecipitation (CN101800311A), can be attributed to solid phase synthesis.
  • the liquid phase method requires the use of a reactor for pre-treatment, and also requires drying, filtration, etc., and the process is complicated.
  • the sphericity of the product is generally good, the tap density is high, and the capacity and high rate performance are excellent.
  • the invention patents CN101172599, CN101047242, and CN101121509 all adopt the above process route.
  • iron phosphate materials are coated with a conductive carbon layer. It is actually a lithium iron phosphate/carbon composite. Only the lithium iron phosphate material coated with carbon can exert its electrochemical performance normally. However, the carbon added by the general process is loosely distributed and loosely distributed among the lithium iron phosphate particles, which seriously reduces the bulk density of the lithium iron phosphate material, making its tap density much lower than its theoretical density, and affecting the subsequent The compact density of the pole piece. How to minimize the carbon content in the cathode material without reducing the carbon coating effect of the material, without reducing the conductivity, electrochemical capacity and cycle performance, is a concern of materials research. Summary of the invention
  • the present invention provides a method for preparing a lithium ion battery composite lithium iron phosphate/carbon in order to solve the problems existing in the prior art.
  • the object of the present invention is to provide a lithium ion battery composite lithium iron phosphate/carbon preparation method which has the advantages of simple process, convenient operation, excellent material performance, high electrical conductivity, high bulk density and high compaction density, and stable product quality.
  • Graphene is extremely thin, very soft and has excellent flexibility. It is an ideal material for coating lithium iron phosphate. It is conceivable that the lithium iron phosphate material coated with an appropriate amount of graphene has a small carbon content, but the electrical conductivity of the material is lowered. At the same time, since the graphene is tightly coated on the surface of the lithium iron phosphate particles, there is no loose carbon between the grains, and the density of the material is greatly increased.
  • the invention provides a preparation and synthesis method of a lithium iron phosphate/carbon composite material, wherein carbon is tightly coated on the surface of lithium iron phosphate in the form of graphene, thereby reducing the carbon content in the positive electrode material to less than 1% (in general materials) Containing more than 3% carbon), the material is densely distributed, increasing the density of lithium iron phosphate material.
  • the process route adopted by the invention is as follows: Firstly, a graphene stable dispersion aqueous solution system is prepared by using a thermal differential layer stripping technique, and then the pure lithium iron phosphate material is treated with the solution to adsorb the graphene on the surface of the lithium iron phosphate particles, and then subjected to heat treatment. The combination of graphene and lithium iron phosphate provides the desired lithium iron phosphate/carbon composite.
  • the preparation method of the lithium ion battery composite material lithium iron phosphate/carbon of the invention adopts the following technical solutions:
  • a lithium ion battery composite material lithium iron phosphate / carbon preparation method, coated with lithium iron phosphate, characterized by: composite lithium iron phosphate / carbon preparation process includes:
  • Preparing a suspended graphene dispersed aqueous solution system preparing a suspended graphene dispersed aqueous solution system by using a hot differential layer stripping method; pulverizing the natural graphite to a particle size of 1-5 micrometers, and adding it to steamed water or purified water. Adding 0.1-5% of the surfactant, under shear and stirring, the temperature of the seal is raised to 180-250 ° C, stirred for 2-6 hours, and the temperature is lowered;
  • the preparation method of the lithium ion battery composite material lithium iron phosphate/carbon of the invention can also adopt the following technical measures:
  • the preparation method of the lithium ion battery composite material lithium iron phosphate/carbon characterized in that: the surfactant is phenylenediamine , polyvinylpyrrolidone, alkylphenol ethoxylates, and the like. It can be peeled off between the graphite layers in the hydrothermal state and stabilizes the graphene/water system.
  • the preparation method of the lithium ion battery composite material lithium iron phosphate/carbon is characterized in that: the coupling agent is Y-mercaptopropyltrimethoxysilane, methyl isobutyl ketone decyl silane, vinyl triethoxy Silane and the like. It can adhere to the surface of lithium iron phosphate and is easily crosslinked with graphene.
  • the method for preparing a lithium ion battery composite lithium iron phosphate/carbon is characterized in that: the weight percentage concentration of graphene in the graphene-dispersed aqueous solution is ⁇ - ⁇ %.
  • the method for preparing a lithium ion battery composite material lithium iron phosphate/carbon characterized in that: adding graphene dispersion After the aqueous solution, the mixture was stirred at 20 to 40 ° C for 4 to 10 hours, and then allowed to stand for 12 to 36 hours, followed by stirring.
  • the lithium ion battery composite material lithium iron phosphate / carbon preparation method is characterized in that: when the solid powder is dried by vacuum, the vacuum drying temperature is 120-150 ° C.
  • Lithium ion battery composite material lithium iron phosphate / carbon preparation method due to the adoption of the novel technical solution of the present invention, compared with the prior art, the iron phosphate/carbon material prepared by the invention, the graphene is completely nanometerly distributed in the phosphoric acid
  • the surface of the iron-lithium material forms a surface carbon layer with extremely high electrical conductivity and does not produce a loose bulk carbon layer.
  • the bulk density and compaction density of the lithium iron phosphate cathode material are effectively increased. ⁇
  • the measured, the carbon content of the material was reduced to 0. 8-1%, the body conductivity was maintained at 0. 01S / cm.
  • the tap density is increased to 1. 8g/cm3, the 0.
  • 1C capacity is 155mAh/g
  • the compact density of the capacity pole piece is increased from 2. 2 g/cm3 to 2. 6-2. 7 g/cm3.
  • the overall performance of the lithium iron phosphate material has been greatly improved.
  • the invention has the advantages of simple process, convenient operation, excellent material performance, high electrical conductivity, high bulk density and compact density, and stable product quality. detailed description
  • a method for preparing a lithium ion battery composite lithium iron phosphate/carbon firstly preparing a stable suspended graphene-water system.
  • the concentration of graphene in the system is 1%.
  • the natural graphite is first pulverized to an average particle size of about 1 micrometer, and then added to the distilled water, and 0.1% of the surfactant phenylenediamine is added, and the temperature is raised to 180 ° C under high shear agitation. Stirring was continued for 6 hours under high temperature and high pressure, and the temperature was lowered to obtain a stable suspended graphene-water system.
  • a method for preparing a lithium ion battery composite lithium iron phosphate/carbon firstly preparing a stable suspended graphene-water system.
  • the concentration of graphene in the system is generally 10%.
  • the natural graphite was first pulverized to an average particle size of 5 ⁇ m, and then added to purified water, and 5% of a surfactant polyvinylpyrrolidone was added, and the temperature was raised to 250 ° C under high-speed shear stirring. Stirring was continued for 2 hours under high temperature and high pressure, and the temperature was lowered to obtain a stable suspended graphene-water system.
  • a method for preparing a lithium ion battery composite lithium iron phosphate/carbon firstly preparing a stable suspended graphene-water system.
  • the concentration of graphene in the system was 2%.
  • the natural graphite was first pulverized to an average particle diameter of 2 ⁇ m, and then added to pure water, and 1% of a surfactant alkylphenol ethoxylate was added, and the temperature was raised to 200 ° C under high-speed shear stirring. Stirring was continued for 4 hours under high temperature and high pressure, and the temperature was lowered to obtain a stable suspended graphene-water system.
  • the lithium iron phosphate/carbon composite material of the lithium ion battery prepared by the invention has the graphene completely distributed on the surface of the lithium iron phosphate material, forming a surface carbon layer having extremely high conductivity, and effectively increasing the lithium iron phosphate positive electrode.
  • the bulk density and compaction density of the material, the lithium iron phosphate/carbon composite material has the positive positive effects described.

