WO2012008789A9 - 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트 - Google Patents

그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트 Download PDF

Info

Publication number
WO2012008789A9
WO2012008789A9 PCT/KR2011/005213 KR2011005213W WO2012008789A9 WO 2012008789 A9 WO2012008789 A9 WO 2012008789A9 KR 2011005213 W KR2011005213 W KR 2011005213W WO 2012008789 A9 WO2012008789 A9 WO 2012008789A9
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
substrate
catalyst layer
metal catalyst
sheet
Prior art date
Application number
PCT/KR2011/005213
Other languages
English (en)
French (fr)
Other versions
WO2012008789A3 (ko
WO2012008789A2 (ko
Inventor
홍병희
안종현
유지범
배수강
정명희
장호욱
이영빈
김상진
Original Assignee
성균관대학교산학협력단
삼성테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 삼성테크윈 주식회사 filed Critical 성균관대학교산학협력단
Priority to US13/810,144 priority Critical patent/US9371234B2/en
Priority to CN201180044473.6A priority patent/CN103140439B/zh
Priority to JP2013519605A priority patent/JP5705315B2/ja
Publication of WO2012008789A2 publication Critical patent/WO2012008789A2/ko
Publication of WO2012008789A9 publication Critical patent/WO2012008789A9/ko
Publication of WO2012008789A3 publication Critical patent/WO2012008789A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present application relates to a low-temperature manufacturing method of graphene using Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD), a graphene direct transfer method, and a graphene sheet using the same .
  • ICP-CVD Inductively Coupled Plasma-Chemical Vapor Deposition
  • Low-dimensional nanomaterials composed of carbon atoms include fullerene, carbon nanotube, graphene, graphite, and the like. That is, when carbon atoms form hexagonal arrays and become balls, it is classified as fullerene, which is a 0-dimensional structure, carbon nanotubes when dried in one dimension, and graphene when stacked in one layer in two dimensions, and graphite when stacked in three dimensions. can do.
  • graphene is not only very stable and excellent in electrical, mechanical, and chemical properties, but also as a good conductive material, it can move electrons 100 times faster than silicon and can flow about 100 times more current than copper.
  • the discovery of a method to separate graphene from graphite has been proved through experiments and many studies have been conducted to date.
  • Graphene has the advantage that it is very easy to process one-dimensional or two-dimensional nanopatterns made of carbon, which is a relatively light element, and it is possible to control the semiconductor-conductor properties as well as the variety of chemical bonds of carbon. It is also possible to manufacture a wide range of functional devices such as sensors and memories.
  • the conventional mass synthesis method was mainly to mechanically crush graphite to disperse it in a solution, and then use self-assembly to form a thin film.
  • the advantage is that it can be synthesized at a relatively low cost, but the electrical and mechanical properties are not as expected due to the structure in which numerous pieces of graphene overlap each other.
  • ITO Indium tin oxide
  • graphene is expected to have the advantage of being able to be synthesized and patterned in a relatively simple manner while simultaneously having excellent elasticity, flexibility and transparency.
  • Such a graphene electrode is expected to have an innovative ripple effect on the next generation flexible electronics industry technology as well as import substitution effect if mass production technology can be established in the future.
  • the graphene films have limited the quality and scale required for the actual production of graphene films due to the lack of efficient synthesis, transfer, and doping methods.
  • conventional transparent electrodes such as ITO, which are typically used in solar cells, show unlimited scalability, ⁇ 90% optical transparency, and sheet resistance of less than 100 Ohm / square, whereas The best record still remains with about ⁇ 500 Ohm / square sheet resistance, ⁇ 90% transparency and a few centimeter scale, which is a problem.
  • Korean Patent Laid-Open Publication No. 2009-0026568 discloses a method of polymerizing graphene after coating a polymer on a graphitization catalyst and performing a heat treatment process. The development of the technology which can be manufactured is calculated
  • the present application was found to be able to easily prepare graphene at a low temperature below 500 °C using inductively coupled plasma chemical vapor deposition (ICP-CVD) to complete the present application.
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • the present application to provide a low-temperature manufacturing method of graphene using inductively coupled plasma chemical vapor deposition (ICP-CVD), graphene direct transfer method and graphene sheet using the same.
  • the present application is to provide a low-temperature manufacturing method of graphene using inductively coupled plasma chemical vapor deposition (ICP-CVD) carried out by a roll-to-roll process, a graphene direct transfer method using the same.
  • a first aspect of the present disclosure provides the production of graphene, comprising supplying a carbon source-containing gas on a substrate and forming graphene at a low temperature below 500 ° C. by inductively coupled plasma chemical vapor deposition (ICP-CVD).
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • the graphene manufacturing method may be performed by a roll-to-roll process, but is not limited thereto.
  • a graphene growth metal catalyst layer may be further formed on the substrate, but is not limited thereto.
  • a second aspect of the present application forming graphene on the metal catalyst layer for graphene growth formed on the substrate; Removing the graphene growth metal catalyst layer may provide a direct transfer method of graphene, including directly transferring the formed graphene onto the substrate.
  • a third aspect of the present application provides a graphene sheet comprising a substrate and graphene formed on the substrate.
  • the graphene may be prepared by the method according to the first aspect of the present application, but is not limited thereto.
  • the graphene sheet may be prepared by a method of directly transferring graphene according to the second aspect of the present application, but is not limited thereto.
  • graphene sheets can be easily prepared on a substrate or on a graphene growth metal catalyst layer formed on the substrate at a low temperature of 500 ° C. or lower using inductively coupled plasma chemical vapor deposition (ICP-CVD).
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • the process of the graphene sheet manufacturing method can be carried out by a roll-to-roll process can be easily produced a large area graphene at a low temperature in a continuous process.
  • the substrate a substrate which is difficult to use at a high temperature can be safely used herein, and the method of the present application can be applied to various substrates having transparency and / or flexibility.
  • glass or polymeric substrates can be used to easily form graphene sheets on these substrates at low temperatures.
  • the graphene sheet formed by the above method can be simply transferred directly to the substrate, without a separate process, on the substrate.
  • the graphene film can be transferred directly.
  • FIG. 1 is a view showing a graphene manufacturing apparatus according to an embodiment of the present application.
  • FIG. 2 is a view showing a graphene manufacturing method and a transfer method according to an embodiment of the present application.
  • 3a and 3b is a view showing a graphene manufacturing method and a transfer method using a roll-to-roll process according to an embodiment of the present application.
  • Figure 4 is a photograph before (a) after (b) the etching of the graphene grown on the patterned nickel thin film in one embodiment of the present application.
  • FIG. 5 is a photograph comparing the transparency of the PI substrate (left) and the PI substrate (right) before the graphene sheet is formed in the graphene is formed in one embodiment of the present application.
  • FIG. 6 is a photograph showing a process of measuring and confirming the conductivity of graphene directly transferred onto a PI substrate in one embodiment of the present application.
  • FIG 8 is a graph showing the change in transparency of the graphene formed on the Ni film according to the plasma power / time used in one embodiment of the present application.
  • FIG 9 is a graph showing the change in transparency of the graphene formed on the Cu film according to the plasma power / time used in one embodiment of the present application.
  • FIG. 10 is a photograph showing graphene patterned after being directly transferred onto a Cu film in one embodiment of the present application.
  • FIG. 11 is a photograph showing a Ni layer formed on a PI film in one embodiment of the present application.
  • 13 is a Raman spectral graph for confirming the presence or absence of graphene formed on the Ni layer in one embodiment of the present application.
  • FIG. 14 is a photograph (a) and a Raman spectral graph (b) of a graphene sheet transferred onto a silicon wafer in one embodiment of the present disclosure.
  • FIG. 15 is an optical photograph of a graphene sheet deposited on a zinc substrate substrate at high magnification (1000 times) according to one embodiment of the present disclosure.
  • 16 is a Raman spectral graph of a graphene sheet deposited on a zinc substrate substrate, in one embodiment of the present disclosure.
  • step to the extent used throughout this specification is used to mean “step for.”
  • a layer or member when a layer or member is located “on” with another layer or member, it is not only when a layer or member is in contact with another layer or member, but also between two layers or another member between the two members. Or when another member is present.
  • graphene sheet is a graphene in which a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule, and forms a sheet form.
  • a 6-membered ring is formed as a repeating unit, it is also possible to further include a 5-membered ring and / or a 7-membered ring.
  • the graphene sheet is seen as a single layer of covalently bonded carbon atoms (usually sp 2 bond).
  • the sheet may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that may be included in graphene.
  • the graphene sheet may be formed of a single layer of graphene as described above, but it is also possible to form a plurality of layers by stacking them with each other, and the side end portion of the graphene may be saturated with hydrogen atoms.
  • ICP-CVD Inductively Coupled Plasma-Chemical Vapor Deposition
  • a first aspect of the present disclosure provides the production of graphene, comprising supplying a carbon source-containing gas on a substrate and forming graphene at a low temperature below 500 ° C. by inductively coupled plasma chemical vapor deposition (ICP-CVD). Provide a method.
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • the graphene manufacturing method may be performed by a roll-to-roll process, but is not limited thereto.
  • the method for producing graphene comprising, wherein the substrate may be sequentially loaded into the inductively coupled plasma chemical vapor deposition chamber using a load-locked chamber, but is not limited thereto.
  • a graphene growth metal catalyst layer may be further formed on the substrate, but is not limited thereto.
  • the graphene manufacturing method may include forming a graphene growth metal catalyst layer on the substrate by loading the substrate into a deposition chamber; Loading the substrate into an inductively coupled plasma chemical vapor deposition chamber, supplying the carbon source and forming graphene at low temperature by inductively coupled plasma chemical vapor deposition, the substrate comprising a load-lock chamber
  • a locked chamber may be sequentially loaded into the deposition chamber and the inductively coupled plasma chemical vapor deposition chamber, but is not limited thereto.
  • FIG 1 and 2 are views showing an apparatus that can be used to implement a method for manufacturing graphene according to an embodiment of the present application and a process for producing graphene according to an embodiment of the present application, respectively.
  • Graphene manufacturing method may be implemented using the graphene manufacturing apparatus of Figure 1, but is not limited thereto.
  • the graphene manufacturing apparatus of FIG. 1 includes a transfer chamber 11, a specimen 12, a load-locked chamber 13, a deposition chamber 14, and an ICP-CVD chamber 15. can do.
  • a graphene growth metal catalyst layer may be formed on a substrate.
  • a substrate or a graphene growth metal catalyst layer formed in the deposition chamber 14 may be formed on a substrate.
  • Graphene may be formed at low temperatures by feeding a carbon source. The substrate may be used by being sequentially moved into the deposition chamber 14 and the ICP-CVD apparatus 15 using a load-locked chamber 13, but is not limited thereto.
  • a method for manufacturing graphene may include loading the substrate 21 into the deposition chamber 14 and selectively loading the graphene on the substrate 21.
  • Forming a growth metal catalyst layer 22 (S1); The substrate 21 itself or the substrate 21 on which the graphene growth metal catalyst layer 22 is formed is loaded into the ICP-CVD chamber 15 and the carbon source 24 is supplied at low temperature by ICP-CVD.
  • Figure 3 is a schematic diagram showing the graphene manufacturing method using a roll-to-roll process according to an embodiment of the present application.
  • the graphene manufacturing method according to an embodiment of the present application may be performed by a roll-to-roll process, but is not limited thereto.
  • the substrate is loaded into the deposition chamber by a roll-to-roll process to form a graphene growth metal catalyst layer on the substrate, and the substrate on which the graphene growth metal catalyst layer is formed is subjected to a roll-to-roll process by an ICP-CVD chamber. It can be loaded into to feed a carbon source and form graphene at low temperature by ICP-CVD.
  • the graphene growth metal catalyst layer may be formed by various deposition methods known in the art, for example, electron-beam deposition, thermal deposition, sputtering, or the like. However, the substrate is loaded into the deposition chamber using the load-lock chamber.
  • Forming the graphene by the ICP-CVD is to form a graphene layer by generating a plasma of high density under low pressure.
  • the graphene layer forming method using the ICP-CVD apparatus schematically, using a conventional ICP-CVD apparatus, except that the substrate on which the graphene growth metal catalyst layer is formed using the load-lock chamber using the ICP-CVD Loaded into the device.
  • it is important that the carbon source-containing gas is uniformly sprayed to form a uniform plasma throughout the graphene growth metal catalyst layer region of the substrate, and the temperature of the substrate is lower than 500 ° C. It can be maintained to form the graphene.
  • the holding time of such an ICP-CVD process is preferably maintained for about 0.0003 to about 1 hour, for example, if the holding time of the process is less than about 0.0003 hours, sufficient graphene cannot be obtained and about 1 hour. It is not preferable because the amount of graphene produced is exceeded so that the graphitization may proceed.
  • the formed graphene is subjected to a predetermined cooling process.
  • a cooling process is a process for allowing the formed graphene to grow uniformly and be uniformly arranged. Since rapid cooling may cause cracking of the generated graphene sheet, it is preferable to gradually cool it at a constant speed. For example, it is preferable to cool at a rate of 10 degrees C or less per minute, and it is also possible to use methods, such as natural cooling. The natural cooling simply removes the heat source used for the heat treatment, and thus, it becomes possible to obtain a sufficient cooling rate only by removing the heat source.
  • the graphene sheet obtained after such a cooling process may have a thickness ranging from about 1 layer to about 300 layers, for example, a graphene thickness of a single layer, for example, from about 1 layer to about 60 layers, or It is possible to have about 1 layer to about 30 layers, or about 1 layer to about 20 layers, or about 1 layer to about 10 layers.
  • the ICP-CVD process and the cooling process as described above may be performed in one cycle, but it is also possible to repeat these several times to produce a graphene sheet having a high structure and a high density.
  • the substrate may be one having transparency or flexibility, or transparency and flexibility, but is not limited thereto.
  • the substrate may include a metal foil, a glass substrate or a polymer sheet, but is not limited thereto.
  • the metal foil may be Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, which may act as the metal catalyst layer for graphene growth.
  • the substrate is a metal foil
  • the metal foil may include, but is not limited to, aluminum foil, zinc foil, copper foil, or nickel foil.
  • graphene is grown directly by using the aluminum foil, zinc foil, copper foil, or nickel foil as a substrate, since the foil is directly used as a substrate for growing graphene rather than a general substrate, loading into the deposition chamber is prevented.
  • Graphene can be grown by loading it directly into the ICP-CVD chamber through a load-lock chamber without going through it.
  • the substrate may be a polymer sheet including a polymer compound having ⁇ -electrons or may include the polymer sheet, but is not limited thereto.
  • the polymer sheet is, for example, polyacrylate, polyethylene terephthalate, polyethylene phthalate, polyethylene naphthalate, polybutylene phthalate, polycarbonate ( polycarbonate, polystyrene, polyether imide, polyether sulfone, polydimethyl siloxane (PDMS), polyimide, and combinations thereof However, it is not limited thereto.
  • the substrate is a polymer sheet including a polymer compound having ⁇ -electrons or when the polymer sheet is included, the graphene is grown directly on the substrate, or the graphene is grown on the substrate.
  • Graphene may be grown after the metal catalyst layer is further formed, but the present disclosure is not limited thereto.
  • the carbon source may include, but is not limited to, a carbon-containing compound having about 1 to about 10 carbon atoms.
  • the carbon source may be carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butylene, butadiene, pentane, pentene, pentine, pentadiene, cyclopentane, cyclopentadiene, hexane , Hexene, cyclohexane, cyclohexadiene, benzene, toluene and combinations thereof may be selected from, but is not limited thereto.
