CN106783230B - 一种碳化钛原位生长CNTs三维复合材料及其制备方法 - Google Patents

一种碳化钛原位生长CNTs三维复合材料及其制备方法 Download PDF

Info

Publication number
CN106783230B
CN106783230B CN201611228021.4A CN201611228021A CN106783230B CN 106783230 B CN106783230 B CN 106783230B CN 201611228021 A CN201611228021 A CN 201611228021A CN 106783230 B CN106783230 B CN 106783230B
Authority
CN
China
Prior art keywords
composite material
titanium carbide
dimensional composite
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611228021.4A
Other languages
English (en)
Other versions
CN106783230A (zh
Inventor
朱建锋
李学林
王雷
秦毅
武文玲
吕文静
卫丹
王芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201611228021.4A priority Critical patent/CN106783230B/zh
Publication of CN106783230A publication Critical patent/CN106783230A/zh
Application granted granted Critical
Publication of CN106783230B publication Critical patent/CN106783230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于纳米功能材料的制备技术领域,特别地涉及一种碳化钛原位生长CNTs三维复合材料及其制备方法,首先取碳化钛纳米粉体加入到超纯水中,分散均匀后再加入Co(NO3)2·6H2O,进行液相反应;液相反应结束后向反应液中加入尿素,在恒定温度下持续搅拌蒸发掉水分,得到前驱体粉末;其中,碳化钛纳米粉体、Co(NO3)2·6H2O和尿素的质量比为(0.2~1.0):(0.1~0.4):(3.0~30.0);将前驱体粉末磨细后进行热处理,得到碳化钛原位生长CNTs三维复合材料。本发明以碳化钛作为载体,钴作为催化剂,尿素作为碳源,利用简单热解法制备出三维复合材料,能够提高Ti3C2的电化学性能。