Abstract

L'invention concerne un procédé de préparation d'un composite phosphate de fer lithié/carbone pour une pile lithium-ion. Le procédé selon l'invention comprend les étapes suivantes : 1) préparation d'une solution aqueuse à graphène dispersé en suspension : broyage d'un graphite jusqu'à 1-5μm, ajout d'eau distillée ou d'eau purifiée, ajout de 0,1-5% d'un tensio-actif sous agitation, augmentation de la température à 180-250℃ dans des conditions d'étanchéité, agitation pendant 2-6 heures et refroidissement; 2) broyage d'un phosphate de fer lithié jusqu'à 1-5μm, ajout d'eau distillée ou d'eau purifiée, ajout de 0,01-1% d'un agent de couplage sous agitation, agitation uniforme, ajout de la solution à graphène dispersé, agitation et filtrage; 3) séchage sous vide de la poudre solide obtenue lors du filtrage, frittage pendant 2 à 12 heures et obtention du matériau positif phosphate de fer lithié à revêtement graphène. Ce procédé utilise une technique simple et le matériau préparé par ce procédé présente avantageusement d'excellentes performances, une conductivité élevée, un empilement important, une forte intensité de compactage, etc.
PCT/CN2011/075932 2010-11-10 2011-06-20 Procédé de préparation d'un composite phosphate de fer lithié/carbone pour pile lithium-ion WO2012062110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010537386.1 2010-11-10
CN2010105373861A CN102013477B (zh) 2010-11-10 2010-11-10 一种锂离子电池复合材料磷酸铁锂/碳的制备方法