  • Such a carbon source-containing gas is preferably introduced at a constant pressure into the chamber of the ICP-CVD apparatus loaded with the substrate or the substrate on which the graphene growth metal catalyst layer is formed, and the carbon source-containing gas in the chamber.
  • the gas may be present only with the carbon source or with an inert gas such as helium, argon or the like.
  • the carbon source-containing gas may also include hydrogen in addition to the carbon source.
  • the hydrogen may be used to control the gas phase reaction by keeping the surface of the graphene growth metal catalyst layer clean, and may use about 1 to about 40 volume% of the total volume of the vessel, preferably about 10 to about 30 volume %, More preferably about 15 to about 25 volume%.
  • the graphene growth metal catalyst layer may be a thin film or a thick film, for example, in the case of a thin film has a thickness of about 1 nm to about 1000 nm, or about 1 nm to about 500 nm, or About 1 nm to about 300 nm, and in the case of a thick film, its thickness may be about 1 mm to about 5 mm, but is not limited thereto.
  • the graphene growth metal catalyst layer when the graphene growth metal catalyst layer is thick, a problem may occur in which thick graphite crystals are formed, and it is important to control the thickness of the graphene growth metal catalyst layer, and preferably, the graphene growth
  • the metal catalyst layer may have a thickness of about 1 nm to about 1000 nm, or about 1 nm to about 500 nm, or about 1 nm to about 300 nm.
  • the graphene growth metal catalyst layer serves to help the carbon components provided from the carbon-source combine with each other to form a hexagonal plate-like structure by contacting the carbon-source.
  • the graphene growth metal catalyst layer is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, Brass, bronze, stainless steel, Ge, and combinations thereof may be selected from the group consisting of, but is not limited thereto.
  • the manufacturing method of the graphene may be to further include cooling the formed graphene, but is not limited thereto.
  • the graphene manufacturing method may further include separating the formed graphene from the substrate in the form of a sheet by etching and removing the graphene growth metal catalyst layer after forming the graphene. It may be, but is not limited thereto.
  • the etching to remove the graphene growth metal catalyst layer is acid, FeCl 3 Or combinations thereof It may be performed in an etching solution including, but is not limited thereto.
  • the removal of the graphene growth metal catalyst layer by etching may be performed by a roll to roll process. If necessary, the cleaning process may be further performed after the etching process, which may also be performed by a roll-to-roll process.
  • the graphene sheet obtained by the process of the present application as described above is obtained by simply contacting the substrate or the substrate on which the graphene growth metal catalyst layer is formed with a carbon source and cooling after the ICP-CVD process at a low temperature without a complicated process. It is simple and economical, and in particular it becomes easy to produce large area graphene sheets having a transverse and longitudinal length of at least about 1 mm, or at least about 1 cm, or from about 1 cm to about 1 m. For example, a graphene sheet having a large area can be obtained by freely adjusting the size of the substrate on which the graphene growth metal catalyst layer is formed.
  • the lateral and longitudinal lengths can be measured by selecting an appropriate position according to the shape of the graphene sheet. Particularly in circular graphene sheets, the transverse and longitudinal lengths may be diameters.
  • the base material may be used as a base material having a three-dimensional solid shape, and likewise, since the shape of the metal catalyst layer for graphene growth is not limited, it may be used even if it has various particle forms.
  • the method of manufacturing graphene may include controlling the graphene thickness formed by adjusting the execution time of the ICP-CVD process, but is not limited thereto.
  • the method for preparing graphene may include, but is not limited to, supplying a reducing gas together with the carbon hydrophobic-containing gas.
  • the reducing gas may include hydrogen, helium, argon, or nitrogen, but is not limited thereto.
  • the graphene growth metal catalyst layer may be patterned, but is not limited thereto.
  • Graphene obtained as described above can be confirmed through the Raman spectrum. That is, since pure graphene shows a G 'peak around 1594 cm ⁇ 1 in the Raman spectrum, it is possible to confirm the production of graphene through the presence of such a peak.
  • the graphene according to the present application is obtained through the ICP-CVD process at a low temperature of pure material and low temperature, the D band in the Raman spectrum indicates the presence of a defect present in the graphene, the peak intensity of the D band If it is high, it can be interpreted that there is a large amount of defects, and if the peak intensity of such a D band is low or not at all, it can be interpreted as almost no defect.
  • the separated graphene sheet as described above has an advantage that it can be processed in various ways according to the intended use. That is, it can be cut into a specific shape or wound in a specific direction to form a tube.
  • the graphene sheet thus formed may be used by transferring or bonding to a desired object.
  • the graphene sheet can be utilized for various purposes. First, the conductivity is excellent, and the uniformity of the film is high, so that it can be usefully used as a transparent electrode. In solar cells and the like, an electrode is used on a substrate, and a transparent electrode is required due to the property that light must pass therethrough. In the case of using the graphene sheet as the transparent electrode, as well as excellent conductivity, the graphene sheet can be easily bent because the graphene sheet has the property of easily bent. That is, when flexible plastic is used as a base material and the said graphene sheet is utilized as a transparent electrode, it becomes possible to manufacture the solar cell etc. which can be bent.
  • target conductivity can be exhibited even in a small quantity, and it becomes possible to improve the light transmittance.
  • the graphene sheet when utilized as a panel conductive thin film of various display elements, etc., target conductivity can be exhibited even in a small quantity, and it becomes possible to improve the light transmittance.
  • the graphene sheet when manufactured in a tube shape, it can be utilized as an optical fiber, and can also be used as a membrane for selectively transmitting hydrogen storage material or hydrogen.
  • a second aspect of the present application forming graphene on the metal catalyst layer for graphene growth formed on the substrate; Removing the graphene growth metal catalyst layer may provide a direct transfer method of graphene, including directly transferring the formed graphene onto the substrate.
  • removing the graphene growth metal catalyst layer is acid, salt, FeCl 3 Or combinations thereof It may be performed by an etching process using an etching solution including, but is not limited thereto.
  • the graphene growth metal catalyst layer may be removed by etching by a roll-to-roll process (FIG. 3A), and if necessary, after the etching process, a washing process may be further performed, and this may also be performed by a roll-to-roll process. (FIG. 3B).
  • the transfer of the formed graphene directly to the substrate may be performed by a roll-to-roll process.
  • forming the graphene is 500 ° C. or less by Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) by the method according to the first aspect of the present application. It may be carried out at a low temperature of, but is not limited thereto. All of the contents described for the method for producing graphene according to the first aspect of the present application may be applied to all of the forming of the graphene in the second aspect of the present application, and duplicate descriptions are omitted for convenience.
  • ICP-CVD Inductively Coupled Plasma-Chemical Vapor Deposition
  • Direct transfer method of graphene according to an embodiment of the present application may be performed including the process shown in FIG.
  • the carbon source-containing gas 24 is supplied to the graphene growth metal catalyst layer 22 formed on the substrate 21. And forming graphene 23 at a low temperature of 500 ° C. or lower by ICP-CVD (S3), and directly transferring the formed graphene onto the substrate by removing the graphene growth metal catalyst layer 22. It may include (S4), but is not limited thereto. Information on the graphene manufacturing method can be applied to all the direct transfer method of the graphene.
  • forming graphene on the graphene growth metal catalyst layer formed on the substrate and directly transferring the formed graphene on the substrate by removing the graphene growth metal catalyst layer It may be performed by a roll-to-roll process as shown in Figure 3, but is not limited thereto.
  • the graphene growth metal catalyst layer may be removed by etching by a roll-to-roll process (FIG. 3a), and if necessary, after the etching process, a washing process may be further performed, and this may also be a roll-to-roll process. It can be performed by (Fig. 3b).
  • removing the graphene growth metal catalyst layer is acid, salt, FeCl 3 Or combinations thereof It may be performed by an etching process using an etching solution including, but is not limited thereto.
  • the graphene growth metal catalyst layer is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, brass (brass), bronze (bronze), stainless steel (stainless steel), Ge and may include those selected from the group consisting of, but is not limited thereto.
  • the graphene forming process may include all of the contents described for the graphene sheet manufacturing method, and duplicate descriptions are omitted for convenience.
  • the substrate may be a polymer sheet including a polymer compound having ⁇ -electrons or a substrate including the polymer sheet, but is not limited thereto.
  • the polymer sheet for example, polyacrylate, polyethylene ether phthalate, polyethylene phthalate, polyethylene naphthalate, polybutylene phthalate, polycarbonate ( polycarbonate, polystyrene, polyether imide, polyether sulfone, polydimethyl siloxane (PDMS), polyimide, and combinations thereof However, it is not limited thereto.
  • graphene growth metal catalyst layer As the graphene growth metal catalyst layer is etched and removed, sp 2 electrons of the graphene are attracted to the polymer sheet by attraction ( ⁇ van der Waals force, etc.) with ⁇ -electrons present on the surface of the polymer sheet. Combined and directly transferred.
  • graphene may be directly transferred to the polymer sheet or the substrate including the polymer sheet at the same time without synthesis.
  • the substrate including the polymer sheet may be a polymer sheet formed on a transparent substrate such as glass, but is not limited thereto.
  • a third aspect of the present application provides a graphene sheet comprising a substrate and graphene formed on the substrate.
  • the graphene may be prepared by the method according to the first aspect of the present application, but is not limited thereto.
  • the graphene is supplied to the carbon source-containing gas on the substrate or the metal catalyst layer for graphene growth formed on the substrate and inductively coupled plasma chemical vapor deposition (Inductively Coupled Plasma- Chemical Vapor Deposition (ICP-CVD) may be formed at a low temperature below 500 °C, but is not limited thereto.
  • ICP-CVD Inductively Coupled Plasma- Chemical Vapor Deposition
  • the graphene sheet may supply a carbon source-containing gas on a separate substrate or a graphene growth metal catalyst layer formed on the separate substrate, and inductively coupled plasma chemical vapor deposition ( What is formed at a low temperature of 500 ° C. or lower by Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) may be formed by transferring onto a desired target substrate, but is not limited thereto.
  • the transfer method may use a wet or dry transfer method known in the art.
  • the graphene sheet may be prepared by a method of directly transferring graphene according to the second aspect of the present application, but is not limited thereto.
  • the graphene sheet may supply a carbon source-containing gas to the graphene growth metal catalyst layer formed on the substrate and form graphene at a low temperature of 500 ° C. or lower by ICP-CVD.
  • the graphene growth may be formed by a process including directly transferring the formed graphene onto the substrate by removing the metal catalyst layer, but is not limited thereto.
  • the graphene sheet may be doped with a dopant including an organic dopant, an inorganic dopant, or a combination thereof, but is not limited thereto.
  • the dopant is NO 2 BF 4 , NOBF 4 , NO 2 SbF 6 , HCl, H 2 PO 4 , H 3 CCOOH, H 2 SO 4 , HNO 3 , PVDF, Nafion , AuCl 3 , HAuCl 4 , SOCl 2 , Br 2 , dichloro dicyanoquinone, oxone, dimyristoyl phosphatidyl inositol and trifluoromethanesulfonimide may include, but are not limited to It doesn't happen.
  • the substrate may be one having transparency or flexibility, or transparency and flexibility, but is not limited thereto.
  • the substrate may include a metal foil, a glass substrate or a polymer sheet, but is not limited thereto.
  • the substrate may be a polymer sheet including the polymer compound having ⁇ -electrons or the polymer sheet, but is not limited thereto.
  • the polymer sheet for example, polyacrylate, polyethylene ether phthalate, polyethylene phthalate, polyethylene naphthalate, polybutylene phthalate, polycarbonate ( polycarbonate, polystyrene, polyether imide, polyether sulfone, polydimethyl siloxane (PDMS), polyimide, and combinations thereof However, it is not limited thereto.
  • the thickness of the graphene sheet may be about 1 layer to about 300 layers, but is not limited thereto.
  • the length of the graphene sheet in the longitudinal and transverse direction may be about 1 mm to about 1 m, but is not limited thereto.
  • the graphene growth metal catalyst layer may be a thin film or a thick film, for example, in the case of a thin film, the thickness thereof is about 1 nm to about 1000 nm, or about 1 nm to about 500 nm or about 1 nm to about 300 nm, and, in the case of a thick film, its thickness may be about 1 mm to about 5 mm, but is not limited thereto.
  • the graphene growth metal catalyst layer is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, brass (brass), bronze (bronze), stainless steel (stainless steel), Ge and may include those selected from the group consisting of, but is not limited thereto.
  • Graphene was prepared and directly transferred onto a polyimide (PI) polymer sheet substrate by a process as shown in FIG. 2 using a manufacturing apparatus as shown in FIG. 1. Specifically, a polyimide (PI) polymer sheet substrate was loaded into the deposition chamber using a load-lock chamber to RF sputter each of the various (patterned) Ni and Cu layers as a metal catalyst layer for graphene growth to a thickness of 150 nm. It was deposited by the method.
  • PI polyimide
  • FIG. 7 and 8 show the Raman spectrum of graphene formed on the Ni film according to the graphene formation temperature by ICP-CVD and the transparency change of the graphene formed on the Ni film according to the plasma power / time used (UV-Vis). Absorption spectrum measurement).
  • the Raman spectrum of FIG. 7 was measured for graphene grown at 300 ° C., 400 ° C. and 500 ° C. in the same manner as described above on the glass substrate, and was grown on the polyimide (PI) polymer substrate at 300 ° C. The same Raman spectrum was obtained for graphene.
  • graphene can be grown at a low temperature by depositing a graphene growth metal catalyst layer on a glass or polyimide (PI) polymer sheet substrate using the ICP-CVD apparatus through the Raman spectrum, and also shows the growth time of the graphene. It was confirmed that the transparency can be improved by adjusting.
  • PI polyimide
  • FIG. 9 is a graph showing the change in transparency (using UV-Vis absorption spectrum measurement) of graphene formed on the Cu film according to the plasma power / time used.
  • FIG. 10 is a photograph showing that graphene is formed while directly transferring the graphene formed on the patterned Cu film using the method of FIG. 2 while maintaining a patterned shape.
  • FIG. 11 is a photograph showing the Ni layer formed on the PI film substrate, it can be seen that Ni is evenly formed on the front surface using the RF sputter.
  • FIG. 12 is an optical photograph measured at high magnification (1000 ⁇ ) after growing graphene on a Ni thin film deposited on the PI film of FIG. 11.
  • the graphene sheet grown on the Ni layer Obtained. It was found that a graphene thin film was formed on the Ni film with a tens of micrometer grain size.
  • Figure 13 shows the Raman spectrum results for confirming the presence of graphene on the Ni layer.
  • a graph and a Raman spectrum of the graphene sheet transferred onto the silicon wafer of graphene formed on the Ni layer are shown in FIG. 13.
  • one and two Raman spectra scans are shown in the graphene sheet of FIG. 12.
  • a commercially available aluminum foil as a substrate using a manufacturing apparatus of Figure 1 was prepared by low-temperature growth of the graphene sheet on the aluminum foil. Specifically, an aluminum foil substrate is loaded into the ICP-CVD chamber using a load-locking chamber, followed by annealing at each temperature using hydrogen gas at a temperature of 300 ° C. to 500 ° C., followed by carbon and argon-containing gas.
  • a commercially available zinc substrate as a substrate using the manufacturing apparatus of Figure 1 was prepared by low-temperature growth of the graphene sheet on the zinc substrate.
  • FIGS. 15 and 16 Photographs and Raman spectra of graphene sheets grown on the zinc substrate are shown in FIGS. 15 and 16, respectively.
  • Al 1 and Al in the Raman spectrum of FIG. 2 shows 4 and 5 scans of the Raman spectrum, respectively.
  • the Raman spectrum of FIG. 16 is specific for graphene grown at 400 ° C. in the same manner as described above on a glass substrate, and the same Raman for graphene grown on a polyimide (PI) polymer substrate at 300 ° C. Spectra were obtained.
  • the Raman spectrum confirmed that it is possible to grow graphene at low temperature on the zinc sheet substrate using the ICP-CVD equipment, and showed the possibility of using as a heat insulating material or a heat insulating material.