Description

一种碳化钛原位生长CNTs三维复合材料及其制备方法
【技术领域】
本发明属于纳米功能材料的制备技术领域,特别地涉及一种碳化钛原位生长CNTs三维复合材料及其制备方法。
【背景技术】
最近,一类被称为MXene的材料的发现扩展了二维材料的族群,即过渡金属碳化物或碳氮化物,其结构与石墨烯类似。MXene材料可通过腐蚀除去MAX相中的A层元素,并保持原来的MX结构不变而获得,如Ti3C2、Ti2C等。MXene以其高导电性、大比表面积、多层结构、良好的化学稳定性及环境友好性,在锂离子电池、超级电容器、光催化和传感器等领域有着很大的应用潜力。在吸附领域,Peng等研究表明碱金属插层的Ti3C2对有毒重金属Pb2+有优异的吸附性能,可用于有效地净化饮用水。Ti3C2的吸附性能与其表面丰富的活化羟基和大的比表面积密切相关,具有吸附量大,吸附速率快,灵敏度高以及可逆吸附的特点。Ti3C2对Pb2 +的吸附能力不会受到溶液中其他高浓度离子(如Ca2+、Mg2+等)的影响。Ti3C2以其独特的层状结构有望在治理有害离子、重金属及有机污染物等方面发挥出巨大的作用。作为新型储能材料,在锂离子电池和超级电容器上,近年来对于MXenes的研究也有很多。Naguib等将Ti2CTx应用于LIBs电极上,在C/25的倍率下,其比容量为225mAhg-1;以1C进行80次循环充放电后,其充比容量为110mAhg-1;以3C进行120次循环充放电后,其比容量为80mAhg-1;以10C进行200次循环充放电后,其充电容量为70mAhg-1。MXene纳米材料自身良好的导电性和二维层状结构是其电化学性能优异的源泉。然而Ti3C2纳米材料自身导电性和比容量偏低,导致其电化学性能欠佳,MXene基电化学电容器的应用也有待进一步探究。
碳纳米管是典型的一维量子材料,具有良好的导电、力学、热学性能,以及很高的环境稳定性(耐强酸、强碱腐蚀)和结构稳定性,使其在锂离子电池、超级电容器、传感器和吸波等领域有着广泛的应用。由于碳纳米管具有优越的电学及力学性能,被认为是复合材料的理想添加相。碳纳米管作为加强相和导电相,在纳米复合材料领域有着巨大的应用潜力。
Zhao等通过交替过滤MXene和CNT分散液制制备出柔性三明治状MXene/CNT复合纸电极,对比纯的MXene与CNT任意比例混合得到的MXene/CNT纸,该电极的电化学性能显著提高。Yan等将Ti3C2浸没在二甲基亚砜中经磁力搅拌、间歇超声处理等一系列过程得到Ti3C2薄片,将商用CNTs经过超声处理得到稳定悬液,然后将Ti3C2薄片与CNTs通过超声处理以不同质量比充分混合,而后将混合液过滤、干燥得到Ti3C2/CNT复合材料;但是商用CNTs的价格比较高。
【发明内容】
本发明的目的在于克服现有技术中存在的问题,提供一种碳化钛原位生长CNTs三维复合材料及其制备方法,采用成本较低的尿素作为碳源,制备碳化钛原位生长CNTs三维复合材料,能够提高Ti3C2纳米材料的电化学性能。
为了达到上述目的,本发明采用如下技术方案:
本发明的制备方法包括以下步骤:
(1)首先取Ti3C2纳米粉体加入到超纯水中,分散均匀后再加入Co(NO3)2·6H2O,进行液相反应;
(2)液相反应结束后向反应液中加入尿素,在恒定温度下持续搅拌蒸发掉水分,得到前驱体粉末;其中,Ti3C2纳米粉体、Co(NO3)2·6H2O和尿素的质量比为(0.2~1.0):(0.1~0.4):(3.0~30.0);
(3)将前驱体粉末进行热处理,得到碳化钛原位生长CNTs三维复合材料。
进一步地,步骤(1)中Ti3C2纳米粉体加入超纯水中超声分散30min再加入Co(NO3)2·6H2O。
进一步地,步骤(1)中Ti3C2纳米粉体和加入的超纯水之比为(200~1000)mg:(100~400)mL。
进一步地,步骤(1)的液相反应是在室温搅拌2~6h。
进一步地,步骤(2)中的恒定温度在60~100℃之间。
进一步地,Ti3C2纳米粉体、Co(NO3)2·6H2O和尿素的质量比为(0.2~0.5):(0.1~0.4):(3.0~30.0)。
进一步地,步骤(3)中的热处理在Ar的保护下进行。
进一步地,步骤(3)中的热处理温度为600~1000℃,时间为0.5~2h。
进一步地,步骤(3)中热处理的升温速率为3~5℃/min。
一种利用如上所述的制备方法制得的碳化钛原位生长CNTs三维复合材料。
与现有技术相比,本发明具有以下有益的技术效果:
本发明以碳化钛作为载体,钴作为催化剂,Co2+离子通过与碳化钛表面含氧官能团的离子交换作用吸附在碳化钛表面;然后,加入成本低的尿素作为碳源,尿素通过与碳化钛表面的Co2+离子形成配位化合物而***碳化钛的片层中。最后,在氩氛围下热解,随着温度的升高,Co2+被还原为Co纳米颗粒作为CNTs生长的催化剂,而尿素分解为氮化碳,氮化碳在Co的催化下生长为CNTs,通过改变前驱体中尿素的含量来控制Ti3C2表面生长的CNTs长度及密度。本发明利用简单热解法制备出Ti3C2@CNTs三维复合材料,这种方法能够低成本、快捷、环保、安全的通过改变前驱体中尿素的含量,从而实现Ti3C2表面CNTs长度及密度的可控生长。密集的CNTs均匀分布在Ti3C2片层两侧,显著提高了层状材料的比表面积及增大了片层间的距离,且提高了Ti3C2的导电性及磁性,使得Ti3C2@CNTs三维复合材料的电化学性能更优于纯的Ti3C2。并且为其进一步在锂离子电池、光催化、吸波等领域的应用奠定了基础。此外,这种简单热解法由于其对设备要求低、操作简便、成本低廉等优势,有利于实现工业化大规模生产。