Publications (1)

Publication Number Publication Date
WO2012062110A1 true WO2012062110A1 (fr) 2012-05-18

Family

ID=43843564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075932 WO2012062110A1 (fr) 2010-11-10 2011-06-20 Procédé de préparation d'un composite phosphate de fer lithié/carbone pour pile lithium-ion

Country Status (2)

Country Link
CN (1) CN102013477B (fr)
WO (1) WO2012062110A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784501B2 (en) 2017-12-12 2020-09-22 Industrial Technology Research Institute Positive electrode plate and method of forming slurry for positive electrode plate

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013477B (zh) * 2010-11-10 2012-05-23 河北力滔电池材料有限公司 一种锂离子电池复合材料磷酸铁锂/碳的制备方法
CN102290603B (zh) * 2011-07-25 2014-06-04 青岛海霸能源集团有限公司 磷酸铁锂圆形电池及其制作工艺
CA2754372A1 (fr) 2011-10-04 2013-04-04 Hydro-Quebec Materiau d'electrode positive pour batterie secondaire au lihium-ion et methode de production connexe
CN102412396B (zh) * 2011-11-11 2015-05-13 深圳市德方纳米科技股份有限公司 一种非连续石墨烯包覆的锂离子电池电极材料
CN102376944B (zh) * 2011-11-24 2013-04-24 深圳市贝特瑞新能源材料股份有限公司 制备锂离子电池用硅碳合金负极材料的方法
CN103427072A (zh) * 2012-05-16 2013-12-04 上海宝钢磁业有限公司 一种磷酸铁锂原位碳包覆方法
US9722248B2 (en) 2012-06-20 2017-08-01 Cabot Corporation Electrode formulations comprising graphenes
CN103725046A (zh) * 2012-10-12 2014-04-16 东丽先端材料研究开发(中国)有限公司 一种石墨烯分散液及其制备方法
CN103560235B (zh) * 2013-11-15 2016-02-03 哈尔滨工业大学 石墨烯包覆的硫/多孔碳复合正极材料的制备方法
CN103771402A (zh) * 2013-12-30 2014-05-07 华南农业大学 一种制备石墨烯的方法
CN104124437B (zh) * 2014-08-12 2016-08-24 长沙赛维能源科技有限公司 表面包覆氮化钛与石墨烯的磷酸铁锂复合正极材料及其制备方法和应用
CN104241646B (zh) * 2014-08-28 2016-09-21 江苏容汇通用锂业股份有限公司 一种通过固液分离实现石墨烯对磷酸铁锂改性的方法
CN104241606B (zh) * 2014-09-09 2017-04-12 江苏容汇通用锂业股份有限公司 一种高倍率兼具优良低温性能的磷酸铁锂正极极片的制作方法
CN104821399B (zh) * 2015-03-18 2017-03-01 江苏乐能电池股份有限公司 具有核‑壳结构的磷酸铁锂正极材料及其制备方法
CN104868121A (zh) * 2015-05-07 2015-08-26 天津大学 石墨烯与碳共包覆磷酸亚铁锂的锂离子电池正极材料及其制备方法
US10826054B2 (en) * 2015-10-05 2020-11-03 Toray Industries, Inc. Positive electrode for lithium ion secondary battery, graphene/positive electrode active material composite particles, manufacturing methods for same, and positive electrode paste for lithium ion secondary battery
CN105762345B (zh) * 2016-04-29 2019-03-29 湖北金泉新材料有限责任公司 一种复合正极材料、其制备方法和锂离子电池
CN106711447A (zh) * 2016-12-19 2017-05-24 重庆汉岳科技发展有限公司 一种复合型石墨烯锂电池正极材料的制备方法
CN106711425A (zh) * 2017-01-12 2017-05-24 江苏海四达电源股份有限公司 改性磷酸铁锂及其制备方法和应用以及正极材料和锂离子电池
CN108172804B (zh) * 2017-12-31 2020-09-08 中南大学 一种石墨烯/二氧化钛包覆正极材料及其制备和应用
CA3097405A1 (en) 2019-11-25 2021-05-25 Institut National De La Recherche Scientifique Reduced graphene oxide/manganese(iv) oxide nanocomposite and electrode comprising same, method of manufacture of various graphene material/metal oxide nanocomposites
CN112751003B (zh) * 2020-12-31 2021-11-30 龙蟒大地农业有限公司 一种碳包覆磷酸铁锂及其制备方法、磷酸铁锂正极片、磷酸铁锂电池
CN117558903B (zh) * 2024-01-11 2024-04-02 湖南科晶新能源科技有限公司 一种石墨烯包覆磷酸铁锂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485940A (zh) * 2003-08-26 2004-03-31 北大先行科技产业有限公司 锂离子电池的电极及其制备方法和锂离子电池
US7390473B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making fine lithium iron phosphate/carbon-based powders with an olivine type structure
CN101453019A (zh) * 2007-12-07 2009-06-10 比亚迪股份有限公司 含磷酸亚铁锂的正极活性物质及其制备方法和正极及电池
CN101562248A (zh) * 2009-06-03 2009-10-21 龚思源 一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法
CN102013477A (zh) * 2010-11-10 2011-04-13 河北力滔电池材料有限公司 一种锂离子电池复合材料磷酸铁锂/碳的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390473B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making fine lithium iron phosphate/carbon-based powders with an olivine type structure
CN1485940A (zh) * 2003-08-26 2004-03-31 北大先行科技产业有限公司 锂离子电池的电极及其制备方法和锂离子电池
CN101453019A (zh) * 2007-12-07 2009-06-10 比亚迪股份有限公司 含磷酸亚铁锂的正极活性物质及其制备方法和正极及电池
CN101562248A (zh) * 2009-06-03 2009-10-21 龚思源 一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法
CN102013477A (zh) * 2010-11-10 2011-04-13 河北力滔电池材料有限公司 一种锂离子电池复合材料磷酸铁锂/碳的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784501B2 (en) 2017-12-12 2020-09-22 Industrial Technology Research Institute Positive electrode plate and method of forming slurry for positive electrode plate