Abstract

본원은 그래핀의 저온 형성 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트에 관한 것으로서, 상기 그래핀의 저온 형성 방법은 기재 상에 형성된 그래핀 성장용 금속 촉매층에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학기상증착(ICP-CVD)에 의하여 500℃ 이하의 저온에서 그래핀을 형성하는 것을 포함할 수 있다.

Description

그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
본원은 유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)을 이용한 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트에 관한 것이다.
탄소 원자들로 구성된 저차원 나노물질로는 풀러렌(fullerene), 탄소나노튜브(carbon Nanotube), 그래핀(graphene), 흑연(graphite) 등이 존재한다. 즉, 탄소 원자들이 6 각형 모양의 배열을 이루면서 공 모양이 되면 0 차원 구조인 풀러렌, 1 차원적으로 말리면 탄소나노튜브, 2 차원상에서 원자 한 층으로 이루어지면 그래핀, 3 차원으로 쌓이면 흑연으로 구분을 할 수 있다.
특히, 그래핀은 전기적/기계적/화학적인 특성이 매우 안정적이고 뛰어날 뿐만 아니라 우수한 전도성 물질로서 실리콘보다 100 배 빠르게 전자를 이동시키며 구리보다도 약 100 배 가량 더 많은 전류를 흐르게 할 수 있는데, 이는 2004 년 흑연으로부터 그래핀을 분리하는 방법이 발견되면서 실험을 통하여 증명되었으며 현재까지 많은 연구가 진행되고 있다.
그래핀은 상대적으로 가벼운 원소인 탄소만으로 이루어져 1 차원 또는 2 차원 나노패턴을 가공하기가 매우 용이하다는 장점이 있으며, 이를 활용하면 반도체-도체 성질을 조절할 수 있을 뿐만 아니라 탄소가 가지는 화학결합의 다양성을 이용해 센서, 메모리 등 광범위한 기능성 소자의 제작도 가능하다.
한편, 상기한 바와 같은 그래핀의 뛰어난 전기적/기계적/화학적 성질에도 불구하고 그 동안 대량 합성법이 개발되지 못했기 때문에 실제 적용 가능한 기술에 대한 연구는 매우 제한적이었다. 종래의 대량 합성법은 주로 흑연을 기계적으로 분쇄하여 용액 상에 분산시킨 후 자기조립 현상을 이용해 박막으로 만드는 것이었다. 비교적 저렴한 비용으로 합성이 가능하다는 장점이 있지만 수많은 그래핀 조각들이 서로 겹치면서 연결된 구조로 인해 전기적, 기계적 성질은 기대에 미치지 못했다.
또한, 최근 급격히 늘어난 평판 디스플레이의 수요로 인해 세계 투명전극 시장은 향후 10 년 안에 20 조원 대로 성장할 것으로 예상된다. 디스플레이 산업이 발전한 우리나라의 특성상 해마다 국내 수요도 수천 억원에 이르지만 원천기술의 부족으로 대부분 수입에 의존하고 있다. 대표적인 투명전극인 인듐주석산화물(Indium Tin Oxide; ITO)은 디스플레이, 터치스크린, 태양전지 등에 광범위하게 응용되고 있지만 최근 인듐의 고갈로 인해 단가가 상승하면서 대체물질의 시급한 개발이 요구되어 왔다. 또한 깨어지기 쉬운 ITO의 특성으로 인해 접거나 휘거나 늘릴 수 있는 차세대 전자제품에의 응용이 큰 제약을 받아왔다. 이에 반해, 그래핀은 뛰어난 신축성, 유연성 및 투명도를 동시에 가지면서도 상대적으로 간단한 방법으로 합성 및 패터닝이 가능하다는 장점을 가질 것으로 예측되었다. 이러한 그래핀 전극은 향후 대량 생산기술 확립이 가능한 경우 수입대체 효과뿐 아니라 차세대 플렉시블 전자산업 기술 전반에 혁신적인 파급을 미칠 것으로 예상된다.
그러나, 상기 그래핀 필름은 효율적 합성, 전사, 및 도핑 방법의 결핍으로 인하여 그래핀 필름의 실제 생산에 대해 요구되는 품질 및 스케일을 제한했다. 예를 들어, 일반적으로 태양 전지에서 사용되는 ITO와 같은 종래 투명전극은 무제한적 확장성(unlimited scalability), ~ 90% 광학 투명도 및 100 Ohm/square 보다 작은 시트 저항을 보여 주는 반면, 그래핀 필름의 최고 기록은 여전히 약 ~ 500 Ohm/square 시트 저항, ~ 90% 투명도 및 수 센티미터 스케일로 남아 있어 이에 대한 문제점이 존재한다. 대한민국 공개특허 제2009-0026568호에서는 그래파이트화 촉매 위에 폴리머를 도포하여 열처리 공정한 후 그라펜을 중합시키는 방법에 대하여 개시하고 있으나, 500℃이상의 고온에서 열처리를 실시해야 하므로, 저온에서 그래핀을 용이하게 제조할 수 있는 기술의 개발이 요구되고 있다.
상기 문제점을 해결하기 위하여, 본원은, 유도결합플라즈마 화학기상증착(ICP-CVD)을 이용하여 500℃ 이하의 저온에서 그래핀을 용이하게 제조할 수 있는 것을 발견하여 본원을 완성하였다.
이에, 본원은 유도결합플라즈마 화학기상증착(ICP-CVD)을 이용한 그래핀의 저온 제조 방법, 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트를 제공하고자 한다. 또한, 본원은 롤투롤 공정에 의하여 수행되는 유도결합플라즈마 화학기상증착(ICP-CVD)을 이용한 그래핀의 저온 제조 방법, 이를 이용한 그래핀 직접 전사 방법을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 기재 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학증기증착(ICP-CVD)에 의하여 500℃ 이하의 저온에서 그래핀을 형성하는 것을 포함하는, 그래핀의 제조 방법을 제공한다. 본원 일 구현예에 따르면, 상기 그래핀의 제조 방법은 롤투롤 공정에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다. 본원 일 구현예에 따르면, 상기 기재 상에 그래핀 성장용 금속 촉매층이 추가 형성될 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 2 측면은, 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 그래핀을 형성하고; 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것을 포함하는, 그래핀의 직접 전사 방법을 제공할 수 있다.
본원의 제 3 측면은, 기재 및 상기 기재 상에 형성된 그래핀을 포함하는 그래핀 시트를 제공한다. 본원의 일 구현예에 따르면, 상기 그래핀은 상기 본원의 제 1 측면에 따른 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되는 것은 아니다. 본원의 일 구현예에 따르면, 상기 그래핀 시트는 상기 본원의 제 2 측면에 따른 그래핀의 직접 전사 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원에 의하면, 유도결합플라즈마 화학기상증착(ICP-CVD)을 이용하여 500℃ 이하의 저온에서 기재 상에 또는 상기 기재상에 형성된 그래핀 성장용 금속 촉매층 상에 그래핀 시트를 용이하게 제조할 수 있다. 또한, 상기 그래핀 시트 제조 방법의 과정은 롤투롤 공정에 의하여 수행될 수 있어 연속공정으로 저온에서 대면적 그래핀을 용이하게 제조할 수 있다. 상기 기재로는 고온에서 사용하기 곤란한 기재를 본원에서는 안전하게 사용할 수 있으며 투명성 및/또는 유연성을 가지는 다양한 기재에 본원의 방법을 적용할 수 있다. 특히 유리 또는 고분자 기재를 사용하여 이들 기재 상에 저온에서 그래핀 시트를 용이하게 형성할 수 있다. 또한, 본원의 그래핀 시트 제조 방법을 이용하여 고분자 시트 기재 또는 고분자 시트가 형성된 기재를 사용하는 경우 상기 방법에 의하여 형성된 그래핀 시트를 상기 기재에 간단하게 직접 전사할 수 있어 별도 공정 없이 기재 상에 그래핀 필름을 직접 전사할 수 있다.
본원에 따른 유도결합플라즈마 화학기상증착(ICP-CVD)을 이용한 그래핀 시트의 저온 형성 방법, 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트는 또한 다양한 전기/전자 소자의 구성 및 제조에 응용될 수 있다.
도 1은 본원의 일 구현예에 따른 그래핀 제조장치를 나타낸 도면이다.
도 2는 본원의 일 구현예에 따른 그래핀의 제조방법 및 전사방법을 나타낸 도면이다.
도 3a 및 도 3b는 본원의 일 구현예에 따른 롤투롤 공정을 이용한 그래핀의 제조방법 및 전사방법을 나타낸 도면이다.
도 4는 본원의 일 실시예에 있어서 패터닝된 니켈 박막에 성장시킨 그래핀의 에칭 전(a) 후(b) 사진이다.
도 5는 본원의 일 실시예에 있어서 그래핀이 형성된 PI 기재(좌측) 및 상기 그래핀 시트가 형성되기 전의 PI 기재(우측)의 투명도를 비교한 사진이다.
도 6은 본원의 일 실시예예 있어서 PI 기재 상에 직접 전사된 그래핀의 전도도를 측정하여 확인하는 과정을 보여주는 사진이다.
도 7은 본원의 일 실시예에 있어서 다른 온도에서 Ni 필름 위에 형성된 그래핀의 라만 스펙트럼이다.
도 8은 본원의 일 실시예에 있어서 사용된 플라즈마 파워/시간에 따른 Ni 필름 위에 형성된 그래핀의 투명도 변화를 나타낸 그래프이다.
도 9는 본원의 일 실시예에 있어서 사용된 플라즈마 파워/시간에 따른 Cu 필름 위에 형성된 그래핀의 투명도 변화를 나타낸 그래프이다.
도 10은 본원의 일 실시예에 있어서 Cu 필름 위에 직접 전사된 후 패터닝된 그래핀을 나타낸 사진이다.
도 11은 본원의 일 실시예에 있어서 PI 필름 상에 형성된 Ni 층을 나타낸 사진이다.
도 12는 본원의 일 실시예에 있어서 Ni 층 상에 형성된 그래핀을 고배율(1000배)에서 측정한 광학사진이다.
도 13은 본원의 일 실시예에 있어서, Ni 층 상에 형성된 그래핀의 유무를 확인하기 위한 라만 스펙트럼 그래프이다.
도 14는 본원의 일 실시예에 있어서 실리콘 웨이퍼 상에 전사된 그래핀 시트에 대한 사진(a)과 라만 스펙트럼 그래프(b)이다.
도 15는 본원의 일 실시예에 있어서, 아연 기판 기재 상에 증착된 그래핀 시트를 고배율(1000배)에서 측정한 광학사진이다.
도 16은 본원의 일 실시예에 있어서, 아연 기판 기재 상에 증착된 그래핀 시트의 라만 스펙트럼 그래프이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로”등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 명세서 전체에서 사용되는 정도의 용어 "~ 단계"는 "~ 을 위한 단계"를 의미하지 않는 것으로 사용된다. 본원 명세서 전체에서, 어떤 층 또는 부재가 다른 층 또는 부재와 "상에" 위치하고 있다고 할 때, 이는 어떤 층 또는 부재가 다른 층 또는 부재에 접해 있는 경우뿐 아니라 두 층 또는 두 부재 사이에 또 다른 층 또는 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 사용되는 "그래핀 시트" 라는 용어는 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 시트 형태를 형성한 것으로서, 상기 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6 원환을 형성하나, 5 원환 및/또는 7 원환을 더 포함하는 것도 가능하다. 따라서 상기 그래핀시트는 서로 공유결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 상기 시트는 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5 원환 및/또는 7 원환의 함량에 따라 달라질 수 있다. 상기 그래핀 시트는 상술한 바와 같은 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러 개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 상기 그래핀의 측면 말단부는 수소원자로 포화될 수 있다.
또한, 본 명세서에서 사용되는 "유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)"라는 용어는 하기 "ICP-CVD"로 표기될 수 있다.