本发明Ti3C2@CNTs三维复合材料是由二维层状Ti3C2及生长于Ti3C2表面的分布密度高的多壁碳纳米管组成,利用碳纳米管提供电子传输通道,提高材料的导电率,而Ti3C2可提高碳纳米管间的传输能力,从而有效解决了一维碳纳米管和二维Ti3C2的热与电子传输的方向依赖性和较低的面外传导性,使复合材料在三维空间都具有良好的电性能。本发明制备的三维复合材料在电化学储能材料、吸波材料和催化剂载体等上具有重要的使用价值。搜索文献,发现至今尚未有人在Ti3C2表面原位生长出碳纳米管,且实现Ti3C2表面碳纳米管的可控生长。
【附图说明】
图1为实施例2制备的Ti3C2@CNTs6.0三维复合材料的SEM图(a)和XRD图(b)。
图2为实施例2制备的Ti3C2@CNTs6.0三维复合材料(a)在不同扫速(0.002V/s-0.1V/s)下的CV曲线图;(b)为其容量随扫速的变化曲线。
图3为实施例1-3不同热解温度制得的Ti3C2@CNTs6.0三维复合材料的SEM图,其中(a)为800℃,(b)为900℃,(c)为1000℃。
【具体实施方式】
下面结合附图与实施例对本发明做进一步详细说明。
本发明制备方法包括以下步骤:
(1)三元层状Ti3AlC2陶瓷粉体的制备;
按照专利ZL201310497696.9的方法合成三元层状Ti3AlC2陶瓷粉体,其制备步骤具体包括:首先,将实验原料TiC、Ti、Al粉体按照摩尔比为TiC:Ti:Al=2.0:1.0:1.2进行混料;其次,将混料、氧化铝球石与无水乙醇按照1:3:1的质量比于刚玉球磨罐内进行球磨,其中无水乙醇作为球磨助剂,氧化铝球石为研磨介质,球磨机转速为300r/min,湿法球磨4h后在40℃恒温干燥烘箱中干燥24h;然后,将干燥的混料放入刚玉坩埚,在真空热压碳管炉中以8℃/min的升温速率进行真空无压烧结,加热至1350℃,保温1h,真空度<10-2Pa,保温结束后随炉冷却至室温;最后,对烧结后的粉料干法高能球磨2h,转速为400r/min,粉料与球石比为1:10,将磨细的粉体进行400目过筛,即可得到粒径小于38μm的Ti3AlC2陶瓷粉体。
(2)二维层状Ti3C2纳米材料的制备;
按照专利201410812056.7的方法制备二维层状Ti3C2纳米材料,其制备步骤具体包括:将5g步骤(1)中所制备的Ti3AlC2粉体缓慢浸没在100mL 40wt.%氢氟酸溶液中,室温下磁力搅拌24h,转速为1200r/min,将腐蚀产物进行离心分离,4500r/min用超纯水离心清洗至上清液pH值约为6,再用无水乙醇清洗5次,将所得沉淀物在40℃真空干燥箱中24h烘干,即得到二维层状Ti3C2纳米粉体。
(3)Ti3C2@CNTs三维复合材料的制备;
首先,将200-500mg步骤(2)所得Ti3C2纳米粉体,加入到100~400mL超纯水中,超声分散30min;然后,加入0.1~0.4g Co(NO3)2·6H2O,室温搅拌2~6h;或者是将200~500mgTi3C2纳米粉体在100~400mL浓度为7.8~8.2mmolL-1的Co(NO3)2·6H2O溶液中,室温搅拌2-6h;
其次,加入3.0~30.0g尿素,将上述混合液在60~100℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;
最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以3~5℃/min的升温速率加热至600~1000℃,热解0.5~2h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例1
首先,将300mg的Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h,完成液相反应;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中进行热处理,以4℃/min的升温速率加热至800℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
将50-200mg步骤三所得Ti3C2@CNTs纳米粉体与导电碳黑和粘结剂(PTFE)以80:15:5的质量比混合,在玛瑙研钵中研磨10-15min形成均匀泥状物。其次,将上述泥状物擀成薄膜,并切成1cm*1cm,然后粘在2cm*1cm面积大小的泡沫镍上,随后放入真空干燥箱中,80℃下干燥24h。最后,将干燥好的电极片在压机下,20Mpa保压1min中即得到Ti3C2@CNTs电极。
实施例2
首先,将300mg的Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。图1为所得Ti3C2@CNTs6.0三维复合材料的SEM图和XRD图。可以看出密集的CNTs均匀分布在Ti3C2片层两侧,显著提高了层状材料的比表面积及增大了片层间的距离,使得Ti3C2@CNTs三维复合材料的电化学性能及吸波等性能更优于纯的Ti3C2
Ti3C2@CNTs6.0电极的制备;
首先,将100mg以上所得Ti3C2@CNTs6.0纳米粉体与导电碳黑和粘结剂(PTFE)以80:15:5的质量比混合,在玛瑙研钵中研磨研磨15min形成均匀泥状物。其次,将上述泥状物擀成薄膜,并切成1cm*1cm,然后粘在2cm*1cm面积大小的泡沫镍上,随后放入真空干燥箱中,80℃下干燥24h。最后,将干燥好的电极片在压机下,20Mpa保压1min中即分别得到Ti3C2@CNTs6.0电极。