Also Published As

Publication number Publication date
CN102013477B (zh) 2012-05-23
CN102013477A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012062110A1 (fr) Procédé de préparation d'un composite phosphate de fer lithié/carbone pour pile lithium-ion
CN111799464A (zh) 一种MXene/石墨烯复合纳米片及其制备方法和应用、电极极片及其应用
CN106698430B (zh) 一种聚多巴胺作为过渡层碳化钛原位生长CNTs三维复合材料及其制备方法
CN106129344B (zh) 一种二氧化锡/二氧化钛球形颗粒与石墨烯纳米带复合材料的制备方法
CN109301184A (zh) 含硅基材料的改性复合材料、其制备方法及在锂离子电池的用途
WO2013170720A1 (fr) PROCÉDÉ DE PRÉPARATION DE MATÉRIAU COMPOSITE LiFePO4/C À BASE DE GRAPHÈNE
CN108511719A (zh) 一种双壳层结构复合材料、其制备方法及包含该复合材料的锂离子电池
CN106783230B (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN106848268A (zh) 一种碳‑硅复合材料、其制备方法及用途
CN108258211B (zh) 一种超临界二氧化碳流体制备二氧化钛/石墨烯复合材料的方法及应用
TW201010944A (en) Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
CN105810902B (zh) 一种溶剂热制备纳米碳包覆氟磷酸亚铁钠的方法
CN105047919B (zh) 一种磷酸铁锂电池正极材料的制备方法
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
CN102718250A (zh) 一种碳材料负载二氧化锡纳米片复合材料的制备方法
CN107732174B (zh) 一种锂离子电池碳包覆LiFEPO4/CNTs复合正极材料的制备方法
WO2016110108A1 (fr) Procédé de préparation par pulvérisation à plasma pour électrode positive composite lithium-ion nanométrique
CN108862272B (zh) 一种利用氧化石墨烯、纳米碳粉制备膨胀石墨的方法
CN108470891B (zh) 基于微米二氧化硅制备硅碳负极材料的方法
CN111498839A (zh) 一种超薄片层还原氧化石墨烯及其合成方法
CN104944474A (zh) 一种纳米MnFe2O4/石墨烯复合材料的制备方法
CN108622887B (zh) 一种微波膨爆制备石墨烯的方法
CN106169567B (zh) 一种碳包覆的磷酸铁锂正极材料及其制备方法
Wang et al. Preparation of porous carbon spheres from porous starch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839206

Country of ref document: EP

Kind code of ref document: A1