본원의 제 1 측면은, 기재 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학기상증착(ICP-CVD)에 의하여 500℃ 이하의 저온에서 그래핀을 형성하는 것을 포함하는, 그래핀의 제조 방법을 제공한다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은 롤투롤 공정에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은, 상기 기재를 유도결합플라즈마 화학기상증착 챔버 내로 로딩(loading)하고 상기 탄소 소스를 공급하고 유도결합플라즈마 화학기상증착에 의하여 저온에서 그래핀을 형성하는 단계:를 포함하며, 상기 기재는 로드-잠금 챔버(load-locked chamber)를 이용하여 유도결합플라즈마 화학기상증착 챔버 내로 순차적으로 로딩되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 기재 상에 그래핀 성장용 금속 촉매층이 추가 형성될 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은, 상기 기재를 증착 챔버 내로 로딩(loading)하여 상기 기재상에 상기 그래핀 성장용 금속 촉매층을 형성하는 단계; 상기 기재를 유도결합플라즈마 화학기상증착 챔버 내로 로딩하고 상기 탄소 소스를 공급하고 유도결합플라즈마 화학기상증착에 의하여 저온에서 그래핀을 형성하는 단계:를 포함하며, 상기 기재는 로드-잠금 챔버(load-locked chamber)를 이용하여 상기 증착 챔버 및 유도결합플라즈마 화학기상증착 챔버 내로 순차적으로 로딩되는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 1 및 도 2는 본원의 일 구현예에 따른 그래핀의 제조 방법을 구현하기 위하여 사용될 수 있는 장치 및 본원의 일 구현예에 따른 그래핀의 제조 방법의 과정을 각각 나타낸 도면이다.
본원의 일 구현예에 따른 그래핀의 제조 방법은 도 1의 그래핀의 제조 장치를 이용하여 구현될 수 있으나, 이에 제한되는 것은 아니다. 상기 도 1의 그래핀 제조 장치는, 이송 챔버(11), 시편(12), 로드-잠금 챔버(load-locked chamber)(13), 증착 챔버(14) 및 ICP-CVD 챔버(15)를 포함할 수 있다. 상기 증착 챔버(14)에서 기재 상에 그래핀 성장용 금속 촉매층이 형성될 수 있으며, ICP-CVD 챔버(15)에서는 기재 또는 상기 증착 챔버(14)에서 형성된 그래핀 성장용 금속 촉매층이 형성된 기재에 탄소 소스를 공급하여 저온에서 그래핀을 형성될 수 있다. 상기 기재는 로드-잠금 챔버(load-locked chamber)(13)를 이용하여 상기 증착 챔버(14) 및 ICP-CVD 장치(15) 내로 순차적으로 이동되어 이용되는 것이나, 이에 제한되는 것은 아니다.
도 1 및 도 2를 참조하면, 본원의 일 구현예에 따른 그래핀의 제조 방법은, 기재(21)를 증착 챔버(14) 내로 로딩(loading)하여 기재(21) 상에 선택적으로 상기 그래핀 성장용 금속 촉매층(22)을 형성하는 단계(S1); 상기 기재(21) 자체 또는 상기 그래핀 성장용 금속 촉매층(22)이 형성된 기재(21)를 ICP-CVD 챔버(15) 내로 로딩하고 상기 탄소 소스(24)를 공급하고 ICP-CVD에 의하여 저온에서 그래핀(23)을 형성하는 단계(S2)를 포함하며, 상기 기재는 로드-잠금 챔버(load-locked chamber)(13)를 이용하여 상기 증착 챔버(14) 및 ICP-CVD 장치(15) 내로 순차적으로 수행되는 것이나, 이에 제한되는 것은 아니다.
도 3은 본원의 일 구현예에 따른 롤투롤 공정을 이용한 상기 그래핀 제조 방법을 나타내는 모식도이다.
도 3을 참조하면, 본원의 일 구현예에 따른 상기 그래핀 제조 방법은 롤투롤 공정에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 롤투롤 공정에 의하여 상기 기재를 증착 챔버 내로 로딩하여 기재 상에 그래핀 성장용 금속 촉매층을 형성하고, 상기 그래핀 성장용 금속 촉매층이 형성된 기재를 롤투롤 공정에 의해 ICP-CVD 챔버 내로 로딩하여 탄소 소스를 공급하고 ICP-CVD 에 의하여 저온에서 그래핀을 형성할 수 있다.
상기 그래핀 성장용 금속 촉매층은 당업계에 공지된 다양한 증착 방법, 예를 들어, 전자-빔 증착, 열증착, 스퍼터링 방법 등에 의하여 형성될 수 있다. 다만, 상기 기재는 상기 로드-잠금 챔버를 이용하여 상기 증착 챔버 내로 로딩된다.
상기 ICP-CVD에 의하여 상기 그래핀을 형성하는 것은 낮은 압력 하에서 높은 밀도의 플라즈마를 발생시켜 그래핀층을 형성하는 것이다. 상기 ICP-CVD 장치를 이용한 그래핀층 형성 방법을 개략적으로 살펴보면, 통상의 ICP-CVD 장치를 이용하며, 다만 상기 그래핀 성장용 금속 촉매층이 형성된 기재는 상기 로드-잠금 챔버를 이용하여 상기 ICP-CVD 장치 내로 로딩된다. 상기 기재가 로딩된 ICP-CVD 장치의 챔버를, 예를 들어, 약 5 mTorr 내지 약 100 mTorr 정도의 진공도를 유지하면서 상기 탄소 소스-함유 가스를 주입하고, 수 백 kHz 내지 수 백 MHz의 고주파 전력을 인가함으로써 형성되는 유도자장에 의해 상기 챔버 내에 플라즈마를 형성하게 되어 상기 챔버 내에 로딩된 상기 기재 상에 형성된 상기 그래핀 성장용 금속 촉매층 상에 탄소 소스-함유 가스의 반응에 의하여 그래핀이 형성된다. 상기 ICP-CVD 과정은 상기 기재의 그래핀 성장용 금속 촉매층 영역 전체에서 상기 탄소 소스-함유 가스가 균일하게 분사되어 균일한 플라즈마를 형성되도록 하는 것이 중요하며, 상기 기재의 온도를 500℃ 이하의 저온으로 유지하여 상기 그래핀을 형성할 수 있다.
상기 로드-잠금 챔버를 이용함으로써 그래핀 형성 전의 과정에서 산소와의 접촉을 피할 수 있어, 쉽게 산화되는 그래핀 성장용 금속 촉매층을 이용하는 경우에도 산화의 우려 없이 상기 그래핀 형성 과정을 수행할 수 있다.
상기 ICP-CVD에 의한 그래핀 증착 과정을 소정 온도에서 일정한 시간 동안 유지함으로써 그래핀의 생성 정도를 조절하는 것이 가능하다. 즉 상기 ICP-CVD 과정을 오랜 동안 유지할 경우, 생성되는 그래핀이 많아지므로 결과적으로 그래핀 시트의 두께를 증가시킬 수 있으며, 상기 ICP-CVD 공정이 짧아지면 결과적으로 그래핀 시트의 두께를 감소시키는 효과를 낳게 된다. 따라서 목적하는 그래핀 시트의 두께를 얻기 위해서는 상기 탄소 소스의 종류 및 공급 압력, 그래핀 성장용 촉매의 종류, 챔버의 크기 외에, 상기 ICP-CVD 공정의 유지시간이 중요한 요소로서 작용할 수 있다. 이와 같은 ICP-CVD 공정의 유지 시간은, 예를 들어, 약 0.0003 내지 약 1 시간 동안 유지하는 것이 바람직하며, 상기 공정의 유지시간이 약 0.0003 시간 미만이면 충분한 그래핀을 얻을 수 없으며, 약 1 시간을 초과하는 경우 생성되는 그래핀이 너무 많아져 그래파이트화가 진행될 우려가 있으므로 바람직하지 않다.
상기와 같은 ICP-CVD 공정 이후에, 상기 형성된 그래핀에 대하여 소정의 냉각 공정을 거치게 된다. 이와 같은 냉각 공정은 형성된 그래핀이 균일하게 성장하여 일정하게 배열될 수 있도록 하기 위한 공정으로서, 급격한 냉각은 생성되는 그래핀 시트의 균열 등을 야기할 수 있으므로, 가급적 일정 속도로 서서히 냉각시키는 것이 바람직하며, 예를 들어 분당 10℃ 이하의 속도로 냉각시키는 것이 바람직하고, 자연 냉각 등의 방법을 사용하는 것도 가능하다. 상기 자연 냉각은 열처리에 사용된 열원을 단순히 제거한 것으로서, 이와 같이 열원의 제거만으로도 충분한 냉각 속도를 얻는 것이 가능해진다.
이와 같은 냉각공정 이후 얻어지는 그래핀 시트는, 예를 들어, 단일층의 그래핀 두께인 약 1 층부터 약 300 층에 이르는 두께를 가질 수 있으며, 예를 들어, 약 1 층 내지 약 60 층, 또는 약 1 층 내지 약 30 층, 또는 약 1 층 내지 약 20 층, 또는 약 1 층 내지 약 10 층을 갖는 것이 가능하다.
상술한 바와 같은 ICP-CVD 공정 및 냉각 과정은 1 사이클 과정으로 수행할 수 있으나, 이들을 수 차례 반복하여 층수가 높으면서 치밀한 구조의 그래핀 시트를 생성하는 것도 가능하다.
본원의 일 구현예에 따르면, 상기 기재는 투명성 또는 유연성, 또는 투명성 및 유연성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 기재는 금속 호일, 유리 기재 또는 고분자 시트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 기재가 금속 호일인 경우, 상기 금속 호일은 상기 그래핀 성장용 금속 촉매층으로서 작용할 수 있는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, 황동(brass), 청동(bronze), 스테인레스 스틸(stainless steel), Ge 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 이에 따라, 상기 기재가 금속 호일인 경우 상기 기재 상에 상기 그래핀 성장용 금속 촉매층을 추가로 형성할 필요가 없으며 상기 기재 상에 직접 그래핀을 형성할 수 있다. 예를 들어, 상기 금속 호일은, 알루미늄 호일, 아연 호일, 구리 호일, 또는 니켈 호일을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 알루미늄 호일, 아연 호일, 구리 호일, 또는 니켈 호일을 기재로서 이용하여 직접 그래핀을 성장하는 경우, 상기 호일이 일반적인 기재가 아닌 그래핀 성장용 기재로 직접 사용된 것이므로, 증착 챔버로의 로딩을 거치지 않고 로드-잠금 챔버를 통하여 직접 ICP-CVD 챔버 내로 로딩하여 그래핀을 성장시킬 수 있다.
본원의 일 구현예에 따르면, 상기 기재는 π-전자를 가지는 고분자 화합물을 포함하는 고분자 시트이거나 또는 상기 고분자 시트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 고분자 시트는, 예를 들어, 폴리아크릴레이트(polyacrylate), 폴리에틸렌테레프탈레이트(polyethylene terephthalate), 폴리에틸렌 프탈레이트(polyethylene phthalate), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate), 폴리부틸렌 프탈레이트(polybuthylene phthalate), 폴리카보네이트(polycarbonate), 폴리스티렌(polystyrene), 폴리에테르이미드(polyether imide), 폴리에테르술폰(polyether sulfone), 폴리디메틸실록산(polydimethyl siloxane; PDMS), 폴리이미드 및 이들의 조합으로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 기재는 π-전자를 가지는 고분자 화합물을 포함하는 고분자 시트이거나 또는 상기 고분자 시트를 포함하는 경우, 상기 기재 상에 직접 그래핀을 성장시키거나, 또는 상기 기재 상에 상기 그래핀 성장용 금속 촉매층을 추가로 형성한 후 그래핀을 성장시킬 수 있으나, 본원이 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 탄소 소스는 탄소수 약 1 내지 약 10을 가지는 탄소-함유 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 탄소 소스는 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부틸렌, 부타디엔, 펜탄, 펜텐, 펜틴, 펜타디엔, 사이클로펜탄, 사이클로펜타디엔, 헥산, 헥센, 사이클로헥산, 사이클로헥사디엔, 벤젠, 톨루엔 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.