再次,采用三电极测试***,将制作的电极片(工作电极)与铂电极(对电极)、银氯化银电极(参比电极)在电解池中组装成简易的超级电容器,其中电解液为6mol/L KOH溶液,使用上海辰华CHI660E电化学工作站测试Ti3C2@CNTs6.0电极的电化学性能,如循环伏安特性曲线、恒流充放电、交流阻抗及循环寿命。图2所示,(a)为Ti3C2@CNTs6.0在不同扫速(0.002V/s-0.1V/s)下的CV曲线图,从图中可以看到CV曲线图接近于标准的矩形,表示其良好的电容性能,(b)为其容量随扫速的变化曲线,可以看出当扫速为0.05V/s时,其容量较纯Ti3C2有了极大的提升。
实施例3
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至1000℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例4
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解0.5h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例5
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解1.5h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例6
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入6.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解2h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例7
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入3.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例8
首先,将300mg Ti3C2纳米粉体,加入到200mL超纯水中,超声分散30min;然后,加入0.29g Co(NO3)2·6H2O,室温搅拌4h;其次,加入15.0g尿素,将上述混合液在80℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至900℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例9
首先,将200mg Ti3C2纳米粉体,加入到100mL超纯水中,超声分散30min;然后,加入0.1g Co(NO3)2·6H2O,室温搅拌2h;其次,加入20.0g尿素,将上述混合液在60℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以3℃/min的升温速率加热至600℃,热解0.5h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例10
首先,将500mg Ti3C2纳米粉体,加入到300mL超纯水中,超声分散30min;然后,加入0.2g Co(NO3)2·6H2O,室温搅拌3h;其次,加入30.0g尿素,将上述混合液在100℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以5℃/min的升温速率加热至700℃,热解1.5h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例11
首先,将1000mg Ti3C2纳米粉体,加入到400mL超纯水中,超声分散30min;然后,加入0.4g Co(NO3)2·6H2O,室温搅拌6h;其次,加入10.0g尿素,将上述混合液在90℃恒定温度下持续搅拌蒸发掉水分,得到灰色前驱体;最后,将前驱体粉末用玛瑙研钵磨细后,转入Ar氛围管式炉中,以4℃/min的升温速率加热至850℃,热解1h,在Ar的保护下冷却到常温后取出,即可得Ti3C2@CNTs三维复合材料。
实施例12
控制前驱体中尿素含量分别为3.0g、6.0g、....30.0g,其它条件同实施例1。
结果证明,本发明通过控制前驱体中尿素含量,可实现Ti3C2表面碳纳米管长度及密度的调控,Ti3C2表面碳纳米管长度在100~900nm。
另外,由实施例1-3得到,随着热解温度的升高,碳纳米管长度逐渐增长至生长完全,如图3对比所示。
本发明提供一种了Ti3C2@CNTs三维复合材料及其制备方法,首先,合成高纯度细晶粒三元层状Ti3AlC2粉体;在HF溶液中选择性刻蚀掉三元层状Ti3AlC2中的Al层,形成二维层状Ti3C2纳米材料。其次,以Ti3C2纳米材料为基体、Co为催化剂,Co2+离子通过与Ti3C2表面含氧官能团的离子交换作用吸附在Ti3C2表面;然后,加入尿素作为碳源,尿素通过与Ti3C2表面的Co2+离子形成配位化合物而***Ti3C2的片层中。最后,在氩氛围下采用简单热解法热解,随着温度的升高,Co2+被还原为Co纳米颗粒作为CNTs生长的催化剂,而尿素分解为氮化碳,氮化碳在Co的催化下生长为CNTs。本发明通过简单热解法成功制备出Ti3C2@CNTs三维复合材料,提高了Ti3C2的导电性、扩大Ti3C2的比表面积、提高Ti3C2自身稳定性等,且通过控制前驱体中尿素含量,可实现Ti3C2表面碳纳米管长度及密度的调控;这对于扩展Ti3C2材料在超级电容器、锂离子电池、纳米吸附剂和吸波等领域的应用,具有重要的现实意义。相比所报道其他制备方法,本发明方法所需的实验条件比较简单,成本低,易操作。在Ti3C2表面生长出碳纳米管,利用碳纳米管提供电子传输通道,提高材料的导电率,而Ti3C2可提高碳纳米管间的传输能力,从而有效解决了一维碳纳米管和二维Ti3C2的热与电子传输的方向依赖性和较低的面外传导性,使复合材料在三维空间都具有良好的电性能。