이와 같은 탄소 소스-함유 가스는 상기 기재 또는 상기 그래핀 성장용 금속 촉매층이 형성된 기재가 로딩된 상기 ICP-CVD 장치의 챔버 내에 일정한 압력으로 투입되는 것이 바람직하며, 상기 챔버 내에서는 상기 탄소 소스-함유 가스는 상기 탄소 소스만 존재하거나, 또는 헬륨, 아르곤 등과 같은 불황성 가스와 함께 존재하는 것도 가능하다. 또한, 상기 탄소 소스-함유 가스는 상기 탄소 소스와 더불어 수소를 포함할 수 있다. 상기 수소는 상기 그래핀 성장용 금속 촉매층의 표면을 깨끗하게 유지하여 기상 반응을 제어하기 위하여 사용될 수 있으며, 용기 전체 부피의 약 1 내지 약 40 부피% 사용 가능하고, 바람직하게는 약 10 내지 약 30 부피%이며, 더욱 바람직하게는 약 15 내지 약 25 부피% 이다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층은 박막 또는 후막일 수 있으며, 예들 들어, 박막인 경우 그의 두께는 약 1 nm 내지 약 1000 nm, 또는 약 1 nm 내지 약 500 nm, 또는 약 1 nm 내지 약 300 nm 일 수 있으며, 또한, 후막인 경우 그의 두께는 약 1 mm 내지 약 5 mm 일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 그래핀 성장용 금속 촉매층이 두꺼운 경우 두꺼운 그래파이트 결정이 형성되는 문제가 발생될 수 있으므로, 상기 그래핀 성장용 금속 촉매층의 두께를 조절하는 것이 중요하며, 바람직하게, 상기 그래핀 성장용 금속 촉매층의 두께는 약 1 nm 내지 약 1000 nm, 또는 약 1 nm 내지 약 500 nm, 또는 약 1 nm 내지 약 300 nm 일 수 있다.
상기 그래핀 성장용 금속 촉매층은 상기 탄소-소스와 접촉함으로써 탄소-소스로부터 제공된 탄소성분들이 서로 결합하여 6 각형의 판상 구조를 형성하도록 도와주는 역할을 수행한다. 예를 들어, 상기 그래핀 성장용 금속 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, 황동(brass), 청동(bronze), 스테인레스 스틸(stainless steel), Ge 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은, 상기 형성된 그래핀을 냉각하는 것을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은, 상기 그래핀 형성 후 상기 그래핀 성장용 금속 촉매층을 에칭하여 제거함으로써 상기 형성된 그래핀을 시트 형태로 상기 기재로부터 분리하는 것을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 그래핀 성장용 금속 촉매층을 에칭하여 제거하는 것은 산, FeCl3 또는 이들의 조합을 포함하는 에칭 용액 중에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 그래핀 성장용 금속 촉매층을 에칭하여 제거는 롤투롤 공정에 의하여 수행될 수 있다. 필요한 경우, 상기 에칭 과정 후 세척 과정을 추가 수행할 수 있으며, 이 또한 롤투롤 공정에 의하여 수행될 수 있다.
상술한 바와 같은 본원의 공정에 의해 얻어지는 그래핀 시트는 복잡한 공정 없이 상기 기재 또는 그래핀 성장용 금속 촉매층이 형성된 기재를 탄소 소스와 접촉시켜 저온에서 ICP-CVD 공정 후 냉각하는 것만으로 얻어지므로 공정이 간단하고 경제적이며, 특히 형성되는 횡방향 및 종방향 길이가 약 1 mm 이상, 또는 약 1 cm 이상, 또는 약 1 cm 내지 약 1 m 인 대면적의 그래핀 시트를 용이하게 제조할 수 있게 된다. 예를 들어, 상기 그래핀 성장용 금속 촉매층이 형성되는 기재의 크기를 자유롭게 조절함으로써 대면적의 그래핀 시트가 얻어질 수 있다. 또한 탄소 소스가 기상으로 공급되므로 기재의 형상에 대한 제약이 존재하지 않으므로, 예를 들어 원형, 사각형, 다각형 등의 그래핀 시트가 얻어질 수 있다. 이 경우, 상기 횡방향 및 종방향 길이는 그래핀 시트의 형태에 따라 적절한 위치를 선택하여 측정할 수 있다. 특히 원형상의 그래핀 시트에 있어서는 상기 횡방향 및 종방향 길이는 직경이 될 수 있다. 아울러, 상기 기재는 3 차원 입체 형상을 갖는 기재이라도 사용할 수 있으며, 마찬가지로 그래핀 성장용 금속 촉매층의 형상에도 제약을 받지 않으므로 다양한 입자 형태를 갖는 것이라도 사용할 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은 상기 ICP-CVD 과정 수행 시간을 조절하여 형성되는 그래핀 두께를 제어하는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀의 제조 방법은 상기 탄소 소수-함유 가스와 함께 환원가스를 더 공급하는 것을 포함하는 것일 수 있으나 이에 제한되는 것은 아니다. 예를 들어, 상기 환원가스는 수소, 헬륨, 아르곤, 또는 질소를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층은 패터닝된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기와 같이 얻어진 그래핀은 라만 스펙트럼을 통해 확인할 수 있다. 즉, 순수한 그래핀은 대략 1594 cm-1 전후의 G' 피크를 라만 스펙트럼에서 나타내므로, 이와 같은 피크의 존재를 통해 그래핀의 생성을 확인할 수 있다.
또한 본원에 따른 그래핀은 기상의 순수한 재료 및 저온에서 ICP-CVD 공정을 통해 얻어지며, 라만 스펙트럼에서 D 밴드는 상기 그래핀에 존재하는 흠결의 존재 여부를 의미하며, 상기 D 밴드의 피크 강도가 높을 경우 결함이 다량으로 존재하는 것으로 해석할 수 있게 되며, 이와 같은 D 밴드의 피크 강도가 낮거나 전혀 없을 경우 결함이 거의 없는 것으로 해석할 수 있다.
이와 같이 분리된 그래핀 시트는 목적하는 용도에 따라 다양하게 가공될 수 있다는 장점을 갖는다. 즉 특정 형태로 잘라내거나, 특정 방향으로 감아 튜브 형태로 성형할 수 있다. 이와 같이 성형된 그래핀 시트는 원하는 대상에 전사 또는 결합시켜 사용하는 것도 가능하다.
상기 그래핀 시트는 다양한 용도에 활용할 수 있다. 우선 전도성이 우수하고, 막의 균일도가 높아 투명 전극으로서 유용하게 사용될 수 있다. 태양전지 등에서는 기재 상에 전극이 사용되며, 빛이 투과해야 하는 특성상 투명 전극이 요구되고 있다. 이러한 투명 전극으로서 상기 그래핀 시트를 사용하는 경우, 우수한 전도성을 나타냄은 물론, 그래핀 시트가 쉽게 구부러지는 특성을 가지므로 가요성 투명 전극도 쉽게 제조할 수 있다. 즉 기재로서 가요성 플라스틱을 사용하고, 상기 그래핀 시트를 투명전극으로서 활용하는 경우, 구부림이 가능한 태양전지 등을 제조하는 것이 가능해진다. 또한, 각종 표시소자 등의 패널 전도성 박막으로서 활용하는 경우, 소량으로도 목적하는 전도성을 나타낼 수 있고, 빛의 투과량을 개선하는 것이 가능해진다. 아울러, 상기 그래핀 시트를 튜브 형상으로 제조할 경우 광섬유로도 활용이 가능하며, 수소저장체 혹은 수소를 선택적으로 투과시키는 멤브레인으로서도 활용이 가능하다.
본원의 제 2 측면은, 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 그래핀을 형성하고; 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것을 포함하는, 그래핀의 직접 전사 방법을 제공할 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층을 제거하는 것은 산, 염, FeCl3 또는 이들의 조합을 포함하는 에칭 용액을 이용한 에칭 공정에 의하여 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 그래핀 성장용 금속 촉매층은 롤투롤 공정에 의하여 에칭하여 제거될 수 있고(도 3a), 필요한 경우 상기 에칭 과정 후 세척 과정을 추가 수행할 수 있고, 이 또한 롤투롤 공정에 의하여 수행될 수 있다(도 3b).
본원의 일 구현예에 따르면, 상기 형성된 그래핀을 상기 기재로 직접 전사하는 것은 롤투롤 공정에 의하여 수행될 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀을 형성하는 것은 상기 본원의 제 1 측면에 따른 방법에 의하여 유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 본원의 제 1 측면에 따른 그래핀의 제조 방법에 대하여 기재된 모든 내용은 본원의 제 2 측면에 있어서 상기 그래핀을 형성하는 것에 모두 적용될 수 있으며, 편의상 중복 기재를 생략한다.
본원 일 구현예에 따른 그래핀의 직접 전사 방법은 도 2에 나타낸 과정을 포함하여 수행될 수 있다.
상기 도 2를 참조하면, 본원의 일 구현예에 따른 그래핀의 직접 전사 방법은, 상기 기재(21) 상에 형성된 그래핀 성장용 금속 촉매층(22)에 탄소 소스-함유 가스(24)를 공급하고 ICP-CVD에 의하여 500℃ 이하의 저온에서 그래핀(23)을 형성하고(S3), 상기 그래핀 성장용 금속 촉매(22)층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것(S4)을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 그래핀 제조 방법에 대한 내용은 상기 그래핀의 직접 전사 방법에 모두 적용될 수 있다.
본원 일 구현예에 따르면, 상기 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 그래핀을 형성하는 것 및 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것은 도 3에 나타낸 바와 같은 롤투롤 공정에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
도 3을 참조하면, 상기 그래핀 성장용 금속 촉매층은 롤투롤 공정에 의하여 에칭하여 제거될 수 있고(도 3a), 필요한 경우 상기 에칭 과정 후 세척 과정을 추가 수행할 수 있고, 이 또한 롤투롤 공정에 의하여 수행될 수 있다(도 3b).
본원 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층을 제거하는 것은 산, 염, FeCl3 또는 이들의 조합을 포함하는 에칭 용액을 이용한 에칭 공정에 의하여 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, 황동(brass), 청동(bronze), 스테인레스 스틸(stainless steel), Ge 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
이외, 상기 그래핀 형성 과정은 상기 그래핀 시트 제조 방법에 대하여 기술된 내용을 모두 포함할 수 있으며, 편의상 중복 기재를 생략한다.
본원의 일 구현예에 따르면, 상기 기재는 π-전자를 가지는 고분자 화합물을 포함하는 고분자 시트 또는 상기 고분자 시트를 포함하는 기재일 수 있으나, 이에 제한되는 것은 아니다. 상기 고분자 시트는, 예를 들어, 폴리아크릴레이트(polyacrylate), 폴리에틸렌에테르 프탈레이트(polyethylene etherphthalate), 폴리에틸렌 프탈레이트(polyethylene phthalate), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate), 폴리부틸렌 프탈레이트(polybuthylene phthalate), 폴리카보네이트(polycarbonate), 폴리스티렌(polystyrene), 폴리에테르이미드(polyether imide), 폴리에테르술폰(polyether sulfone), 폴리디메틸실록산(polydimethyl siloxane; PDMS), 폴리이미드 및 이들의 조합으로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 그래핀 성장용 금속 촉매층을 에칭하여 제거함에 따라 상기 그래핀의 sp2 전자가 상기 고분자 시트의 표면에 존재하는 π-전자와의 인력(예: 반 데르 발스 힘 등)에 의하여 상기 고분자 시트에 결합하여 직접 전사되게 된다. 이에 의하여, 별도의 전사 과정 없이 고분자 시트 또는 상기 고분자 시트를 포함하는 기재에 그래핀을 합성과 동시에 직접 전사할 수 있다. 예를 들어, 상기 고분자 시트를 포함하는 기재는 유리와 같은 투명 기재에 고분자 시트가 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 3 측면은, 기재 및 상기 기재 상에 형성된 그래핀을 포함하는 그래핀 시트를 제공한다.
본원의 일 구현예에 따르면, 상기 그래핀은 상기 본원의 제 1 측면에 따른 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀은, 상기 기재 상에 또는 상기 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 시트는, 별도의 기재 상에 또는 상기 별도의 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학증기증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 형성된 것을 원하는 목적 기재 상에 전사하여 형성될 수 있으나, 이에 제한되는 것은 아니다. 상기 전사 방법은 당업계에 공지된 습식 전사 또는 건식 전사 방법을 이용할 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀 시트는 상기 본원의 제 2 측면에 따른 그래핀의 직접 전사 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 시트는, 상기 기재 상에 형성된 그래핀 성장용 금속 촉매층에 탄소 소스-함유 가스를 공급하고 ICP-CVD에 의하여 500℃ 이하의 저온에서 그래핀을 형성하고 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것을 포함하는 공정에 의하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다.
이에, 상기 본원의 제 1 측면에 따른 그래핀의 제조 방법 및 본원의 제 2 측면에 따른 그래핀의 직접 전사 방법에 대하여 기재된 모든 내용은 본원의 제 3 측면에 모두 포함될 수 있으며, 편의상 중복 기재를 생략한다.
본원의 일 구현예에 따르면, 상기 그래핀 시트가 유기계 도펀트(dopant), 무기계 도펀트 또는 이들의 조합을 포함하는 도펀트에 의하여 도핑된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 도펀트는 NO2BF4, NOBF4, NO2SbF6, HCl, H2PO4, H3CCOOH, H2SO4, HNO3, PVDF, 나피온(Nafion), AuCl3, HAuCl4, SOCl2, Br2, 디클로로디시아노퀴논, 옥손, 디미리스토일포스파티딜이노시톨 및 트리플루오로메탄술폰이미드로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 기재는 투명성 또는 유연성, 또는 투명성 및 유연성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 기재는 금속 호일, 유리 기재 또는 고분자 시트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 기재는 π-전자를 가지는 고분자 화합물을 포함하는 고분자 시트 또는 상기 고분자 시트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 고분자 시트는, 예를 들어, 폴리아크릴레이트(polyacrylate), 폴리에틸렌에테르 프탈레이트(polyethylene etherphthalate), 폴리에틸렌 프탈레이트(polyethylene phthalate), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate), 폴리부틸렌 프탈레이트(polybuthylene phthalate), 폴리카보네이트(polycarbonate), 폴리스티렌(polystyrene), 폴리에테르이미드(polyether imide), 폴리에테르술폰(polyether sulfone), 폴리디메틸실록산(polydimethyl siloxane; PDMS), 폴리이미드 및 이들의 조합으로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 시트의 두께는 약 1층 내지 약 300층일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 시트의 종방향 및 횡방향의 길이가 약 1 mm 내지 약 1 m 일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층은 박막 또는 후막일 수 있으며, 예들 들어, 박막인 경우 그의 두께는 약 1 nm 내지 약 1000 nm, 또는 약 1 nm 내지 약 500 nm 또는 약 1 nm 내지 약 300 nm일 수 있으며, 또한, 후막인 경우 그의 두께는 약 1 mm 내지 약 5 mm 일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그래핀 성장용 금속 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, 황동(brass), 청동(bronze), 스테인레스 스틸(stainless steel), Ge 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
이하, 본원에 대하여 실시예를 이용하여 자세히 설명한다. 그러나, 본원이 이에 제한되는 것은 아니다.
[실시예 1]
폴리이미드(PI) 고분자 시트 기재 상에서 그래핀의 저온 성장 및 전사
도 1에 나타낸 것과 같은 제조장치를 이용하여 도 2에 나타낸 바와 같은 공정에 의하여 폴리이미드(PI) 고분자 시트 기재 상에 그래핀을 제조하여 직접 전사하였다. 구체적으로, 로드-잠금 챔버를 이용하여 증착 챔버 내로 폴리이미드(PI) 고분자 시트 기재를 로딩하여 그래핀 성장용 금속 촉매층으로서 다양하게 (패터닝된) Ni 층 및 Cu 층 각각을 150 nm 두께로 RF 스퍼터링 방법에 의하여 증착하였다. 이어서, 상기 증착 챔버로부터 로드-잠금 챔버로 촉매층을 증착한 기재를 꺼낸 후 이어서 상기 기재를 ICP-CVD 챔버 내로 로딩하여 300℃의 온도에서 수소 가스를 이용하여 어닐링(annealing) 처리한 후, 탄소와 아르곤 함유 가스(C2H2 : Ar = 60 : 2 sccm)를 20 mTorr에서 15초 내지 3분 동안 공급하여 ICP-CVD 방법에 의하여 그래핀을 상기 Ni 층 및 Cu 층 각각 위에 형성시킨 후, ICP-CVD 챔버 내에서 ~ 5 ℃/s의 속도로 실온으로 냉각하여, 상기 Ni 층 및 Cu 층 각각 위에 성장된 그래핀 시트를 수득하였다. 이후, FeCl3 용액을 이용하여 상기 패터닝된 Ni 층 및 Cu 층을 에칭하여 제거하고, 상기 PI 기재 상에 그래핀 시트를 직접 전사하였다. 상기 그래핀은 상기 패터닝된 Ni 층 및 Cu 층의 패턴 형상을 유지한 채로 상기 PI 기재 상에 직접 전사되었다.
상기 패터닝된 니켈 박막에 성장시킨 그래핀의 에칭 전(a) 후(b) 사진은 도 4에 나타내었고, 상기 그래핀이 형성된 PI 기재(좌측) 및 상기 그래핀 시트가 형성되기 전의 PI 기재(우측)의 투명도를 비교한 사진은 도 5에 나타내었으며, 상기 PI 기재 상에 직접 전사된 그래핀의 전도도를 측정하여 확인하는 과정을 보여주는 사진은 도 6에 나타내었다. 또한, 상기 그래핀 시트 합성 시 사용된 플라즈마 파워, 시간, 금속 촉매층 (Ni과 Cu를 각각 사용한 경우)에 따른 그래핀 시트의 전기적 특성(저항 변화) 및 투과도 변화를 하기 표 1(Ni 필름), 표 2(Cu 필름)에 나타내었다.
표 1
Figure PCTKR2011005213-appb-T000001
표 2
Figure PCTKR2011005213-appb-T000002
도 7 및 도 8은 각각 상기 ICP-CVD에 의한 그래핀 형성 온도에 따라 Ni 필름 위에 형성된 그래핀의 라만 스펙트럼 및 사용된 플라즈마 파워/시간에 따른 Ni 필름 위에 형성된 그래핀의 투명도 변화(UV-Vis 흡수 스펙트럼 측정 이용)를 나타낸 그래프이다. 도 7의 라만 스펙트럼은 유리 기재 상에서 상기한 방법과 동일한 방법으로 각각 300℃, 400℃ 및 500℃ 에서 성장된 그래핀에 대하여 측정된 것으로서, 상기 300℃에서 폴리이미드(PI) 고분자 기재 상에서 성장된 그래핀에 대하여도 동일한 라만 스펙트럼이 수득되었다. 상기 라만 스펙트럼을 통해 ICP-CVD 장비를 이용하여 유리 또는 폴리이미드(PI) 고분자 시트 기재에 그래핀 성장용 금속 촉매층을 증착함으로써 저온에서 그래핀을 성장 가능함을 확인하였고, 또한 그래핀의 성장 시간을 조절함으로써 투명도를 개선할 수 있음을 확인하였다.
도 9는 사용된 플라즈마 파워/시간에 따른 Cu 필름 위에 형성된 그래핀의 투명도 변화(UV-Vis 흡수 스펙트럼 측정 이용)를 나타낸 그래프이다.
도 10은 상기 패터닝 된 Cu 필름 위에서 형성된 그래핀을 도 2의 방법을 이용하여 직접 전사한 후 패터닝 된 모양을 유지한 채 그래핀이 형성되었음을 확인할 수 있는 사진이다.
도 11은 PI 필름 기재 위에 형성된 Ni 층을 나타낸 사진으로서, RF 스퍼터로 이용하여 전면에 고르게 Ni이 형성됨을 알 수 있었다.
도 12는 도 11의 PI 필름 위에 증착한 Ni 박막 위에 그래핀을 성장시킨 후 고배율(1000배)에서 측정한 광학 사진이다. 300℃ 각각 온도에서 수소 가스를 이용하여 상기 각 온도에서 어닐링(annealing) 처리한 후, 탄소와 아르곤 함유 가스(C2H2 : Ar = 60 : 2 sccm)를 20 mTorr에서 15초 내지 3분 동안 공급하여 ICP-CVD 방법에 의하여 그래핀을 상기 Ni 층 상에 형성시킨 후, ICP-CVD 챔버 내에서 ~ 5 ℃/s의 속도로 실온으로 냉각하여, 상기 Ni 층 상에 성장된 그래핀 시트를 수득하였다. 상기 Ni의 필름 상에 수십 ㎛ 그레인 사이즈로 그래핀 박막이 형성되었다는 것을 알 수 있었다.
도 13은 Ni 층 상에서 그래핀의 유무를 확인하기 위한 라만 스펙트럼 결과를 나타낸 것이다. 상기 Ni 층 상에서 형성된 그래핀을 상기 실리콘 웨이퍼 상에 전사된 그래핀 시트에 대한 사진과 라만 스펙트럼을 도 13에 나타내었다. 도 12의 그래핀 시트에서 라만 스펙트럼 1회 및 2회 스캔(scan)한 것을 나타낸다.
[실시예 2]
알루미늄 호일 기재 상에서 그래핀의 저온 성장 및 전사
도 1의 제조장치를 이용하여 시중에서 판매되는 알루미늄 호일을 기재로서 이용하여 상기 알루미늄 호일 상에 그래핀 시트를 저온 성장시켜 제조하였다. 구체적으로, 로드-잠금 챔버를 이용하여 ICP-CVD 챔버 내로 알루미늄 호일 기재를 로딩하여 300℃ 내지 500℃의 온도에서 수소 가스를 이용하여 상기 각 온도에서 어닐링(annealing) 처리한 후에 탄소와 아르곤 함유 가스(C2H2 : Ar = 60 : 2 내지 1 sccm)를 20 mTorr에서 15초 내지 3분 동안 공급하여 ICP-CVD 방법에 의하여 그래핀을 상기 Al(알루미늄) 층 상에 형성시킨 후, ICP-CVD 챔버 내에서 ~ 5 ℃/s의 속도로 실온으로 냉각하여, 상기 Al(알루미늄) 층 상에 성장된 그래핀 시트를 수득하였다. 이후, FeCl3 용액을 이용하여 상기 Al 층을 에칭하고 제거하여 분리되어 부유된 그래핀 시트를 실리콘 웨이퍼 상으로 전사하였다. 상기 실리콘 웨이퍼 상에 전사된 그래핀 시트에 대한 사진과 라만 스펙트럼을 도 14a 및 도 14b에 각각 나타내었다. 도 14b의 라만 스펙트럼에서 Al 1과 Al 2는 각각 라만 스펙트럼 1회 및 2회 스캔(scan)한 것을 나타낸다.
[실시예 3]
아연 기판 기재 상에서 그래핀의 저온 성장 및 전사
도 1의 제조장치를 이용하여 시중에서 판매되는 아연 기판을 기재로서 이용하여 상기 아연 기판 상에 그래핀 시트를 저온 성장시켜 제조하였다. 구체적으로, 로드-잠금 챔버를 이용하여 ICP-CVD 챔버 내로 아연 기판 기재를 로딩하여 300℃ 내지 500℃의 온도에서 수소 가스를 이용하여 상기 각 온도에서 어닐링(annealing) 처리한 후에 탄소와 아르곤 함유 가스(C2H2 : Ar = 60 : 3 내지 5 sccm)를 20 mTorr에서 5분 내지 10분 동안 공급하여 ICP-CVD 방법에 의하여 그래핀을 상기 Zn(아연) 층 상에 형성시킨 후, ICP-CVD 챔버 내에서 ~ 5 ℃/s의 속도로 실온으로 냉각하여, 상기 Zn(아연) 층 상에 성장된 그래핀 시트를 수득하였다. 상기 아연 기판에서 성장된 그래핀 시트에 대한 사진과 라만 스펙트럼을 도 15 및 도 16에 각각 나타내었다. 도 16의 라만 스펙트럼에서 Al 1과 Al 2는 각각 라만 스펙트럼 4회 및 5회 스캔(scan)한 것을 나타낸다.
도 16의 라만 스펙트럼은 유리 기재 상에서 상기한 방법과 동일한 방법으로 400℃ 에서 성장된 그래핀에 대하여 특정된 것으로서, 상기 300℃에서 폴리이미드(PI) 고분자 기재 상에서 성장된 그래핀에 대하여도 동일한 라만 스펙트럼이 수득되었다. 상기 라만 스펙트럼을 통해 ICP-CVD 장비를 이용하여 아연 시트 기재에 저온에서 그래핀을 성장 가능함을 확인하였고, 단열재나 방열재로 사용할 수 있는 가능성을 보였다.
이상, 실시예를 들어 본원을 상세하게 설명하였으나, 본원은 상기 실시예들에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본원의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다.