Claims (9)

1.一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,由以下步骤组成:
(1)首先取Ti3C2纳米粉体加入到超纯水中,分散均匀后再加入Co(NO3)2·6H2O,进行液相反应;
(2)液相反应结束后向反应液中加入尿素,在恒定温度下持续搅拌蒸发掉水分,得到前驱体粉末;其中,Ti3C2纳米粉体、Co(NO3)2·6H2O和尿素的质量比为(0.2~1.0):(0.1~0.4):(3.0~30.0);
(3)将前驱体粉末进行热处理,得到碳化钛原位生长CNTs三维复合材料;
步骤(1)中Ti3C2纳米粉体加入超纯水中超声分散30min再加入Co(NO3)2·6H2O。
2.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(1)中Ti3C2纳米粉体和超纯水之比为(200~1000)mg:(100~400)mL。
3.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(1)的液相反应是在室温搅拌2~6h。
4.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(2)中的恒定温度在60~100℃之间。
5.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,Ti3C2纳米粉体、Co(NO3)2·6H2O和尿素的质量比为(0.2~0.5):(0.1~0.4):(3.0~30.0)。
6.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(3)中的热处理在Ar的保护下进行。
7.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(3)中的热处理温度为600~1000℃,时间为0.5~2h。
8.根据权利要求1所述的一种碳化钛原位生长CNTs三维复合材料的制备方法,其特征在于,步骤(3)中热处理的升温速率为3~5℃/min。
9.一种利用权利要求1所述的制备方法制得的碳化钛原位生长CNTs三维复合材料。
CN201611228021.4A 2016-12-27 2016-12-27 一种碳化钛原位生长CNTs三维复合材料及其制备方法 Active CN106783230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611228021.4A CN106783230B (zh) 2016-12-27 2016-12-27 一种碳化钛原位生长CNTs三维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611228021.4A CN106783230B (zh) 2016-12-27 2016-12-27 一种碳化钛原位生长CNTs三维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106783230A CN106783230A (zh) 2017-05-31
CN106783230B true CN106783230B (zh) 2018-11-27