Claims (25)

  1. 기재(substrate) 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 그래핀을 형성하는 것을 포함하는, 그래핀의 제조 방법.
  2. 제 1 항에 있어서,
    상기 기재는 그래핀 성장용 금속 촉매층을 추가 포함하는 것인, 그래핀의 제조 방법.
  3. 제 1 항에 있어서,
    상기 기재를 유도결합플라즈마 화학기상증착 챔버 내로 로딩(loading)하고 상기 탄소 소스를 공급하고 유도결합플라즈마 화학기상증착에 의하여 저온에서 그래핀을 형성하는 단계:를 포함하며,
    상기 기재는 로드-잠금 챔버(load-locked chamber)를 이용하여 유도결합플라즈마 화학기상증착 챔버 내로 순차적으로 로딩되는 것인,
    그래핀의 제조 방법.
  4. 제 2 항에 있어서,
    상기 기재를 증착 챔버 내로 로딩(loading)하여 상기 기재 상에 상기 그래핀 성장용 금속 촉매층을 형성하는 단계;
    상기 기재를 유도결합플라즈마 화학기상증착 챔버 내로 로딩하고 상기 탄소 소스를 공급하고 유도결합플라즈마 화학기상증착에 의하여 저온에서 그래핀을 형성하는 단계:를 포함하며,
    상기 기재는 로드-잠금 챔버(load-locked chamber)를 이용하여 상기 증착 챔버 및 유도결합플라즈마 화학기상증착 챔버 내로 순차적으로 로딩되는 것인,
    그래핀의 제조 방법.
  5. 제 1 항에 있어서,
    상기 그래핀을 형성하는 것은 롤투롤 공정에 의하여 수행되는 것인, 그래핀의 제조 방법.
  6. 제 1 항에 있어서,
    상기 기재는 투명성 또는 유연성, 또는 투명성 및 유연성을 가지는 것인, 그래핀의 제조 방법.
  7. 제 1 항에 있어서,
    상기 기재는 금속 호일, 유리 기재 또는 고분자 시트를 포함하는 것인, 그래핀의 제조 방법.
  8. 제 1 항에 있어서,
    상기 기재는 π-전자를 가지는 고분자 화합물을 포함하는 고분자 시트이거나 또는 상기 고분자 시트를 포함하는 것인, 그래핀의 제조 방법.
  9. 제 2 항에 있어서,
    상기 그래핀 성장용 금속 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Rh, Si, Ta, Ti, W, U, V, Zr, Fe, 황동(brass), 청동(bronze), 스테인레스 스틸(stainless steel), Ge 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는 것인, 그래핀의 제조 방법.
  10. 제 1 항에 있어서,
    상기 형성된 그래핀을 냉각하는 것을 추가 포함하는, 그래핀의 제조 방법.
  11. 제 1 항에 있어서,
    상기 그래핀의 두께는 상기 유도결합플라즈마 화학기상증착 과정 수행 시간을 조절하여 제어하는 것을 포함하는, 그래핀의 제조 방법.
  12. 제 1 항에 있어서,
    상기 탄소 소스-함유 가스와 함께 환원 가스를 더 공급하는 것을 포함하는, 그래핀의 제조 방법.
  13. 제 2 항에 있어서,
    상기 그래핀 성장용 금속 촉매층은 패터닝된 것인, 그래핀의 제조 방법.
  14. 제 2 항에 있어서,
    상기 그래핀 형성 후 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 시트 형태로 상기 기재로부터 분리하는 것을 추가 포함하는, 그래핀의 제조 방법.
  15. 제 14 항에 있어서,
    상기 그래핀 성장용 금속 촉매층을 제거하는 것은 산, FeCl3 또는 이들의 조합을 포함하는 에칭 용액을 이용한 에칭 공정에 의하여 수행되는 것인, 그래핀의 제조 방법.
  16. 제 15 항에 있어서,
    상기 그래핀 성장용 금속 촉매층을 제거하는 것은 롤투롤 공정에 의하여 수행되는 것인, 그래핀의 제조 방법.
  17. 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 그래핀을 형성하고; 및
    상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것:을 포함하는, 그래핀의 직접 전사 방법.
  18. 제 17 항에 있어서,
    상기 그래핀 형성 및 상기 형성된 그래핀의 직접 전사는 롤투롤 공정에 의하여 수행되는 것인, 그래핀의 직접 전사 방법.
  19. 제 17 항에 있어서,
    상기 그래핀을 형성하는 것은, 상기 기재 상에 형성된 그래핀 성장용 금속 촉매층 상에 탄소 소스-함유 가스를 공급하고 유도결합플라즈마 화학증기증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 그래핀을 형성하는 것을 포함하는 것인, 그래핀의 직접 전사 방법.
  20. 제 17 항에 있어서,
    상기 그래핀 성장용 금속 촉매층을 제거하는 것은 산, 염, FeCl3 또는 이들의 조합을 포함하는 에칭 용액을 이용한 에칭 공정에 의하여 수행되는 것인, 그래핀의 직접 전사 방법.
  21. 제 17 항에 있어서,
    상기 직접 전사는 롤투롤 공정을 이용하여 수행되는 것인, 그래핀의 직접 전사 방법.
  22. 기재 및 유도결합플라즈마 화학증기증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD)에 의하여 500℃ 이하의 저온에서 형성된 그래핀을 포함하는, 그래핀 시트.
  23. 제 22 항에 있어서,
    상기 그래핀 시트는, 상기 기재 상에 형성된 그래핀 성장용 금속 촉매층에 탄소 소스-함유 가스를 공급하고 ICP-CVD에 의하여 500℃ 이하의 저온에서 그래핀을 형성하고 상기 그래핀 성장용 금속 촉매층을 제거함으로써 상기 형성된 그래핀을 상기 기재 상에 직접 전사하는 것을 포함하는 공정에 의하여 형성되는 것인, 그래핀 시트.
  24. 제 22 항에 있어서,
    상기 그래핀이 유기계 도펀트(dopant), 무기계 도펀트 또는 이들의 조합을 포함하는 도펀트에 의하여 도핑된 것인, 그래핀 시트.
  25. 제 24 항에 있어서,
    상기 도펀트는 NO2BF4, NOBF4, NO2SbF6, HCl, H2PO4, H3CCOOH, H2SO4, HNO3, PVDF, 나피온(Nafion), AuCl3, HAuCl4, SOCl2, Br2, 디클로로디시아노퀴논, 옥손, 디미리스토일포스파티딜이노시톨 및 트리플루오로메탄술폰이미드로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것인, 그래핀 시트.
PCT/KR2011/005213 2010-07-15 2011-07-15 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트 WO2012008789A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/810,144 US9371234B2 (en) 2010-07-15 2011-07-15 Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
CN201180044473.6A CN103140439B (zh) 2010-07-15 2011-07-15 低温生产石墨烯的方法,直接转移用相同方法的石墨烯的方法与石墨烯片材
JP2013519605A JP5705315B2 (ja) 2010-07-15 2011-07-15 グラフェンの低温製造方法、及びこれを利用したグラフェンの直接転写方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0068634 2010-07-15
KR20100068634 2010-07-15

Publications (3)

Publication Number Publication Date
WO2012008789A2 WO2012008789A2 (ko) 2012-01-19
WO2012008789A9 true WO2012008789A9 (ko) 2012-04-05
WO2012008789A3 WO2012008789A3 (ko) 2012-05-31

Family

ID=45469951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005213 WO2012008789A2 (ko) 2010-07-15 2011-07-15 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트

Country Status (5)

Country Link
US (1) US9371234B2 (ko)
JP (1) JP5705315B2 (ko)
KR (1) KR101312454B1 (ko)
CN (1) CN103140439B (ko)
WO (1) WO2012008789A2 (ko)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120063164A (ko) * 2010-12-07 2012-06-15 삼성전자주식회사 그래핀 구조물 및 그 제조방법
KR101878739B1 (ko) * 2011-10-24 2018-07-17 삼성전자주식회사 그래핀 전사부재, 그래핀 전사방법 및 이를 이용한 그래핀 소자 제조방법
KR101920716B1 (ko) 2012-05-17 2019-02-13 삼성전자주식회사 기체 분리막 및 그 제조방법
US9527043B2 (en) * 2012-05-17 2016-12-27 Samsung Electronics Co., Ltd. Gas separation membrane and method of preparing the same
JP5846582B2 (ja) * 2012-07-26 2016-01-20 国立研究開発法人産業技術総合研究所 グラフェンロールフィルム、グラフェンロールフィルムの成膜方法及び成膜装置
KR101556360B1 (ko) 2012-08-16 2015-09-30 삼성전자주식회사 그래핀 물성 복귀 방법 및 장치
WO2014030534A1 (ja) * 2012-08-20 2014-02-27 富士電機株式会社 グラフェン積層体およびその製造方法
JP6083197B2 (ja) * 2012-11-07 2017-02-22 富士通株式会社 配線構造及びその製造方法
JP6037813B2 (ja) * 2012-12-14 2016-12-07 Jx金属株式会社 多層グラフェン製造用圧延銅箔、及び多層グラフェンの製造方法
US9431487B2 (en) 2013-01-11 2016-08-30 International Business Machines Corporation Graphene layer transfer
KR101926488B1 (ko) * 2013-02-06 2018-12-07 한화에어로스페이스 주식회사 그래핀 필름의 제조 방법
US9242865B2 (en) 2013-03-05 2016-01-26 Lockheed Martin Corporation Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition
KR102093441B1 (ko) * 2013-03-11 2020-03-25 삼성전자주식회사 그래핀의 제조 방법
KR20140114199A (ko) 2013-03-18 2014-09-26 삼성전자주식회사 이종 적층 구조체 및 그 제조방법, 및 상기 이종 적층 구조체를 구비하는 전기소자
CN103266306B (zh) * 2013-05-22 2015-11-18 宜昌后皇真空科技有限公司 一种用pvd技术制备石墨烯或超薄碳膜的方法
JP2015013797A (ja) * 2013-06-07 2015-01-22 独立行政法人産業技術総合研究所 グラフェン透明導電膜の製造方法及び該方法により製造されたグラフェン透明導電膜
CN103343328A (zh) * 2013-07-10 2013-10-09 合肥微晶材料科技有限公司 一种正压条件下合成石墨烯的方法
US9758381B2 (en) 2013-08-05 2017-09-12 National University Of Singapore Method to transfer two dimensional film grown on metal-coated wafer to the wafer itself in a face-to face manner
CN103469203B (zh) * 2013-08-30 2016-05-18 中国科学院过程工程研究所 包覆二维原子晶体的基材、其连续化生产线及方法
CN103469308B (zh) * 2013-08-30 2016-06-08 中国科学院过程工程研究所 一种二维原子晶体材料、其连续化生产方法及生产线
TWI592509B (zh) * 2013-10-14 2017-07-21 國立清華大學 石墨烯薄膜製造方法
CN104562195B (zh) * 2013-10-21 2017-06-06 中国科学院上海微***与信息技术研究所 石墨烯的生长方法
KR102402545B1 (ko) * 2014-02-19 2022-05-27 삼성전자주식회사 배선 구조 및 이를 적용한 전자소자
WO2015126139A1 (en) * 2014-02-19 2015-08-27 Samsung Electronics Co., Ltd. Wiring structure and electronic device employing the same
JP6241318B2 (ja) * 2014-02-28 2017-12-06 富士通株式会社 グラフェン膜の製造方法及び半導体装置の製造方法
US10093072B2 (en) * 2014-03-18 2018-10-09 Ut-Battelle, Llc Graphene reinforced materials and related methods of manufacture
CN103943697B (zh) * 2014-03-28 2016-08-31 京东方科技集团股份有限公司 柔性透明太阳能电池及其制备方法
KR20150121590A (ko) * 2014-04-21 2015-10-29 이윤택 그래핀의 제조방법 및 그래핀 원자층이 식각되는 그래핀 제조방법 및 웨이퍼결합방법을 구비하는 그래핀 굽힘 트랜지스터, 및 그래핀 굽힘 트랜지스터
US10050104B2 (en) 2014-08-20 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same
CN104291325B (zh) * 2014-09-14 2017-11-10 南通华盛新材料股份有限公司 一种石墨烯透明薄膜的制备方法
KR101578359B1 (ko) 2014-09-15 2015-12-17 이윤택 저온 기판 성장 그래핀의 제조방법 및 저온 기판 성장 그래핀
KR101648895B1 (ko) * 2014-10-28 2016-08-17 한국표준과학연구원 금속박편 또는 금속박막에 성장한 그래핀을 임의의 기판에 고분자 레지듀 없이 전사하는 그래핀 가두리 전사방법
DE102014115708A1 (de) * 2014-10-29 2016-05-04 Aixtron Se Verfahren zum Trennen einer Kohlenstoffstruktur von einer Keimstruktur
CN105645778B (zh) * 2014-12-03 2018-10-23 北京大学 超级石墨烯玻璃及其制备方法与应用
CN105717724B (zh) * 2014-12-03 2019-02-12 北京石墨烯研究院有限公司 超级石墨烯玻璃的应用
CN104532206A (zh) * 2014-12-12 2015-04-22 中国科学院重庆绿色智能技术研究院 一种在绝缘衬底上原位生长掺杂石墨烯薄膜的制备方法
CN104556014B (zh) * 2015-01-08 2017-03-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
KR101701369B1 (ko) 2015-01-27 2017-02-01 한국과학기술연구원 탄소가 포함된 액체상의 전구체를 이용한 연속 롤투롤 방식의 고품질 그래핀 제조방법과 그 제조장치
CN104851521A (zh) * 2015-02-03 2015-08-19 京东方科技集团股份有限公司 石墨烯导电薄膜及其制备方法
CN104616838B (zh) 2015-02-10 2018-02-06 京东方科技集团股份有限公司 一种电子器件的制作方法及电子器件
WO2016149934A1 (zh) * 2015-03-26 2016-09-29 中国科学院上海微***与信息技术研究所 石墨烯的生长方法
WO2017009359A1 (de) * 2015-07-14 2017-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren zum abscheiden einer graphenbasierten schicht auf einem substrat mittels pecvd
TWI539043B (zh) 2015-07-21 2016-06-21 財團法人工業技術研究院 石墨烯花的形成方法
JP2017037820A (ja) * 2015-08-14 2017-02-16 アルプス電気株式会社 接点材料、接点材料の製造方法、コネクタ、および電子・電気部品
KR101886659B1 (ko) * 2015-09-22 2018-08-09 충남대학교산학협력단 무전사식 그래핀층의 형성 방법
US10246795B2 (en) * 2015-09-22 2019-04-02 Kuk-II Graphene Co., Ltd. Transfer-free method for forming graphene layer
EP3359639A4 (en) * 2015-10-07 2018-11-14 The Regents of the University of California Graphene-based multi-modal sensors
US20170144888A1 (en) * 2015-11-23 2017-05-25 G-Force Nanotechnology Ltd. Method for growing graphene by chemical vapor deposition
JP6754123B2 (ja) 2016-03-17 2020-09-09 国立大学法人 名古屋工業大学 カンチレバーおよびカンチレバーの製造方法
CN107311157A (zh) * 2016-07-19 2017-11-03 中国石油大学(北京) 一种以co2为碳源低温制备石墨烯的方法
KR20180012054A (ko) * 2016-07-26 2018-02-05 해성디에스 주식회사 그래핀 와이어, 이를 채용하는 케이블 및 그 제조방법
CN106423788B (zh) * 2016-10-11 2019-10-01 青岛理工大学 一种中碳钢基体的刻蚀方法、减摩耐磨复合润滑膜及其制备方法
US11524898B2 (en) 2016-11-04 2022-12-13 Massachusetts Institute Of Technology Formation of pores in atomically thin layers
US11124870B2 (en) * 2017-06-01 2021-09-21 Kuk-Il Graphene Co., Ltd. Transfer-free method for producing graphene thin film
KR101999564B1 (ko) * 2017-06-02 2019-07-12 재단법인 나노기반소프트일렉트로닉스연구단 구리박막/니켈박막 적층체를 이용한 화학기상증착에 의한 층수가 제어된 그래핀 합성 방법
KR20190003186A (ko) * 2017-06-30 2019-01-09 주식회사 솔루에타 고방열 박막 및 그 제조 방법
US11180373B2 (en) * 2017-11-29 2021-11-23 Samsung Electronics Co., Ltd. Nanocrystalline graphene and method of forming nanocrystalline graphene
US11217531B2 (en) 2018-07-24 2022-01-04 Samsung Electronics Co., Ltd. Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure
KR102532605B1 (ko) 2018-07-24 2023-05-15 삼성전자주식회사 나노결정질 그래핀 캡층을 포함하는 인터커넥트 구조체 및 이 인터커넥트 구조체를 포함하는 전자 소자
KR20200011821A (ko) 2018-07-25 2020-02-04 삼성전자주식회사 탄소물 직접 성장방법
KR102601607B1 (ko) 2018-10-01 2023-11-13 삼성전자주식회사 그래핀의 형성방법
JP7090811B2 (ja) 2018-12-21 2022-06-24 パフォーマンス ナノカーボン、インコーポレイテッド 気液物質移動による炭素材料のその場製造および機能化ならびのその使用
CN109406581B (zh) * 2018-12-28 2024-03-01 苏州甫一电子科技有限公司 石墨烯复合气体敏感材料、气敏传感器及其制作方法
CN109742379A (zh) * 2019-01-28 2019-05-10 哈工大机器人(岳阳)军民融合研究院 一种在Si/C复合材料上生长石墨烯的方法、利用该方法制得的材料以及其应用
CN109879275A (zh) * 2019-01-30 2019-06-14 宁波大学 一种结合锗浓缩和离子注入技术制备石墨烯的方法
KR20200126721A (ko) 2019-04-30 2020-11-09 삼성전자주식회사 그래핀 구조체 및 그래핀 구조체의 형성방법
CN110904431A (zh) * 2019-12-17 2020-03-24 中国科学院宁波材料技术与工程研究所 一种铜基氟化石墨烯耐蚀薄膜及其原位制备方法与应用
CN110963484A (zh) * 2019-12-23 2020-04-07 中国科学院长春光学精密机械与物理研究所 基于掺杂层辅助的大面积高质量石墨烯无损转移方法
CN112011783B (zh) * 2020-09-03 2022-09-09 太原理工大学 锆合金表面氧化锆催化石墨烯生长的低温化学气相沉积法
TWI806193B (zh) * 2020-10-14 2023-06-21 加州理工學院 藉由電漿輔助化學氣相沉積形成石墨烯在可撓性基板上的方法及裝置
US11718526B2 (en) 2021-12-22 2023-08-08 General Graphene Corporation Systems and methods for high yield and high throughput production of graphene
WO2023121714A1 (en) * 2021-12-22 2023-06-29 General Graphene Corporation Novel systems and methods for high yield and high throughput production of graphene
KR20230101545A (ko) * 2021-12-29 2023-07-06 재단법인 파동에너지 극한제어 연구단 줄히팅 기반 롤투롤 그래핀 제조방법 및 그래핀 제조장치
WO2023225055A1 (en) * 2022-05-17 2023-11-23 Georgia State University Research Foundation, Inc. Water surface tension enabled high quality graphene transfer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962862B2 (ja) * 2002-02-27 2007-08-22 日立造船株式会社 カーボンナノチューブを用いた導電性材料およびその製造方法
WO2005084172A2 (en) * 2003-10-03 2005-09-15 College Of William & Mary Carbon nanostructures and methods of making and using the same
KR20090026568A (ko) * 2007-09-10 2009-03-13 삼성전자주식회사 그라펜 시트 및 그의 제조방법
JP5470610B2 (ja) 2007-10-04 2014-04-16 国立大学法人福井大学 グラフェンシートの製造方法
KR100923304B1 (ko) * 2007-10-29 2009-10-23 삼성전자주식회사 그라펜 시트 및 그의 제조방법
KR101344493B1 (ko) * 2007-12-17 2013-12-24 삼성전자주식회사 단결정 그라펜 시트 및 그의 제조방법
KR101462401B1 (ko) * 2008-06-12 2014-11-17 삼성전자주식회사 그라펜 시트로부터 탄소화 촉매를 제거하는 방법, 탄소화촉매가 제거된 그라펜 시트를 소자에 전사하는 방법, 이에따른 그라펜 시트 및 소자
KR101501599B1 (ko) * 2008-10-27 2015-03-11 삼성전자주식회사 그라펜 시트로부터 탄소화 촉매를 제거하는 방법 및 그라펜시트의 전사 방법
US20100297435A1 (en) * 2009-01-28 2010-11-25 Kaul Anupama B Nanotubes and related manufacturing processes
TW201116606A (en) * 2009-11-03 2011-05-16 Nat Univ Tsing Hua Method and an apparatus for transferring carbonaceous material layer
US8101474B2 (en) * 2010-01-06 2012-01-24 International Business Machines Corporation Structure and method of forming buried-channel graphene field effect device
EP2354272B1 (en) * 2010-02-08 2016-08-24 Graphene Square Inc. Roll-to-roll apparatus for coating simultaneously internal and external surfaces of a pipe and graphene coating method using the same
JP5692794B2 (ja) * 2010-03-17 2015-04-01 独立行政法人産業技術総合研究所 透明導電性炭素膜の製造方法

Also Published As

Publication number Publication date
KR20120007998A (ko) 2012-01-25
JP2013530124A (ja) 2013-07-25
WO2012008789A3 (ko) 2012-05-31
US20130187097A1 (en) 2013-07-25
US9371234B2 (en) 2016-06-21
WO2012008789A2 (ko) 2012-01-19
JP5705315B2 (ja) 2015-04-22
KR101312454B1 (ko) 2013-09-27
CN103140439A (zh) 2013-06-05
CN103140439B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2012008789A2 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
WO2011081440A2 (ko) 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
JP5748766B2 (ja) 基材へのグラフェンの広範囲析出およびそれを含む製品
WO2011046415A2 (ko) 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
WO2012015267A2 (ko) 그래핀의 제조 방법, 그래핀 시트 및 이를 이용한 소자
EP2462264B1 (en) Large area deposition and doping of graphene
EP2462263B1 (en) Debonding and transfer techniques for hetero-epitaxially grown graphene
WO2016006943A1 (ko) 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
KR101513136B1 (ko) 그래핀 필름의 제조방법, 그래핀 필름, 및 이를 포함하는 전자 소자
WO2010056061A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
KR20160044977A (ko) 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자
WO2015008905A1 (ko) 그래핀/실리콘 나노선 분자 센서 또는 이의 제조 방법과 이를 이용한 분자 확인 방법
WO2014038752A1 (en) Method for manufacturing graphene layer
WO2017065530A1 (ko) 그래핀 저온 전사방법
WO2013058559A1 (en) Method of obtaining graphene
WO2014209030A1 (ko) 커버부재를 이용한 그래핀의 제조방법 및 그를 포함하는 전자소자의 제조방법
CN114171370A (zh) 一种相对封闭区域固相法制备石墨烯的方法
He et al. Large area uniformly oriented multilayer graphene with high transparency and conducting properties derived from highly oriented polyethylene films
CN107500276B (zh) 一种利用醋酸铜制备超洁净石墨烯的方法
CN116553468A (zh) 一种三维石墨烯纳米纤维结构、其制备及转移方法
KR20160120073A (ko) 그래핀의 전사방법 및 그 방법을 이용한 전자소자의 제조방법
Wang et al. Bilayer graphite-oxide anode for organic light-emitting diode
JP2016132610A (ja) 可撓性基板へのグラフェン転写方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044473.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807074

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013519605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810144

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11807074

Country of ref document: EP

Kind code of ref document: A2