Family

ID=58921908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611228021.4A Active CN106783230B (zh) 2016-12-27 2016-12-27 一种碳化钛原位生长CNTs三维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106783230B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417406A (zh) * 2018-01-30 2018-08-17 哈尔滨工业大学 一种Ti3C2MXene-Co复合材料及其制备方法
CN108461300B (zh) * 2018-05-11 2020-05-12 西北师范大学 一种层状碳化钛-碳管复合材料及其制备和应用
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN109449405B (zh) * 2018-10-30 2020-10-20 肇庆市华师大光电产业研究院 一种硫-氧掺杂MXene-碳纳米管复合材料及其在锂硫电池中的应用
CN110010912A (zh) * 2019-03-28 2019-07-12 中国石油大学(北京) 一种燃料电池的催化剂及其制备方法和应用
CN110323421B (zh) * 2019-04-22 2022-04-22 苏州第一元素纳米技术有限公司 电化学活性材料的制备方法
CN113624818B (zh) * 2021-08-09 2024-02-27 山东省分析测试中心 一种电化学传感器及制备方法与其在检测人参皂苷Rg3中的应用
CN113823512A (zh) * 2021-09-22 2021-12-21 成都理工大学 一种还原处理的Ti-Mxenes/MWCNTs材料的制备方法及应用
CN114335576B (zh) * 2021-12-30 2023-02-10 河北工业大学 一种泡沫镍为基底的CoN/Ti3C2材料制备方法与应用
CN114388275A (zh) * 2022-01-20 2022-04-22 重庆大学 一种TiC纳米管阵列材料及其制备方法和应用
CN115092910B (zh) * 2022-06-17 2024-01-30 山东高速材料技术开发集团有限公司 利用低温真空CVD制备MXene-石墨圆环堆叠碳纳米管的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350279A (zh) * 2011-06-22 2012-02-15 浙江大学 一种制备碳纳米管/层状双金属氢氧化物复合物的方法
CN103318872B (zh) * 2013-07-03 2014-10-22 北京理工大学 一种碳纳米管的制备方法

Also Published As

Publication number Publication date
CN106783230A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106783230B (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
CN106698430B (zh) 一种聚多巴胺作为过渡层碳化钛原位生长CNTs三维复合材料及其制备方法
CN106784706B (zh) 一种炭微球作为过渡层碳化钛原位生长CNTs三维复合材料及其制备方法
CN107633954B (zh) 一种石墨烯/MXene复合电极材料及其应用
Yan et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte
Babu et al. Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor
Carriazo et al. Microwave-assisted synthesis of NiCo 2 O 4–graphene oxide nanocomposites suitable as electrodes for supercapacitors
Yin et al. ZnO nanoparticles encapsulated in three dimensional ordered macro-/mesoporous carbon as high-performance anode for lithium-ion battery
CN109167066A (zh) 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN104201359B (zh) 一种碳包覆纳米锑复合材料、其制备方法和应用
Nirmaladevi et al. Wood based biochar supported MnO2 nanorods for high energy asymmetric supercapacitor applications
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN108389732A (zh) 一种水热法制备二氧化锰/碳化钛复合材料的方法及其复合材料
Sahoo et al. Spinel NiCo2O4 nanorods for supercapacitor applications
Han et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons
CN103903873B (zh) 一种全赝电容超级电容器
Oh et al. Carbon-coated Si/MnO2 nanoneedle composites with optimum carbon layer activation for supercapacitor applications
Cheng et al. Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures
CN108054020A (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
Xie et al. Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application
CN110707323B (zh) 一种阴离子扩层碳材料及其制备方法和应用
Qiu et al. In situ synthesis of mesoporous Co3O4 nanorods anchored on reduced graphene oxide nanosheets as supercapacitor electrodes
CN107240508A (zh) 一种石墨烯/铁氧体纳米复合电极材料的制备方法
CN109941997A (zh) 一种血红蛋白状Co3O4/Ti3C2纳米复合材料的制备方法及应用
Zhang et al. Facile synthesis, microstructure and electrochemical performance of peanut shell derived porous activated carbon/Co3O4 composite for hybrid supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant